
Paul	Graham

Essays
Last	updated:	Fri	Apr	26	2024

	

This	Year	We	Can	End	the
Death	Penalty	in	California
November	2016

If	you're	a	California	voter,	there	is	an	important	proposition	on
your	ballot	this	year:	Proposition	62,	which	bans	the	death
penalty.

When	I	was	younger	I	used	to	think	the	debate	about	the	death
penalty	was	about	when	it's	ok	to	take	a	human	life.	Is	it	ok	to	kill
a	killer?

But	that	is	not	the	issue	here.

The	real	world	does	not	work	like	the	version	I	was	shown	on	TV
growing	up.	The	police	often	arrest	the	wrong	person.
Defendants'	lawyers	are	often	incompetent.	And	prosecutors	are
often	motivated	more	by	publicity	than	justice.

In	the	real	world,	about	4%	of	people	sentenced	to	death	are
innocent.	So	this	is	not	about	whether	it's	ok	to	kill	killers.	This	is
about	whether	it's	ok	to	kill	innocent	people.

A	child	could	answer	that	one	for	you.

This	year,	in	California,	you	have	a	chance	to	end	this,	by	voting
yes	on	Proposition	62.	But	beware,	because	there	is	another
proposition,	Proposition	66,	whose	goal	is	to	make	it	easier	to
execute	people.	So	yes	on	62,	no	on	66.

It's	time.

http://time.com/79572/more-innocent-people-on-death-row-than-estimated-study/

	

Programming	Bottom-Up
1993

(This	essay	is	from	the	introduction	to	On	Lisp.)	

It's	a	long-standing	principle	of	programming	style	that	the
functional	elements	of	a	program	should	not	be	too	large.	If	some
component	of	a	program	grows	beyond	the	stage	where	it's
readily	comprehensible,	it	becomes	a	mass	of	complexity	which
conceals	errors	as	easily	as	a	big	city	conceals	fugitives.	Such
software	will	be	hard	to	read,	hard	to	test,	and	hard	to	debug.

In	accordance	with	this	principle,	a	large	program	must	be
divided	into	pieces,	and	the	larger	the	program,	the	more	it	must
be	divided.	How	do	you	divide	a	program?	The	traditional
approach	is	called	top-down	design:	you	say	"the	purpose	of	the
program	is	to	do	these	seven	things,	so	I	divide	it	into	seven
major	subroutines.	The	first	subroutine	has	to	do	these	four
things,	so	it	in	turn	will	have	four	of	its	own	subroutines,"	and	so
on.	This	process	continues	until	the	whole	program	has	the	right
level	of	granularity--	each	part	large	enough	to	do	something
substantial,	but	small	enough	to	be	understood	as	a	single	unit.

Experienced	Lisp	programmers	divide	up	their	programs
differently.	As	well	as	top-down	design,	they	follow	a	principle
which	could	be	called	bottom-up	design--	changing	the	language
to	suit	the	problem.	In	Lisp,	you	don't	just	write	your	program
down	toward	the	language,	you	also	build	the	language	up
toward	your	program.	As	you're	writing	a	program	you	may	think
"I	wish	Lisp	had	such-and-such	an	operator."	So	you	go	and	write
it.	Afterward	you	realize	that	using	the	new	operator	would
simplify	the	design	of	another	part	of	the	program,	and	so	on.
Language	and	program	evolve	together.	Like	the	border	between
two	warring	states,	the	boundary	between	language	and	program
is	drawn	and	redrawn,	until	eventually	it	comes	to	rest	along	the
mountains	and	rivers,	the	natural	frontiers	of	your	problem.	In
the	end	your	program	will	look	as	if	the	language	had	been

onlisp.html

designed	for	it.	And	when	language	and	program	fit	one	another
well,	you	end	up	with	code	which	is	clear,	small,	and	efficient.

It's	worth	emphasizing	that	bottom-up	design	doesn't	mean	just
writing	the	same	program	in	a	different	order.	When	you	work
bottom-up,	you	usually	end	up	with	a	different	program.	Instead
of	a	single,	monolithic	program,	you	will	get	a	larger	language
with	more	abstract	operators,	and	a	smaller	program	written	in
it.	Instead	of	a	lintel,	you'll	get	an	arch.	

In	typical	code,	once	you	abstract	out	the	parts	which	are	merely
bookkeeping,	what's	left	is	much	shorter;	the	higher	you	build	up
the	language,	the	less	distance	you	will	have	to	travel	from	the
top	down	to	it.	This	brings	several	advantages:

1.	 By	making	the	language	do	more	of	the	work,	bottom-up
design	yields	programs	which	are	smaller	and	more	agile.
A	shorter	program	doesn't	have	to	be	divided	into	so	many
components,	and	fewer	components	means	programs
which	are	easier	to	read	or	modify.	Fewer	components	also
means	fewer	connections	between	components,	and	thus
less	chance	for	errors	there.	As	industrial	designers	strive
to	reduce	the	number	of	moving	parts	in	a	machine,
experienced	Lisp	programmers	use	bottom-up	design	to
reduce	the	size	and	complexity	of	their	programs.

2.	 Bottom-up	design	promotes	code	re-use.	When	you	write
two	or	more	programs,	many	of	the	utilities	you	wrote	for
the	first	program	will	also	be	useful	in	the	succeeding	ones.
Once	you've	acquired	a	large	substrate	of	utilities,	writing
a	new	program	can	take	only	a	fraction	of	the	effort	it
would	require	if	you	had	to	start	with	raw	Lisp.

3.	 Bottom-up	design	makes	programs	easier	to	read.	An
instance	of	this	type	of	abstraction	asks	the	reader	to
understand	a	general-purpose	operator;	an	instance	of
functional	abstraction	asks	the	reader	to	understand	a
special-purpose	subroutine.	[1]

4.	 Because	it	causes	you	always	to	be	on	the	lookout	for

patterns	in	your	code,	working	bottom-up	helps	to	clarify
your	ideas	about	the	design	of	your	program.	If	two	distant
components	of	a	program	are	similar	in	form,	you'll	be	led
to	notice	the	similarity	and	perhaps	to	redesign	the
program	in	a	simpler	way.

Bottom-up	design	is	possible	to	a	certain	degree	in	languages
other	than	Lisp.	Whenever	you	see	library	functions,	bottom-up
design	is	happening.	However,	Lisp	gives	you	much	broader
powers	in	this	department,	and	augmenting	the	language	plays	a
proportionately	larger	role	in	Lisp	style--	so	much	so	that	Lisp	is
not	just	a	different	language,	but	a	whole	different	way	of
programming.

It's	true	that	this	style	of	development	is	better	suited	to
programs	which	can	be	written	by	small	groups.	However,	at	the
same	time,	it	extends	the	limits	of	what	can	be	done	by	a	small
group.	In	The	Mythical	Man-Month,	Frederick	Brooks	proposed
that	the	productivity	of	a	group	of	programmers	does	not	grow
linearly	with	its	size.	As	the	size	of	the	group	increases,	the
productivity	of	individual	programmers	goes	down.	The
experience	of	Lisp	programming	suggests	a	more	cheerful	way	to
phrase	this	law:	as	the	size	of	the	group	decreases,	the
productivity	of	individual	programmers	goes	up.	A	small	group
wins,	relatively	speaking,	simply	because	it's	smaller.	When	a
small	group	also	takes	advantage	of	the	techniques	that	Lisp
makes	possible,	it	can	win	outright.

New:	Download	On	Lisp	for	Free.

[1]	"But	no	one	can	read	the	program	without	understanding	all
your	new	utilities."	To	see	why	such	statements	are	usually
mistaken,	see	Section	4.8.

avg.html
onlisptext.html

	

Beating	the	Averages
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

April	2001,	rev.	April	2003

(This	article	is	derived	from	a	talk	given	at	the	2001	Franz
Developer	Symposium.)	

In	the	summer	of	1995,	my	friend	Robert	Morris	and	I	started	a
startup	called	Viaweb.	Our	plan	was	to	write	software	that	would
let	end	users	build	online	stores.	What	was	novel	about	this
software,	at	the	time,	was	that	it	ran	on	our	server,	using
ordinary	Web	pages	as	the	interface.

A	lot	of	people	could	have	been	having	this	idea	at	the	same	time,
of	course,	but	as	far	as	I	know,	Viaweb	was	the	first	Web-based
application.	It	seemed	such	a	novel	idea	to	us	that	we	named	the
company	after	it:	Viaweb,	because	our	software	worked	via	the
Web,	instead	of	running	on	your	desktop	computer.

Another	unusual	thing	about	this	software	was	that	it	was	written
primarily	in	a	programming	language	called	Lisp.	It	was	one	of
the	first	big	end-user	applications	to	be	written	in	Lisp,	which	up
till	then	had	been	used	mostly	in	universities	and	research	labs.
[1]

The	Secret	Weapon

Eric	Raymond	has	written	an	essay	called	"How	to	Become	a
Hacker,"	and	in	it,	among	other	things,	he	tells	would-be	hackers
what	languages	they	should	learn.	He	suggests	starting	with
Python	and	Java,	because	they	are	easy	to	learn.	The	serious
hacker	will	also	want	to	learn	C,	in	order	to	hack	Unix,	and	Perl
for	system	administration	and	cgi	scripts.	Finally,	the	truly
serious	hacker	should	consider	learning	Lisp:

http://ycombinator.com/apply.html
http://docs.yahoo.com/docs/pr/release184.html

Lisp	is	worth	learning	for	the	profound
enlightenment	experience	you	will	have	when	you
finally	get	it;	that	experience	will	make	you	a	better
programmer	for	the	rest	of	your	days,	even	if	you
never	actually	use	Lisp	itself	a	lot.

This	is	the	same	argument	you	tend	to	hear	for	learning	Latin.	It
won't	get	you	a	job,	except	perhaps	as	a	classics	professor,	but	it
will	improve	your	mind,	and	make	you	a	better	writer	in
languages	you	do	want	to	use,	like	English.

But	wait	a	minute.	This	metaphor	doesn't	stretch	that	far.	The
reason	Latin	won't	get	you	a	job	is	that	no	one	speaks	it.	If	you
write	in	Latin,	no	one	can	understand	you.	But	Lisp	is	a	computer
language,	and	computers	speak	whatever	language	you,	the
programmer,	tell	them	to.

So	if	Lisp	makes	you	a	better	programmer,	like	he	says,	why
wouldn't	you	want	to	use	it?	If	a	painter	were	offered	a	brush
that	would	make	him	a	better	painter,	it	seems	to	me	that	he
would	want	to	use	it	in	all	his	paintings,	wouldn't	he?	I'm	not
trying	to	make	fun	of	Eric	Raymond	here.	On	the	whole,	his
advice	is	good.	What	he	says	about	Lisp	is	pretty	much	the
conventional	wisdom.	But	there	is	a	contradiction	in	the
conventional	wisdom:	Lisp	will	make	you	a	better	programmer,
and	yet	you	won't	use	it.

Why	not?	Programming	languages	are	just	tools,	after	all.	If	Lisp
really	does	yield	better	programs,	you	should	use	it.	And	if	it
doesn't,	then	who	needs	it?

This	is	not	just	a	theoretical	question.	Software	is	a	very
competitive	business,	prone	to	natural	monopolies.	A	company
that	gets	software	written	faster	and	better	will,	all	other	things
being	equal,	put	its	competitors	out	of	business.	And	when	you're
starting	a	startup,	you	feel	this	very	keenly.	Startups	tend	to	be
an	all	or	nothing	proposition.	You	either	get	rich,	or	you	get
nothing.	In	a	startup,	if	you	bet	on	the	wrong	technology,	your
competitors	will	crush	you.

Robert	and	I	both	knew	Lisp	well,	and	we	couldn't	see	any	reason

not	to	trust	our	instincts	and	go	with	Lisp.	We	knew	that
everyone	else	was	writing	their	software	in	C++	or	Perl.	But	we
also	knew	that	that	didn't	mean	anything.	If	you	chose
technology	that	way,	you'd	be	running	Windows.	When	you
choose	technology,	you	have	to	ignore	what	other	people	are
doing,	and	consider	only	what	will	work	the	best.

This	is	especially	true	in	a	startup.	In	a	big	company,	you	can	do
what	all	the	other	big	companies	are	doing.	But	a	startup	can't
do	what	all	the	other	startups	do.	I	don't	think	a	lot	of	people
realize	this,	even	in	startups.

The	average	big	company	grows	at	about	ten	percent	a	year.	So	if
you're	running	a	big	company	and	you	do	everything	the	way	the
average	big	company	does	it,	you	can	expect	to	do	as	well	as	the
average	big	company--	that	is,	to	grow	about	ten	percent	a	year.

The	same	thing	will	happen	if	you're	running	a	startup,	of	course.
If	you	do	everything	the	way	the	average	startup	does	it,	you
should	expect	average	performance.	The	problem	here	is,
average	performance	means	that	you'll	go	out	of	business.	The
survival	rate	for	startups	is	way	less	than	fifty	percent.	So	if
you're	running	a	startup,	you	had	better	be	doing	something	odd.
If	not,	you're	in	trouble.

Back	in	1995,	we	knew	something	that	I	don't	think	our
competitors	understood,	and	few	understand	even	now:	when
you're	writing	software	that	only	has	to	run	on	your	own	servers,
you	can	use	any	language	you	want.	When	you're	writing	desktop
software,	there's	a	strong	bias	toward	writing	applications	in	the
same	language	as	the	operating	system.	Ten	years	ago,	writing
applications	meant	writing	applications	in	C.	But	with	Web-based
software,	especially	when	you	have	the	source	code	of	both	the
language	and	the	operating	system,	you	can	use	whatever
language	you	want.

This	new	freedom	is	a	double-edged	sword,	however.	Now	that
you	can	use	any	language,	you	have	to	think	about	which	one	to
use.	Companies	that	try	to	pretend	nothing	has	changed	risk
finding	that	their	competitors	do	not.

If	you	can	use	any	language,	which	do	you	use?	We	chose	Lisp.
For	one	thing,	it	was	obvious	that	rapid	development	would	be
important	in	this	market.	We	were	all	starting	from	scratch,	so	a
company	that	could	get	new	features	done	before	its	competitors
would	have	a	big	advantage.	We	knew	Lisp	was	a	really	good
language	for	writing	software	quickly,	and	server-based
applications	magnify	the	effect	of	rapid	development,	because
you	can	release	software	the	minute	it's	done.

If	other	companies	didn't	want	to	use	Lisp,	so	much	the	better.	It
might	give	us	a	technological	edge,	and	we	needed	all	the	help
we	could	get.	When	we	started	Viaweb,	we	had	no	experience	in
business.	We	didn't	know	anything	about	marketing,	or	hiring
people,	or	raising	money,	or	getting	customers.	Neither	of	us	had
ever	even	had	what	you	would	call	a	real	job.	The	only	thing	we
were	good	at	was	writing	software.	We	hoped	that	would	save	us.
Any	advantage	we	could	get	in	the	software	department,	we
would	take.

So	you	could	say	that	using	Lisp	was	an	experiment.	Our
hypothesis	was	that	if	we	wrote	our	software	in	Lisp,	we'd	be
able	to	get	features	done	faster	than	our	competitors,	and	also	to
do	things	in	our	software	that	they	couldn't	do.	And	because	Lisp
was	so	high-level,	we	wouldn't	need	a	big	development	team,	so
our	costs	would	be	lower.	If	this	were	so,	we	could	offer	a	better
product	for	less	money,	and	still	make	a	profit.	We	would	end	up
getting	all	the	users,	and	our	competitors	would	get	none,	and
eventually	go	out	of	business.	That	was	what	we	hoped	would
happen,	anyway.

What	were	the	results	of	this	experiment?	Somewhat
surprisingly,	it	worked.	We	eventually	had	many	competitors,	on
the	order	of	twenty	to	thirty	of	them,	but	none	of	their	software
could	compete	with	ours.	We	had	a	wysiwyg	online	store	builder
that	ran	on	the	server	and	yet	felt	like	a	desktop	application.	Our
competitors	had	cgi	scripts.	And	we	were	always	far	ahead	of
them	in	features.	Sometimes,	in	desperation,	competitors	would
try	to	introduce	features	that	we	didn't	have.	But	with	Lisp	our
development	cycle	was	so	fast	that	we	could	sometimes	duplicate
a	new	feature	within	a	day	or	two	of	a	competitor	announcing	it
in	a	press	release.	By	the	time	journalists	covering	the	press

release	got	round	to	calling	us,	we	would	have	the	new	feature
too.

It	must	have	seemed	to	our	competitors	that	we	had	some	kind	of
secret	weapon--	that	we	were	decoding	their	Enigma	traffic	or
something.	In	fact	we	did	have	a	secret	weapon,	but	it	was
simpler	than	they	realized.	No	one	was	leaking	news	of	their
features	to	us.	We	were	just	able	to	develop	software	faster	than
anyone	thought	possible.

When	I	was	about	nine	I	happened	to	get	hold	of	a	copy	of	The
Day	of	the	Jackal,	by	Frederick	Forsyth.	The	main	character	is	an
assassin	who	is	hired	to	kill	the	president	of	France.	The	assassin
has	to	get	past	the	police	to	get	up	to	an	apartment	that
overlooks	the	president's	route.	He	walks	right	by	them,	dressed
up	as	an	old	man	on	crutches,	and	they	never	suspect	him.

Our	secret	weapon	was	similar.	We	wrote	our	software	in	a	weird
AI	language,	with	a	bizarre	syntax	full	of	parentheses.	For	years
it	had	annoyed	me	to	hear	Lisp	described	that	way.	But	now	it
worked	to	our	advantage.	In	business,	there	is	nothing	more
valuable	than	a	technical	advantage	your	competitors	don't
understand.	In	business,	as	in	war,	surprise	is	worth	as	much	as
force.

And	so,	I'm	a	little	embarrassed	to	say,	I	never	said	anything
publicly	about	Lisp	while	we	were	working	on	Viaweb.	We	never
mentioned	it	to	the	press,	and	if	you	searched	for	Lisp	on	our
Web	site,	all	you'd	find	were	the	titles	of	two	books	in	my	bio.
This	was	no	accident.	A	startup	should	give	its	competitors	as
little	information	as	possible.	If	they	didn't	know	what	language
our	software	was	written	in,	or	didn't	care,	I	wanted	to	keep	it
that	way.[2]

The	people	who	understood	our	technology	best	were	the
customers.	They	didn't	care	what	language	Viaweb	was	written
in	either,	but	they	noticed	that	it	worked	really	well.	It	let	them
build	great	looking	online	stores	literally	in	minutes.	And	so,	by
word	of	mouth	mostly,	we	got	more	and	more	users.	By	the	end
of	1996	we	had	about	70	stores	online.	At	the	end	of	1997	we	had
500.	Six	months	later,	when	Yahoo	bought	us,	we	had	1070	users.

Today,	as	Yahoo	Store,	this	software	continues	to	dominate	its
market.	It's	one	of	the	more	profitable	pieces	of	Yahoo,	and	the
stores	built	with	it	are	the	foundation	of	Yahoo	Shopping.	I	left
Yahoo	in	1999,	so	I	don't	know	exactly	how	many	users	they	have
now,	but	the	last	I	heard	there	were	about	20,000.

The	Blub	Paradox

What's	so	great	about	Lisp?	And	if	Lisp	is	so	great,	why	doesn't
everyone	use	it?	These	sound	like	rhetorical	questions,	but
actually	they	have	straightforward	answers.	Lisp	is	so	great	not
because	of	some	magic	quality	visible	only	to	devotees,	but
because	it	is	simply	the	most	powerful	language	available.	And
the	reason	everyone	doesn't	use	it	is	that	programming
languages	are	not	merely	technologies,	but	habits	of	mind	as
well,	and	nothing	changes	slower.	Of	course,	both	these	answers
need	explaining.

I'll	begin	with	a	shockingly	controversial	statement:
programming	languages	vary	in	power.

Few	would	dispute,	at	least,	that	high	level	languages	are	more
powerful	than	machine	language.	Most	programmers	today
would	agree	that	you	do	not,	ordinarily,	want	to	program	in
machine	language.	Instead,	you	should	program	in	a	high-level
language,	and	have	a	compiler	translate	it	into	machine	language
for	you.	This	idea	is	even	built	into	the	hardware	now:	since	the
1980s,	instruction	sets	have	been	designed	for	compilers	rather
than	human	programmers.

Everyone	knows	it's	a	mistake	to	write	your	whole	program	by
hand	in	machine	language.	What's	less	often	understood	is	that
there	is	a	more	general	principle	here:	that	if	you	have	a	choice
of	several	languages,	it	is,	all	other	things	being	equal,	a	mistake
to	program	in	anything	but	the	most	powerful	one.	[3]

There	are	many	exceptions	to	this	rule.	If	you're	writing	a
program	that	has	to	work	very	closely	with	a	program	written	in
a	certain	language,	it	might	be	a	good	idea	to	write	the	new
program	in	the	same	language.	If	you're	writing	a	program	that
only	has	to	do	something	very	simple,	like	number	crunching	or

bit	manipulation,	you	may	as	well	use	a	less	abstract	language,
especially	since	it	may	be	slightly	faster.	And	if	you're	writing	a
short,	throwaway	program,	you	may	be	better	off	just	using
whatever	language	has	the	best	library	functions	for	the	task.
But	in	general,	for	application	software,	you	want	to	be	using	the
most	powerful	(reasonably	efficient)	language	you	can	get,	and
using	anything	else	is	a	mistake,	of	exactly	the	same	kind,	though
possibly	in	a	lesser	degree,	as	programming	in	machine
language.

You	can	see	that	machine	language	is	very	low	level.	But,	at	least
as	a	kind	of	social	convention,	high-level	languages	are	often	all
treated	as	equivalent.	They're	not.	Technically	the	term	"high-
level	language"	doesn't	mean	anything	very	definite.	There's	no
dividing	line	with	machine	languages	on	one	side	and	all	the
high-level	languages	on	the	other.	Languages	fall	along	a
continuum	[4]	of	abstractness,	from	the	most	powerful	all	the
way	down	to	machine	languages,	which	themselves	vary	in
power.

Consider	Cobol.	Cobol	is	a	high-level	language,	in	the	sense	that
it	gets	compiled	into	machine	language.	Would	anyone	seriously
argue	that	Cobol	is	equivalent	in	power	to,	say,	Python?	It's
probably	closer	to	machine	language	than	Python.

Or	how	about	Perl	4?	Between	Perl	4	and	Perl	5,	lexical	closures
got	added	to	the	language.	Most	Perl	hackers	would	agree	that
Perl	5	is	more	powerful	than	Perl	4.	But	once	you've	admitted
that,	you've	admitted	that	one	high	level	language	can	be	more
powerful	than	another.	And	it	follows	inexorably	that,	except	in
special	cases,	you	ought	to	use	the	most	powerful	you	can	get.

This	idea	is	rarely	followed	to	its	conclusion,	though.	After	a
certain	age,	programmers	rarely	switch	languages	voluntarily.
Whatever	language	people	happen	to	be	used	to,	they	tend	to
consider	just	good	enough.

Programmers	get	very	attached	to	their	favorite	languages,	and	I
don't	want	to	hurt	anyone's	feelings,	so	to	explain	this	point	I'm
going	to	use	a	hypothetical	language	called	Blub.	Blub	falls	right
in	the	middle	of	the	abstractness	continuum.	It	is	not	the	most

powerful	language,	but	it	is	more	powerful	than	Cobol	or
machine	language.

And	in	fact,	our	hypothetical	Blub	programmer	wouldn't	use
either	of	them.	Of	course	he	wouldn't	program	in	machine
language.	That's	what	compilers	are	for.	And	as	for	Cobol,	he
doesn't	know	how	anyone	can	get	anything	done	with	it.	It
doesn't	even	have	x	(Blub	feature	of	your	choice).

As	long	as	our	hypothetical	Blub	programmer	is	looking	down	the
power	continuum,	he	knows	he's	looking	down.	Languages	less
powerful	than	Blub	are	obviously	less	powerful,	because	they're
missing	some	feature	he's	used	to.	But	when	our	hypothetical
Blub	programmer	looks	in	the	other	direction,	up	the	power
continuum,	he	doesn't	realize	he's	looking	up.	What	he	sees	are
merely	weird	languages.	He	probably	considers	them	about
equivalent	in	power	to	Blub,	but	with	all	this	other	hairy	stuff
thrown	in	as	well.	Blub	is	good	enough	for	him,	because	he
thinks	in	Blub.

When	we	switch	to	the	point	of	view	of	a	programmer	using	any
of	the	languages	higher	up	the	power	continuum,	however,	we
find	that	he	in	turn	looks	down	upon	Blub.	How	can	you	get
anything	done	in	Blub?	It	doesn't	even	have	y.

By	induction,	the	only	programmers	in	a	position	to	see	all	the
differences	in	power	between	the	various	languages	are	those
who	understand	the	most	powerful	one.	(This	is	probably	what
Eric	Raymond	meant	about	Lisp	making	you	a	better
programmer.)	You	can't	trust	the	opinions	of	the	others,	because
of	the	Blub	paradox:	they're	satisfied	with	whatever	language
they	happen	to	use,	because	it	dictates	the	way	they	think	about
programs.

I	know	this	from	my	own	experience,	as	a	high	school	kid	writing
programs	in	Basic.	That	language	didn't	even	support	recursion.
It's	hard	to	imagine	writing	programs	without	using	recursion,
but	I	didn't	miss	it	at	the	time.	I	thought	in	Basic.	And	I	was	a
whiz	at	it.	Master	of	all	I	surveyed.

The	five	languages	that	Eric	Raymond	recommends	to	hackers

fall	at	various	points	on	the	power	continuum.	Where	they	fall
relative	to	one	another	is	a	sensitive	topic.	What	I	will	say	is	that
I	think	Lisp	is	at	the	top.	And	to	support	this	claim	I'll	tell	you
about	one	of	the	things	I	find	missing	when	I	look	at	the	other
four	languages.	How	can	you	get	anything	done	in	them,	I	think,
without	macros?	[5]

Many	languages	have	something	called	a	macro.	But	Lisp	macros
are	unique.	And	believe	it	or	not,	what	they	do	is	related	to	the
parentheses.	The	designers	of	Lisp	didn't	put	all	those
parentheses	in	the	language	just	to	be	different.	To	the	Blub
programmer,	Lisp	code	looks	weird.	But	those	parentheses	are
there	for	a	reason.	They	are	the	outward	evidence	of	a
fundamental	difference	between	Lisp	and	other	languages.

Lisp	code	is	made	out	of	Lisp	data	objects.	And	not	in	the	trivial
sense	that	the	source	files	contain	characters,	and	strings	are
one	of	the	data	types	supported	by	the	language.	Lisp	code,	after
it's	read	by	the	parser,	is	made	of	data	structures	that	you	can
traverse.

If	you	understand	how	compilers	work,	what's	really	going	on	is
not	so	much	that	Lisp	has	a	strange	syntax	as	that	Lisp	has	no
syntax.	You	write	programs	in	the	parse	trees	that	get	generated
within	the	compiler	when	other	languages	are	parsed.	But	these
parse	trees	are	fully	accessible	to	your	programs.	You	can	write
programs	that	manipulate	them.	In	Lisp,	these	programs	are
called	macros.	They	are	programs	that	write	programs.

Programs	that	write	programs?	When	would	you	ever	want	to	do
that?	Not	very	often,	if	you	think	in	Cobol.	All	the	time,	if	you
think	in	Lisp.	It	would	be	convenient	here	if	I	could	give	an
example	of	a	powerful	macro,	and	say	there!	how	about	that?	But
if	I	did,	it	would	just	look	like	gibberish	to	someone	who	didn't
know	Lisp;	there	isn't	room	here	to	explain	everything	you'd	need
to	know	to	understand	what	it	meant.	In	Ansi	Common	Lisp	I
tried	to	move	things	along	as	fast	as	I	could,	and	even	so	I	didn't
get	to	macros	until	page	160.

But	I	think	I	can	give	a	kind	of	argument	that	might	be
convincing.	The	source	code	of	the	Viaweb	editor	was	probably

acl.html

about	20-25%	macros.	Macros	are	harder	to	write	than	ordinary
Lisp	functions,	and	it's	considered	to	be	bad	style	to	use	them
when	they're	not	necessary.	So	every	macro	in	that	code	is	there
because	it	has	to	be.	What	that	means	is	that	at	least	20-25%	of
the	code	in	this	program	is	doing	things	that	you	can't	easily	do
in	any	other	language.	However	skeptical	the	Blub	programmer
might	be	about	my	claims	for	the	mysterious	powers	of	Lisp,	this
ought	to	make	him	curious.	We	weren't	writing	this	code	for	our
own	amusement.	We	were	a	tiny	startup,	programming	as	hard
as	we	could	in	order	to	put	technical	barriers	between	us	and	our
competitors.

A	suspicious	person	might	begin	to	wonder	if	there	was	some
correlation	here.	A	big	chunk	of	our	code	was	doing	things	that
are	very	hard	to	do	in	other	languages.	The	resulting	software
did	things	our	competitors'	software	couldn't	do.	Maybe	there
was	some	kind	of	connection.	I	encourage	you	to	follow	that
thread.	There	may	be	more	to	that	old	man	hobbling	along	on	his
crutches	than	meets	the	eye.

Aikido	for	Startups

But	I	don't	expect	to	convince	anyone	(over	25)	to	go	out	and
learn	Lisp.	The	purpose	of	this	article	is	not	to	change	anyone's
mind,	but	to	reassure	people	already	interested	in	using	Lisp--
people	who	know	that	Lisp	is	a	powerful	language,	but	worry
because	it	isn't	widely	used.	In	a	competitive	situation,	that's	an
advantage.	Lisp's	power	is	multiplied	by	the	fact	that	your
competitors	don't	get	it.

If	you	think	of	using	Lisp	in	a	startup,	you	shouldn't	worry	that	it
isn't	widely	understood.	You	should	hope	that	it	stays	that	way.
And	it's	likely	to.	It's	the	nature	of	programming	languages	to
make	most	people	satisfied	with	whatever	they	currently	use.
Computer	hardware	changes	so	much	faster	than	personal	habits
that	programming	practice	is	usually	ten	to	twenty	years	behind
the	processor.	At	places	like	MIT	they	were	writing	programs	in
high-level	languages	in	the	early	1960s,	but	many	companies
continued	to	write	code	in	machine	language	well	into	the	1980s.
I	bet	a	lot	of	people	continued	to	write	machine	language	until
the	processor,	like	a	bartender	eager	to	close	up	and	go	home,

http://www.trollope.org/scheme.html

finally	kicked	them	out	by	switching	to	a	risc	instruction	set.

Ordinarily	technology	changes	fast.	But	programming	languages
are	different:	programming	languages	are	not	just	technology,
but	what	programmers	think	in.	They're	half	technology	and	half
religion.[6]	And	so	the	median	language,	meaning	whatever
language	the	median	programmer	uses,	moves	as	slow	as	an
iceberg.	Garbage	collection,	introduced	by	Lisp	in	about	1960,	is
now	widely	considered	to	be	a	good	thing.	Runtime	typing,	ditto,
is	growing	in	popularity.	Lexical	closures,	introduced	by	Lisp	in
the	early	1970s,	are	now,	just	barely,	on	the	radar	screen.
Macros,	introduced	by	Lisp	in	the	mid	1960s,	are	still	terra
incognita.

Obviously,	the	median	language	has	enormous	momentum.	I'm
not	proposing	that	you	can	fight	this	powerful	force.	What	I'm
proposing	is	exactly	the	opposite:	that,	like	a	practitioner	of
Aikido,	you	can	use	it	against	your	opponents.

If	you	work	for	a	big	company,	this	may	not	be	easy.	You	will	have
a	hard	time	convincing	the	pointy-haired	boss	to	let	you	build
things	in	Lisp,	when	he	has	just	read	in	the	paper	that	some
other	language	is	poised,	like	Ada	was	twenty	years	ago,	to	take
over	the	world.	But	if	you	work	for	a	startup	that	doesn't	have
pointy-haired	bosses	yet,	you	can,	like	we	did,	turn	the	Blub
paradox	to	your	advantage:	you	can	use	technology	that	your
competitors,	glued	immovably	to	the	median	language,	will	never
be	able	to	match.

If	you	ever	do	find	yourself	working	for	a	startup,	here's	a	handy
tip	for	evaluating	competitors.	Read	their	job	listings.	Everything
else	on	their	site	may	be	stock	photos	or	the	prose	equivalent,
but	the	job	listings	have	to	be	specific	about	what	they	want,	or
they'll	get	the	wrong	candidates.

During	the	years	we	worked	on	Viaweb	I	read	a	lot	of	job
descriptions.	A	new	competitor	seemed	to	emerge	out	of	the
woodwork	every	month	or	so.	The	first	thing	I	would	do,	after
checking	to	see	if	they	had	a	live	online	demo,	was	look	at	their
job	listings.	After	a	couple	years	of	this	I	could	tell	which
companies	to	worry	about	and	which	not	to.	The	more	of	an	IT

flavor	the	job	descriptions	had,	the	less	dangerous	the	company
was.	The	safest	kind	were	the	ones	that	wanted	Oracle
experience.	You	never	had	to	worry	about	those.	You	were	also
safe	if	they	said	they	wanted	C++	or	Java	developers.	If	they
wanted	Perl	or	Python	programmers,	that	would	be	a	bit
frightening--	that's	starting	to	sound	like	a	company	where	the
technical	side,	at	least,	is	run	by	real	hackers.	If	I	had	ever	seen
a	job	posting	looking	for	Lisp	hackers,	I	would	have	been	really
worried.

Notes

[1]	Viaweb	at	first	had	two	parts:	the	editor,	written	in	Lisp,
which	people	used	to	build	their	sites,	and	the	ordering	system,
written	in	C,	which	handled	orders.	The	first	version	was	mostly
Lisp,	because	the	ordering	system	was	small.	Later	we	added	two
more	modules,	an	image	generator	written	in	C,	and	a	back-office
manager	written	mostly	in	Perl.

In	January	2003,	Yahoo	released	a	new	version	of	the	editor
written	in	C++	and	Perl.	It's	hard	to	say	whether	the	program	is
no	longer	written	in	Lisp,	though,	because	to	translate	this
program	into	C++	they	literally	had	to	write	a	Lisp	interpreter:
the	source	files	of	all	the	page-generating	templates	are	still,	as
far	as	I	know,	Lisp	code.	(See	Greenspun's	Tenth	Rule.)

[2]	Robert	Morris	says	that	I	didn't	need	to	be	secretive,	because
even	if	our	competitors	had	known	we	were	using	Lisp,	they
wouldn't	have	understood	why:	"If	they	were	that	smart	they'd
already	be	programming	in	Lisp."

[3]	All	languages	are	equally	powerful	in	the	sense	of	being
Turing	equivalent,	but	that's	not	the	sense	of	the	word
programmers	care	about.	(No	one	wants	to	program	a	Turing
machine.)	The	kind	of	power	programmers	care	about	may	not	be
formally	definable,	but	one	way	to	explain	it	would	be	to	say	that
it	refers	to	features	you	could	only	get	in	the	less	powerful
language	by	writing	an	interpreter	for	the	more	powerful
language	in	it.	If	language	A	has	an	operator	for	removing	spaces

quotes.html

from	strings	and	language	B	doesn't,	that	probably	doesn't	make
A	more	powerful,	because	you	can	probably	write	a	subroutine	to
do	it	in	B.	But	if	A	supports,	say,	recursion,	and	B	doesn't,	that's
not	likely	to	be	something	you	can	fix	by	writing	library
functions.

[4]	Note	to	nerds:	or	possibly	a	lattice,	narrowing	toward	the	top;
it's	not	the	shape	that	matters	here	but	the	idea	that	there	is	at
least	a	partial	order.

[5]	It	is	a	bit	misleading	to	treat	macros	as	a	separate	feature.	In
practice	their	usefulness	is	greatly	enhanced	by	other	Lisp
features	like	lexical	closures	and	rest	parameters.

[6]	As	a	result,	comparisons	of	programming	languages	either
take	the	form	of	religious	wars	or	undergraduate	textbooks	so
determinedly	neutral	that	they're	really	works	of	anthropology.
People	who	value	their	peace,	or	want	tenure,	avoid	the	topic.
But	the	question	is	only	half	a	religious	one;	there	is	something
there	worth	studying,	especially	if	you	want	to	design	new
languages.

	

Java's	Cover
April	2001

This	essay	developed	out	of	conversations	I've	had	with	several
other	programmers	about	why	Java	smelled	suspicious.	It's	not	a
critique	of	Java!	It	is	a	case	study	of	hacker's	radar.

Over	time,	hackers	develop	a	nose	for	good	(and	bad)	technology.
I	thought	it	might	be	interesting	to	try	and	write	down	what
made	Java	seem	suspect	to	me.

Some	people	who've	read	this	think	it's	an	interesting	attempt	to
write	about	something	that	hasn't	been	written	about	before.
Others	say	I	will	get	in	trouble	for	appearing	to	be	writing	about
things	I	don't	understand.	So,	just	in	case	it	does	any	good,	let
me	clarify	that	I'm	not	writing	here	about	Java	(which	I	have
never	used)	but	about	hacker's	radar	(which	I	have	thought
about	a	lot).

The	aphorism	"you	can't	tell	a	book	by	its	cover"	originated	in	the
times	when	books	were	sold	in	plain	cardboard	covers,	to	be
bound	by	each	purchaser	according	to	his	own	taste.	In	those
days,	you	couldn't	tell	a	book	by	its	cover.	But	publishing	has
advanced	since	then:	present-day	publishers	work	hard	to	make
the	cover	something	you	can	tell	a	book	by.

I	spend	a	lot	of	time	in	bookshops	and	I	feel	as	if	I	have	by	now
learned	to	understand	everything	publishers	mean	to	tell	me
about	a	book,	and	perhaps	a	bit	more.	The	time	I	haven't	spent	in
bookshops	I've	spent	mostly	in	front	of	computers,	and	I	feel	as	if
I've	learned,	to	some	degree,	to	judge	technology	by	its	cover	as
well.	It	may	be	just	luck,	but	I've	saved	myself	from	a	few
technologies	that	turned	out	to	be	real	stinkers.

So	far,	Java	seems	like	a	stinker	to	me.	I've	never	written	a	Java
program,	never	more	than	glanced	over	reference	books	about	it,
but	I	have	a	hunch	that	it	won't	be	a	very	successful	language.	I
may	turn	out	to	be	mistaken;	making	predictions	about
technology	is	a	dangerous	business.	But	for	what	it's	worth,	as	a
sort	of	time	capsule,	here's	why	I	don't	like	the	look	of	Java:

1.	It	has	been	so	energetically	hyped.	Real	standards	don't	have
to	be	promoted.	No	one	had	to	promote	C,	or	Unix,	or	HTML.	A
real	standard	tends	to	be	already	established	by	the	time	most
people	hear	about	it.	On	the	hacker	radar	screen,	Perl	is	as	big	as
Java,	or	bigger,	just	on	the	strength	of	its	own	merits.

2.	It's	aimed	low.	In	the	original	Java	white	paper,	Gosling
explicitly	says	Java	was	designed	not	to	be	too	difficult	for
programmers	used	to	C.	It	was	designed	to	be	another	C++:	C
plus	a	few	ideas	taken	from	more	advanced	languages.	Like	the
creators	of	sitcoms	or	junk	food	or	package	tours,	Java's
designers	were	consciously	designing	a	product	for	people	not	as
smart	as	them.	Historically,	languages	designed	for	other	people
to	use	have	been	bad:	Cobol,	PL/I,	Pascal,	Ada,	C++.	The	good
languages	have	been	those	that	were	designed	for	their	own
creators:	C,	Perl,	Smalltalk,	Lisp.

3.	It	has	ulterior	motives.	Someone	once	said	that	the	world
would	be	a	better	place	if	people	only	wrote	books	because	they
had	something	to	say,	rather	than	because	they	wanted	to	write	a
book.	Likewise,	the	reason	we	hear	about	Java	all	the	time	is	not
because	it	has	something	to	say	about	programming	languages.
We	hear	about	Java	as	part	of	a	plan	by	Sun	to	undermine
Microsoft.

4.	No	one	loves	it.	C,	Perl,	Python,	Smalltalk,	and	Lisp
programmers	love	their	languages.	I've	never	heard	anyone	say
that	they	loved	Java.

5.	People	are	forced	to	use	it.	A	lot	of	the	people	I	know	using
Java	are	using	it	because	they	feel	they	have	to.	Either	it's
something	they	felt	they	had	to	do	to	get	funded,	or	something
they	thought	customers	would	want,	or	something	they	were	told

to	do	by	management.	These	are	smart	people;	if	the	technology
was	good,	they'd	have	used	it	voluntarily.

6.	It	has	too	many	cooks.	The	best	programming	languages	have
been	developed	by	small	groups.	Java	seems	to	be	run	by	a
committee.	If	it	turns	out	to	be	a	good	language,	it	will	be	the
first	time	in	history	that	a	committee	has	designed	a	good
language.

7.	It's	bureaucratic.	From	what	little	I	know	about	Java,	there
seem	to	be	a	lot	of	protocols	for	doing	things.	Really	good
languages	aren't	like	that.	They	let	you	do	what	you	want	and	get
out	of	the	way.

8.	It's	pseudo-hip.	Sun	now	pretends	that	Java	is	a	grassroots,
open-source	language	effort	like	Perl	or	Python.	This	one	just
happens	to	be	controlled	by	a	giant	company.	So	the	language	is
likely	to	have	the	same	drab	clunkiness	as	anything	else	that
comes	out	of	a	big	company.

9.	It's	designed	for	large	organizations.	Large	organizations	have
different	aims	from	hackers.	They	want	languages	that	are
(believed	to	be)	suitable	for	use	by	large	teams	of	mediocre
programmers--	languages	with	features	that,	like	the	speed
limiters	in	U-Haul	trucks,	prevent	fools	from	doing	too	much
damage.	Hackers	don't	like	a	language	that	talks	down	to	them.
Hackers	just	want	power.	Historically,	languages	designed	for
large	organizations	(PL/I,	Ada)	have	lost,	while	hacker	languages
(C,	Perl)	have	won.	The	reason:	today's	teenage	hacker	is
tomorrow's	CTO.

10.	The	wrong	people	like	it.	The	programmers	I	admire	most	are
not,	on	the	whole,	captivated	by	Java.	Who	does	like	Java?	Suits,
who	don't	know	one	language	from	another,	but	know	that	they
keep	hearing	about	Java	in	the	press;	programmers	at	big
companies,	who	are	amazed	to	find	that	there	is	something	even
better	than	C++;	and	plug-and-chug	undergrads,	who	are	ready
to	like	anything	that	might	get	them	a	job	(will	this	be	on	the
test?).	These	people's	opinions	change	with	every	wind.

11.	Its	daddy	is	in	a	pinch.	Sun's	business	model	is	being

undermined	on	two	fronts.	Cheap	Intel	processors,	of	the	same
type	used	in	desktop	machines,	are	now	more	than	fast	enough
for	servers.	And	FreeBSD	seems	to	be	at	least	as	good	an	OS	for
servers	as	Solaris.	Sun's	advertising	implies	that	you	need	Sun
servers	for	industrial	strength	applications.	If	this	were	true,
Yahoo	would	be	first	in	line	to	buy	Suns;	but	when	I	worked
there,	the	servers	were	all	Intel	boxes	running	FreeBSD.	This
bodes	ill	for	Sun's	future.	If	Sun	runs	into	trouble,	they	could
drag	Java	down	with	them.

12.	The	DoD	likes	it.	The	Defense	Department	is	encouraging
developers	to	use	Java.	This	seems	to	me	the	most	damning	sign
of	all.	The	Defense	Department	does	a	fine	(though	expensive)
job	of	defending	the	country,	but	they	love	plans	and	procedures
and	protocols.	Their	culture	is	the	opposite	of	hacker	culture;	on
questions	of	software	they	will	tend	to	bet	wrong.	The	last	time
the	DoD	really	liked	a	programming	language,	it	was	Ada.

Bear	in	mind,	this	is	not	a	critique	of	Java,	but	a	critique	of	its
cover.	I	don't	know	Java	well	enough	to	like	it	or	dislike	it.	This	is
just	an	explanation	of	why	I	don't	find	that	I'm	eager	to	learn	it.

It	may	seem	cavalier	to	dismiss	a	language	before	you've	even
tried	writing	programs	in	it.	But	this	is	something	all
programmers	have	to	do.	There	are	too	many	technologies	out
there	to	learn	them	all.	You	have	to	learn	to	judge	by	outward
signs	which	will	be	worth	your	time.	I	have	likewise	cavalierly
dismissed	Cobol,	Ada,	Visual	Basic,	the	IBM	AS400,	VRML,	ISO
9000,	the	SET	protocol,	VMS,	Novell	Netware,	and	CORBA,
among	others.	They	just	smelled	wrong.

It	could	be	that	in	Java's	case	I'm	mistaken.	It	could	be	that	a
language	promoted	by	one	big	company	to	undermine	another,
designed	by	a	committee	for	a	"mainstream"	audience,	hyped	to
the	skies,	and	beloved	of	the	DoD,	happens	nonetheless	to	be	a
clean,	beautiful,	powerful	language	that	I	would	love
programming	in.	It	could	be,	but	it	seems	very	unlikely.

	

Being	Popular
May	2001

(This	article	was	written	as	a	kind	of	business	plan	for	a	new
language.	So	it	is	missing	(because	it	takes	for	granted)	the	most
important	feature	of	a	good	programming	language:	very
powerful	abstractions.)

A	friend	of	mine	once	told	an	eminent	operating	systems	expert
that	he	wanted	to	design	a	really	good	programming	language.
The	expert	told	him	that	it	would	be	a	waste	of	time,	that
programming	languages	don't	become	popular	or	unpopular
based	on	their	merits,	and	so	no	matter	how	good	his	language
was,	no	one	would	use	it.	At	least,	that	was	what	had	happened
to	the	language	he	had	designed.

What	does	make	a	language	popular?	Do	popular	languages
deserve	their	popularity?	Is	it	worth	trying	to	define	a	good
programming	language?	How	would	you	do	it?

I	think	the	answers	to	these	questions	can	be	found	by	looking	at
hackers,	and	learning	what	they	want.	Programming	languages
are	for	hackers,	and	a	programming	language	is	good	as	a
programming	language	(rather	than,	say,	an	exercise	in
denotational	semantics	or	compiler	design)	if	and	only	if	hackers
like	it.

1	The	Mechanics	of	Popularity

It's	true,	certainly,	that	most	people	don't	choose	programming
languages	simply	based	on	their	merits.	Most	programmers	are
told	what	language	to	use	by	someone	else.	And	yet	I	think	the
effect	of	such	external	factors	on	the	popularity	of	programming
languages	is	not	as	great	as	it's	sometimes	thought	to	be.	I	think
a	bigger	problem	is	that	a	hacker's	idea	of	a	good	programming
language	is	not	the	same	as	most	language	designers'.

arc.html

Between	the	two,	the	hacker's	opinion	is	the	one	that	matters.
Programming	languages	are	not	theorems.	They're	tools,
designed	for	people,	and	they	have	to	be	designed	to	suit	human
strengths	and	weaknesses	as	much	as	shoes	have	to	be	designed
for	human	feet.	If	a	shoe	pinches	when	you	put	it	on,	it's	a	bad
shoe,	however	elegant	it	may	be	as	a	piece	of	sculpture.

It	may	be	that	the	majority	of	programmers	can't	tell	a	good
language	from	a	bad	one.	But	that's	no	different	with	any	other
tool.	It	doesn't	mean	that	it's	a	waste	of	time	to	try	designing	a
good	language.	Expert	hackers	can	tell	a	good	language	when
they	see	one,	and	they'll	use	it.	Expert	hackers	are	a	tiny
minority,	admittedly,	but	that	tiny	minority	write	all	the	good
software,	and	their	influence	is	such	that	the	rest	of	the
programmers	will	tend	to	use	whatever	language	they	use.	Often,
indeed,	it	is	not	merely	influence	but	command:	often	the	expert
hackers	are	the	very	people	who,	as	their	bosses	or	faculty
advisors,	tell	the	other	programmers	what	language	to	use.

The	opinion	of	expert	hackers	is	not	the	only	force	that
determines	the	relative	popularity	of	programming	languages	—
legacy	software	(Cobol)	and	hype	(Ada,	Java)	also	play	a	role	—
but	I	think	it	is	the	most	powerful	force	over	the	long	term.	Given
an	initial	critical	mass	and	enough	time,	a	programming
language	probably	becomes	about	as	popular	as	it	deserves	to
be.	And	popularity	further	separates	good	languages	from	bad
ones,	because	feedback	from	real	live	users	always	leads	to
improvements.	Look	at	how	much	any	popular	language	has
changed	during	its	life.	Perl	and	Fortran	are	extreme	cases,	but
even	Lisp	has	changed	a	lot.	Lisp	1.5	didn't	have	macros,	for
example;	these	evolved	later,	after	hackers	at	MIT	had	spent	a
couple	years	using	Lisp	to	write	real	programs.	[1]

So	whether	or	not	a	language	has	to	be	good	to	be	popular,	I
think	a	language	has	to	be	popular	to	be	good.	And	it	has	to	stay
popular	to	stay	good.	The	state	of	the	art	in	programming
languages	doesn't	stand	still.	And	yet	the	Lisps	we	have	today
are	still	pretty	much	what	they	had	at	MIT	in	the	mid-1980s,
because	that's	the	last	time	Lisp	had	a	sufficiently	large	and
demanding	user	base.

design.html

Of	course,	hackers	have	to	know	about	a	language	before	they
can	use	it.	How	are	they	to	hear?	From	other	hackers.	But	there
has	to	be	some	initial	group	of	hackers	using	the	language	for
others	even	to	hear	about	it.	I	wonder	how	large	this	group	has
to	be;	how	many	users	make	a	critical	mass?	Off	the	top	of	my
head,	I'd	say	twenty.	If	a	language	had	twenty	separate	users,
meaning	twenty	users	who	decided	on	their	own	to	use	it,	I'd
consider	it	to	be	real.

Getting	there	can't	be	easy.	I	would	not	be	surprised	if	it	is
harder	to	get	from	zero	to	twenty	than	from	twenty	to	a
thousand.	The	best	way	to	get	those	initial	twenty	users	is
probably	to	use	a	trojan	horse:	to	give	people	an	application	they
want,	which	happens	to	be	written	in	the	new	language.

2	External	Factors

Let's	start	by	acknowledging	one	external	factor	that	does	affect
the	popularity	of	a	programming	language.	To	become	popular,	a
programming	language	has	to	be	the	scripting	language	of	a
popular	system.	Fortran	and	Cobol	were	the	scripting	languages
of	early	IBM	mainframes.	C	was	the	scripting	language	of	Unix,
and	so,	later,	was	Perl.	Tcl	is	the	scripting	language	of	Tk.	Java
and	Javascript	are	intended	to	be	the	scripting	languages	of	web
browsers.

Lisp	is	not	a	massively	popular	language	because	it	is	not	the
scripting	language	of	a	massively	popular	system.	What
popularity	it	retains	dates	back	to	the	1960s	and	1970s,	when	it
was	the	scripting	language	of	MIT.	A	lot	of	the	great
programmers	of	the	day	were	associated	with	MIT	at	some	point.
And	in	the	early	1970s,	before	C,	MIT's	dialect	of	Lisp,	called
MacLisp,	was	one	of	the	only	programming	languages	a	serious
hacker	would	want	to	use.

Today	Lisp	is	the	scripting	language	of	two	moderately	popular
systems,	Emacs	and	Autocad,	and	for	that	reason	I	suspect	that
most	of	the	Lisp	programming	done	today	is	done	in	Emacs	Lisp
or	AutoLisp.

Programming	languages	don't	exist	in	isolation.	To	hack	is	a
transitive	verb	—	hackers	are	usually	hacking	something	—	and
in	practice	languages	are	judged	relative	to	whatever	they're
used	to	hack.	So	if	you	want	to	design	a	popular	language,	you
either	have	to	supply	more	than	a	language,	or	you	have	to
design	your	language	to	replace	the	scripting	language	of	some
existing	system.

Common	Lisp	is	unpopular	partly	because	it's	an	orphan.	It	did
originally	come	with	a	system	to	hack:	the	Lisp	Machine.	But	Lisp
Machines	(along	with	parallel	computers)	were	steamrollered	by
the	increasing	power	of	general	purpose	processors	in	the	1980s.
Common	Lisp	might	have	remained	popular	if	it	had	been	a	good
scripting	language	for	Unix.	It	is,	alas,	an	atrociously	bad	one.

One	way	to	describe	this	situation	is	to	say	that	a	language	isn't
judged	on	its	own	merits.	Another	view	is	that	a	programming
language	really	isn't	a	programming	language	unless	it's	also	the
scripting	language	of	something.	This	only	seems	unfair	if	it
comes	as	a	surprise.	I	think	it's	no	more	unfair	than	expecting	a
programming	language	to	have,	say,	an	implementation.	It's	just
part	of	what	a	programming	language	is.

A	programming	language	does	need	a	good	implementation,	of
course,	and	this	must	be	free.	Companies	will	pay	for	software,
but	individual	hackers	won't,	and	it's	the	hackers	you	need	to
attract.

A	language	also	needs	to	have	a	book	about	it.	The	book	should
be	thin,	well-written,	and	full	of	good	examples.	K&R	is	the	ideal
here.	At	the	moment	I'd	almost	say	that	a	language	has	to	have	a
book	published	by	O'Reilly.	That's	becoming	the	test	of	mattering
to	hackers.

There	should	be	online	documentation	as	well.	In	fact,	the	book
can	start	as	online	documentation.	But	I	don't	think	that	physical
books	are	outmoded	yet.	Their	format	is	convenient,	and	the	de
facto	censorship	imposed	by	publishers	is	a	useful	if	imperfect
filter.	Bookstores	are	one	of	the	most	important	places	for
learning	about	new	languages.

3	Brevity

Given	that	you	can	supply	the	three	things	any	language	needs	—
a	free	implementation,	a	book,	and	something	to	hack	—	how	do
you	make	a	language	that	hackers	will	like?

One	thing	hackers	like	is	brevity.	Hackers	are	lazy,	in	the	same
way	that	mathematicians	and	modernist	architects	are	lazy:	they
hate	anything	extraneous.	It	would	not	be	far	from	the	truth	to
say	that	a	hacker	about	to	write	a	program	decides	what
language	to	use,	at	least	subconsciously,	based	on	the	total
number	of	characters	he'll	have	to	type.	If	this	isn't	precisely	how
hackers	think,	a	language	designer	would	do	well	to	act	as	if	it
were.

It	is	a	mistake	to	try	to	baby	the	user	with	long-winded
expressions	that	are	meant	to	resemble	English.	Cobol	is
notorious	for	this	flaw.	A	hacker	would	consider	being	asked	to
write

add	x	to	y	giving	z

instead	of

z	=	x+y

as	something	between	an	insult	to	his	intelligence	and	a	sin
against	God.

It	has	sometimes	been	said	that	Lisp	should	use	first	and	rest
instead	of	car	and	cdr,	because	it	would	make	programs	easier	to
read.	Maybe	for	the	first	couple	hours.	But	a	hacker	can	learn
quickly	enough	that	car	means	the	first	element	of	a	list	and	cdr
means	the	rest.	Using	first	and	rest	means	50%	more	typing.	And
they	are	also	different	lengths,	meaning	that	the	arguments
won't	line	up	when	they're	called,	as	car	and	cdr	often	are,	in
successive	lines.	I've	found	that	it	matters	a	lot	how	code	lines	up
on	the	page.	I	can	barely	read	Lisp	code	when	it	is	set	in	a
variable-width	font,	and	friends	say	this	is	true	for	other
languages	too.

Brevity	is	one	place	where	strongly	typed	languages	lose.	All
other	things	being	equal,	no	one	wants	to	begin	a	program	with	a
bunch	of	declarations.	Anything	that	can	be	implicit,	should	be.

The	individual	tokens	should	be	short	as	well.	Perl	and	Common
Lisp	occupy	opposite	poles	on	this	question.	Perl	programs	can
be	almost	cryptically	dense,	while	the	names	of	built-in	Common
Lisp	operators	are	comically	long.	The	designers	of	Common	Lisp
probably	expected	users	to	have	text	editors	that	would	type
these	long	names	for	them.	But	the	cost	of	a	long	name	is	not	just
the	cost	of	typing	it.	There	is	also	the	cost	of	reading	it,	and	the
cost	of	the	space	it	takes	up	on	your	screen.

4	Hackability

There	is	one	thing	more	important	than	brevity	to	a	hacker:
being	able	to	do	what	you	want.	In	the	history	of	programming
languages	a	surprising	amount	of	effort	has	gone	into	preventing
programmers	from	doing	things	considered	to	be	improper.	This
is	a	dangerously	presumptuous	plan.	How	can	the	language
designer	know	what	the	programmer	is	going	to	need	to	do?	I
think	language	designers	would	do	better	to	consider	their	target
user	to	be	a	genius	who	will	need	to	do	things	they	never
anticipated,	rather	than	a	bumbler	who	needs	to	be	protected
from	himself.	The	bumbler	will	shoot	himself	in	the	foot	anyway.
You	may	save	him	from	referring	to	variables	in	another	package,
but	you	can't	save	him	from	writing	a	badly	designed	program	to
solve	the	wrong	problem,	and	taking	forever	to	do	it.

Good	programmers	often	want	to	do	dangerous	and	unsavory
things.	By	unsavory	I	mean	things	that	go	behind	whatever
semantic	facade	the	language	is	trying	to	present:	getting	hold	of
the	internal	representation	of	some	high-level	abstraction,	for
example.	Hackers	like	to	hack,	and	hacking	means	getting	inside
things	and	second	guessing	the	original	designer.

Let	yourself	be	second	guessed.	When	you	make	any	tool,	people
use	it	in	ways	you	didn't	intend,	and	this	is	especially	true	of	a
highly	articulated	tool	like	a	programming	language.	Many	a
hacker	will	want	to	tweak	your	semantic	model	in	a	way	that	you
never	imagined.	I	say,	let	them;	give	the	programmer	access	to	as

much	internal	stuff	as	you	can	without	endangering	runtime
systems	like	the	garbage	collector.

In	Common	Lisp	I	have	often	wanted	to	iterate	through	the	fields
of	a	struct	—	to	comb	out	references	to	a	deleted	object,	for
example,	or	find	fields	that	are	uninitialized.	I	know	the	structs
are	just	vectors	underneath.	And	yet	I	can't	write	a	general
purpose	function	that	I	can	call	on	any	struct.	I	can	only	access
the	fields	by	name,	because	that's	what	a	struct	is	supposed	to
mean.

A	hacker	may	only	want	to	subvert	the	intended	model	of	things
once	or	twice	in	a	big	program.	But	what	a	difference	it	makes	to
be	able	to.	And	it	may	be	more	than	a	question	of	just	solving	a
problem.	There	is	a	kind	of	pleasure	here	too.	Hackers	share	the
surgeon's	secret	pleasure	in	poking	about	in	gross	innards,	the
teenager's	secret	pleasure	in	popping	zits.	[2]	For	boys,	at	least,
certain	kinds	of	horrors	are	fascinating.	Maxim	magazine
publishes	an	annual	volume	of	photographs,	containing	a	mix	of
pin-ups	and	grisly	accidents.	They	know	their	audience.

Historically,	Lisp	has	been	good	at	letting	hackers	have	their	way.
The	political	correctness	of	Common	Lisp	is	an	aberration.	Early
Lisps	let	you	get	your	hands	on	everything.	A	good	deal	of	that
spirit	is,	fortunately,	preserved	in	macros.	What	a	wonderful
thing,	to	be	able	to	make	arbitrary	transformations	on	the	source
code.

Classic	macros	are	a	real	hacker's	tool	—	simple,	powerful,	and
dangerous.	It's	so	easy	to	understand	what	they	do:	you	call	a
function	on	the	macro's	arguments,	and	whatever	it	returns	gets
inserted	in	place	of	the	macro	call.	Hygienic	macros	embody	the
opposite	principle.	They	try	to	protect	you	from	understanding
what	they're	doing.	I	have	never	heard	hygienic	macros
explained	in	one	sentence.	And	they	are	a	classic	example	of	the
dangers	of	deciding	what	programmers	are	allowed	to	want.
Hygienic	macros	are	intended	to	protect	me	from	variable
capture,	among	other	things,	but	variable	capture	is	exactly	what
I	want	in	some	macros.

A	really	good	language	should	be	both	clean	and	dirty:	cleanly

designed,	with	a	small	core	of	well	understood	and	highly
orthogonal	operators,	but	dirty	in	the	sense	that	it	lets	hackers
have	their	way	with	it.	C	is	like	this.	So	were	the	early	Lisps.	A
real	hacker's	language	will	always	have	a	slightly	raffish
character.

A	good	programming	language	should	have	features	that	make
the	kind	of	people	who	use	the	phrase	"software	engineering"
shake	their	heads	disapprovingly.	At	the	other	end	of	the
continuum	are	languages	like	Ada	and	Pascal,	models	of
propriety	that	are	good	for	teaching	and	not	much	else.

5	Throwaway	Programs

To	be	attractive	to	hackers,	a	language	must	be	good	for	writing
the	kinds	of	programs	they	want	to	write.	And	that	means,
perhaps	surprisingly,	that	it	has	to	be	good	for	writing	throwaway
programs.

A	throwaway	program	is	a	program	you	write	quickly	for	some
limited	task:	a	program	to	automate	some	system	administration
task,	or	generate	test	data	for	a	simulation,	or	convert	data	from
one	format	to	another.	The	surprising	thing	about	throwaway
programs	is	that,	like	the	"temporary"	buildings	built	at	so	many
American	universities	during	World	War	II,	they	often	don't	get
thrown	away.	Many	evolve	into	real	programs,	with	real	features
and	real	users.

I	have	a	hunch	that	the	best	big	programs	begin	life	this	way,
rather	than	being	designed	big	from	the	start,	like	the	Hoover
Dam.	It's	terrifying	to	build	something	big	from	scratch.	When
people	take	on	a	project	that's	too	big,	they	become
overwhelmed.	The	project	either	gets	bogged	down,	or	the	result
is	sterile	and	wooden:	a	shopping	mall	rather	than	a	real
downtown,	Brasilia	rather	than	Rome,	Ada	rather	than	C.

Another	way	to	get	a	big	program	is	to	start	with	a	throwaway
program	and	keep	improving	it.	This	approach	is	less	daunting,
and	the	design	of	the	program	benefits	from	evolution.	I	think,	if
one	looked,	that	this	would	turn	out	to	be	the	way	most	big
programs	were	developed.	And	those	that	did	evolve	this	way	are

probably	still	written	in	whatever	language	they	were	first
written	in,	because	it's	rare	for	a	program	to	be	ported,	except
for	political	reasons.	And	so,	paradoxically,	if	you	want	to	make	a
language	that	is	used	for	big	systems,	you	have	to	make	it	good
for	writing	throwaway	programs,	because	that's	where	big
systems	come	from.

Perl	is	a	striking	example	of	this	idea.	It	was	not	only	designed
for	writing	throwaway	programs,	but	was	pretty	much	a
throwaway	program	itself.	Perl	began	life	as	a	collection	of
utilities	for	generating	reports,	and	only	evolved	into	a
programming	language	as	the	throwaway	programs	people	wrote
in	it	grew	larger.	It	was	not	until	Perl	5	(if	then)	that	the
language	was	suitable	for	writing	serious	programs,	and	yet	it
was	already	massively	popular.

What	makes	a	language	good	for	throwaway	programs?	To	start
with,	it	must	be	readily	available.	A	throwaway	program	is
something	that	you	expect	to	write	in	an	hour.	So	the	language
probably	must	already	be	installed	on	the	computer	you're	using.
It	can't	be	something	you	have	to	install	before	you	use	it.	It	has
to	be	there.	C	was	there	because	it	came	with	the	operating
system.	Perl	was	there	because	it	was	originally	a	tool	for	system
administrators,	and	yours	had	already	installed	it.

Being	available	means	more	than	being	installed,	though.	An
interactive	language,	with	a	command-line	interface,	is	more
available	than	one	that	you	have	to	compile	and	run	separately.	A
popular	programming	language	should	be	interactive,	and	start
up	fast.

Another	thing	you	want	in	a	throwaway	program	is	brevity.
Brevity	is	always	attractive	to	hackers,	and	never	more	so	than	in
a	program	they	expect	to	turn	out	in	an	hour.

6	Libraries

Of	course	the	ultimate	in	brevity	is	to	have	the	program	already
written	for	you,	and	merely	to	call	it.	And	this	brings	us	to	what	I
think	will	be	an	increasingly	important	feature	of	programming
languages:	library	functions.	Perl	wins	because	it	has	large

libraries	for	manipulating	strings.	This	class	of	library	functions
are	especially	important	for	throwaway	programs,	which	are
often	originally	written	for	converting	or	extracting	data.	Many
Perl	programs	probably	begin	as	just	a	couple	library	calls	stuck
together.

I	think	a	lot	of	the	advances	that	happen	in	programming
languages	in	the	next	fifty	years	will	have	to	do	with	library
functions.	I	think	future	programming	languages	will	have
libraries	that	are	as	carefully	designed	as	the	core	language.
Programming	language	design	will	not	be	about	whether	to	make
your	language	strongly	or	weakly	typed,	or	object	oriented,	or
functional,	or	whatever,	but	about	how	to	design	great	libraries.
The	kind	of	language	designers	who	like	to	think	about	how	to
design	type	systems	may	shudder	at	this.	It's	almost	like	writing
applications!	Too	bad.	Languages	are	for	programmers,	and
libraries	are	what	programmers	need.

It's	hard	to	design	good	libraries.	It's	not	simply	a	matter	of
writing	a	lot	of	code.	Once	the	libraries	get	too	big,	it	can
sometimes	take	longer	to	find	the	function	you	need	than	to	write
the	code	yourself.	Libraries	need	to	be	designed	using	a	small	set
of	orthogonal	operators,	just	like	the	core	language.	It	ought	to
be	possible	for	the	programmer	to	guess	what	library	call	will	do
what	he	needs.

Libraries	are	one	place	Common	Lisp	falls	short.	There	are	only
rudimentary	libraries	for	manipulating	strings,	and	almost	none
for	talking	to	the	operating	system.	For	historical	reasons,
Common	Lisp	tries	to	pretend	that	the	OS	doesn't	exist.	And
because	you	can't	talk	to	the	OS,	you're	unlikely	to	be	able	to
write	a	serious	program	using	only	the	built-in	operators	in
Common	Lisp.	You	have	to	use	some	implementation-specific
hacks	as	well,	and	in	practice	these	tend	not	to	give	you
everything	you	want.	Hackers	would	think	a	lot	more	highly	of
Lisp	if	Common	Lisp	had	powerful	string	libraries	and	good	OS
support.

7	Syntax

Could	a	language	with	Lisp's	syntax,	or	more	precisely,	lack	of

syntax,	ever	become	popular?	I	don't	know	the	answer	to	this
question.	I	do	think	that	syntax	is	not	the	main	reason	Lisp	isn't
currently	popular.	Common	Lisp	has	worse	problems	than
unfamiliar	syntax.	I	know	several	programmers	who	are
comfortable	with	prefix	syntax	and	yet	use	Perl	by	default,
because	it	has	powerful	string	libraries	and	can	talk	to	the	os.

There	are	two	possible	problems	with	prefix	notation:	that	it	is
unfamiliar	to	programmers,	and	that	it	is	not	dense	enough.	The
conventional	wisdom	in	the	Lisp	world	is	that	the	first	problem	is
the	real	one.	I'm	not	so	sure.	Yes,	prefix	notation	makes	ordinary
programmers	panic.	But	I	don't	think	ordinary	programmers'
opinions	matter.	Languages	become	popular	or	unpopular	based
on	what	expert	hackers	think	of	them,	and	I	think	expert	hackers
might	be	able	to	deal	with	prefix	notation.	Perl	syntax	can	be
pretty	incomprehensible,	but	that	has	not	stood	in	the	way	of
Perl's	popularity.	If	anything	it	may	have	helped	foster	a	Perl	cult.

A	more	serious	problem	is	the	diffuseness	of	prefix	notation.	For
expert	hackers,	that	really	is	a	problem.	No	one	wants	to	write
(aref	a	x	y)	when	they	could	write	a[x,y].

In	this	particular	case	there	is	a	way	to	finesse	our	way	out	of	the
problem.	If	we	treat	data	structures	as	if	they	were	functions	on
indexes,	we	could	write	(a	x	y)	instead,	which	is	even	shorter
than	the	Perl	form.	Similar	tricks	may	shorten	other	types	of
expressions.

We	can	get	rid	of	(or	make	optional)	a	lot	of	parentheses	by
making	indentation	significant.	That's	how	programmers	read
code	anyway:	when	indentation	says	one	thing	and	delimiters	say
another,	we	go	by	the	indentation.	Treating	indentation	as
significant	would	eliminate	this	common	source	of	bugs	as	well
as	making	programs	shorter.

Sometimes	infix	syntax	is	easier	to	read.	This	is	especially	true
for	math	expressions.	I've	used	Lisp	my	whole	programming	life
and	I	still	don't	find	prefix	math	expressions	natural.	And	yet	it	is
convenient,	especially	when	you're	generating	code,	to	have
operators	that	take	any	number	of	arguments.	So	if	we	do	have
infix	syntax,	it	should	probably	be	implemented	as	some	kind	of

read-macro.

I	don't	think	we	should	be	religiously	opposed	to	introducing
syntax	into	Lisp,	as	long	as	it	translates	in	a	well-understood	way
into	underlying	s-expressions.	There	is	already	a	good	deal	of
syntax	in	Lisp.	It's	not	necessarily	bad	to	introduce	more,	as	long
as	no	one	is	forced	to	use	it.	In	Common	Lisp,	some	delimiters
are	reserved	for	the	language,	suggesting	that	at	least	some	of
the	designers	intended	to	have	more	syntax	in	the	future.

One	of	the	most	egregiously	unlispy	pieces	of	syntax	in	Common
Lisp	occurs	in	format	strings;	format	is	a	language	in	its	own
right,	and	that	language	is	not	Lisp.	If	there	were	a	plan	for
introducing	more	syntax	into	Lisp,	format	specifiers	might	be
able	to	be	included	in	it.	It	would	be	a	good	thing	if	macros	could
generate	format	specifiers	the	way	they	generate	any	other	kind
of	code.

An	eminent	Lisp	hacker	told	me	that	his	copy	of	CLTL	falls	open
to	the	section	format.	Mine	too.	This	probably	indicates	room	for
improvement.	It	may	also	mean	that	programs	do	a	lot	of	I/O.

8	Efficiency

A	good	language,	as	everyone	knows,	should	generate	fast	code.
But	in	practice	I	don't	think	fast	code	comes	primarily	from
things	you	do	in	the	design	of	the	language.	As	Knuth	pointed	out
long	ago,	speed	only	matters	in	certain	critical	bottlenecks.	And
as	many	programmers	have	observed	since,	one	is	very	often
mistaken	about	where	these	bottlenecks	are.

So,	in	practice,	the	way	to	get	fast	code	is	to	have	a	very	good
profiler,	rather	than	by,	say,	making	the	language	strongly	typed.
You	don't	need	to	know	the	type	of	every	argument	in	every	call
in	the	program.	You	do	need	to	be	able	to	declare	the	types	of
arguments	in	the	bottlenecks.	And	even	more,	you	need	to	be
able	to	find	out	where	the	bottlenecks	are.

One	complaint	people	have	had	with	Lisp	is	that	it's	hard	to	tell
what's	expensive.	This	might	be	true.	It	might	also	be	inevitable,
if	you	want	to	have	a	very	abstract	language.	And	in	any	case	I

think	good	profiling	would	go	a	long	way	toward	fixing	the
problem:	you'd	soon	learn	what	was	expensive.

Part	of	the	problem	here	is	social.	Language	designers	like	to
write	fast	compilers.	That's	how	they	measure	their	skill.	They
think	of	the	profiler	as	an	add-on,	at	best.	But	in	practice	a	good
profiler	may	do	more	to	improve	the	speed	of	actual	programs
written	in	the	language	than	a	compiler	that	generates	fast	code.
Here,	again,	language	designers	are	somewhat	out	of	touch	with
their	users.	They	do	a	really	good	job	of	solving	slightly	the
wrong	problem.

It	might	be	a	good	idea	to	have	an	active	profiler	—	to	push
performance	data	to	the	programmer	instead	of	waiting	for	him
to	come	asking	for	it.	For	example,	the	editor	could	display
bottlenecks	in	red	when	the	programmer	edits	the	source	code.
Another	approach	would	be	to	somehow	represent	what's
happening	in	running	programs.	This	would	be	an	especially	big
win	in	server-based	applications,	where	you	have	lots	of	running
programs	to	look	at.	An	active	profiler	could	show	graphically
what's	happening	in	memory	as	a	program's	running,	or	even
make	sounds	that	tell	what's	happening.

Sound	is	a	good	cue	to	problems.	In	one	place	I	worked,	we	had	a
big	board	of	dials	showing	what	was	happening	to	our	web
servers.	The	hands	were	moved	by	little	servomotors	that	made	a
slight	noise	when	they	turned.	I	couldn't	see	the	board	from	my
desk,	but	I	found	that	I	could	tell	immediately,	by	the	sound,
when	there	was	a	problem	with	a	server.

It	might	even	be	possible	to	write	a	profiler	that	would
automatically	detect	inefficient	algorithms.	I	would	not	be
surprised	if	certain	patterns	of	memory	access	turned	out	to	be
sure	signs	of	bad	algorithms.	If	there	were	a	little	guy	running
around	inside	the	computer	executing	our	programs,	he	would
probably	have	as	long	and	plaintive	a	tale	to	tell	about	his	job	as
a	federal	government	employee.	I	often	have	a	feeling	that	I'm
sending	the	processor	on	a	lot	of	wild	goose	chases,	but	I've
never	had	a	good	way	to	look	at	what	it's	doing.

A	number	of	Lisps	now	compile	into	byte	code,	which	is	then

executed	by	an	interpreter.	This	is	usually	done	to	make	the
implementation	easier	to	port,	but	it	could	be	a	useful	language
feature.	It	might	be	a	good	idea	to	make	the	byte	code	an	official
part	of	the	language,	and	to	allow	programmers	to	use	inline	byte
code	in	bottlenecks.	Then	such	optimizations	would	be	portable
too.

The	nature	of	speed,	as	perceived	by	the	end-user,	may	be
changing.	With	the	rise	of	server-based	applications,	more	and
more	programs	may	turn	out	to	be	i/o-bound.	It	will	be	worth
making	i/o	fast.	The	language	can	help	with	straightforward
measures	like	simple,	fast,	formatted	output	functions,	and	also
with	deep	structural	changes	like	caching	and	persistent	objects.

Users	are	interested	in	response	time.	But	another	kind	of
efficiency	will	be	increasingly	important:	the	number	of
simultaneous	users	you	can	support	per	processor.	Many	of	the
interesting	applications	written	in	the	near	future	will	be	server-
based,	and	the	number	of	users	per	server	is	the	critical	question
for	anyone	hosting	such	applications.	In	the	capital	cost	of	a
business	offering	a	server-based	application,	this	is	the	divisor.

For	years,	efficiency	hasn't	mattered	much	in	most	end-user
applications.	Developers	have	been	able	to	assume	that	each
user	would	have	an	increasingly	powerful	processor	sitting	on
their	desk.	And	by	Parkinson's	Law,	software	has	expanded	to	use
the	resources	available.	That	will	change	with	server-based
applications.	In	that	world,	the	hardware	and	software	will	be
supplied	together.	For	companies	that	offer	server-based
applications,	it	will	make	a	very	big	difference	to	the	bottom	line
how	many	users	they	can	support	per	server.

In	some	applications,	the	processor	will	be	the	limiting	factor,
and	execution	speed	will	be	the	most	important	thing	to	optimize.
But	often	memory	will	be	the	limit;	the	number	of	simultaneous
users	will	be	determined	by	the	amount	of	memory	you	need	for
each	user's	data.	The	language	can	help	here	too.	Good	support
for	threads	will	enable	all	the	users	to	share	a	single	heap.	It	may
also	help	to	have	persistent	objects	and/or	language	level	support
for	lazy	loading.

9	Time

The	last	ingredient	a	popular	language	needs	is	time.	No	one
wants	to	write	programs	in	a	language	that	might	go	away,	as	so
many	programming	languages	do.	So	most	hackers	will	tend	to
wait	until	a	language	has	been	around	for	a	couple	years	before
even	considering	using	it.

Inventors	of	wonderful	new	things	are	often	surprised	to	discover
this,	but	you	need	time	to	get	any	message	through	to	people.	A
friend	of	mine	rarely	does	anything	the	first	time	someone	asks
him.	He	knows	that	people	sometimes	ask	for	things	that	they
turn	out	not	to	want.	To	avoid	wasting	his	time,	he	waits	till	the
third	or	fourth	time	he's	asked	to	do	something;	by	then,
whoever's	asking	him	may	be	fairly	annoyed,	but	at	least	they
probably	really	do	want	whatever	they're	asking	for.

Most	people	have	learned	to	do	a	similar	sort	of	filtering	on	new
things	they	hear	about.	They	don't	even	start	paying	attention
until	they've	heard	about	something	ten	times.	They're	perfectly
justified:	the	majority	of	hot	new	whatevers	do	turn	out	to	be	a
waste	of	time,	and	eventually	go	away.	By	delaying	learning
VRML,	I	avoided	having	to	learn	it	at	all.

So	anyone	who	invents	something	new	has	to	expect	to	keep
repeating	their	message	for	years	before	people	will	start	to	get
it.	We	wrote	what	was,	as	far	as	I	know,	the	first	web-server
based	application,	and	it	took	us	years	to	get	it	through	to	people
that	it	didn't	have	to	be	downloaded.	It	wasn't	that	they	were
stupid.	They	just	had	us	tuned	out.

The	good	news	is,	simple	repetition	solves	the	problem.	All	you
have	to	do	is	keep	telling	your	story,	and	eventually	people	will
start	to	hear.	It's	not	when	people	notice	you're	there	that	they
pay	attention;	it's	when	they	notice	you're	still	there.

It's	just	as	well	that	it	usually	takes	a	while	to	gain	momentum.
Most	technologies	evolve	a	good	deal	even	after	they're	first
launched	—	programming	languages	especially.	Nothing	could	be
better,	for	a	new	techology,	than	a	few	years	of	being	used	only
by	a	small	number	of	early	adopters.	Early	adopters	are

sophisticated	and	demanding,	and	quickly	flush	out	whatever
flaws	remain	in	your	technology.	When	you	only	have	a	few	users
you	can	be	in	close	contact	with	all	of	them.	And	early	adopters
are	forgiving	when	you	improve	your	system,	even	if	this	causes
some	breakage.

There	are	two	ways	new	technology	gets	introduced:	the	organic
growth	method,	and	the	big	bang	method.	The	organic	growth
method	is	exemplified	by	the	classic	seat-of-the-pants
underfunded	garage	startup.	A	couple	guys,	working	in	obscurity,
develop	some	new	technology.	They	launch	it	with	no	marketing
and	initially	have	only	a	few	(fanatically	devoted)	users.	They
continue	to	improve	the	technology,	and	meanwhile	their	user
base	grows	by	word	of	mouth.	Before	they	know	it,	they're	big.

The	other	approach,	the	big	bang	method,	is	exemplified	by	the
VC-backed,	heavily	marketed	startup.	They	rush	to	develop	a
product,	launch	it	with	great	publicity,	and	immediately	(they
hope)	have	a	large	user	base.

Generally,	the	garage	guys	envy	the	big	bang	guys.	The	big	bang
guys	are	smooth	and	confident	and	respected	by	the	VCs.	They
can	afford	the	best	of	everything,	and	the	PR	campaign
surrounding	the	launch	has	the	side	effect	of	making	them
celebrities.	The	organic	growth	guys,	sitting	in	their	garage,	feel
poor	and	unloved.	And	yet	I	think	they	are	often	mistaken	to	feel
sorry	for	themselves.	Organic	growth	seems	to	yield	better
technology	and	richer	founders	than	the	big	bang	method.	If	you
look	at	the	dominant	technologies	today,	you'll	find	that	most	of
them	grew	organically.

This	pattern	doesn't	only	apply	to	companies.	You	see	it	in
sponsored	research	too.	Multics	and	Common	Lisp	were	big-bang
projects,	and	Unix	and	MacLisp	were	organic	growth	projects.

10	Redesign

"The	best	writing	is	rewriting,"	wrote	E.	B.	White.	Every	good
writer	knows	this,	and	it's	true	for	software	too.	The	most
important	part	of	design	is	redesign.	Programming	languages,
especially,	don't	get	redesigned	enough.

To	write	good	software	you	must	simultaneously	keep	two
opposing	ideas	in	your	head.	You	need	the	young	hacker's	naive
faith	in	his	abilities,	and	at	the	same	time	the	veteran's
skepticism.	You	have	to	be	able	to	think	how	hard	can	it	be?	with
one	half	of	your	brain	while	thinking	it	will	never	work	with	the
other.

The	trick	is	to	realize	that	there's	no	real	contradiction	here.	You
want	to	be	optimistic	and	skeptical	about	two	different	things.
You	have	to	be	optimistic	about	the	possibility	of	solving	the
problem,	but	skeptical	about	the	value	of	whatever	solution
you've	got	so	far.

People	who	do	good	work	often	think	that	whatever	they're
working	on	is	no	good.	Others	see	what	they've	done	and	are	full
of	wonder,	but	the	creator	is	full	of	worry.	This	pattern	is	no
coincidence:	it	is	the	worry	that	made	the	work	good.

If	you	can	keep	hope	and	worry	balanced,	they	will	drive	a
project	forward	the	same	way	your	two	legs	drive	a	bicycle
forward.	In	the	first	phase	of	the	two-cycle	innovation	engine,
you	work	furiously	on	some	problem,	inspired	by	your	confidence
that	you'll	be	able	to	solve	it.	In	the	second	phase,	you	look	at
what	you've	done	in	the	cold	light	of	morning,	and	see	all	its
flaws	very	clearly.	But	as	long	as	your	critical	spirit	doesn't
outweigh	your	hope,	you'll	be	able	to	look	at	your	admittedly
incomplete	system,	and	think,	how	hard	can	it	be	to	get	the	rest
of	the	way?,	thereby	continuing	the	cycle.

It's	tricky	to	keep	the	two	forces	balanced.	In	young	hackers,
optimism	predominates.	They	produce	something,	are	convinced
it's	great,	and	never	improve	it.	In	old	hackers,	skepticism
predominates,	and	they	won't	even	dare	to	take	on	ambitious
projects.

Anything	you	can	do	to	keep	the	redesign	cycle	going	is	good.
Prose	can	be	rewritten	over	and	over	until	you're	happy	with	it.
But	software,	as	a	rule,	doesn't	get	redesigned	enough.	Prose	has
readers,	but	software	has	users.	If	a	writer	rewrites	an	essay,
people	who	read	the	old	version	are	unlikely	to	complain	that

http://www.trevorblackwell.com/
http://www.pdos.lcs.mit.edu/~rtm/

their	thoughts	have	been	broken	by	some	newly	introduced
incompatibility.

Users	are	a	double-edged	sword.	They	can	help	you	improve	your
language,	but	they	can	also	deter	you	from	improving	it.	So
choose	your	users	carefully,	and	be	slow	to	grow	their	number.
Having	users	is	like	optimization:	the	wise	course	is	to	delay	it.
Also,	as	a	general	rule,	you	can	at	any	given	time	get	away	with
changing	more	than	you	think.	Introducing	change	is	like	pulling
off	a	bandage:	the	pain	is	a	memory	almost	as	soon	as	you	feel	it.

Everyone	knows	that	it's	not	a	good	idea	to	have	a	language
designed	by	a	committee.	Committees	yield	bad	design.	But	I
think	the	worst	danger	of	committees	is	that	they	interfere	with
redesign.	It	is	so	much	work	to	introduce	changes	that	no	one
wants	to	bother.	Whatever	a	committee	decides	tends	to	stay	that
way,	even	if	most	of	the	members	don't	like	it.

Even	a	committee	of	two	gets	in	the	way	of	redesign.	This
happens	particularly	in	the	interfaces	between	pieces	of	software
written	by	two	different	people.	To	change	the	interface	both
have	to	agree	to	change	it	at	once.	And	so	interfaces	tend	not	to
change	at	all,	which	is	a	problem	because	they	tend	to	be	one	of
the	most	ad	hoc	parts	of	any	system.

One	solution	here	might	be	to	design	systems	so	that	interfaces
are	horizontal	instead	of	vertical	—	so	that	modules	are	always
vertically	stacked	strata	of	abstraction.	Then	the	interface	will
tend	to	be	owned	by	one	of	them.	The	lower	of	two	levels	will
either	be	a	language	in	which	the	upper	is	written,	in	which	case
the	lower	level	will	own	the	interface,	or	it	will	be	a	slave,	in
which	case	the	interface	can	be	dictated	by	the	upper	level.

11	Lisp

What	all	this	implies	is	that	there	is	hope	for	a	new	Lisp.	There	is
hope	for	any	language	that	gives	hackers	what	they	want,
including	Lisp.	I	think	we	may	have	made	a	mistake	in	thinking
that	hackers	are	turned	off	by	Lisp's	strangeness.	This
comforting	illusion	may	have	prevented	us	from	seeing	the	real
problem	with	Lisp,	or	at	least	Common	Lisp,	which	is	that	it

sucks	for	doing	what	hackers	want	to	do.	A	hacker's	language
needs	powerful	libraries	and	something	to	hack.	Common	Lisp
has	neither.	A	hacker's	language	is	terse	and	hackable.	Common
Lisp	is	not.

The	good	news	is,	it's	not	Lisp	that	sucks,	but	Common	Lisp.	If
we	can	develop	a	new	Lisp	that	is	a	real	hacker's	language,	I
think	hackers	will	use	it.	They	will	use	whatever	language	does
the	job.	All	we	have	to	do	is	make	sure	this	new	Lisp	does	some
important	job	better	than	other	languages.

History	offers	some	encouragement.	Over	time,	successive	new
programming	languages	have	taken	more	and	more	features
from	Lisp.	There	is	no	longer	much	left	to	copy	before	the
language	you've	made	is	Lisp.	The	latest	hot	language,	Python,	is
a	watered-down	Lisp	with	infix	syntax	and	no	macros.	A	new	Lisp
would	be	a	natural	step	in	this	progression.

I	sometimes	think	that	it	would	be	a	good	marketing	trick	to	call
it	an	improved	version	of	Python.	That	sounds	hipper	than	Lisp.
To	many	people,	Lisp	is	a	slow	AI	language	with	a	lot	of
parentheses.	Fritz	Kunze's	official	biography	carefully	avoids
mentioning	the	L-word.	But	my	guess	is	that	we	shouldn't	be
afraid	to	call	the	new	Lisp	Lisp.	Lisp	still	has	a	lot	of	latent
respect	among	the	very	best	hackers	—	the	ones	who	took	6.001
and	understood	it,	for	example.	And	those	are	the	users	you	need
to	win.

In	"How	to	Become	a	Hacker,"	Eric	Raymond	describes	Lisp	as
something	like	Latin	or	Greek	—	a	language	you	should	learn	as
an	intellectual	exercise,	even	though	you	won't	actually	use	it:

Lisp	is	worth	learning	for	the	profound
enlightenment	experience	you	will	have	when	you
finally	get	it;	that	experience	will	make	you	a	better
programmer	for	the	rest	of	your	days,	even	if	you
never	actually	use	Lisp	itself	a	lot.

If	I	didn't	know	Lisp,	reading	this	would	set	me	asking	questions.
A	language	that	would	make	me	a	better	programmer,	if	it	means
anything	at	all,	means	a	language	that	would	be	better	for

programming.	And	that	is	in	fact	the	implication	of	what	Eric	is
saying.

As	long	as	that	idea	is	still	floating	around,	I	think	hackers	will	be
receptive	enough	to	a	new	Lisp,	even	if	it	is	called	Lisp.	But	this
Lisp	must	be	a	hacker's	language,	like	the	classic	Lisps	of	the
1970s.	It	must	be	terse,	simple,	and	hackable.	And	it	must	have
powerful	libraries	for	doing	what	hackers	want	to	do	now.

In	the	matter	of	libraries	I	think	there	is	room	to	beat	languages
like	Perl	and	Python	at	their	own	game.	A	lot	of	the	new
applications	that	will	need	to	be	written	in	the	coming	years	will
be	server-based	applications.	There's	no	reason	a	new	Lisp
shouldn't	have	string	libraries	as	good	as	Perl,	and	if	this	new
Lisp	also	had	powerful	libraries	for	server-based	applications,	it
could	be	very	popular.	Real	hackers	won't	turn	up	their	noses	at
a	new	tool	that	will	let	them	solve	hard	problems	with	a	few
library	calls.	Remember,	hackers	are	lazy.

It	could	be	an	even	bigger	win	to	have	core	language	support	for
server-based	applications.	For	example,	explicit	support	for
programs	with	multiple	users,	or	data	ownership	at	the	level	of
type	tags.

Server-based	applications	also	give	us	the	answer	to	the	question
of	what	this	new	Lisp	will	be	used	to	hack.	It	would	not	hurt	to
make	Lisp	better	as	a	scripting	language	for	Unix.	(It	would	be
hard	to	make	it	worse.)	But	I	think	there	are	areas	where	existing
languages	would	be	easier	to	beat.	I	think	it	might	be	better	to
follow	the	model	of	Tcl,	and	supply	the	Lisp	together	with	a
complete	system	for	supporting	server-based	applications.	Lisp	is
a	natural	fit	for	server-based	applications.	Lexical	closures
provide	a	way	to	get	the	effect	of	subroutines	when	the	ui	is	just
a	series	of	web	pages.	S-expressions	map	nicely	onto	html,	and
macros	are	good	at	generating	it.	There	need	to	be	better	tools
for	writing	server-based	applications,	and	there	needs	to	be	a
new	Lisp,	and	the	two	would	work	very	well	together.

12	The	Dream	Language

By	way	of	summary,	let's	try	describing	the	hacker's	dream

road.html

language.	The	dream	language	is	beautiful,	clean,	and	terse.	It
has	an	interactive	toplevel	that	starts	up	fast.	You	can	write
programs	to	solve	common	problems	with	very	little	code.	Nearly
all	the	code	in	any	program	you	write	is	code	that's	specific	to
your	application.	Everything	else	has	been	done	for	you.

The	syntax	of	the	language	is	brief	to	a	fault.	You	never	have	to
type	an	unnecessary	character,	or	even	to	use	the	shift	key	much.

Using	big	abstractions	you	can	write	the	first	version	of	a
program	very	quickly.	Later,	when	you	want	to	optimize,	there's	a
really	good	profiler	that	tells	you	where	to	focus	your	attention.
You	can	make	inner	loops	blindingly	fast,	even	writing	inline	byte
code	if	you	need	to.

There	are	lots	of	good	examples	to	learn	from,	and	the	language
is	intuitive	enough	that	you	can	learn	how	to	use	it	from
examples	in	a	couple	minutes.	You	don't	need	to	look	in	the
manual	much.	The	manual	is	thin,	and	has	few	warnings	and
qualifications.

The	language	has	a	small	core,	and	powerful,	highly	orthogonal
libraries	that	are	as	carefully	designed	as	the	core	language.	The
libraries	all	work	well	together;	everything	in	the	language	fits
together	like	the	parts	in	a	fine	camera.	Nothing	is	deprecated,
or	retained	for	compatibility.	The	source	code	of	all	the	libraries
is	readily	available.	It's	easy	to	talk	to	the	operating	system	and
to	applications	written	in	other	languages.

The	language	is	built	in	layers.	The	higher-level	abstractions	are
built	in	a	very	transparent	way	out	of	lower-level	abstractions,
which	you	can	get	hold	of	if	you	want.

Nothing	is	hidden	from	you	that	doesn't	absolutely	have	to	be.
The	language	offers	abstractions	only	as	a	way	of	saving	you
work,	rather	than	as	a	way	of	telling	you	what	to	do.	In	fact,	the
language	encourages	you	to	be	an	equal	participant	in	its	design.
You	can	change	everything	about	it,	including	even	its	syntax,
and	anything	you	write	has,	as	much	as	possible,	the	same	status
as	what	comes	predefined.

taste.html

Notes

[1]	Macros	very	close	to	the	modern	idea	were	proposed	by
Timothy	Hart	in	1964,	two	years	after	Lisp	1.5	was	released.
What	was	missing,	initially,	were	ways	to	avoid	variable	capture
and	multiple	evaluation;	Hart's	examples	are	subject	to	both.

[2]	In	When	the	Air	Hits	Your	Brain,	neurosurgeon	Frank
Vertosick	recounts	a	conversation	in	which	his	chief	resident,
Gary,	talks	about	the	difference	between	surgeons	and	internists
("fleas"):

Gary	and	I	ordered	a	large	pizza	and	found	an	open
booth.	The	chief	lit	a	cigarette.	"Look	at	those
goddamn	fleas,	jabbering	about	some	disease	they'll
see	once	in	their	lifetimes.	That's	the	trouble	with
fleas,	they	only	like	the	bizarre	stuff.	They	hate	their
bread	and	butter	cases.	That's	the	difference
between	us	and	the	fucking	fleas.	See,	we	love	big
juicy	lumbar	disc	herniations,	but	they	hate
hypertension...."

It's	hard	to	think	of	a	lumbar	disc	herniation	as	juicy	(except
literally).	And	yet	I	think	I	know	what	they	mean.	I've	often	had	a
juicy	bug	to	track	down.	Someone	who's	not	a	programmer	would
find	it	hard	to	imagine	that	there	could	be	pleasure	in	a	bug.
Surely	it's	better	if	everything	just	works.	In	one	way,	it	is.	And
yet	there	is	undeniably	a	grim	satisfaction	in	hunting	down
certain	sorts	of	bugs.

	

Five	Questions	about
Language	Design
May	2001

(These	are	some	notes	I	made	for	a	panel	discussion	on
programming	language	design	at	MIT	on	May	10,	2001.)

1.	Programming	Languages	Are	for	People.

Programming	languages	are	how	people	talk	to	computers.	The
computer	would	be	just	as	happy	speaking	any	language	that	was
unambiguous.	The	reason	we	have	high	level	languages	is
because	people	can't	deal	with	machine	language.	The	point	of
programming	languages	is	to	prevent	our	poor	frail	human
brains	from	being	overwhelmed	by	a	mass	of	detail.

Architects	know	that	some	kinds	of	design	problems	are	more
personal	than	others.	One	of	the	cleanest,	most	abstract	design
problems	is	designing	bridges.	There	your	job	is	largely	a	matter
of	spanning	a	given	distance	with	the	least	material.	The	other
end	of	the	spectrum	is	designing	chairs.	Chair	designers	have	to
spend	their	time	thinking	about	human	butts.

Software	varies	in	the	same	way.	Designing	algorithms	for
routing	data	through	a	network	is	a	nice,	abstract	problem,	like
designing	bridges.	Whereas	designing	programming	languages	is
like	designing	chairs:	it's	all	about	dealing	with	human
weaknesses.

Most	of	us	hate	to	acknowledge	this.	Designing	systems	of	great
mathematical	elegance	sounds	a	lot	more	appealing	to	most	of	us
than	pandering	to	human	weaknesses.	And	there	is	a	role	for

mathematical	elegance:	some	kinds	of	elegance	make	programs
easier	to	understand.	But	elegance	is	not	an	end	in	itself.

And	when	I	say	languages	have	to	be	designed	to	suit	human
weaknesses,	I	don't	mean	that	languages	have	to	be	designed	for
bad	programmers.	In	fact	I	think	you	ought	to	design	for	the	best
programmers,	but	even	the	best	programmers	have	limitations.	I
don't	think	anyone	would	like	programming	in	a	language	where
all	the	variables	were	the	letter	x	with	integer	subscripts.

2.	Design	for	Yourself	and	Your	Friends.

If	you	look	at	the	history	of	programming	languages,	a	lot	of	the
best	ones	were	languages	designed	for	their	own	authors	to	use,
and	a	lot	of	the	worst	ones	were	designed	for	other	people	to	use.

When	languages	are	designed	for	other	people,	it's	always	a
specific	group	of	other	people:	people	not	as	smart	as	the
language	designer.	So	you	get	a	language	that	talks	down	to	you.
Cobol	is	the	most	extreme	case,	but	a	lot	of	languages	are
pervaded	by	this	spirit.

It	has	nothing	to	do	with	how	abstract	the	language	is.	C	is	pretty
low-level,	but	it	was	designed	for	its	authors	to	use,	and	that's
why	hackers	like	it.

The	argument	for	designing	languages	for	bad	programmers	is
that	there	are	more	bad	programmers	than	good	programmers.
That	may	be	so.	But	those	few	good	programmers	write	a
disproportionately	large	percentage	of	the	software.

I'm	interested	in	the	question,	how	do	you	design	a	language	that
the	very	best	hackers	will	like?	I	happen	to	think	this	is	identical
to	the	question,	how	do	you	design	a	good	programming
language?,	but	even	if	it	isn't,	it	is	at	least	an	interesting
question.

3.	Give	the	Programmer	as	Much	Control	as	Possible.

Many	languages	(especially	the	ones	designed	for	other	people)
have	the	attitude	of	a	governess:	they	try	to	prevent	you	from

design.html

doing	things	that	they	think	aren't	good	for	you.	I	like	the
opposite	approach:	give	the	programmer	as	much	control	as	you
can.

When	I	first	learned	Lisp,	what	I	liked	most	about	it	was	that	it
considered	me	an	equal	partner.	In	the	other	languages	I	had
learned	up	till	then,	there	was	the	language	and	there	was	my
program,	written	in	the	language,	and	the	two	were	very
separate.	But	in	Lisp	the	functions	and	macros	I	wrote	were	just
like	those	that	made	up	the	language	itself.	I	could	rewrite	the
language	if	I	wanted.	It	had	the	same	appeal	as	open-source
software.

4.	Aim	for	Brevity.

Brevity	is	underestimated	and	even	scorned.	But	if	you	look	into
the	hearts	of	hackers,	you'll	see	that	they	really	love	it.	How
many	times	have	you	heard	hackers	speak	fondly	of	how	in,	say,
APL,	they	could	do	amazing	things	with	just	a	couple	lines	of
code?	I	think	anything	that	really	smart	people	really	love	is
worth	paying	attention	to.

I	think	almost	anything	you	can	do	to	make	programs	shorter	is
good.	There	should	be	lots	of	library	functions;	anything	that	can
be	implicit	should	be;	the	syntax	should	be	terse	to	a	fault;	even
the	names	of	things	should	be	short.

And	it's	not	only	programs	that	should	be	short.	The	manual
should	be	thin	as	well.	A	good	part	of	manuals	is	taken	up	with
clarifications	and	reservations	and	warnings	and	special	cases.	If
you	force	yourself	to	shorten	the	manual,	in	the	best	case	you	do
it	by	fixing	the	things	in	the	language	that	required	so	much
explanation.

5.	Admit	What	Hacking	Is.

A	lot	of	people	wish	that	hacking	was	mathematics,	or	at	least
something	like	a	natural	science.	I	think	hacking	is	more	like
architecture.	Architecture	is	related	to	physics,	in	the	sense	that
architects	have	to	design	buildings	that	don't	fall	down,	but	the
actual	goal	of	architects	is	to	make	great	buildings,	not	to	make

discoveries	about	statics.

What	hackers	like	to	do	is	make	great	programs.	And	I	think,	at
least	in	our	own	minds,	we	have	to	remember	that	it's	an
admirable	thing	to	write	great	programs,	even	when	this	work
doesn't	translate	easily	into	the	conventional	intellectual
currency	of	research	papers.	Intellectually,	it	is	just	as
worthwhile	to	design	a	language	programmers	will	love	as	it	is	to
design	a	horrible	one	that	embodies	some	idea	you	can	publish	a
paper	about.

1.	How	to	Organize	Big	Libraries?

Libraries	are	becoming	an	increasingly	important	component	of
programming	languages.	They're	also	getting	bigger,	and	this
can	be	dangerous.	If	it	takes	longer	to	find	the	library	function
that	will	do	what	you	want	than	it	would	take	to	write	it	yourself,
then	all	that	code	is	doing	nothing	but	make	your	manual	thick.
(The	Symbolics	manuals	were	a	case	in	point.)	So	I	think	we	will
have	to	work	on	ways	to	organize	libraries.	The	ideal	would	be	to
design	them	so	that	the	programmer	could	guess	what	library
call	would	do	the	right	thing.

2.	Are	People	Really	Scared	of	Prefix	Syntax?

This	is	an	open	problem	in	the	sense	that	I	have	wondered	about
it	for	years	and	still	don't	know	the	answer.	Prefix	syntax	seems
perfectly	natural	to	me,	except	possibly	for	math.	But	it	could	be
that	a	lot	of	Lisp's	unpopularity	is	simply	due	to	having	an
unfamiliar	syntax.	Whether	to	do	anything	about	it,	if	it	is	true,	is
another	question.

3.	What	Do	You	Need	for	Server-Based	Software?

	

The	Roots	of	Lisp
May	2001

	

The	Other	Road	Ahead
September	2001

(This	article	explains	why	much	of	the	next	generation	of
software	may	be	server-based,	what	that	will	mean	for
programmers,	and	why	this	new	kind	of	software	is	a	great
opportunity	for	startups.	It's	derived	from	a	talk	at	BBN	Labs.)	

In	the	summer	of	1995,	my	friend	Robert	Morris	and	I	decided	to
start	a	startup.	The	PR	campaign	leading	up	to	Netscape's	IPO
was	running	full	blast	then,	and	there	was	a	lot	of	talk	in	the
press	about	online	commerce.	At	the	time	there	might	have	been
thirty	actual	stores	on	the	Web,	all	made	by	hand.	If	there	were
going	to	be	a	lot	of	online	stores,	there	would	need	to	be
software	for	making	them,	so	we	decided	to	write	some.

For	the	first	week	or	so	we	intended	to	make	this	an	ordinary
desktop	application.	Then	one	day	we	had	the	idea	of	making	the
software	run	on	our	Web	server,	using	the	browser	as	an
interface.	We	tried	rewriting	the	software	to	work	over	the	Web,
and	it	was	clear	that	this	was	the	way	to	go.	If	we	wrote	our
software	to	run	on	the	server,	it	would	be	a	lot	easier	for	the
users	and	for	us	as	well.

This	turned	out	to	be	a	good	plan.	Now,	as	Yahoo	Store,	this
software	is	the	most	popular	online	store	builder,	with	about
14,000	users.

When	we	started	Viaweb,	hardly	anyone	understood	what	we
meant	when	we	said	that	the	software	ran	on	the	server.	It	was
not	until	Hotmail	was	launched	a	year	later	that	people	started	to
get	it.	Now	everyone	knows	that	this	is	a	valid	approach.	There	is
a	name	now	for	what	we	were:	an	Application	Service	Provider,
or	ASP.

I	think	that	a	lot	of	the	next	generation	of	software	will	be

http://store.yahoo.com/

written	on	this	model.	Even	Microsoft,	who	have	the	most	to	lose,
seem	to	see	the	inevitablity	of	moving	some	things	off	the
desktop.	If	software	moves	off	the	desktop	and	onto	servers,	it
will	mean	a	very	different	world	for	developers.	This	article
describes	the	surprising	things	we	saw,	as	some	of	the	first
visitors	to	this	new	world.	To	the	extent	software	does	move	onto
servers,	what	I'm	describing	here	is	the	future.

The	Next	Thing?

When	we	look	back	on	the	desktop	software	era,	I	think	we'll
marvel	at	the	inconveniences	people	put	up	with,	just	as	we
marvel	now	at	what	early	car	owners	put	up	with.	For	the	first
twenty	or	thirty	years,	you	had	to	be	a	car	expert	to	own	a	car.
But	cars	were	such	a	big	win	that	lots	of	people	who	weren't	car
experts	wanted	to	have	them	as	well.

Computers	are	in	this	phase	now.	When	you	own	a	desktop
computer,	you	end	up	learning	a	lot	more	than	you	wanted	to
know	about	what's	happening	inside	it.	But	more	than	half	the
households	in	the	US	own	one.	My	mother	has	a	computer	that
she	uses	for	email	and	for	keeping	accounts.	About	a	year	ago
she	was	alarmed	to	receive	a	letter	from	Apple,	offering	her	a
discount	on	a	new	version	of	the	operating	system.	There's
something	wrong	when	a	sixty-five	year	old	woman	who	wants	to
use	a	computer	for	email	and	accounts	has	to	think	about
installing	new	operating	systems.	Ordinary	users	shouldn't	even
know	the	words	"operating	system,"	much	less	"device	driver"	or
"patch."

There	is	now	another	way	to	deliver	software	that	will	save	users
from	becoming	system	administrators.	Web-based	applications
are	programs	that	run	on	Web	servers	and	use	Web	pages	as	the
user	interface.	For	the	average	user	this	new	kind	of	software
will	be	easier,	cheaper,	more	mobile,	more	reliable,	and	often
more	powerful	than	desktop	software.

With	Web-based	software,	most	users	won't	have	to	think	about
anything	except	the	applications	they	use.	All	the	messy,
changing	stuff	will	be	sitting	on	a	server	somewhere,	maintained
by	the	kind	of	people	who	are	good	at	that	kind	of	thing.	And	so

you	won't	ordinarily	need	a	computer,	per	se,	to	use	software.	All
you'll	need	will	be	something	with	a	keyboard,	a	screen,	and	a
Web	browser.	Maybe	it	will	have	wireless	Internet	access.	Maybe
it	will	also	be	your	cell	phone.	Whatever	it	is,	it	will	be	consumer
electronics:	something	that	costs	about	$200,	and	that	people
choose	mostly	based	on	how	the	case	looks.	You'll	pay	more	for
Internet	services	than	you	do	for	the	hardware,	just	as	you	do
now	with	telephones.	[1]

It	will	take	about	a	tenth	of	a	second	for	a	click	to	get	to	the
server	and	back,	so	users	of	heavily	interactive	software,	like
Photoshop,	will	still	want	to	have	the	computations	happening	on
the	desktop.	But	if	you	look	at	the	kind	of	things	most	people	use
computers	for,	a	tenth	of	a	second	latency	would	not	be	a
problem.	My	mother	doesn't	really	need	a	desktop	computer,	and
there	are	a	lot	of	people	like	her.

The	Win	for	Users

Near	my	house	there	is	a	car	with	a	bumper	sticker	that	reads
"death	before	inconvenience."	Most	people,	most	of	the	time,	will
take	whatever	choice	requires	least	work.	If	Web-based	software
wins,	it	will	be	because	it's	more	convenient.	And	it	looks	as	if	it
will	be,	for	users	and	developers	both.

To	use	a	purely	Web-based	application,	all	you	need	is	a	browser
connected	to	the	Internet.	So	you	can	use	a	Web-based
application	anywhere.	When	you	install	software	on	your	desktop
computer,	you	can	only	use	it	on	that	computer.	Worse	still,	your
files	are	trapped	on	that	computer.	The	inconvenience	of	this
model	becomes	more	and	more	evident	as	people	get	used	to
networks.

The	thin	end	of	the	wedge	here	was	Web-based	email.	Millions	of
people	now	realize	that	you	should	have	access	to	email
messages	no	matter	where	you	are.	And	if	you	can	see	your
email,	why	not	your	calendar?	If	you	can	discuss	a	document	with
your	colleagues,	why	can't	you	edit	it?	Why	should	any	of	your
data	be	trapped	on	some	computer	sitting	on	a	faraway	desk?

The	whole	idea	of	"your	computer"	is	going	away,	and	being

replaced	with	"your	data."	You	should	be	able	to	get	at	your	data
from	any	computer.	Or	rather,	any	client,	and	a	client	doesn't
have	to	be	a	computer.

Clients	shouldn't	store	data;	they	should	be	like	telephones.	In
fact	they	may	become	telephones,	or	vice	versa.	And	as	clients
get	smaller,	you	have	another	reason	not	to	keep	your	data	on
them:	something	you	carry	around	with	you	can	be	lost	or	stolen.
Leaving	your	PDA	in	a	taxi	is	like	a	disk	crash,	except	that	your
data	is	handed	to	someone	else	instead	of	being	vaporized.

With	purely	Web-based	software,	neither	your	data	nor	the
applications	are	kept	on	the	client.	So	you	don't	have	to	install
anything	to	use	it.	And	when	there's	no	installation,	you	don't
have	to	worry	about	installation	going	wrong.	There	can't	be
incompatibilities	between	the	application	and	your	operating
system,	because	the	software	doesn't	run	on	your	operating
system.

Because	it	needs	no	installation,	it	will	be	easy,	and	common,	to
try	Web-based	software	before	you	"buy"	it.	You	should	expect	to
be	able	to	test-drive	any	Web-based	application	for	free,	just	by
going	to	the	site	where	it's	offered.	At	Viaweb	our	whole	site	was
like	a	big	arrow	pointing	users	to	the	test	drive.

After	trying	the	demo,	signing	up	for	the	service	should	require
nothing	more	than	filling	out	a	brief	form	(the	briefer	the	better).
And	that	should	be	the	last	work	the	user	has	to	do.	With	Web-
based	software,	you	should	get	new	releases	without	paying
extra,	or	doing	any	work,	or	possibly	even	knowing	about	it.

Upgrades	won't	be	the	big	shocks	they	are	now.	Over	time
applications	will	quietly	grow	more	powerful.	This	will	take	some
effort	on	the	part	of	the	developers.	They	will	have	to	design
software	so	that	it	can	be	updated	without	confusing	the	users.
That's	a	new	problem,	but	there	are	ways	to	solve	it.

With	Web-based	applications,	everyone	uses	the	same	version,
and	bugs	can	be	fixed	as	soon	as	they're	discovered.	So	Web-
based	software	should	have	far	fewer	bugs	than	desktop
software.	At	Viaweb,	I	doubt	we	ever	had	ten	known	bugs	at	any

http://news.zdnet.co.uk/business/0,39020645,2077931,00.htm

one	time.	That's	orders	of	magnitude	better	than	desktop
software.

Web-based	applications	can	be	used	by	several	people	at	the
same	time.	This	is	an	obvious	win	for	collaborative	applications,
but	I	bet	users	will	start	to	want	this	in	most	applications	once
they	realize	it's	possible.	It	will	often	be	useful	to	let	two	people
edit	the	same	document,	for	example.	Viaweb	let	multiple	users
edit	a	site	simultaneously,	more	because	that	was	the	right	way
to	write	the	software	than	because	we	expected	users	to	want	to,
but	it	turned	out	that	many	did.

When	you	use	a	Web-based	application,	your	data	will	be	safer.
Disk	crashes	won't	be	a	thing	of	the	past,	but	users	won't	hear
about	them	anymore.	They'll	happen	within	server	farms.	And
companies	offering	Web-based	applications	will	actually	do
backups--	not	only	because	they'll	have	real	system
administrators	worrying	about	such	things,	but	because	an	ASP
that	does	lose	people's	data	will	be	in	big,	big	trouble.	When
people	lose	their	own	data	in	a	disk	crash,	they	can't	get	that
mad,	because	they	only	have	themselves	to	be	mad	at.	When	a
company	loses	their	data	for	them,	they'll	get	a	lot	madder.

Finally,	Web-based	software	should	be	less	vulnerable	to	viruses.
If	the	client	doesn't	run	anything	except	a	browser,	there's	less
chance	of	running	viruses,	and	no	data	locally	to	damage.	And	a
program	that	attacked	the	servers	themselves	should	find	them
very	well	defended.	[2]

For	users,	Web-based	software	will	be	less	stressful.	I	think	if	you
looked	inside	the	average	Windows	user	you'd	find	a	huge	and
pretty	much	untapped	desire	for	software	meeting	that
description.	Unleashed,	it	could	be	a	powerful	force.

City	of	Code

To	developers,	the	most	conspicuous	difference	between	Web-
based	and	desktop	software	is	that	a	Web-based	application	is
not	a	single	piece	of	code.	It	will	be	a	collection	of	programs	of
different	types	rather	than	a	single	big	binary.	And	so	designing
Web-based	software	is	like	desiging	a	city	rather	than	a	building:

as	well	as	buildings	you	need	roads,	street	signs,	utilities,	police
and	fire	departments,	and	plans	for	both	growth	and	various
kinds	of	disasters.

At	Viaweb,	software	included	fairly	big	applications	that	users
talked	to	directly,	programs	that	those	programs	used,	programs
that	ran	constantly	in	the	background	looking	for	problems,
programs	that	tried	to	restart	things	if	they	broke,	programs	that
ran	occasionally	to	compile	statistics	or	build	indexes	for
searches,	programs	we	ran	explicitly	to	garbage-collect
resources	or	to	move	or	restore	data,	programs	that	pretended	to
be	users	(to	measure	performance	or	expose	bugs),	programs	for
diagnosing	network	troubles,	programs	for	doing	backups,
interfaces	to	outside	services,	software	that	drove	an	impressive
collection	of	dials	displaying	real-time	server	statistics	(a	hit	with
visitors,	but	indispensable	for	us	too),	modifications	(including
bug	fixes)	to	open-source	software,	and	a	great	many
configuration	files	and	settings.	Trevor	Blackwell	wrote	a
spectacular	program	for	moving	stores	to	new	servers	across	the
country,	without	shutting	them	down,	after	we	were	bought	by
Yahoo.	Programs	paged	us,	sent	faxes	and	email	to	users,
conducted	transactions	with	credit	card	processors,	and	talked	to
one	another	through	sockets,	pipes,	http	requests,	ssh,	udp
packets,	shared	memory,	and	files.	Some	of	Viaweb	even
consisted	of	the	absence	of	programs,	since	one	of	the	keys	to
Unix	security	is	not	to	run	unnecessary	utilities	that	people	might
use	to	break	into	your	servers.

It	did	not	end	with	software.	We	spent	a	lot	of	time	thinking
about	server	configurations.	We	built	the	servers	ourselves,	from
components--	partly	to	save	money,	and	partly	to	get	exactly	what
we	wanted.	We	had	to	think	about	whether	our	upstream	ISP	had
fast	enough	connections	to	all	the	backbones.	We	serially	dated
RAID	suppliers.

But	hardware	is	not	just	something	to	worry	about.	When	you
control	it	you	can	do	more	for	users.	With	a	desktop	application,
you	can	specify	certain	minimum	hardware,	but	you	can't	add
more.	If	you	administer	the	servers,	you	can	in	one	step	enable
all	your	users	to	page	people,	or	send	faxes,	or	send	commands
by	phone,	or	process	credit	cards,	etc,	just	by	installing	the

http://groups.google.com/groups?selm=6hdipo%243o0%241%40FreeBSD.csie.NCTU.edu.tw

relevant	hardware.	We	always	looked	for	new	ways	to	add
features	with	hardware,	not	just	because	it	pleased	users,	but
also	as	a	way	to	distinguish	ourselves	from	competitors	who
(either	because	they	sold	desktop	software,	or	resold	Web-based
applications	through	ISPs)	didn't	have	direct	control	over	the
hardware.

Because	the	software	in	a	Web-based	application	will	be	a
collection	of	programs	rather	than	a	single	binary,	it	can	be
written	in	any	number	of	different	languages.	When	you're
writing	desktop	software,	you're	practically	forced	to	write	the
application	in	the	same	language	as	the	underlying	operating
system--	meaning	C	and	C++.	And	so	these	languages	(especially
among	nontechnical	people	like	managers	and	VCs)	got	to	be
considered	as	the	languages	for	"serious"	software	development.
But	that	was	just	an	artifact	of	the	way	desktop	software	had	to
be	delivered.	For	server-based	software	you	can	use	any
language	you	want.	[3]	Today	a	lot	of	the	top	hackers	are	using
languages	far	removed	from	C	and	C++:	Perl,	Python,	and	even
Lisp.

With	server-based	software,	no	one	can	tell	you	what	language	to
use,	because	you	control	the	whole	system,	right	down	to	the
hardware.	Different	languages	are	good	for	different	tasks.	You
can	use	whichever	is	best	for	each.	And	when	you	have
competitors,	"you	can"	means	"you	must"	(we'll	return	to	this
later),	because	if	you	don't	take	advantage	of	this	possibility,	your
competitors	will.

Most	of	our	competitors	used	C	and	C++,	and	this	made	their
software	visibly	inferior	because	(among	other	things),	they	had
no	way	around	the	statelessness	of	CGI	scripts.	If	you	were	going
to	change	something,	all	the	changes	had	to	happen	on	one	page,
with	an	Update	button	at	the	bottom.	As	I've	written	elsewhere,
by	using	Lisp,	which	many	people	still	consider	a	research
language,	we	could	make	the	Viaweb	editor	behave	more	like
desktop	software.

Releases

One	of	the	most	important	changes	in	this	new	world	is	the	way

avg.html

you	do	releases.	In	the	desktop	software	business,	doing	a
release	is	a	huge	trauma,	in	which	the	whole	company	sweats
and	strains	to	push	out	a	single,	giant	piece	of	code.	Obvious
comparisons	suggest	themselves,	both	to	the	process	and	the
resulting	product.

With	server-based	software,	you	can	make	changes	almost	as	you
would	in	a	program	you	were	writing	for	yourself.	You	release
software	as	a	series	of	incremental	changes	instead	of	an
occasional	big	explosion.	A	typical	desktop	software	company
might	do	one	or	two	releases	a	year.	At	Viaweb	we	often	did
three	to	five	releases	a	day.

When	you	switch	to	this	new	model,	you	realize	how	much
software	development	is	affected	by	the	way	it	is	released.	Many
of	the	nastiest	problems	you	see	in	the	desktop	software	business
are	due	to	catastrophic	nature	of	releases.

When	you	release	only	one	new	version	a	year,	you	tend	to	deal
with	bugs	wholesale.	Some	time	before	the	release	date	you
assemble	a	new	version	in	which	half	the	code	has	been	torn	out
and	replaced,	introducing	countless	bugs.	Then	a	squad	of	QA
people	step	in	and	start	counting	them,	and	the	programmers
work	down	the	list,	fixing	them.	They	do	not	generally	get	to	the
end	of	the	list,	and	indeed,	no	one	is	sure	where	the	end	is.	It's
like	fishing	rubble	out	of	a	pond.	You	never	really	know	what's
happening	inside	the	software.	At	best	you	end	up	with	a
statistical	sort	of	correctness.

With	server-based	software,	most	of	the	change	is	small	and
incremental.	That	in	itself	is	less	likely	to	introduce	bugs.	It	also
means	you	know	what	to	test	most	carefully	when	you're	about	to
release	software:	the	last	thing	you	changed.	You	end	up	with	a
much	firmer	grip	on	the	code.	As	a	general	rule,	you	do	know
what's	happening	inside	it.	You	don't	have	the	source	code
memorized,	of	course,	but	when	you	read	the	source	you	do	it
like	a	pilot	scanning	the	instrument	panel,	not	like	a	detective
trying	to	unravel	some	mystery.

Desktop	software	breeds	a	certain	fatalism	about	bugs.	You	know
that	you're	shipping	something	loaded	with	bugs,	and	you've

even	set	up	mechanisms	to	compensate	for	it	(e.g.	patch
releases).	So	why	worry	about	a	few	more?	Soon	you're	releasing
whole	features	you	know	are	broken.	Apple	did	this	earlier	this
year.	They	felt	under	pressure	to	release	their	new	OS,	whose
release	date	had	already	slipped	four	times,	but	some	of	the
software	(support	for	CDs	and	DVDs)	wasn't	ready.	The	solution?
They	released	the	OS	without	the	unfinished	parts,	and	users	will
have	to	install	them	later.

With	Web-based	software,	you	never	have	to	release	software
before	it	works,	and	you	can	release	it	as	soon	as	it	does	work.

The	industry	veteran	may	be	thinking,	it's	a	fine-sounding	idea	to
say	that	you	never	have	to	release	software	before	it	works,	but
what	happens	when	you've	promised	to	deliver	a	new	version	of
your	software	by	a	certain	date?	With	Web-based	software,	you
wouldn't	make	such	a	promise,	because	there	are	no	versions.
Your	software	changes	gradually	and	continuously.	Some	changes
might	be	bigger	than	others,	but	the	idea	of	versions	just	doesn't
naturally	fit	onto	Web-based	software.

If	anyone	remembers	Viaweb	this	might	sound	odd,	because	we
were	always	announcing	new	versions.	This	was	done	entirely	for
PR	purposes.	The	trade	press,	we	learned,	thinks	in	version
numbers.	They	will	give	you	major	coverage	for	a	major	release,
meaning	a	new	first	digit	on	the	version	number,	and	generally	a
paragraph	at	most	for	a	point	release,	meaning	a	new	digit	after
the	decimal	point.

Some	of	our	competitors	were	offering	desktop	software	and
actually	had	version	numbers.	And	for	these	releases,	the	mere
fact	of	which	seemed	to	us	evidence	of	their	backwardness,	they
would	get	all	kinds	of	publicity.	We	didn't	want	to	miss	out,	so	we
started	giving	version	numbers	to	our	software	too.	When	we
wanted	some	publicity,	we'd	make	a	list	of	all	the	features	we'd
added	since	the	last	"release,"	stick	a	new	version	number	on	the
software,	and	issue	a	press	release	saying	that	the	new	version
was	available	immediately.	Amazingly,	no	one	ever	called	us	on	it.

By	the	time	we	were	bought,	we	had	done	this	three	times,	so	we
were	on	Version	4.	Version	4.1	if	I	remember	correctly.	After

http://news.cnet.com/news/0-1006-200-5195914.html

Viaweb	became	Yahoo	Store,	there	was	no	longer	such	a
desperate	need	for	publicity,	so	although	the	software	continued
to	evolve,	the	whole	idea	of	version	numbers	was	quietly
dropped.

Bugs

The	other	major	technical	advantage	of	Web-based	software	is
that	you	can	reproduce	most	bugs.	You	have	the	users'	data	right
there	on	your	disk.	If	someone	breaks	your	software,	you	don't
have	to	try	to	guess	what's	going	on,	as	you	would	with	desktop
software:	you	should	be	able	to	reproduce	the	error	while	they're
on	the	phone	with	you.	You	might	even	know	about	it	already,	if
you	have	code	for	noticing	errors	built	into	your	application.

Web-based	software	gets	used	round	the	clock,	so	everything	you
do	is	immediately	put	through	the	wringer.	Bugs	turn	up	quickly.

Software	companies	are	sometimes	accused	of	letting	the	users
debug	their	software.	And	that	is	just	what	I'm	advocating.	For
Web-based	software	it's	actually	a	good	plan,	because	the	bugs
are	fewer	and	transient.	When	you	release	software	gradually
you	get	far	fewer	bugs	to	start	with.	And	when	you	can
reproduce	errors	and	release	changes	instantly,	you	can	find	and
fix	most	bugs	as	soon	as	they	appear.	We	never	had	enough	bugs
at	any	one	time	to	bother	with	a	formal	bug-tracking	system.

You	should	test	changes	before	you	release	them,	of	course,	so	no
major	bugs	should	get	released.	Those	few	that	inevitably	slip
through	will	involve	borderline	cases	and	will	only	affect	the	few
users	that	encounter	them	before	someone	calls	in	to	complain.
As	long	as	you	fix	bugs	right	away,	the	net	effect,	for	the	average
user,	is	far	fewer	bugs.	I	doubt	the	average	Viaweb	user	ever	saw
a	bug.

Fixing	fresh	bugs	is	easier	than	fixing	old	ones.	It's	usually	fairly
quick	to	find	a	bug	in	code	you	just	wrote.	When	it	turns	up	you
often	know	what's	wrong	before	you	even	look	at	the	source,
because	you	were	already	worrying	about	it	subconsciously.
Fixing	a	bug	in	something	you	wrote	six	months	ago	(the	average
case	if	you	release	once	a	year)	is	a	lot	more	work.	And	since	you

don't	understand	the	code	as	well,	you're	more	likely	to	fix	it	in
an	ugly	way,	or	even	introduce	more	bugs.	[4]

When	you	catch	bugs	early,	you	also	get	fewer	compound	bugs.
Compound	bugs	are	two	separate	bugs	that	interact:	you	trip
going	downstairs,	and	when	you	reach	for	the	handrail	it	comes
off	in	your	hand.	In	software	this	kind	of	bug	is	the	hardest	to
find,	and	also	tends	to	have	the	worst	consequences.	[5]	The
traditional	"break	everything	and	then	filter	out	the	bugs"
approach	inherently	yields	a	lot	of	compound	bugs.	And	software
that's	released	in	a	series	of	small	changes	inherently	tends	not
to.	The	floors	are	constantly	being	swept	clean	of	any	loose
objects	that	might	later	get	stuck	in	something.

It	helps	if	you	use	a	technique	called	functional	programming.
Functional	programming	means	avoiding	side-effects.	It's
something	you're	more	likely	to	see	in	research	papers	than
commercial	software,	but	for	Web-based	applications	it	turns	out
to	be	really	useful.	It's	hard	to	write	entire	programs	as	purely
functional	code,	but	you	can	write	substantial	chunks	this	way.	It
makes	those	parts	of	your	software	easier	to	test,	because	they
have	no	state,	and	that	is	very	convenient	in	a	situation	where
you	are	constantly	making	and	testing	small	modifications.	I
wrote	much	of	Viaweb's	editor	in	this	style,	and	we	made	our
scripting	language,	RTML,	a	purely	functional	language.

People	from	the	desktop	software	business	will	find	this	hard	to
credit,	but	at	Viaweb	bugs	became	almost	a	game.	Since	most
released	bugs	involved	borderline	cases,	the	users	who
encountered	them	were	likely	to	be	advanced	users,	pushing	the
envelope.	Advanced	users	are	more	forgiving	about	bugs,
especially	since	you	probably	introduced	them	in	the	course	of
adding	some	feature	they	were	asking	for.	In	fact,	because	bugs
were	rare	and	you	had	to	be	doing	sophisticated	things	to	see
them,	advanced	users	were	often	proud	to	catch	one.	They	would
call	support	in	a	spirit	more	of	triumph	than	anger,	as	if	they	had
scored	points	off	us.

Support

When	you	can	reproduce	errors,	it	changes	your	approach	to

http://store.yahoo.com/rtml.html

customer	support.	At	most	software	companies,	support	is
offered	as	a	way	to	make	customers	feel	better.	They're	either
calling	you	about	a	known	bug,	or	they're	just	doing	something
wrong	and	you	have	to	figure	out	what.	In	either	case	there's	not
much	you	can	learn	from	them.	And	so	you	tend	to	view	support
calls	as	a	pain	in	the	ass	that	you	want	to	isolate	from	your
developers	as	much	as	possible.

This	was	not	how	things	worked	at	Viaweb.	At	Viaweb,	support
was	free,	because	we	wanted	to	hear	from	customers.	If	someone
had	a	problem,	we	wanted	to	know	about	it	right	away	so	that	we
could	reproduce	the	error	and	release	a	fix.

So	at	Viaweb	the	developers	were	always	in	close	contact	with
support.	The	customer	support	people	were	about	thirty	feet
away	from	the	programmers,	and	knew	that	they	could	always
interrupt	anything	with	a	report	of	a	genuine	bug.	We	would
leave	a	board	meeting	to	fix	a	serious	bug.

Our	approach	to	support	made	everyone	happier.	The	customers
were	delighted.	Just	imagine	how	it	would	feel	to	call	a	support
line	and	be	treated	as	someone	bringing	important	news.	The
customer	support	people	liked	it	because	it	meant	they	could
help	the	users,	instead	of	reading	scripts	to	them.	And	the
programmers	liked	it	because	they	could	reproduce	bugs	instead
of	just	hearing	vague	second-hand	reports	about	them.

Our	policy	of	fixing	bugs	on	the	fly	changed	the	relationship
between	customer	support	people	and	hackers.	At	most	software
companies,	support	people	are	underpaid	human	shields,	and
hackers	are	little	copies	of	God	the	Father,	creators	of	the	world.
Whatever	the	procedure	for	reporting	bugs,	it	is	likely	to	be	one-
directional:	support	people	who	hear	about	bugs	fill	out	some
form	that	eventually	gets	passed	on	(possibly	via	QA)	to
programmers,	who	put	it	on	their	list	of	things	to	do.	It	was	very
different	at	Viaweb.	Within	a	minute	of	hearing	about	a	bug	from
a	customer,	the	support	people	could	be	standing	next	to	a
programmer	hearing	him	say	"Shit,	you're	right,	it's	a	bug."	It
delighted	the	support	people	to	hear	that	"you're	right"	from	the
hackers.	They	used	to	bring	us	bugs	with	the	same	expectant	air
as	a	cat	bringing	you	a	mouse	it	has	just	killed.	It	also	made	them

more	careful	in	judging	the	seriousness	of	a	bug,	because	now
their	honor	was	on	the	line.

After	we	were	bought	by	Yahoo,	the	customer	support	people
were	moved	far	away	from	the	programmers.	It	was	only	then
that	we	realized	that	they	were	effectively	QA	and	to	some	extent
marketing	as	well.	In	addition	to	catching	bugs,	they	were	the
keepers	of	the	knowledge	of	vaguer,	buglike	things,	like	features
that	confused	users.	[6]	They	were	also	a	kind	of	proxy	focus
group;	we	could	ask	them	which	of	two	new	features	users
wanted	more,	and	they	were	always	right.

Morale

Being	able	to	release	software	immediately	is	a	big	motivator.
Often	as	I	was	walking	to	work	I	would	think	of	some	change	I
wanted	to	make	to	the	software,	and	do	it	that	day.	This	worked
for	bigger	features	as	well.	Even	if	something	was	going	to	take
two	weeks	to	write	(few	projects	took	longer),	I	knew	I	could	see
the	effect	in	the	software	as	soon	as	it	was	done.

If	I'd	had	to	wait	a	year	for	the	next	release,	I	would	have	shelved
most	of	these	ideas,	for	a	while	at	least.	The	thing	about	ideas,
though,	is	that	they	lead	to	more	ideas.	Have	you	ever	noticed
that	when	you	sit	down	to	write	something,	half	the	ideas	that
end	up	in	it	are	ones	you	thought	of	while	writing	it?	The	same
thing	happens	with	software.	Working	to	implement	one	idea
gives	you	more	ideas.	So	shelving	an	idea	costs	you	not	only	that
delay	in	implementing	it,	but	also	all	the	ideas	that	implementing
it	would	have	led	to.	In	fact,	shelving	an	idea	probably	even
inhibits	new	ideas:	as	you	start	to	think	of	some	new	feature,	you
catch	sight	of	the	shelf	and	think	"but	I	already	have	a	lot	of	new
things	I	want	to	do	for	the	next	release."

What	big	companies	do	instead	of	implementing	features	is	plan
them.	At	Viaweb	we	sometimes	ran	into	trouble	on	this	account.
Investors	and	analysts	would	ask	us	what	we	had	planned	for	the
future.	The	truthful	answer	would	have	been,	we	didn't	have	any
plans.	We	had	general	ideas	about	things	we	wanted	to	improve,
but	if	we	knew	how	we	would	have	done	it	already.	What	were	we
going	to	do	in	the	next	six	months?	Whatever	looked	like	the

biggest	win.	I	don't	know	if	I	ever	dared	give	this	answer,	but
that	was	the	truth.	Plans	are	just	another	word	for	ideas	on	the
shelf.	When	we	thought	of	good	ideas,	we	implemented	them.

At	Viaweb,	as	at	many	software	companies,	most	code	had	one
definite	owner.	But	when	you	owned	something	you	really	owned
it:	no	one	except	the	owner	of	a	piece	of	software	had	to	approve
(or	even	know	about)	a	release.	There	was	no	protection	against
breakage	except	the	fear	of	looking	like	an	idiot	to	one's	peers,
and	that	was	more	than	enough.	I	may	have	given	the	impression
that	we	just	blithely	plowed	forward	writing	code.	We	did	go	fast,
but	we	thought	very	carefully	before	we	released	software	onto
those	servers.	And	paying	attention	is	more	important	to
reliability	than	moving	slowly.	Because	he	pays	close	attention,	a
Navy	pilot	can	land	a	40,000	lb.	aircraft	at	140	miles	per	hour	on
a	pitching	carrier	deck,	at	night,	more	safely	than	the	average
teenager	can	cut	a	bagel.

This	way	of	writing	software	is	a	double-edged	sword	of	course.
It	works	a	lot	better	for	a	small	team	of	good,	trusted
programmers	than	it	would	for	a	big	company	of	mediocre	ones,
where	bad	ideas	are	caught	by	committees	instead	of	the	people
that	had	them.

Brooks	in	Reverse

Fortunately,	Web-based	software	does	require	fewer
programmers.	I	once	worked	for	a	medium-sized	desktop
software	company	that	had	over	100	people	working	in
engineering	as	a	whole.	Only	13	of	these	were	in	product
development.	All	the	rest	were	working	on	releases,	ports,	and	so
on.	With	Web-based	software,	all	you	need	(at	most)	are	the	13
people,	because	there	are	no	releases,	ports,	and	so	on.

Viaweb	was	written	by	just	three	people.	[7]	I	was	always	under
pressure	to	hire	more,	because	we	wanted	to	get	bought,	and	we
knew	that	buyers	would	have	a	hard	time	paying	a	high	price	for
a	company	with	only	three	programmers.	(Solution:	we	hired
more,	but	created	new	projects	for	them.)

When	you	can	write	software	with	fewer	programmers,	it	saves

you	more	than	money.	As	Fred	Brooks	pointed	out	in	The
Mythical	Man-Month,	adding	people	to	a	project	tends	to	slow	it
down.	The	number	of	possible	connections	between	developers
grows	exponentially	with	the	size	of	the	group.	The	larger	the
group,	the	more	time	they'll	spend	in	meetings	negotiating	how
their	software	will	work	together,	and	the	more	bugs	they'll	get
from	unforeseen	interactions.	Fortunately,	this	process	also
works	in	reverse:	as	groups	get	smaller,	software	development
gets	exponentially	more	efficient.	I	can't	remember	the
programmers	at	Viaweb	ever	having	an	actual	meeting.	We	never
had	more	to	say	at	any	one	time	than	we	could	say	as	we	were
walking	to	lunch.

If	there	is	a	downside	here,	it	is	that	all	the	programmers	have	to
be	to	some	degree	system	administrators	as	well.	When	you're
hosting	software,	someone	has	to	be	watching	the	servers,	and	in
practice	the	only	people	who	can	do	this	properly	are	the	ones
who	wrote	the	software.	At	Viaweb	our	system	had	so	many
components	and	changed	so	frequently	that	there	was	no	definite
border	between	software	and	infrastructure.	Arbitrarily	declaring
such	a	border	would	have	constrained	our	design	choices.	And	so
although	we	were	constantly	hoping	that	one	day	("in	a	couple
months")	everything	would	be	stable	enough	that	we	could	hire
someone	whose	job	was	just	to	worry	about	the	servers,	it	never
happened.

I	don't	think	it	could	be	any	other	way,	as	long	as	you're	still
actively	developing	the	product.	Web-based	software	is	never
going	to	be	something	you	write,	check	in,	and	go	home.	It's	a
live	thing,	running	on	your	servers	right	now.	A	bad	bug	might
not	just	crash	one	user's	process;	it	could	crash	them	all.	If	a	bug
in	your	code	corrupts	some	data	on	disk,	you	have	to	fix	it.	And
so	on.	We	found	that	you	don't	have	to	watch	the	servers	every
minute	(after	the	first	year	or	so),	but	you	definitely	want	to	keep
an	eye	on	things	you've	changed	recently.	You	don't	release	code
late	at	night	and	then	go	home.

Watching	Users

With	server-based	software,	you're	in	closer	touch	with	your
code.	You	can	also	be	in	closer	touch	with	your	users.	Intuit	is

famous	for	introducing	themselves	to	customers	at	retail	stores
and	asking	to	follow	them	home.	If	you've	ever	watched	someone
use	your	software	for	the	first	time,	you	know	what	surprises
must	have	awaited	them.

Software	should	do	what	users	think	it	will.	But	you	can't	have
any	idea	what	users	will	be	thinking,	believe	me,	until	you	watch
them.	And	server-based	software	gives	you	unprecedented
information	about	their	behavior.	You're	not	limited	to	small,
artificial	focus	groups.	You	can	see	every	click	made	by	every
user.	You	have	to	consider	carefully	what	you're	going	to	look	at,
because	you	don't	want	to	violate	users'	privacy,	but	even	the
most	general	statistical	sampling	can	be	very	useful.

When	you	have	the	users	on	your	server,	you	don't	have	to	rely
on	benchmarks,	for	example.	Benchmarks	are	simulated	users.
With	server-based	software,	you	can	watch	actual	users.	To
decide	what	to	optimize,	just	log	into	a	server	and	see	what's
consuming	all	the	CPU.	And	you	know	when	to	stop	optimizing
too:	we	eventually	got	the	Viaweb	editor	to	the	point	where	it
was	memory-bound	rather	than	CPU-bound,	and	since	there	was
nothing	we	could	do	to	decrease	the	size	of	users'	data	(well,
nothing	easy),	we	knew	we	might	as	well	stop	there.

Efficiency	matters	for	server-based	software,	because	you're
paying	for	the	hardware.	The	number	of	users	you	can	support
per	server	is	the	divisor	of	your	capital	cost,	so	if	you	can	make
your	software	very	efficient	you	can	undersell	competitors	and
still	make	a	profit.	At	Viaweb	we	got	the	capital	cost	per	user
down	to	about	$5.	It	would	be	less	now,	probably	less	than	the
cost	of	sending	them	the	first	month's	bill.	Hardware	is	free	now,
if	your	software	is	reasonably	efficient.

Watching	users	can	guide	you	in	design	as	well	as	optimization.
Viaweb	had	a	scripting	language	called	RTML	that	let	advanced
users	define	their	own	page	styles.	We	found	that	RTML	became
a	kind	of	suggestion	box,	because	users	only	used	it	when	the
predefined	page	styles	couldn't	do	what	they	wanted.	Originally
the	editor	put	button	bars	across	the	page,	for	example,	but	after
a	number	of	users	used	RTML	to	put	buttons	down	the	left	side,
we	made	that	an	option	(in	fact	the	default)	in	the	predefined

https://sep.turbifycdn.com/ca/I/paulgraham_1656_3563

page	styles.

Finally,	by	watching	users	you	can	often	tell	when	they're	in
trouble.	And	since	the	customer	is	always	right,	that's	a	sign	of
something	you	need	to	fix.	At	Viaweb	the	key	to	getting	users
was	the	online	test	drive.	It	was	not	just	a	series	of	slides	built	by
marketing	people.	In	our	test	drive,	users	actually	used	the
software.	It	took	about	five	minutes,	and	at	the	end	of	it	they	had
built	a	real,	working	store.

The	test	drive	was	the	way	we	got	nearly	all	our	new	users.	I
think	it	will	be	the	same	for	most	Web-based	applications.	If
users	can	get	through	a	test	drive	successfully,	they'll	like	the
product.	If	they	get	confused	or	bored,	they	won't.	So	anything
we	could	do	to	get	more	people	through	the	test	drive	would
increase	our	growth	rate.

I	studied	click	trails	of	people	taking	the	test	drive	and	found	that
at	a	certain	step	they	would	get	confused	and	click	on	the
browser's	Back	button.	(If	you	try	writing	Web-based
applications,	you'll	find	that	the	Back	button	becomes	one	of	your
most	interesting	philosophical	problems.)	So	I	added	a	message
at	that	point,	telling	users	that	they	were	nearly	finished,	and
reminding	them	not	to	click	on	the	Back	button.	Another	great
thing	about	Web-based	software	is	that	you	get	instant	feedback
from	changes:	the	number	of	people	completing	the	test	drive
rose	immediately	from	60%	to	90%.	And	since	the	number	of	new
users	was	a	function	of	the	number	of	completed	test	drives,	our
revenue	growth	increased	by	50%,	just	from	that	change.

Money

In	the	early	1990s	I	read	an	article	in	which	someone	said	that
software	was	a	subscription	business.	At	first	this	seemed	a	very
cynical	statement.	But	later	I	realized	that	it	reflects	reality:
software	development	is	an	ongoing	process.	I	think	it's	cleaner	if
you	openly	charge	subscription	fees,	instead	of	forcing	people	to
keep	buying	and	installing	new	versions	so	that	they'll	keep
paying	you.	And	fortunately,	subscriptions	are	the	natural	way	to
bill	for	Web-based	applications.

Hosting	applications	is	an	area	where	companies	will	play	a	role
that	is	not	likely	to	be	filled	by	freeware.	Hosting	applications	is
a	lot	of	stress,	and	has	real	expenses.	No	one	is	going	to	want	to
do	it	for	free.

For	companies,	Web-based	applications	are	an	ideal	source	of
revenue.	Instead	of	starting	each	quarter	with	a	blank	slate,	you
have	a	recurring	revenue	stream.	Because	your	software	evolves
gradually,	you	don't	have	to	worry	that	a	new	model	will	flop;
there	never	need	be	a	new	model,	per	se,	and	if	you	do
something	to	the	software	that	users	hate,	you'll	know	right
away.	You	have	no	trouble	with	uncollectable	bills;	if	someone
won't	pay	you	can	just	turn	off	the	service.	And	there	is	no
possibility	of	piracy.

That	last	"advantage"	may	turn	out	to	be	a	problem.	Some
amount	of	piracy	is	to	the	advantage	of	software	companies.	If
some	user	really	would	not	have	bought	your	software	at	any
price,	you	haven't	lost	anything	if	he	uses	a	pirated	copy.	In	fact
you	gain,	because	he	is	one	more	user	helping	to	make	your
software	the	standard--	or	who	might	buy	a	copy	later,	when	he
graduates	from	high	school.

When	they	can,	companies	like	to	do	something	called	price
discrimination,	which	means	charging	each	customer	as	much	as
they	can	afford.	[8]	Software	is	particularly	suitable	for	price
discrimination,	because	the	marginal	cost	is	close	to	zero.	This	is
why	some	software	costs	more	to	run	on	Suns	than	on	Intel
boxes:	a	company	that	uses	Suns	is	not	interested	in	saving
money	and	can	safely	be	charged	more.	Piracy	is	effectively	the
lowest	tier	of	price	discrimination.	I	think	that	software
companies	understand	this	and	deliberately	turn	a	blind	eye	to
some	kinds	of	piracy.	[9]	With	server-based	software	they	are
going	to	have	to	come	up	with	some	other	solution.

Web-based	software	sells	well,	especially	in	comparison	to
desktop	software,	because	it's	easy	to	buy.	You	might	think	that
people	decide	to	buy	something,	and	then	buy	it,	as	two	separate
steps.	That's	what	I	thought	before	Viaweb,	to	the	extent	I
thought	about	the	question	at	all.	In	fact	the	second	step	can
propagate	back	into	the	first:	if	something	is	hard	to	buy,	people

will	change	their	mind	about	whether	they	wanted	it.	And	vice
versa:	you'll	sell	more	of	something	when	it's	easy	to	buy.	I	buy
more	books	because	Amazon	exists.	Web-based	software	is	just
about	the	easiest	thing	in	the	world	to	buy,	especially	if	you	have
just	done	an	online	demo.	Users	should	not	have	to	do	much
more	than	enter	a	credit	card	number.	(Make	them	do	more	at
your	peril.)

Sometimes	Web-based	software	is	offered	through	ISPs	acting	as
resellers.	This	is	a	bad	idea.	You	have	to	be	administering	the
servers,	because	you	need	to	be	constantly	improving	both
hardware	and	software.	If	you	give	up	direct	control	of	the
servers,	you	give	up	most	of	the	advantages	of	developing	Web-
based	applications.

Several	of	our	competitors	shot	themselves	in	the	foot	this	way--
usually,	I	think,	because	they	were	overrun	by	suits	who	were
excited	about	this	huge	potential	channel,	and	didn't	realize	that
it	would	ruin	the	product	they	hoped	to	sell	through	it.	Selling
Web-based	software	through	ISPs	is	like	selling	sushi	through
vending	machines.

Customers

Who	will	the	customers	be?	At	Viaweb	they	were	initially
individuals	and	smaller	companies,	and	I	think	this	will	be	the
rule	with	Web-based	applications.	These	are	the	users	who	are
ready	to	try	new	things,	partly	because	they're	more	flexible,	and
partly	because	they	want	the	lower	costs	of	new	technology.

Web-based	applications	will	often	be	the	best	thing	for	big
companies	too	(though	they'll	be	slow	to	realize	it).	The	best
intranet	is	the	Internet.	If	a	company	uses	true	Web-based
applications,	the	software	will	work	better,	the	servers	will	be
better	administered,	and	employees	will	have	access	to	the
system	from	anywhere.

The	argument	against	this	approach	usually	hinges	on	security:	if
access	is	easier	for	employees,	it	will	be	for	bad	guys	too.	Some
larger	merchants	were	reluctant	to	use	Viaweb	because	they
thought	customers'	credit	card	information	would	be	safer	on

their	own	servers.	It	was	not	easy	to	make	this	point
diplomatically,	but	in	fact	the	data	was	almost	certainly	safer	in
our	hands	than	theirs.	Who	can	hire	better	people	to	manage
security,	a	technology	startup	whose	whole	business	is	running
servers,	or	a	clothing	retailer?	Not	only	did	we	have	better
people	worrying	about	security,	we	worried	more	about	it.	If
someone	broke	into	the	clothing	retailer's	servers,	it	would	affect
at	most	one	merchant,	could	probably	be	hushed	up,	and	in	the
worst	case	might	get	one	person	fired.	If	someone	broke	into
ours,	it	could	affect	thousands	of	merchants,	would	probably	end
up	as	news	on	CNet,	and	could	put	us	out	of	business.

If	you	want	to	keep	your	money	safe,	do	you	keep	it	under	your
mattress	at	home,	or	put	it	in	a	bank?	This	argument	applies	to
every	aspect	of	server	administration:	not	just	security,	but
uptime,	bandwidth,	load	management,	backups,	etc.	Our
existence	depended	on	doing	these	things	right.	Server	problems
were	the	big	no-no	for	us,	like	a	dangerous	toy	would	be	for	a	toy
maker,	or	a	salmonella	outbreak	for	a	food	processor.

A	big	company	that	uses	Web-based	applications	is	to	that	extent
outsourcing	IT.	Drastic	as	it	sounds,	I	think	this	is	generally	a
good	idea.	Companies	are	likely	to	get	better	service	this	way
than	they	would	from	in-house	system	administrators.	System
administrators	can	become	cranky	and	unresponsive	because
they're	not	directly	exposed	to	competitive	pressure:	a	salesman
has	to	deal	with	customers,	and	a	developer	has	to	deal	with
competitors'	software,	but	a	system	administrator,	like	an	old
bachelor,	has	few	external	forces	to	keep	him	in	line.	[10]	At
Viaweb	we	had	external	forces	in	plenty	to	keep	us	in	line.	The
people	calling	us	were	customers,	not	just	co-workers.	If	a	server
got	wedged,	we	jumped;	just	thinking	about	it	gives	me	a	jolt	of
adrenaline,	years	later.

So	Web-based	applications	will	ordinarily	be	the	right	answer	for
big	companies	too.	They	will	be	the	last	to	realize	it,	however,
just	as	they	were	with	desktop	computers.	And	partly	for	the
same	reason:	it	will	be	worth	a	lot	of	money	to	convince	big
companies	that	they	need	something	more	expensive.

There	is	always	a	tendency	for	rich	customers	to	buy	expensive

solutions,	even	when	cheap	solutions	are	better,	because	the
people	offering	expensive	solutions	can	spend	more	to	sell	them.
At	Viaweb	we	were	always	up	against	this.	We	lost	several	high-
end	merchants	to	Web	consulting	firms	who	convinced	them
they'd	be	better	off	if	they	paid	half	a	million	dollars	for	a
custom-made	online	store	on	their	own	server.	They	were,	as	a
rule,	not	better	off,	as	more	than	one	discovered	when	Christmas
shopping	season	came	around	and	loads	rose	on	their	server.
Viaweb	was	a	lot	more	sophisticated	than	what	most	of	these
merchants	got,	but	we	couldn't	afford	to	tell	them.	At	$300	a
month,	we	couldn't	afford	to	send	a	team	of	well-dressed	and
authoritative-sounding	people	to	make	presentations	to
customers.

A	large	part	of	what	big	companies	pay	extra	for	is	the	cost	of
selling	expensive	things	to	them.	(If	the	Defense	Department
pays	a	thousand	dollars	for	toilet	seats,	it's	partly	because	it
costs	a	lot	to	sell	toilet	seats	for	a	thousand	dollars.)	And	this	is
one	reason	intranet	software	will	continue	to	thrive,	even	though
it	is	probably	a	bad	idea.	It's	simply	more	expensive.	There	is
nothing	you	can	do	about	this	conundrum,	so	the	best	plan	is	to
go	for	the	smaller	customers	first.	The	rest	will	come	in	time.

Son	of	Server

Running	software	on	the	server	is	nothing	new.	In	fact	it's	the	old
model:	mainframe	applications	are	all	server-based.	If	server-
based	software	is	such	a	good	idea,	why	did	it	lose	last	time?
Why	did	desktop	computers	eclipse	mainframes?

At	first	desktop	computers	didn't	look	like	much	of	a	threat.	The
first	users	were	all	hackers--	or	hobbyists,	as	they	were	called
then.	They	liked	microcomputers	because	they	were	cheap.	For
the	first	time,	you	could	have	your	own	computer.	The	phrase
"personal	computer"	is	part	of	the	language	now,	but	when	it	was
first	used	it	had	a	deliberately	audacious	sound,	like	the	phrase
"personal	satellite"	would	today.

Why	did	desktop	computers	take	over?	I	think	it	was	because
they	had	better	software.	And	I	think	the	reason	microcomputer
software	was	better	was	that	it	could	be	written	by	small

companies.

I	don't	think	many	people	realize	how	fragile	and	tentative
startups	are	in	the	earliest	stage.	Many	startups	begin	almost	by
accident--	as	a	couple	guys,	either	with	day	jobs	or	in	school,
writing	a	prototype	of	something	that	might,	if	it	looks	promising,
turn	into	a	company.	At	this	larval	stage,	any	significant	obstacle
will	stop	the	startup	dead	in	its	tracks.	Writing	mainframe
software	required	too	much	commitment	up	front.	Development
machines	were	expensive,	and	because	the	customers	would	be
big	companies,	you'd	need	an	impressive-looking	sales	force	to
sell	it	to	them.	Starting	a	startup	to	write	mainframe	software
would	be	a	much	more	serious	undertaking	than	just	hacking
something	together	on	your	Apple	II	in	the	evenings.	And	so	you
didn't	get	a	lot	of	startups	writing	mainframe	applications.

The	arrival	of	desktop	computers	inspired	a	lot	of	new	software,
because	writing	applications	for	them	seemed	an	attainable	goal
to	larval	startups.	Development	was	cheap,	and	the	customers
would	be	individual	people	that	you	could	reach	through
computer	stores	or	even	by	mail-order.

The	application	that	pushed	desktop	computers	out	into	the
mainstream	was	VisiCalc,	the	first	spreadsheet.	It	was	written	by
two	guys	working	in	an	attic,	and	yet	did	things	no	mainframe
software	could	do.	[11]	VisiCalc	was	such	an	advance,	in	its	time,
that	people	bought	Apple	IIs	just	to	run	it.	And	this	was	the
beginning	of	a	trend:	desktop	computers	won	because	startups
wrote	software	for	them.

It	looks	as	if	server-based	software	will	be	good	this	time	around,
because	startups	will	write	it.	Computers	are	so	cheap	now	that
you	can	get	started,	as	we	did,	using	a	desktop	computer	as	a
server.	Inexpensive	processors	have	eaten	the	workstation
market	(you	rarely	even	hear	the	word	now)	and	are	most	of	the
way	through	the	server	market;	Yahoo's	servers,	which	deal	with
loads	as	high	as	any	on	the	Internet,	all	have	the	same
inexpensive	Intel	processors	that	you	have	in	your	desktop
machine.	And	once	you've	written	the	software,	all	you	need	to
sell	it	is	a	Web	site.	Nearly	all	our	users	came	direct	to	our	site
through	word	of	mouth	and	references	in	the	press.	[12]

http://www.bricklin.com/visicalc.htm

Viaweb	was	a	typical	larval	startup.	We	were	terrified	of	starting
a	company,	and	for	the	first	few	months	comforted	ourselves	by
treating	the	whole	thing	as	an	experiment	that	we	might	call	off
at	any	moment.	Fortunately,	there	were	few	obstacles	except
technical	ones.	While	we	were	writing	the	software,	our	Web
server	was	the	same	desktop	machine	we	used	for	development,
connected	to	the	outside	world	by	a	dialup	line.	Our	only
expenses	in	that	phase	were	food	and	rent.

There	is	all	the	more	reason	for	startups	to	write	Web-based
software	now,	because	writing	desktop	software	has	become	a	lot
less	fun.	If	you	want	to	write	desktop	software	now	you	do	it	on
Microsoft's	terms,	calling	their	APIs	and	working	around	their
buggy	OS.	And	if	you	manage	to	write	something	that	takes	off,
you	may	find	that	you	were	merely	doing	market	research	for
Microsoft.

If	a	company	wants	to	make	a	platform	that	startups	will	build
on,	they	have	to	make	it	something	that	hackers	themselves	will
want	to	use.	That	means	it	has	to	be	inexpensive	and	well-
designed.	The	Mac	was	popular	with	hackers	when	it	first	came
out,	and	a	lot	of	them	wrote	software	for	it.	[13]	You	see	this	less
with	Windows,	because	hackers	don't	use	it.	The	kind	of	people
who	are	good	at	writing	software	tend	to	be	running	Linux	or
FreeBSD	now.

I	don't	think	we	would	have	started	a	startup	to	write	desktop
software,	because	desktop	software	has	to	run	on	Windows,	and
before	we	could	write	software	for	Windows	we'd	have	to	use	it.
The	Web	let	us	do	an	end-run	around	Windows,	and	deliver
software	running	on	Unix	direct	to	users	through	the	browser.
That	is	a	liberating	prospect,	a	lot	like	the	arrival	of	PCs	twenty-
five	years	ago.

Microsoft

Back	when	desktop	computers	arrived,	IBM	was	the	giant	that
everyone	was	afraid	of.	It's	hard	to	imagine	now,	but	I	remember
the	feeling	very	well.	Now	the	frightening	giant	is	Microsoft,	and
I	don't	think	they	are	as	blind	to	the	threat	facing	them	as	IBM

was.	After	all,	Microsoft	deliberately	built	their	business	in	IBM's
blind	spot.

I	mentioned	earlier	that	my	mother	doesn't	really	need	a	desktop
computer.	Most	users	probably	don't.	That's	a	problem	for
Microsoft,	and	they	know	it.	If	applications	run	on	remote
servers,	no	one	needs	Windows.	What	will	Microsoft	do?	Will
they	be	able	to	use	their	control	of	the	desktop	to	prevent,	or
constrain,	this	new	generation	of	software?

My	guess	is	that	Microsoft	will	develop	some	kind	of
server/desktop	hybrid,	where	the	operating	system	works
together	with	servers	they	control.	At	a	minimum,	files	will	be
centrally	available	for	users	who	want	that.	I	don't	expect
Microsoft	to	go	all	the	way	to	the	extreme	of	doing	the
computations	on	the	server,	with	only	a	browser	for	a	client,	if
they	can	avoid	it.	If	you	only	need	a	browser	for	a	client,	you
don't	need	Microsoft	on	the	client,	and	if	Microsoft	doesn't
control	the	client,	they	can't	push	users	towards	their	server-
based	applications.

I	think	Microsoft	will	have	a	hard	time	keeping	the	genie	in	the
bottle.	There	will	be	too	many	different	types	of	clients	for	them
to	control	them	all.	And	if	Microsoft's	applications	only	work	with
some	clients,	competitors	will	be	able	to	trump	them	by	offering
applications	that	work	from	any	client.	[14]

In	a	world	of	Web-based	applications,	there	is	no	automatic	place
for	Microsoft.	They	may	succeed	in	making	themselves	a	place,
but	I	don't	think	they'll	dominate	this	new	world	as	they	did	the
world	of	desktop	applications.

It's	not	so	much	that	a	competitor	will	trip	them	up	as	that	they
will	trip	over	themselves.	With	the	rise	of	Web-based	software,
they	will	be	facing	not	just	technical	problems	but	their	own
wishful	thinking.	What	they	need	to	do	is	cannibalize	their
existing	business,	and	I	can't	see	them	facing	that.	The	same
single-mindedness	that	has	brought	them	this	far	will	now	be
working	against	them.	IBM	was	in	exactly	the	same	situation,
and	they	could	not	master	it.	IBM	made	a	late	and	half-hearted
entry	into	the	microcomputer	business	because	they	were

ambivalent	about	threatening	their	cash	cow,	mainframe
computing.	Microsoft	will	likewise	be	hampered	by	wanting	to
save	the	desktop.	A	cash	cow	can	be	a	damned	heavy	monkey	on
your	back.

I'm	not	saying	that	no	one	will	dominate	server-based
applications.	Someone	probably	will	eventually.	But	I	think	that
there	will	be	a	good	long	period	of	cheerful	chaos,	just	as	there
was	in	the	early	days	of	microcomputers.	That	was	a	good	time
for	startups.	Lots	of	small	companies	flourished,	and	did	it	by
making	cool	things.

Startups	but	More	So

The	classic	startup	is	fast	and	informal,	with	few	people	and	little
money.	Those	few	people	work	very	hard,	and	technology
magnifies	the	effect	of	the	decisions	they	make.	If	they	win,	they
win	big.

In	a	startup	writing	Web-based	applications,	everything	you
associate	with	startups	is	taken	to	an	extreme.	You	can	write	and
launch	a	product	with	even	fewer	people	and	even	less	money.
You	have	to	be	even	faster,	and	you	can	get	away	with	being
more	informal.	You	can	literally	launch	your	product	as	three
guys	sitting	in	the	living	room	of	an	apartment,	and	a	server
collocated	at	an	ISP.	We	did.

Over	time	the	teams	have	gotten	smaller,	faster,	and	more
informal.	In	1960,	software	development	meant	a	roomful	of	men
with	horn	rimmed	glasses	and	narrow	black	neckties,
industriously	writing	ten	lines	of	code	a	day	on	IBM	coding
forms.	In	1980,	it	was	a	team	of	eight	to	ten	people	wearing	jeans
to	the	office	and	typing	into	vt100s.	Now	it's	a	couple	of	guys
sitting	in	a	living	room	with	laptops.	(And	jeans	turn	out	not	to	be
the	last	word	in	informality.)

Startups	are	stressful,	and	this,	unfortunately,	is	also	taken	to	an
extreme	with	Web-based	applications.	Many	software	companies,
especially	at	the	beginning,	have	periods	where	the	developers
slept	under	their	desks	and	so	on.	The	alarming	thing	about	Web-
based	software	is	that	there	is	nothing	to	prevent	this	becoming

the	default.	The	stories	about	sleeping	under	desks	usually	end:
then	at	last	we	shipped	it	and	we	all	went	home	and	slept	for	a
week.	Web-based	software	never	ships.	You	can	work	16-hour
days	for	as	long	as	you	want	to.	And	because	you	can,	and	your
competitors	can,	you	tend	to	be	forced	to.	You	can,	so	you	must.
It's	Parkinson's	Law	running	in	reverse.

The	worst	thing	is	not	the	hours	but	the	responsibility.
Programmers	and	system	administrators	traditionally	each	have
their	own	separate	worries.	Programmers	have	to	worry	about
bugs,	and	system	administrators	have	to	worry	about
infrastructure.	Programmers	may	spend	a	long	day	up	to	their
elbows	in	source	code,	but	at	some	point	they	get	to	go	home	and
forget	about	it.	System	administrators	never	quite	leave	the	job
behind,	but	when	they	do	get	paged	at	4:00	AM,	they	don't
usually	have	to	do	anything	very	complicated.	With	Web-based
applications,	these	two	kinds	of	stress	get	combined.	The
programmers	become	system	administrators,	but	without	the
sharply	defined	limits	that	ordinarily	make	the	job	bearable.

At	Viaweb	we	spent	the	first	six	months	just	writing	software.	We
worked	the	usual	long	hours	of	an	early	startup.	In	a	desktop
software	company,	this	would	have	been	the	part	where	we	were
working	hard,	but	it	felt	like	a	vacation	compared	to	the	next
phase,	when	we	took	users	onto	our	server.	The	second	biggest
benefit	of	selling	Viaweb	to	Yahoo	(after	the	money)	was	to	be
able	to	dump	ultimate	responsibility	for	the	whole	thing	onto	the
shoulders	of	a	big	company.

Desktop	software	forces	users	to	become	system	administrators.
Web-based	software	forces	programmers	to.	There	is	less	stress
in	total,	but	more	for	the	programmers.	That's	not	necessarily
bad	news.	If	you're	a	startup	competing	with	a	big	company,	it's
good	news.	[15]	Web-based	applications	offer	a	straightforward
way	to	outwork	your	competitors.	No	startup	asks	for	more.

Just	Good	Enough

One	thing	that	might	deter	you	from	writing	Web-based
applications	is	the	lameness	of	Web	pages	as	a	UI.	That	is	a
problem,	I	admit.	There	were	a	few	things	we	would	have	really

liked	to	add	to	HTML	and	HTTP.	What	matters,	though,	is	that
Web	pages	are	just	good	enough.

There	is	a	parallel	here	with	the	first	microcomputers.	The
processors	in	those	machines	weren't	actually	intended	to	be	the
CPUs	of	computers.	They	were	designed	to	be	used	in	things	like
traffic	lights.	But	guys	like	Ed	Roberts,	who	designed	the	Altair,
realized	that	they	were	just	good	enough.	You	could	combine	one
of	these	chips	with	some	memory	(256	bytes	in	the	first	Altair),
and	front	panel	switches,	and	you'd	have	a	working	computer.
Being	able	to	have	your	own	computer	was	so	exciting	that	there
were	plenty	of	people	who	wanted	to	buy	them,	however	limited.

Web	pages	weren't	designed	to	be	a	UI	for	applications,	but
they're	just	good	enough.	And	for	a	significant	number	of	users,
software	that	you	can	use	from	any	browser	will	be	enough	of	a
win	in	itself	to	outweigh	any	awkwardness	in	the	UI.	Maybe	you
can't	write	the	best-looking	spreadsheet	using	HTML,	but	you
can	write	a	spreadsheet	that	several	people	can	use
simultaneously	from	different	locations	without	special	client
software,	or	that	can	incorporate	live	data	feeds,	or	that	can
page	you	when	certain	conditions	are	triggered.	More
importantly,	you	can	write	new	kinds	of	applications	that	don't
even	have	names	yet.	VisiCalc	was	not	merely	a	microcomputer
version	of	a	mainframe	application,	after	all--	it	was	a	new	type	of
application.

Of	course,	server-based	applications	don't	have	to	be	Web-based.
You	could	have	some	other	kind	of	client.	But	I'm	pretty	sure
that's	a	bad	idea.	It	would	be	very	convenient	if	you	could
assume	that	everyone	would	install	your	client--	so	convenient
that	you	could	easily	convince	yourself	that	they	all	would--	but	if
they	don't,	you're	hosed.	Because	Web-based	software	assumes
nothing	about	the	client,	it	will	work	anywhere	the	Web	works.
That's	a	big	advantage	already,	and	the	advantage	will	grow	as
new	Web	devices	proliferate.	Users	will	like	you	because	your
software	just	works,	and	your	life	will	be	easier	because	you
won't	have	to	tweak	it	for	every	new	client.	[16]

I	feel	like	I've	watched	the	evolution	of	the	Web	as	closely	as
anyone,	and	I	can't	predict	what's	going	to	happen	with	clients.

http://en.wikipedia.org/wiki/Altair_8800

Convergence	is	probably	coming,	but	where?	I	can't	pick	a
winner.	One	thing	I	can	predict	is	conflict	between	AOL	and
Microsoft.	Whatever	Microsoft's	.NET	turns	out	to	be,	it	will
probably	involve	connecting	the	desktop	to	servers.	Unless	AOL
fights	back,	they	will	either	be	pushed	aside	or	turned	into	a	pipe
between	Microsoft	client	and	server	software.	If	Microsoft	and
AOL	get	into	a	client	war,	the	only	thing	sure	to	work	on	both	will
be	browsing	the	Web,	meaning	Web-based	applications	will	be
the	only	kind	that	work	everywhere.

How	will	it	all	play	out?	I	don't	know.	And	you	don't	have	to	know
if	you	bet	on	Web-based	applications.	No	one	can	break	that
without	breaking	browsing.	The	Web	may	not	be	the	only	way	to
deliver	software,	but	it's	one	that	works	now	and	will	continue	to
work	for	a	long	time.	Web-based	applications	are	cheap	to
develop,	and	easy	for	even	the	smallest	startup	to	deliver.	They're
a	lot	of	work,	and	of	a	particularly	stressful	kind,	but	that	only
makes	the	odds	better	for	startups.

Why	Not?

E.	B.	White	was	amused	to	learn	from	a	farmer	friend	that	many
electrified	fences	don't	have	any	current	running	through	them.
The	cows	apparently	learn	to	stay	away	from	them,	and	after	that
you	don't	need	the	current.	"Rise	up,	cows!"	he	wrote,	"Take	your
liberty	while	despots	snore!"

If	you're	a	hacker	who	has	thought	of	one	day	starting	a	startup,
there	are	probably	two	things	keeping	you	from	doing	it.	One	is
that	you	don't	know	anything	about	business.	The	other	is	that
you're	afraid	of	competition.	Neither	of	these	fences	have	any
current	in	them.

There	are	only	two	things	you	have	to	know	about	business:	build
something	users	love,	and	make	more	than	you	spend.	If	you	get
these	two	right,	you'll	be	ahead	of	most	startups.	You	can	figure
out	the	rest	as	you	go.

You	may	not	at	first	make	more	than	you	spend,	but	as	long	as
the	gap	is	closing	fast	enough	you'll	be	ok.	If	you	start	out
underfunded,	it	will	at	least	encourage	a	habit	of	frugality.	The

less	you	spend,	the	easier	it	is	to	make	more	than	you	spend.
Fortunately,	it	can	be	very	cheap	to	launch	a	Web-based
application.	We	launched	on	under	$10,000,	and	it	would	be	even
cheaper	today.	We	had	to	spend	thousands	on	a	server,	and
thousands	more	to	get	SSL.	(The	only	company	selling	SSL
software	at	the	time	was	Netscape.)	Now	you	can	rent	a	much
more	powerful	server,	with	SSL	included,	for	less	than	we	paid
for	bandwidth	alone.	You	could	launch	a	Web-based	application
now	for	less	than	the	cost	of	a	fancy	office	chair.

As	for	building	something	users	love,	here	are	some	general	tips.
Start	by	making	something	clean	and	simple	that	you	would	want
to	use	yourself.	Get	a	version	1.0	out	fast,	then	continue	to
improve	the	software,	listening	closely	to	the	users	as	you	do.
The	customer	is	always	right,	but	different	customers	are	right
about	different	things;	the	least	sophisticated	users	show	you
what	you	need	to	simplify	and	clarify,	and	the	most	sophisticated
tell	you	what	features	you	need	to	add.	The	best	thing	software
can	be	is	easy,	but	the	way	to	do	this	is	to	get	the	defaults	right,
not	to	limit	users'	choices.	Don't	get	complacent	if	your
competitors'	software	is	lame;	the	standard	to	compare	your
software	to	is	what	it	could	be,	not	what	your	current
competitors	happen	to	have.	Use	your	software	yourself,	all	the
time.	Viaweb	was	supposed	to	be	an	online	store	builder,	but	we
used	it	to	make	our	own	site	too.	Don't	listen	to	marketing	people
or	designers	or	product	managers	just	because	of	their	job	titles.
If	they	have	good	ideas,	use	them,	but	it's	up	to	you	to	decide;
software	has	to	be	designed	by	hackers	who	understand	design,
not	designers	who	know	a	little	about	software.	If	you	can't
design	software	as	well	as	implement	it,	don't	start	a	startup.

Now	let's	talk	about	competition.	What	you're	afraid	of	is	not
presumably	groups	of	hackers	like	you,	but	actual	companies,
with	offices	and	business	plans	and	salesmen	and	so	on,	right?
Well,	they	are	more	afraid	of	you	than	you	are	of	them,	and
they're	right.	It's	a	lot	easier	for	a	couple	of	hackers	to	figure	out
how	to	rent	office	space	or	hire	sales	people	than	it	is	for	a
company	of	any	size	to	get	software	written.	I've	been	on	both
sides,	and	I	know.	When	Viaweb	was	bought	by	Yahoo,	I	suddenly
found	myself	working	for	a	big	company,	and	it	was	like	trying	to
run	through	waist-deep	water.

I	don't	mean	to	disparage	Yahoo.	They	had	some	good	hackers,
and	the	top	management	were	real	butt-kickers.	For	a	big
company,	they	were	exceptional.	But	they	were	still	only	about	a
tenth	as	productive	as	a	small	startup.	No	big	company	can	do
much	better	than	that.	What's	scary	about	Microsoft	is	that	a
company	so	big	can	develop	software	at	all.	They're	like	a
mountain	that	can	walk.

Don't	be	intimidated.	You	can	do	as	much	that	Microsoft	can't	as
they	can	do	that	you	can't.	And	no	one	can	stop	you.	You	don't
have	to	ask	anyone's	permission	to	develop	Web-based
applications.	You	don't	have	to	do	licensing	deals,	or	get	shelf
space	in	retail	stores,	or	grovel	to	have	your	application	bundled
with	the	OS.	You	can	deliver	software	right	to	the	browser,	and
no	one	can	get	between	you	and	potential	users	without
preventing	them	from	browsing	the	Web.

You	may	not	believe	it,	but	I	promise	you,	Microsoft	is	scared	of
you.	The	complacent	middle	managers	may	not	be,	but	Bill	is,
because	he	was	you	once,	back	in	1975,	the	last	time	a	new	way
of	delivering	software	appeared.

Notes

[1]	Realizing	that	much	of	the	money	is	in	the	services,
companies	building	lightweight	clients	have	usually	tried	to
combine	the	hardware	with	an	online	service.	This	approach	has
not	worked	well,	partly	because	you	need	two	different	kinds	of
companies	to	build	consumer	electronics	and	to	run	an	online
service,	and	partly	because	users	hate	the	idea.	Giving	away	the
razor	and	making	money	on	the	blades	may	work	for	Gillette,	but
a	razor	is	much	smaller	commitment	than	a	Web	terminal.	Cell
phone	handset	makers	are	satisfied	to	sell	hardware	without
trying	to	capture	the	service	revenue	as	well.	That	should
probably	be	the	model	for	Internet	clients	too.	If	someone	just
sold	a	nice-looking	little	box	with	a	Web	browser	that	you	could

http://news.cnet.com/news/0-1006-200-3622600.html

use	to	connect	through	any	ISP,	every	technophobe	in	the
country	would	buy	one.

[2]	Security	always	depends	more	on	not	screwing	up	than	any
design	decision,	but	the	nature	of	server-based	software	will
make	developers	pay	more	attention	to	not	screwing	up.
Compromising	a	server	could	cause	such	damage	that	ASPs	(that
want	to	stay	in	business)	are	likely	to	be	careful	about	security.

[3]	In	1995,	when	we	started	Viaweb,	Java	applets	were	supposed
to	be	the	technology	everyone	was	going	to	use	to	develop
server-based	applications.	Applets	seemed	to	us	an	old-fashioned
idea.	Download	programs	to	run	on	the	client?	Simpler	just	to	go
all	the	way	and	run	the	programs	on	the	server.	We	wasted	little
time	on	applets,	but	countless	other	startups	must	have	been
lured	into	this	tar	pit.	Few	can	have	escaped	alive,	or	Microsoft
could	not	have	gotten	away	with	dropping	Java	in	the	most
recent	version	of	Explorer.

[4]	This	point	is	due	to	Trevor	Blackwell,	who	adds	"the	cost	of
writing	software	goes	up	more	than	linearly	with	its	size.	Perhaps
this	is	mainly	due	to	fixing	old	bugs,	and	the	cost	can	be	more
linear	if	all	bugs	are	found	quickly."

[5]	The	hardest	kind	of	bug	to	find	may	be	a	variant	of	compound
bug	where	one	bug	happens	to	compensate	for	another.	When
you	fix	one	bug,	the	other	becomes	visible.	But	it	will	seem	as	if
the	fix	is	at	fault,	since	that	was	the	last	thing	you	changed.

[6]	Within	Viaweb	we	once	had	a	contest	to	describe	the	worst
thing	about	our	software.	Two	customer	support	people	tied	for
first	prize	with	entries	I	still	shiver	to	recall.	We	fixed	both
problems	immediately.

[7]	Robert	Morris	wrote	the	ordering	system,	which	shoppers
used	to	place	orders.	Trevor	Blackwell	wrote	the	image
generator	and	the	manager,	which	merchants	used	to	retrieve
orders,	view	statistics,	and	configure	domain	names	etc.	I	wrote
the	editor,	which	merchants	used	to	build	their	sites.	The
ordering	system	and	image	generator	were	written	in	C	and
C++,	the	manager	mostly	in	Perl,	and	the	editor	in	Lisp.

avg.html

[8]	Price	discrimination	is	so	pervasive	(how	often	have	you
heard	a	retailer	claim	that	their	buying	power	meant	lower	prices
for	you?)	that	I	was	surprised	to	find	it	was	outlawed	in	the	U.S.
by	the	Robinson-Patman	Act	of	1936.	This	law	does	not	appear	to
be	vigorously	enforced.

[9]	In	No	Logo,	Naomi	Klein	says	that	clothing	brands	favored	by
"urban	youth"	do	not	try	too	hard	to	prevent	shoplifting	because
in	their	target	market	the	shoplifters	are	also	the	fashion	leaders.

[10]	Companies	often	wonder	what	to	outsource	and	what	not	to.
One	possible	answer:	outsource	any	job	that's	not	directly
exposed	to	competitive	pressure,	because	outsourcing	it	will
thereby	expose	it	to	competitive	pressure.

[11]	The	two	guys	were	Dan	Bricklin	and	Bob	Frankston.	Dan
wrote	a	prototype	in	Basic	in	a	couple	days,	then	over	the	course
of	the	next	year	they	worked	together	(mostly	at	night)	to	make	a
more	powerful	version	written	in	6502	machine	language.	Dan
was	at	Harvard	Business	School	at	the	time	and	Bob	nominally
had	a	day	job	writing	software.	"There	was	no	great	risk	in	doing
a	business,"	Bob	wrote,	"If	it	failed	it	failed.	No	big	deal."

[12]	It's	not	quite	as	easy	as	I	make	it	sound.	It	took	a	painfully
long	time	for	word	of	mouth	to	get	going,	and	we	did	not	start	to
get	a	lot	of	press	coverage	until	we	hired	a	PR	firm	(admittedly
the	best	in	the	business)	for	$16,000	per	month.	However,	it	was
true	that	the	only	significant	channel	was	our	own	Web	site.

[13]	If	the	Mac	was	so	great,	why	did	it	lose?	Cost,	again.
Microsoft	concentrated	on	the	software	business,	and	unleashed
a	swarm	of	cheap	component	suppliers	on	Apple	hardware.	It	did
not	help,	either,	that	suits	took	over	during	a	critical	period.

[14]	One	thing	that	would	help	Web-based	applications,	and	help
keep	the	next	generation	of	software	from	being	overshadowed
by	Microsoft,	would	be	a	good	open-source	browser.	Mozilla	is
open-source	but	seems	to	have	suffered	from	having	been
corporate	software	for	so	long.	A	small,	fast	browser	that	was
actively	maintained	would	be	a	great	thing	in	itself,	and	would

http://www.schwartz-pr.com/

probably	also	encourage	companies	to	build	little	Web
appliances.

Among	other	things,	a	proper	open-source	browser	would	cause
HTTP	and	HTML	to	continue	to	evolve	(as	e.g.	Perl	has).	It	would
help	Web-based	applications	greatly	to	be	able	to	distinguish
between	selecting	a	link	and	following	it;	all	you'd	need	to	do	this
would	be	a	trivial	enhancement	of	HTTP,	to	allow	multiple	urls	in
a	request.	Cascading	menus	would	also	be	good.

If	you	want	to	change	the	world,	write	a	new	Mosaic.	Think	it's
too	late?	In	1998	a	lot	of	people	thought	it	was	too	late	to	launch
a	new	search	engine,	but	Google	proved	them	wrong.	There	is
always	room	for	something	new	if	the	current	options	suck
enough.	Make	sure	it	works	on	all	the	free	OSes	first--	new	things
start	with	their	users.

[15]	Trevor	Blackwell,	who	probably	knows	more	about	this	from
personal	experience	than	anyone,	writes:

"I	would	go	farther	in	saying	that	because	server-based	software
is	so	hard	on	the	programmers,	it	causes	a	fundamental
economic	shift	away	from	large	companies.	It	requires	the	kind	of
intensity	and	dedication	from	programmers	that	they	will	only	be
willing	to	provide	when	it's	their	own	company.	Software
companies	can	hire	skilled	people	to	work	in	a	not-too-
demanding	environment,	and	can	hire	unskilled	people	to	endure
hardships,	but	they	can't	hire	highly	skilled	people	to	bust	their
asses.	Since	capital	is	no	longer	needed,	big	companies	have
little	to	bring	to	the	table."

[16]	In	the	original	version	of	this	essay,	I	advised	avoiding
Javascript.	That	was	a	good	plan	in	2001,	but	Javascript	now
works.	

Thanks	to	Sarah	Harlin,	Trevor	Blackwell,	Robert	Morris,	Eric
Raymond,	Ken	Anderson,	and	Dan	Giffin	for	reading	drafts	of	this
paper;	to	Dan	Bricklin	and	Bob	Frankston	for	information	about
VisiCalc;	and	again	to	Ken	Anderson	for	inviting	me	to	speak	at
BBN.

	You'll	find	this	essay	and	14	others	in	Hackers	&	Painters.	

Some	Technical	Details Japanese	Translation

Microsoft	finally	agrees Gates	Email

hackpaint.html
lwba.html
http://www.shiro.dreamhost.com/scheme/trans/road-j.html
http://www.informationweek.com/story/showArticle.jhtml?articleID=172900624
gatesemail.html

	

What	Made	Lisp	Different
December	2001	(rev.	May	2002)

(This	article	came	about	in	response	to	some	questions	on	the
LL1	mailing	list.	It	is	now	incorporated	in	Revenge	of	the	Nerds.)

When	McCarthy	designed	Lisp	in	the	late	1950s,	it	was	a	radical
departure	from	existing	languages,	the	most	important	of	which
was	Fortran.

Lisp	embodied	nine	new	ideas:

1.	Conditionals.	A	conditional	is	an	if-then-else	construct.	We	take
these	for	granted	now.	They	were	invented	by	McCarthy	in	the
course	of	developing	Lisp.	(Fortran	at	that	time	only	had	a
conditional	goto,	closely	based	on	the	branch	instruction	in	the
underlying	hardware.)	McCarthy,	who	was	on	the	Algol
committee,	got	conditionals	into	Algol,	whence	they	spread	to
most	other	languages.

2.	A	function	type.	In	Lisp,	functions	are	first	class	objects--
they're	a	data	type	just	like	integers,	strings,	etc,	and	have	a
literal	representation,	can	be	stored	in	variables,	can	be	passed
as	arguments,	and	so	on.

3.	Recursion.	Recursion	existed	as	a	mathematical	concept
before	Lisp	of	course,	but	Lisp	was	the	first	programming
language	to	support	it.	(It's	arguably	implicit	in	making	functions
first	class	objects.)

4.	A	new	concept	of	variables.	In	Lisp,	all	variables	are	effectively
pointers.	Values	are	what	have	types,	not	variables,	and
assigning	or	binding	variables	means	copying	pointers,	not	what
they	point	to.

http://ll1.mit.edu/
icad.html
history.html
http://www-formal.stanford.edu/jmc/history/lisp/node2.html

5.	Garbage-collection.

6.	Programs	composed	of	expressions.	Lisp	programs	are	trees	of
expressions,	each	of	which	returns	a	value.	(In	some	Lisps
expressions	can	return	multiple	values.)	This	is	in	contrast	to
Fortran	and	most	succeeding	languages,	which	distinguish
between	expressions	and	statements.

It	was	natural	to	have	this	distinction	in	Fortran	because	(not
surprisingly	in	a	language	where	the	input	format	was	punched
cards)	the	language	was	line-oriented.	You	could	not	nest
statements.	And	so	while	you	needed	expressions	for	math	to
work,	there	was	no	point	in	making	anything	else	return	a	value,
because	there	could	not	be	anything	waiting	for	it.

This	limitation	went	away	with	the	arrival	of	block-structured
languages,	but	by	then	it	was	too	late.	The	distinction	between
expressions	and	statements	was	entrenched.	It	spread	from
Fortran	into	Algol	and	thence	to	both	their	descendants.

When	a	language	is	made	entirely	of	expressions,	you	can
compose	expressions	however	you	want.	You	can	say	either
(using	Arc	syntax)

(if	foo	(=	x	1)	(=	x	2))

or

(=	x	(if	foo	1	2))

7.	A	symbol	type.	Symbols	differ	from	strings	in	that	you	can	test
equality	by	comparing	a	pointer.

8.	A	notation	for	code	using	trees	of	symbols.

9.	The	whole	language	always	available.	There	is	no	real
distinction	between	read-time,	compile-time,	and	runtime.	You
can	compile	or	run	code	while	reading,	read	or	run	code	while
compiling,	and	read	or	compile	code	at	runtime.

Running	code	at	read-time	lets	users	reprogram	Lisp's	syntax;

arc.html

running	code	at	compile-time	is	the	basis	of	macros;	compiling	at
runtime	is	the	basis	of	Lisp's	use	as	an	extension	language	in
programs	like	Emacs;	and	reading	at	runtime	enables	programs
to	communicate	using	s-expressions,	an	idea	recently	reinvented
as	XML.

When	Lisp	was	first	invented,	all	these	ideas	were	far	removed
from	ordinary	programming	practice,	which	was	dictated	largely
by	the	hardware	available	in	the	late	1950s.

Over	time,	the	default	language,	embodied	in	a	succession	of
popular	languages,	has	gradually	evolved	toward	Lisp.	1-5	are
now	widespread.	6	is	starting	to	appear	in	the	mainstream.
Python	has	a	form	of	7,	though	there	doesn't	seem	to	be	any
syntax	for	it.	8,	which	(with	9)	is	what	makes	Lisp	macros
possible,	is	so	far	still	unique	to	Lisp,	perhaps	because	(a)	it
requires	those	parens,	or	something	just	as	bad,	and	(b)	if	you
add	that	final	increment	of	power,	you	can	no	longer	claim	to
have	invented	a	new	language,	but	only	to	have	designed	a	new
dialect	of	Lisp	;	-)

Though	useful	to	present-day	programmers,	it's	strange	to
describe	Lisp	in	terms	of	its	variation	from	the	random
expedients	other	languages	adopted.	That	was	not,	probably,	how
McCarthy	thought	of	it.	Lisp	wasn't	designed	to	fix	the	mistakes
in	Fortran;	it	came	about	more	as	the	byproduct	of	an	attempt	to
axiomatize	computation.

rootsoflisp.html

	

Why	Arc	Isn't	Especially
Object-Oriented
There	is	a	kind	of	mania	for	object-oriented	programming	at	the
moment,	but	some	of	the	smartest	programmers	I	know	are	some
of	the	least	excited	about	it.

My	own	feeling	is	that	object-oriented	programming	is	a	useful
technique	in	some	cases,	but	it	isn't	something	that	has	to
pervade	every	program	you	write.	You	should	be	able	to	define
new	types,	but	you	shouldn't	have	to	express	every	program	as
the	definition	of	new	types.

I	think	there	are	five	reasons	people	like	object-oriented
programming,	and	three	and	a	half	of	them	are	bad:

1.	 Object-oriented	programming	is	exciting	if	you	have	a
statically-typed	language	without	lexical	closures	or
macros.	To	some	degree,	it	offers	a	way	around	these
limitations.	(See	Greenspun's	Tenth	Rule.)

2.	 Object-oriented	programming	is	popular	in	big	companies,
because	it	suits	the	way	they	write	software.	At	big
companies,	software	tends	to	be	written	by	large	(and
frequently	changing)	teams	of	mediocre	programmers.
Object-oriented	programming	imposes	a	discipline	on	these
programmers	that	prevents	any	one	of	them	from	doing	too
much	damage.	The	price	is	that	the	resulting	code	is
bloated	with	protocols	and	full	of	duplication.	This	is	not
too	high	a	price	for	big	companies,	because	their	software
is	probably	going	to	be	bloated	and	full	of	duplication
anyway.

3.	 Object-oriented	programming	generates	a	lot	of	what	looks
like	work.	Back	in	the	days	of	fanfold,	there	was	a	type	of
programmer	who	would	only	put	five	or	ten	lines	of	code

reesoo.html
quotes.html

on	a	page,	preceded	by	twenty	lines	of	elaborately
formatted	comments.	Object-oriented	programming	is	like
crack	for	these	people:	it	lets	you	incorporate	all	this
scaffolding	right	into	your	source	code.	Something	that	a
Lisp	hacker	might	handle	by	pushing	a	symbol	onto	a	list
becomes	a	whole	file	of	classes	and	methods.	So	it	is	a
good	tool	if	you	want	to	convince	yourself,	or	someone	else,
that	you	are	doing	a	lot	of	work.

4.	 If	a	language	is	itself	an	object-oriented	program,	it	can	be
extended	by	users.	Well,	maybe.	Or	maybe	you	can	do	even
better	by	offering	the	sub-concepts	of	object-oriented
programming	a	la	carte.	Overloading,	for	example,	is	not
intrinsically	tied	to	classes.	We'll	see.

5.	 Object-oriented	abstractions	map	neatly	onto	the	domains
of	certain	specific	kinds	of	programs,	like	simulations	and
CAD	systems.

	

Taste	for	Makers
February	2002

"...Copernicus'	aesthetic	objections	to	[equants]	provided	one	essential
motive	for	his	rejection	of	the	Ptolemaic	system...."

-	Thomas	Kuhn,	The	Copernican	Revolution

"All	of	us	had	been	trained	by	Kelly	Johnson	and	believed	fanatically	in
his	insistence	that	an	airplane	that	looked	beautiful	would	fly	the	same
way."

-	Ben	Rich,	Skunk	Works

"Beauty	is	the	first	test:	there	is	no	permanent	place	in	this	world	for
ugly	mathematics."

-	G.	H.	Hardy,	A	Mathematician's	Apology

I	was	talking	recently	to	a	friend	who	teaches	at	MIT.	His	field	is
hot	now	and	every	year	he	is	inundated	by	applications	from
would-be	graduate	students.	"A	lot	of	them	seem	smart,"	he	said.
"What	I	can't	tell	is	whether	they	have	any	kind	of	taste."

Taste.	You	don't	hear	that	word	much	now.	And	yet	we	still	need
the	underlying	concept,	whatever	we	call	it.	What	my	friend
meant	was	that	he	wanted	students	who	were	not	just	good
technicians,	but	who	could	use	their	technical	knowledge	to
design	beautiful	things.

Mathematicians	call	good	work	"beautiful,"	and	so,	either	now	or
in	the	past,	have	scientists,	engineers,	musicians,	architects,
designers,	writers,	and	painters.	Is	it	just	a	coincidence	that	they
used	the	same	word,	or	is	there	some	overlap	in	what	they
meant?	If	there	is	an	overlap,	can	we	use	one	field's	discoveries

about	beauty	to	help	us	in	another?

For	those	of	us	who	design	things,	these	are	not	just	theoretical
questions.	If	there	is	such	a	thing	as	beauty,	we	need	to	be	able
to	recognize	it.	We	need	good	taste	to	make	good	things.	Instead
of	treating	beauty	as	an	airy	abstraction,	to	be	either	blathered
about	or	avoided	depending	on	how	one	feels	about	airy
abstractions,	let's	try	considering	it	as	a	practical	question:	how
do	you	make	good	stuff?

If	you	mention	taste	nowadays,	a	lot	of	people	will	tell	you	that
"taste	is	subjective."	They	believe	this	because	it	really	feels	that
way	to	them.	When	they	like	something,	they	have	no	idea	why.	It
could	be	because	it's	beautiful,	or	because	their	mother	had	one,
or	because	they	saw	a	movie	star	with	one	in	a	magazine,	or
because	they	know	it's	expensive.	Their	thoughts	are	a	tangle	of
unexamined	impulses.

Most	of	us	are	encouraged,	as	children,	to	leave	this	tangle
unexamined.	If	you	make	fun	of	your	little	brother	for	coloring
people	green	in	his	coloring	book,	your	mother	is	likely	to	tell	you
something	like	"you	like	to	do	it	your	way	and	he	likes	to	do	it	his
way."

Your	mother	at	this	point	is	not	trying	to	teach	you	important
truths	about	aesthetics.	She's	trying	to	get	the	two	of	you	to	stop
bickering.

Like	many	of	the	half-truths	adults	tell	us,	this	one	contradicts
other	things	they	tell	us.	After	dinning	into	you	that	taste	is
merely	a	matter	of	personal	preference,	they	take	you	to	the
museum	and	tell	you	that	you	should	pay	attention	because
Leonardo	is	a	great	artist.

What	goes	through	the	kid's	head	at	this	point?	What	does	he
think	"great	artist"	means?	After	having	been	told	for	years	that
everyone	just	likes	to	do	things	their	own	way,	he	is	unlikely	to
head	straight	for	the	conclusion	that	a	great	artist	is	someone
whose	work	is	better	than	the	others'.	A	far	more	likely	theory,	in

his	Ptolemaic	model	of	the	universe,	is	that	a	great	artist	is
something	that's	good	for	you,	like	broccoli,	because	someone
said	so	in	a	book.

Saying	that	taste	is	just	personal	preference	is	a	good	way	to
prevent	disputes.	The	trouble	is,	it's	not	true.	You	feel	this	when
you	start	to	design	things.

Whatever	job	people	do,	they	naturally	want	to	do	better.
Football	players	like	to	win	games.	CEOs	like	to	increase
earnings.	It's	a	matter	of	pride,	and	a	real	pleasure,	to	get	better
at	your	job.	But	if	your	job	is	to	design	things,	and	there	is	no
such	thing	as	beauty,	then	there	is	no	way	to	get	better	at	your
job.	If	taste	is	just	personal	preference,	then	everyone's	is
already	perfect:	you	like	whatever	you	like,	and	that's	it.

As	in	any	job,	as	you	continue	to	design	things,	you'll	get	better
at	it.	Your	tastes	will	change.	And,	like	anyone	who	gets	better	at
their	job,	you'll	know	you're	getting	better.	If	so,	your	old	tastes
were	not	merely	different,	but	worse.	Poof	goes	the	axiom	that
taste	can't	be	wrong.

Relativism	is	fashionable	at	the	moment,	and	that	may	hamper
you	from	thinking	about	taste,	even	as	yours	grows.	But	if	you
come	out	of	the	closet	and	admit,	at	least	to	yourself,	that	there
is	such	a	thing	as	good	and	bad	design,	then	you	can	start	to
study	good	design	in	detail.	How	has	your	taste	changed?	When
you	made	mistakes,	what	caused	you	to	make	them?	What	have
other	people	learned	about	design?

Once	you	start	to	examine	the	question,	it's	surprising	how	much
different	fields'	ideas	of	beauty	have	in	common.	The	same
principles	of	good	design	crop	up	again	and	again.

Good	design	is	simple.	You	hear	this	from	math	to	painting.	In
math	it	means	that	a	shorter	proof	tends	to	be	a	better	one.
Where	axioms	are	concerned,	especially,	less	is	more.	It	means

much	the	same	thing	in	programming.	For	architects	and
designers	it	means	that	beauty	should	depend	on	a	few	carefully
chosen	structural	elements	rather	than	a	profusion	of	superficial
ornament.	(Ornament	is	not	in	itself	bad,	only	when	it's
camouflage	on	insipid	form.)	Similarly,	in	painting,	a	still	life	of	a
few	carefully	observed	and	solidly	modelled	objects	will	tend	to
be	more	interesting	than	a	stretch	of	flashy	but	mindlessly
repetitive	painting	of,	say,	a	lace	collar.	In	writing	it	means:	say
what	you	mean	and	say	it	briefly.

It	seems	strange	to	have	to	emphasize	simplicity.	You'd	think
simple	would	be	the	default.	Ornate	is	more	work.	But	something
seems	to	come	over	people	when	they	try	to	be	creative.
Beginning	writers	adopt	a	pompous	tone	that	doesn't	sound
anything	like	the	way	they	speak.	Designers	trying	to	be	artistic
resort	to	swooshes	and	curlicues.	Painters	discover	that	they're
expressionists.	It's	all	evasion.	Underneath	the	long	words	or	the
"expressive"	brush	strokes,	there	is	not	much	going	on,	and
that's	frightening.

When	you're	forced	to	be	simple,	you're	forced	to	face	the	real
problem.	When	you	can't	deliver	ornament,	you	have	to	deliver
substance.

Good	design	is	timeless.	In	math,	every	proof	is	timeless	unless	it
contains	a	mistake.	So	what	does	Hardy	mean	when	he	says
there	is	no	permanent	place	for	ugly	mathematics?	He	means	the
same	thing	Kelly	Johnson	did:	if	something	is	ugly,	it	can't	be	the
best	solution.	There	must	be	a	better	one,	and	eventually
someone	will	discover	it.

Aiming	at	timelessness	is	a	way	to	make	yourself	find	the	best
answer:	if	you	can	imagine	someone	surpassing	you,	you	should
do	it	yourself.	Some	of	the	greatest	masters	did	this	so	well	that
they	left	little	room	for	those	who	came	after.	Every	engraver
since	Durer	has	had	to	live	in	his	shadow.

Aiming	at	timelessness	is	also	a	way	to	evade	the	grip	of	fashion.
Fashions	almost	by	definition	change	with	time,	so	if	you	can

make	something	that	will	still	look	good	far	into	the	future,	then
its	appeal	must	derive	more	from	merit	and	less	from	fashion.

Strangely	enough,	if	you	want	to	make	something	that	will	appeal
to	future	generations,	one	way	to	do	it	is	to	try	to	appeal	to	past
generations.	It's	hard	to	guess	what	the	future	will	be	like,	but
we	can	be	sure	it	will	be	like	the	past	in	caring	nothing	for
present	fashions.	So	if	you	can	make	something	that	appeals	to
people	today	and	would	also	have	appealed	to	people	in	1500,
there	is	a	good	chance	it	will	appeal	to	people	in	2500.

Good	design	solves	the	right	problem.	The	typical	stove	has	four
burners	arranged	in	a	square,	and	a	dial	to	control	each.	How	do
you	arrange	the	dials?	The	simplest	answer	is	to	put	them	in	a
row.	But	this	is	a	simple	answer	to	the	wrong	question.	The	dials
are	for	humans	to	use,	and	if	you	put	them	in	a	row,	the	unlucky
human	will	have	to	stop	and	think	each	time	about	which	dial
matches	which	burner.	Better	to	arrange	the	dials	in	a	square
like	the	burners.

A	lot	of	bad	design	is	industrious,	but	misguided.	In	the	mid
twentieth	century	there	was	a	vogue	for	setting	text	in	sans-serif
fonts.	These	fonts	are	closer	to	the	pure,	underlying	letterforms.
But	in	text	that's	not	the	problem	you're	trying	to	solve.	For
legibility	it's	more	important	that	letters	be	easy	to	tell	apart.	It
may	look	Victorian,	but	a	Times	Roman	lowercase	g	is	easy	to	tell
from	a	lowercase	y.

Problems	can	be	improved	as	well	as	solutions.	In	software,	an
intractable	problem	can	usually	be	replaced	by	an	equivalent	one
that's	easy	to	solve.	Physics	progressed	faster	as	the	problem
became	predicting	observable	behavior,	instead	of	reconciling	it
with	scripture.

Good	design	is	suggestive.	Jane	Austen's	novels	contain	almost
no	description;	instead	of	telling	you	how	everything	looks,	she
tells	her	story	so	well	that	you	envision	the	scene	for	yourself.

Likewise,	a	painting	that	suggests	is	usually	more	engaging	than
one	that	tells.	Everyone	makes	up	their	own	story	about	the
Mona	Lisa.

In	architecture	and	design,	this	principle	means	that	a	building
or	object	should	let	you	use	it	how	you	want:	a	good	building,	for
example,	will	serve	as	a	backdrop	for	whatever	life	people	want
to	lead	in	it,	instead	of	making	them	live	as	if	they	were
executing	a	program	written	by	the	architect.

In	software,	it	means	you	should	give	users	a	few	basic	elements
that	they	can	combine	as	they	wish,	like	Lego.	In	math	it	means	a
proof	that	becomes	the	basis	for	a	lot	of	new	work	is	preferable
to	a	proof	that	was	difficult,	but	doesn't	lead	to	future
discoveries;	in	the	sciences	generally,	citation	is	considered	a
rough	indicator	of	merit.

Good	design	is	often	slightly	funny.	This	one	may	not	always	be
true.	But	Durer's	engravings	and	Saarinen's	womb	chair	and	the
Pantheon	and	the	original	Porsche	911	all	seem	to	me	slightly
funny.	Godel's	incompleteness	theorem	seems	like	a	practical
joke.

I	think	it's	because	humor	is	related	to	strength.	To	have	a	sense
of	humor	is	to	be	strong:	to	keep	one's	sense	of	humor	is	to	shrug
off	misfortunes,	and	to	lose	one's	sense	of	humor	is	to	be
wounded	by	them.	And	so	the	mark--	or	at	least	the	prerogative--
of	strength	is	not	to	take	oneself	too	seriously.	The	confident	will
often,	like	swallows,	seem	to	be	making	fun	of	the	whole	process
slightly,	as	Hitchcock	does	in	his	films	or	Bruegel	in	his	paintings-
-	or	Shakespeare,	for	that	matter.

Good	design	may	not	have	to	be	funny,	but	it's	hard	to	imagine
something	that	could	be	called	humorless	also	being	good
design.

Good	design	is	hard.	If	you	look	at	the	people	who've	done	great

pilate.html
womb.html
pantheon.html
1974-911s.html

work,	one	thing	they	all	seem	to	have	in	common	is	that	they
worked	very	hard.	If	you're	not	working	hard,	you're	probably
wasting	your	time.

Hard	problems	call	for	great	efforts.	In	math,	difficult	proofs
require	ingenious	solutions,	and	those	tend	to	be	interesting.
Ditto	in	engineering.

When	you	have	to	climb	a	mountain	you	toss	everything
unnecessary	out	of	your	pack.	And	so	an	architect	who	has	to
build	on	a	difficult	site,	or	a	small	budget,	will	find	that	he	is
forced	to	produce	an	elegant	design.	Fashions	and	flourishes	get
knocked	aside	by	the	difficult	business	of	solving	the	problem	at
all.

Not	every	kind	of	hard	is	good.	There	is	good	pain	and	bad	pain.
You	want	the	kind	of	pain	you	get	from	going	running,	not	the
kind	you	get	from	stepping	on	a	nail.	A	difficult	problem	could	be
good	for	a	designer,	but	a	fickle	client	or	unreliable	materials
would	not	be.

In	art,	the	highest	place	has	traditionally	been	given	to	paintings
of	people.	There	is	something	to	this	tradition,	and	not	just
because	pictures	of	faces	get	to	press	buttons	in	our	brains	that
other	pictures	don't.	We	are	so	good	at	looking	at	faces	that	we
force	anyone	who	draws	them	to	work	hard	to	satisfy	us.	If	you
draw	a	tree	and	you	change	the	angle	of	a	branch	five	degrees,
no	one	will	know.	When	you	change	the	angle	of	someone's	eye
five	degrees,	people	notice.

When	Bauhaus	designers	adopted	Sullivan's	"form	follows
function,"	what	they	meant	was,	form	should	follow	function.	And
if	function	is	hard	enough,	form	is	forced	to	follow	it,	because
there	is	no	effort	to	spare	for	error.	Wild	animals	are	beautiful
because	they	have	hard	lives.

Good	design	looks	easy.	Like	great	athletes,	great	designers
make	it	look	easy.	Mostly	this	is	an	illusion.	The	easy,
conversational	tone	of	good	writing	comes	only	on	the	eighth

rewrite.

In	science	and	engineering,	some	of	the	greatest	discoveries
seem	so	simple	that	you	say	to	yourself,	I	could	have	thought	of
that.	The	discoverer	is	entitled	to	reply,	why	didn't	you?

Some	Leonardo	heads	are	just	a	few	lines.	You	look	at	them	and
you	think,	all	you	have	to	do	is	get	eight	or	ten	lines	in	the	right
place	and	you've	made	this	beautiful	portrait.	Well,	yes,	but	you
have	to	get	them	in	exactly	the	right	place.	The	slightest	error
will	make	the	whole	thing	collapse.

Line	drawings	are	in	fact	the	most	difficult	visual	medium,
because	they	demand	near	perfection.	In	math	terms,	they	are	a
closed-form	solution;	lesser	artists	literally	solve	the	same
problems	by	successive	approximation.	One	of	the	reasons	kids
give	up	drawing	at	ten	or	so	is	that	they	decide	to	start	drawing
like	grownups,	and	one	of	the	first	things	they	try	is	a	line
drawing	of	a	face.	Smack!

In	most	fields	the	appearance	of	ease	seems	to	come	with
practice.	Perhaps	what	practice	does	is	train	your	unconscious
mind	to	handle	tasks	that	used	to	require	conscious	thought.	In
some	cases	you	literally	train	your	body.	An	expert	pianist	can
play	notes	faster	than	the	brain	can	send	signals	to	his	hand.
Likewise	an	artist,	after	a	while,	can	make	visual	perception	flow
in	through	his	eye	and	out	through	his	hand	as	automatically	as
someone	tapping	his	foot	to	a	beat.

When	people	talk	about	being	in	"the	zone,"	I	think	what	they
mean	is	that	the	spinal	cord	has	the	situation	under	control.	Your
spinal	cord	is	less	hesitant,	and	it	frees	conscious	thought	for	the
hard	problems.

Good	design	uses	symmetry.	I	think	symmetry	may	just	be	one
way	to	achieve	simplicity,	but	it's	important	enough	to	be
mentioned	on	its	own.	Nature	uses	it	a	lot,	which	is	a	good	sign.

There	are	two	kinds	of	symmetry,	repetition	and	recursion.

Recursion	means	repetition	in	subelements,	like	the	pattern	of
veins	in	a	leaf.

Symmetry	is	unfashionable	in	some	fields	now,	in	reaction	to
excesses	in	the	past.	Architects	started	consciously	making
buildings	asymmetric	in	Victorian	times	and	by	the	1920s
asymmetry	was	an	explicit	premise	of	modernist	architecture.
Even	these	buildings	only	tended	to	be	asymmetric	about	major
axes,	though;	there	were	hundreds	of	minor	symmetries.

In	writing	you	find	symmetry	at	every	level,	from	the	phrases	in	a
sentence	to	the	plot	of	a	novel.	You	find	the	same	in	music	and
art.	Mosaics	(and	some	Cezannes)	get	extra	visual	punch	by
making	the	whole	picture	out	of	the	same	atoms.	Compositional
symmetry	yields	some	of	the	most	memorable	paintings,
especially	when	two	halves	react	to	one	another,	as	in	the
Creation	of	Adam	or	American	Gothic.

In	math	and	engineering,	recursion,	especially,	is	a	big	win.
Inductive	proofs	are	wonderfully	short.	In	software,	a	problem
that	can	be	solved	by	recursion	is	nearly	always	best	solved	that
way.	The	Eiffel	Tower	looks	striking	partly	because	it	is	a
recursive	solution,	a	tower	on	a	tower.

The	danger	of	symmetry,	and	repetition	especially,	is	that	it	can
be	used	as	a	substitute	for	thought.

Good	design	resembles	nature.	It's	not	so	much	that	resembling
nature	is	intrinsically	good	as	that	nature	has	had	a	long	time	to
work	on	the	problem.	It's	a	good	sign	when	your	answer
resembles	nature's.

It's	not	cheating	to	copy.	Few	would	deny	that	a	story	should	be
like	life.	Working	from	life	is	a	valuable	tool	in	painting	too,
though	its	role	has	often	been	misunderstood.	The	aim	is	not
simply	to	make	a	record.	The	point	of	painting	from	life	is	that	it
gives	your	mind	something	to	chew	on:	when	your	eyes	are
looking	at	something,	your	hand	will	do	more	interesting	work.

symptg.html
symptg.html

Imitating	nature	also	works	in	engineering.	Boats	have	long	had
spines	and	ribs	like	an	animal's	ribcage.	In	some	cases	we	may
have	to	wait	for	better	technology:	early	aircraft	designers	were
mistaken	to	design	aircraft	that	looked	like	birds,	because	they
didn't	have	materials	or	power	sources	light	enough	(the	Wrights'
engine	weighed	152	lbs.	and	generated	only	12	hp.)	or	control
systems	sophisticated	enough	for	machines	that	flew	like	birds,
but	I	could	imagine	little	unmanned	reconnaissance	planes	flying
like	birds	in	fifty	years.

Now	that	we	have	enough	computer	power,	we	can	imitate
nature's	method	as	well	as	its	results.	Genetic	algorithms	may	let
us	create	things	too	complex	to	design	in	the	ordinary	sense.

Good	design	is	redesign.	It's	rare	to	get	things	right	the	first
time.	Experts	expect	to	throw	away	some	early	work.	They	plan
for	plans	to	change.

It	takes	confidence	to	throw	work	away.	You	have	to	be	able	to
think,	there's	more	where	that	came	from.	When	people	first
start	drawing,	for	example,	they're	often	reluctant	to	redo	parts
that	aren't	right;	they	feel	they've	been	lucky	to	get	that	far,	and
if	they	try	to	redo	something,	it	will	turn	out	worse.	Instead	they
convince	themselves	that	the	drawing	is	not	that	bad,	really--	in
fact,	maybe	they	meant	it	to	look	that	way.

Dangerous	territory,	that;	if	anything	you	should	cultivate
dissatisfaction.	In	Leonardo's	drawings	there	are	often	five	or	six
attempts	to	get	a	line	right.	The	distinctive	back	of	the	Porsche
911	only	appeared	in	the	redesign	of	an	awkward	prototype.	In
Wright's	early	plans	for	the	Guggenheim,	the	right	half	was	a
ziggurat;	he	inverted	it	to	get	the	present	shape.

Mistakes	are	natural.	Instead	of	treating	them	as	disasters,	make
them	easy	to	acknowledge	and	easy	to	fix.	Leonardo	more	or	less
invented	the	sketch,	as	a	way	to	make	drawing	bear	a	greater
weight	of	exploration.	Open-source	software	has	fewer	bugs
because	it	admits	the	possibility	of	bugs.

leonardo.html
porsche695.html
guggen.html

It	helps	to	have	a	medium	that	makes	change	easy.	When	oil
paint	replaced	tempera	in	the	fifteenth	century,	it	helped	painters
to	deal	with	difficult	subjects	like	the	human	figure	because,
unlike	tempera,	oil	can	be	blended	and	overpainted.

Good	design	can	copy.	Attitudes	to	copying	often	make	a	round
trip.	A	novice	imitates	without	knowing	it;	next	he	tries
consciously	to	be	original;	finally,	he	decides	it's	more	important
to	be	right	than	original.

Unknowing	imitation	is	almost	a	recipe	for	bad	design.	If	you
don't	know	where	your	ideas	are	coming	from,	you're	probably
imitating	an	imitator.	Raphael	so	pervaded	mid-nineteenth
century	taste	that	almost	anyone	who	tried	to	draw	was	imitating
him,	often	at	several	removes.	It	was	this,	more	than	Raphael's
own	work,	that	bothered	the	Pre-Raphaelites.

The	ambitious	are	not	content	to	imitate.	The	second	phase	in	the
growth	of	taste	is	a	conscious	attempt	at	originality.

I	think	the	greatest	masters	go	on	to	achieve	a	kind	of
selflessness.	They	just	want	to	get	the	right	answer,	and	if	part	of
the	right	answer	has	already	been	discovered	by	someone	else,
that's	no	reason	not	to	use	it.	They're	confident	enough	to	take
from	anyone	without	feeling	that	their	own	vision	will	be	lost	in
the	process.

Good	design	is	often	strange.	Some	of	the	very	best	work	has	an
uncanny	quality:	Euler's	Formula,	Bruegel's	Hunters	in	the	Snow,
the	SR-71,	Lisp.	They're	not	just	beautiful,	but	strangely
beautiful.

I'm	not	sure	why.	It	may	just	be	my	own	stupidity.	A	can-opener
must	seem	miraculous	to	a	dog.	Maybe	if	I	were	smart	enough	it
would	seem	the	most	natural	thing	in	the	world	that	ei*pi	=	-1.	It
is	after	all	necessarily	true.

http://mathworld.wolfram.com/EulerFormula.html
hunters.html
sr71.html
rootsoflisp.html

Most	of	the	qualities	I've	mentioned	are	things	that	can	be
cultivated,	but	I	don't	think	it	works	to	cultivate	strangeness.	The
best	you	can	do	is	not	squash	it	if	it	starts	to	appear.	Einstein
didn't	try	to	make	relativity	strange.	He	tried	to	make	it	true,	and
the	truth	turned	out	to	be	strange.

At	an	art	school	where	I	once	studied,	the	students	wanted	most
of	all	to	develop	a	personal	style.	But	if	you	just	try	to	make	good
things,	you'll	inevitably	do	it	in	a	distinctive	way,	just	as	each
person	walks	in	a	distinctive	way.	Michelangelo	was	not	trying	to
paint	like	Michelangelo.	He	was	just	trying	to	paint	well;	he
couldn't	help	painting	like	Michelangelo.

The	only	style	worth	having	is	the	one	you	can't	help.	And	this	is
especially	true	for	strangeness.	There	is	no	shortcut	to	it.	The
Northwest	Passage	that	the	Mannerists,	the	Romantics,	and	two
generations	of	American	high	school	students	have	searched	for
does	not	seem	to	exist.	The	only	way	to	get	there	is	to	go	through
good	and	come	out	the	other	side.

Good	design	happens	in	chunks.	The	inhabitants	of	fifteenth
century	Florence	included	Brunelleschi,	Ghiberti,	Donatello,
Masaccio,	Filippo	Lippi,	Fra	Angelico,	Verrocchio,	Botticelli,
Leonardo,	and	Michelangelo.	Milan	at	the	time	was	as	big	as
Florence.	How	many	fifteenth	century	Milanese	artists	can	you
name?

Something	was	happening	in	Florence	in	the	fifteenth	century.
And	it	can't	have	been	heredity,	because	it	isn't	happening	now.
You	have	to	assume	that	whatever	inborn	ability	Leonardo	and
Michelangelo	had,	there	were	people	born	in	Milan	with	just	as
much.	What	happened	to	the	Milanese	Leonardo?

There	are	roughly	a	thousand	times	as	many	people	alive	in	the
US	right	now	as	lived	in	Florence	during	the	fifteenth	century.	A
thousand	Leonardos	and	a	thousand	Michelangelos	walk	among
us.	If	DNA	ruled,	we	should	be	greeted	daily	by	artistic	marvels.
We	aren't,	and	the	reason	is	that	to	make	Leonardo	you	need

more	than	his	innate	ability.	You	also	need	Florence	in	1450.

Nothing	is	more	powerful	than	a	community	of	talented	people
working	on	related	problems.	Genes	count	for	little	by
comparison:	being	a	genetic	Leonardo	was	not	enough	to
compensate	for	having	been	born	near	Milan	instead	of	Florence.
Today	we	move	around	more,	but	great	work	still	comes
disproportionately	from	a	few	hotspots:	the	Bauhaus,	the
Manhattan	Project,	the	New	Yorker,	Lockheed's	Skunk	Works,
Xerox	Parc.

At	any	given	time	there	are	a	few	hot	topics	and	a	few	groups
doing	great	work	on	them,	and	it's	nearly	impossible	to	do	good
work	yourself	if	you're	too	far	removed	from	one	of	these	centers.
You	can	push	or	pull	these	trends	to	some	extent,	but	you	can't
break	away	from	them.	(Maybe	you	can,	but	the	Milanese
Leonardo	couldn't.)

Good	design	is	often	daring.	At	every	period	of	history,	people
have	believed	things	that	were	just	ridiculous,	and	believed	them
so	strongly	that	you	risked	ostracism	or	even	violence	by	saying
otherwise.

If	our	own	time	were	any	different,	that	would	be	remarkable.	As
far	as	I	can	tell	it	isn't.

This	problem	afflicts	not	just	every	era,	but	in	some	degree	every
field.	Much	Renaissance	art	was	in	its	time	considered
shockingly	secular:	according	to	Vasari,	Botticelli	repented	and
gave	up	painting,	and	Fra	Bartolommeo	and	Lorenzo	di	Credi
actually	burned	some	of	their	work.	Einstein's	theory	of	relativity
offended	many	contemporary	physicists,	and	was	not	fully
accepted	for	decades--	in	France,	not	until	the	1950s.

Today's	experimental	error	is	tomorrow's	new	theory.	If	you	want
to	discover	great	new	things,	then	instead	of	turning	a	blind	eye
to	the	places	where	conventional	wisdom	and	truth	don't	quite
meet,	you	should	pay	particular	attention	to	them.

say.html

As	a	practical	matter,	I	think	it's	easier	to	see	ugliness	than	to
imagine	beauty.	Most	of	the	people	who've	made	beautiful	things
seem	to	have	done	it	by	fixing	something	that	they	thought	ugly.
Great	work	usually	seems	to	happen	because	someone	sees
something	and	thinks,	I	could	do	better	than	that.	Giotto	saw
traditional	Byzantine	madonnas	painted	according	to	a	formula
that	had	satisfied	everyone	for	centuries,	and	to	him	they	looked
wooden	and	unnatural.	Copernicus	was	so	troubled	by	a	hack
that	all	his	contemporaries	could	tolerate	that	he	felt	there	must
be	a	better	solution.

Intolerance	for	ugliness	is	not	in	itself	enough.	You	have	to
understand	a	field	well	before	you	develop	a	good	nose	for	what
needs	fixing.	You	have	to	do	your	homework.	But	as	you	become
expert	in	a	field,	you'll	start	to	hear	little	voices	saying,	What	a
hack!	There	must	be	a	better	way.	Don't	ignore	those	voices.
Cultivate	them.	The	recipe	for	great	work	is:	very	exacting	taste,
plus	the	ability	to	gratify	it.

Notes

Sullivan	actually	said	"form	ever	follows	function,"	but	I	think	the
usual	misquotation	is	closer	to	what	modernist	architects	meant.

Stephen	G.	Brush,	"Why	was	Relativity	Accepted?"	Phys.
Perspect.	1	(1999)	184-214.

https://sep.turbifycdn.com/ty/cdn/paulgraham/sullivan.html?t=1688221954&

	

What	Languages	Fix
Kevin	Kelleher	suggested	an	interesting	way	to	compare
programming	languages:	to	describe	each	in	terms	of	the
problem	it	fixes.	The	surprising	thing	is	how	many,	and	how	well,
languages	can	be	described	this	way.

	

Succinctness	is	Power
May	2002

"The	quantity	of	meaning	compressed	into	a	small	space	by
algebraic	signs,	is	another	circumstance	that	facilitates	the
reasonings	we	are	accustomed	to	carry	on	by	their	aid."

-	Charles	Babbage,	quoted	in	Iverson's	Turing	Award
Lecture

In	the	discussion	about	issues	raised	by	Revenge	of	the	Nerds	on
the	LL1	mailing	list,	Paul	Prescod	wrote	something	that	stuck	in
my	mind.

Python's	goal	is	regularity	and	readability,	not
succinctness.

On	the	face	of	it,	this	seems	a	rather	damning	thing	to	claim
about	a	programming	language.	As	far	as	I	can	tell,	succinctness
=	power.	If	so,	then	substituting,	we	get

Python's	goal	is	regularity	and	readability,	not	power.

and	this	doesn't	seem	a	tradeoff	(if	it	is	a	tradeoff)	that	you'd
want	to	make.	It's	not	far	from	saying	that	Python's	goal	is	not	to
be	effective	as	a	programming	language.

Does	succinctness	=	power?	This	seems	to	me	an	important
question,	maybe	the	most	important	question	for	anyone
interested	in	language	design,	and	one	that	it	would	be	useful	to
confront	directly.	I	don't	feel	sure	yet	that	the	answer	is	a	simple
yes,	but	it	seems	a	good	hypothesis	to	begin	with.

Hypothesis

My	hypothesis	is	that	succinctness	is	power,	or	is	close	enough

icad.html

that	except	in	pathological	examples	you	can	treat	them	as
identical.

It	seems	to	me	that	succinctness	is	what	programming	languages
are	for.	Computers	would	be	just	as	happy	to	be	told	what	to	do
directly	in	machine	language.	I	think	that	the	main	reason	we
take	the	trouble	to	develop	high-level	languages	is	to	get
leverage,	so	that	we	can	say	(and	more	importantly,	think)	in	10
lines	of	a	high-level	language	what	would	require	1000	lines	of
machine	language.	In	other	words,	the	main	point	of	high-level
languages	is	to	make	source	code	smaller.

If	smaller	source	code	is	the	purpose	of	high-level	languages,	and
the	power	of	something	is	how	well	it	achieves	its	purpose,	then
the	measure	of	the	power	of	a	programming	language	is	how
small	it	makes	your	programs.

Conversely,	a	language	that	doesn't	make	your	programs	small	is
doing	a	bad	job	of	what	programming	languages	are	supposed	to
do,	like	a	knife	that	doesn't	cut	well,	or	printing	that's	illegible.	

Metrics

Small	in	what	sense	though?	The	most	common	measure	of	code
size	is	lines	of	code.	But	I	think	that	this	metric	is	the	most
common	because	it	is	the	easiest	to	measure.	I	don't	think
anyone	really	believes	it	is	the	true	test	of	the	length	of	a
program.	Different	languages	have	different	conventions	for	how
much	you	should	put	on	a	line;	in	C	a	lot	of	lines	have	nothing	on
them	but	a	delimiter	or	two.

Another	easy	test	is	the	number	of	characters	in	a	program,	but
this	is	not	very	good	either;	some	languages	(Perl,	for	example)
just	use	shorter	identifiers	than	others.

I	think	a	better	measure	of	the	size	of	a	program	would	be	the
number	of	elements,	where	an	element	is	anything	that	would	be
a	distinct	node	if	you	drew	a	tree	representing	the	source	code.
The	name	of	a	variable	or	function	is	an	element;	an	integer	or	a
floating-point	number	is	an	element;	a	segment	of	literal	text	is
an	element;	an	element	of	a	pattern,	or	a	format	directive,	is	an

element;	a	new	block	is	an	element.	There	are	borderline	cases
(is	-5	two	elements	or	one?)	but	I	think	most	of	them	are	the
same	for	every	language,	so	they	don't	affect	comparisons	much.

This	metric	needs	fleshing	out,	and	it	could	require
interpretation	in	the	case	of	specific	languages,	but	I	think	it
tries	to	measure	the	right	thing,	which	is	the	number	of	parts	a
program	has.	I	think	the	tree	you'd	draw	in	this	exercise	is	what
you	have	to	make	in	your	head	in	order	to	conceive	of	the
program,	and	so	its	size	is	proportionate	to	the	amount	of	work
you	have	to	do	to	write	or	read	it.

Design

This	kind	of	metric	would	allow	us	to	compare	different
languages,	but	that	is	not,	at	least	for	me,	its	main	value.	The
main	value	of	the	succinctness	test	is	as	a	guide	in	designing
languages.	The	most	useful	comparison	between	languages	is
between	two	potential	variants	of	the	same	language.	What	can	I
do	in	the	language	to	make	programs	shorter?

If	the	conceptual	load	of	a	program	is	proportionate	to	its
complexity,	and	a	given	programmer	can	tolerate	a	fixed
conceptual	load,	then	this	is	the	same	as	asking,	what	can	I	do	to
enable	programmers	to	get	the	most	done?	And	that	seems	to	me
identical	to	asking,	how	can	I	design	a	good	language?

(Incidentally,	nothing	makes	it	more	patently	obvious	that	the	old
chestnut	"all	languages	are	equivalent"	is	false	than	designing
languages.	When	you	are	designing	a	new	language,	you're
constantly	comparing	two	languages--	the	language	if	I	did	x,	and
if	I	didn't--	to	decide	which	is	better.	If	this	were	really	a
meaningless	question,	you	might	as	well	flip	a	coin.)

Aiming	for	succinctness	seems	a	good	way	to	find	new	ideas.	If
you	can	do	something	that	makes	many	different	programs
shorter,	it	is	probably	not	a	coincidence:	you	have	probably
discovered	a	useful	new	abstraction.	You	might	even	be	able	to
write	a	program	to	help	by	searching	source	code	for	repeated
patterns.	Among	other	languages,	those	with	a	reputation	for
succinctness	would	be	the	ones	to	look	to	for	new	ideas:	Forth,

Joy,	Icon.

Comparison

The	first	person	to	write	about	these	issues,	as	far	as	I	know,	was
Fred	Brooks	in	the	Mythical	Man	Month.	He	wrote	that
programmers	seemed	to	generate	about	the	same	amount	of
code	per	day	regardless	of	the	language.	When	I	first	read	this	in
my	early	twenties,	it	was	a	big	surprise	to	me	and	seemed	to
have	huge	implications.	It	meant	that	(a)	the	only	way	to	get
software	written	faster	was	to	use	a	more	succinct	language,	and
(b)	someone	who	took	the	trouble	to	do	this	could	leave
competitors	who	didn't	in	the	dust.

Brooks'	hypothesis,	if	it's	true,	seems	to	be	at	the	very	heart	of
hacking.	In	the	years	since,	I've	paid	close	attention	to	any
evidence	I	could	get	on	the	question,	from	formal	studies	to
anecdotes	about	individual	projects.	I	have	seen	nothing	to
contradict	him.

I	have	not	yet	seen	evidence	that	seemed	to	me	conclusive,	and	I
don't	expect	to.	Studies	like	Lutz	Prechelt's	comparison	of
programming	languages,	while	generating	the	kind	of	results	I
expected,	tend	to	use	problems	that	are	too	short	to	be
meaningful	tests.	A	better	test	of	a	language	is	what	happens	in
programs	that	take	a	month	to	write.	And	the	only	real	test,	if
you	believe	as	I	do	that	the	main	purpose	of	a	language	is	to	be
good	to	think	in	(rather	than	just	to	tell	a	computer	what	to	do
once	you've	thought	of	it)	is	what	new	things	you	can	write	in	it.
So	any	language	comparison	where	you	have	to	meet	a
predefined	spec	is	testing	slightly	the	wrong	thing.

The	true	test	of	a	language	is	how	well	you	can	discover	and
solve	new	problems,	not	how	well	you	can	use	it	to	solve	a
problem	someone	else	has	already	formulated.	These	two	are
quite	different	criteria.	In	art,	mediums	like	embroidery	and
mosaic	work	well	if	you	know	beforehand	what	you	want	to
make,	but	are	absolutely	lousy	if	you	don't.	When	you	want	to
discover	the	image	as	you	make	it--	as	you	have	to	do	with
anything	as	complex	as	an	image	of	a	person,	for	example--	you
need	to	use	a	more	fluid	medium	like	pencil	or	ink	wash	or	oil

paint.	And	indeed,	the	way	tapestries	and	mosaics	are	made	in
practice	is	to	make	a	painting	first,	then	copy	it.	(The	word
"cartoon"	was	originally	used	to	describe	a	painting	intended	for
this	purpose).

What	this	means	is	that	we	are	never	likely	to	have	accurate
comparisons	of	the	relative	power	of	programming	languages.
We'll	have	precise	comparisons,	but	not	accurate	ones.	In
particular,	explicit	studies	for	the	purpose	of	comparing
languages,	because	they	will	probably	use	small	problems,	and
will	necessarily	use	predefined	problems,	will	tend	to
underestimate	the	power	of	the	more	powerful	languages.

Reports	from	the	field,	though	they	will	necessarily	be	less
precise	than	"scientific"	studies,	are	likely	to	be	more
meaningful.	For	example,	Ulf	Wiger	of	Ericsson	did	a	study	that
concluded	that	Erlang	was	4-10x	more	succinct	than	C++,	and
proportionately	faster	to	develop	software	in:

Comparisons	between	Ericsson-internal	development
projects	indicate	similar	line/hour	productivity,
including	all	phases	of	software	development,	rather
independently	of	which	language	(Erlang,	PLEX,	C,
C++,	or	Java)	was	used.	What	differentiates	the
different	languages	then	becomes	source	code
volume.

The	study	also	deals	explictly	with	a	point	that	was	only	implicit
in	Brooks'	book	(since	he	measured	lines	of	debugged	code):
programs	written	in	more	powerful	languages	tend	to	have	fewer
bugs.	That	becomes	an	end	in	itself,	possibly	more	important
than	programmer	productivity,	in	applications	like	network
switches.

The	Taste	Test

Ultimately,	I	think	you	have	to	go	with	your	gut.	What	does	it	feel
like	to	program	in	the	language?	I	think	the	way	to	find	(or
design)	the	best	language	is	to	become	hypersensitive	to	how
well	a	language	lets	you	think,	then	choose/design	the	language
that	feels	best.	If	some	language	feature	is	awkward	or

http://www.erlang.se/publications/Ulf_Wiger.pdf

restricting,	don't	worry,	you'll	know	about	it.

Such	hypersensitivity	will	come	at	a	cost.	You'll	find	that	you
can't	stand	programming	in	clumsy	languages.	I	find	it
unbearably	restrictive	to	program	in	languages	without	macros,
just	as	someone	used	to	dynamic	typing	finds	it	unbearably
restrictive	to	have	to	go	back	to	programming	in	a	language
where	you	have	to	declare	the	type	of	every	variable,	and	can't
make	a	list	of	objects	of	different	types.	

I'm	not	the	only	one.	I	know	many	Lisp	hackers	that	this	has
happened	to.	In	fact,	the	most	accurate	measure	of	the	relative
power	of	programming	languages	might	be	the	percentage	of
people	who	know	the	language	who	will	take	any	job	where	they
get	to	use	that	language,	regardless	of	the	application	domain.

Restrictiveness

I	think	most	hackers	know	what	it	means	for	a	language	to	feel
restrictive.	What's	happening	when	you	feel	that?	I	think	it's	the
same	feeling	you	get	when	the	street	you	want	to	take	is	blocked
off,	and	you	have	to	take	a	long	detour	to	get	where	you	wanted
to	go.	There	is	something	you	want	to	say,	and	the	language
won't	let	you.

What's	really	going	on	here,	I	think,	is	that	a	restrictive	language
is	one	that	isn't	succinct	enough.	The	problem	is	not	simply	that
you	can't	say	what	you	planned	to.	It's	that	the	detour	the
language	makes	you	take	is	longer.	Try	this	thought	experiment.
Suppose	there	were	some	program	you	wanted	to	write,	and	the
language	wouldn't	let	you	express	it	the	way	you	planned	to,	but
instead	forced	you	to	write	the	program	in	some	other	way	that
was	shorter.	For	me	at	least,	that	wouldn't	feel	very	restrictive.	It
would	be	like	the	street	you	wanted	to	take	being	blocked	off,
and	the	policeman	at	the	intersection	directing	you	to	a	shortcut
instead	of	a	detour.	Great!

I	think	most	(ninety	percent?)	of	the	feeling	of	restrictiveness
comes	from	being	forced	to	make	the	program	you	write	in	the
language	longer	than	one	you	have	in	your	head.	Restrictiveness
is	mostly	lack	of	succinctness.	So	when	a	language	feels

restrictive,	what	that	(mostly)	means	is	that	it	isn't	succinct
enough,	and	when	a	language	isn't	succinct,	it	will	feel
restrictive.

Readability

The	quote	I	began	with	mentions	two	other	qualities,	regularity
and	readability.	I'm	not	sure	what	regularity	is,	or	what
advantage,	if	any,	code	that	is	regular	and	readable	has	over
code	that	is	merely	readable.	But	I	think	I	know	what	is	meant	by
readability,	and	I	think	it	is	also	related	to	succinctness.

We	have	to	be	careful	here	to	distinguish	between	the	readability
of	an	individual	line	of	code	and	the	readability	of	the	whole
program.	It's	the	second	that	matters.	I	agree	that	a	line	of	Basic
is	likely	to	be	more	readable	than	a	line	of	Lisp.	But	a	program
written	in	Basic	is	is	going	to	have	more	lines	than	the	same
program	written	in	Lisp	(especially	once	you	cross	over	into
Greenspunland).	The	total	effort	of	reading	the	Basic	program
will	surely	be	greater.

total	effort	=	effort	per	line	x	number	of	lines

I'm	not	as	sure	that	readability	is	directly	proportionate	to
succinctness	as	I	am	that	power	is,	but	certainly	succinctness	is	a
factor	(in	the	mathematical	sense;	see	equation	above)	in
readability.	So	it	may	not	even	be	meaningful	to	say	that	the	goal
of	a	language	is	readability,	not	succinctness;	it	could	be	like
saying	the	goal	was	readability,	not	readability.

What	readability-per-line	does	mean,	to	the	user	encountering
the	language	for	the	first	time,	is	that	source	code	will	look
unthreatening.	So	readability-per-line	could	be	a	good	marketing
decision,	even	if	it	is	a	bad	design	decision.	It's	isomorphic	to	the
very	successful	technique	of	letting	people	pay	in	installments:
instead	of	frightening	them	with	a	high	upfront	price,	you	tell
them	the	low	monthly	payment.	Installment	plans	are	a	net	lose
for	the	buyer,	though,	as	mere	readability-per-line	probably	is	for
the	programmer.	The	buyer	is	going	to	make	a	lot	of	those	low,
low	payments;	and	the	programmer	is	going	to	read	a	lot	of	those
individually	readable	lines.

This	tradeoff	predates	programming	languages.	If	you're	used	to
reading	novels	and	newspaper	articles,	your	first	experience	of
reading	a	math	paper	can	be	dismaying.	It	could	take	half	an
hour	to	read	a	single	page.	And	yet,	I	am	pretty	sure	that	the
notation	is	not	the	problem,	even	though	it	may	feel	like	it	is.	The
math	paper	is	hard	to	read	because	the	ideas	are	hard.	If	you
expressed	the	same	ideas	in	prose	(as	mathematicians	had	to	do
before	they	evolved	succinct	notations),	they	wouldn't	be	any
easier	to	read,	because	the	paper	would	grow	to	the	size	of	a
book.

To	What	Extent?

A	number	of	people	have	rejected	the	idea	that	succinctness	=
power.	I	think	it	would	be	more	useful,	instead	of	simply	arguing
that	they	are	the	same	or	aren't,	to	ask:	to	what	extent	does
succinctness	=	power?	Because	clearly	succinctness	is	a	large
part	of	what	higher-level	languages	are	for.	If	it	is	not	all	they're
for,	then	what	else	are	they	for,	and	how	important,	relatively,	are
these	other	functions?

I'm	not	proposing	this	just	to	make	the	debate	more	civilized.	I
really	want	to	know	the	answer.	When,	if	ever,	is	a	language	too
succinct	for	its	own	good?

The	hypothesis	I	began	with	was	that,	except	in	pathological
examples,	I	thought	succinctness	could	be	considered	identical
with	power.	What	I	meant	was	that	in	any	language	anyone
would	design,	they	would	be	identical,	but	that	if	someone
wanted	to	design	a	language	explicitly	to	disprove	this
hypothesis,	they	could	probably	do	it.	I'm	not	even	sure	of	that,
actually.

Languages,	not	Programs

We	should	be	clear	that	we	are	talking	about	the	succinctness	of
languages,	not	of	individual	programs.	It	certainly	is	possible	for
individual	programs	to	be	written	too	densely.

I	wrote	about	this	in	On	Lisp.	A	complex	macro	may	have	to	save

onlisp.html

many	times	its	own	length	to	be	justified.	If	writing	some	hairy
macro	could	save	you	ten	lines	of	code	every	time	you	use	it,	and
the	macro	is	itself	ten	lines	of	code,	then	you	get	a	net	saving	in
lines	if	you	use	it	more	than	once.	But	that	could	still	be	a	bad
move,	because	macro	definitions	are	harder	to	read	than
ordinary	code.	You	might	have	to	use	the	macro	ten	or	twenty
times	before	it	yielded	a	net	improvement	in	readability.

I'm	sure	every	language	has	such	tradeoffs	(though	I	suspect	the
stakes	get	higher	as	the	language	gets	more	powerful).	Every
programmer	must	have	seen	code	that	some	clever	person	has
made	marginally	shorter	by	using	dubious	programming	tricks.

So	there	is	no	argument	about	that--	at	least,	not	from	me.
Individual	programs	can	certainly	be	too	succinct	for	their	own
good.	The	question	is,	can	a	language	be?	Can	a	language	compel
programmers	to	write	code	that's	short	(in	elements)	at	the
expense	of	overall	readability?

One	reason	it's	hard	to	imagine	a	language	being	too	succinct	is
that	if	there	were	some	excessively	compact	way	to	phrase
something,	there	would	probably	also	be	a	longer	way.	For
example,	if	you	felt	Lisp	programs	using	a	lot	of	macros	or
higher-order	functions	were	too	dense,	you	could,	if	you
preferred,	write	code	that	was	isomorphic	to	Pascal.	If	you	don't
want	to	express	factorial	in	Arc	as	a	call	to	a	higher-order
function

(rec	zero	1	*	1-)

you	can	also	write	out	a	recursive	definition:

(rfn	fact	(x)	(if	(zero	x)	1	(*	x	(fact	(1-	x)))))

Though	I	can't	off	the	top	of	my	head	think	of	any	examples,	I	am
interested	in	the	question	of	whether	a	language	could	be	too
succinct.	Are	there	languages	that	force	you	to	write	code	in	a
way	that	is	crabbed	and	incomprehensible?	If	anyone	has
examples,	I	would	be	very	interested	to	see	them.

(Reminder:	What	I'm	looking	for	are	programs	that	are	very
dense	according	to	the	metric	of	"elements"	sketched	above,	not
merely	programs	that	are	short	because	delimiters	can	be
omitted	and	everything	has	a	one-character	name.)

	

Revenge	of	the	Nerds
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

May	2002

"We	were	after	the	C++	programmers.	We	managed	to
drag	a	lot	of	them	about	halfway	to	Lisp."

-	Guy	Steele,	co-author	of	the	Java	spec

In	the	software	business	there	is	an	ongoing	struggle	between
the	pointy-headed	academics,	and	another	equally	formidable
force,	the	pointy-haired	bosses.	Everyone	knows	who	the	pointy-
haired	boss	is,	right?	I	think	most	people	in	the	technology	world
not	only	recognize	this	cartoon	character,	but	know	the	actual
person	in	their	company	that	he	is	modelled	upon.

The	pointy-haired	boss	miraculously	combines	two	qualities	that
are	common	by	themselves,	but	rarely	seen	together:	(a)	he
knows	nothing	whatsoever	about	technology,	and	(b)	he	has	very
strong	opinions	about	it.

Suppose,	for	example,	you	need	to	write	a	piece	of	software.	The
pointy-haired	boss	has	no	idea	how	this	software	has	to	work,
and	can't	tell	one	programming	language	from	another,	and	yet
he	knows	what	language	you	should	write	it	in.	Exactly.	He	thinks
you	should	write	it	in	Java.

Why	does	he	think	this?	Let's	take	a	look	inside	the	brain	of	the
pointy-haired	boss.	What	he's	thinking	is	something	like	this.	Java
is	a	standard.	I	know	it	must	be,	because	I	read	about	it	in	the
press	all	the	time.	Since	it	is	a	standard,	I	won't	get	in	trouble	for
using	it.	And	that	also	means	there	will	always	be	lots	of	Java
programmers,	so	if	the	programmers	working	for	me	now	quit,	as

http://ycombinator.com/apply.html

programmers	working	for	me	mysteriously	always	do,	I	can	easily
replace	them.

Well,	this	doesn't	sound	that	unreasonable.	But	it's	all	based	on
one	unspoken	assumption,	and	that	assumption	turns	out	to	be
false.	The	pointy-haired	boss	believes	that	all	programming
languages	are	pretty	much	equivalent.	If	that	were	true,	he
would	be	right	on	target.	If	languages	are	all	equivalent,	sure,
use	whatever	language	everyone	else	is	using.

But	all	languages	are	not	equivalent,	and	I	think	I	can	prove	this
to	you	without	even	getting	into	the	differences	between	them.	If
you	asked	the	pointy-haired	boss	in	1992	what	language	software
should	be	written	in,	he	would	have	answered	with	as	little
hesitation	as	he	does	today.	Software	should	be	written	in	C++.
But	if	languages	are	all	equivalent,	why	should	the	pointy-haired
boss's	opinion	ever	change?	In	fact,	why	should	the	developers	of
Java	have	even	bothered	to	create	a	new	language?

Presumably,	if	you	create	a	new	language,	it's	because	you	think
it's	better	in	some	way	than	what	people	already	had.	And	in	fact,
Gosling	makes	it	clear	in	the	first	Java	white	paper	that	Java	was
designed	to	fix	some	problems	with	C++.	So	there	you	have	it:
languages	are	not	all	equivalent.	If	you	follow	the	trail	through
the	pointy-haired	boss's	brain	to	Java	and	then	back	through
Java's	history	to	its	origins,	you	end	up	holding	an	idea	that
contradicts	the	assumption	you	started	with.

So,	who's	right?	James	Gosling,	or	the	pointy-haired	boss?	Not
surprisingly,	Gosling	is	right.	Some	languages	are	better,	for
certain	problems,	than	others.	And	you	know,	that	raises	some
interesting	questions.	Java	was	designed	to	be	better,	for	certain
problems,	than	C++.	What	problems?	When	is	Java	better	and
when	is	C++?	Are	there	situations	where	other	languages	are
better	than	either	of	them?

Once	you	start	considering	this	question,	you	have	opened	a	real
can	of	worms.	If	the	pointy-haired	boss	had	to	think	about	the
problem	in	its	full	complexity,	it	would	make	his	brain	explode.	As
long	as	he	considers	all	languages	equivalent,	all	he	has	to	do	is
choose	the	one	that	seems	to	have	the	most	momentum,	and

since	that	is	more	a	question	of	fashion	than	technology,	even	he
can	probably	get	the	right	answer.	But	if	languages	vary,	he
suddenly	has	to	solve	two	simultaneous	equations,	trying	to	find
an	optimal	balance	between	two	things	he	knows	nothing	about:
the	relative	suitability	of	the	twenty	or	so	leading	languages	for
the	problem	he	needs	to	solve,	and	the	odds	of	finding
programmers,	libraries,	etc.	for	each.	If	that's	what's	on	the	other
side	of	the	door,	it	is	no	surprise	that	the	pointy-haired	boss
doesn't	want	to	open	it.

The	disadvantage	of	believing	that	all	programming	languages
are	equivalent	is	that	it's	not	true.	But	the	advantage	is	that	it
makes	your	life	a	lot	simpler.	And	I	think	that's	the	main	reason
the	idea	is	so	widespread.	It	is	a	comfortable	idea.

We	know	that	Java	must	be	pretty	good,	because	it	is	the	cool,
new	programming	language.	Or	is	it?	If	you	look	at	the	world	of
programming	languages	from	a	distance,	it	looks	like	Java	is	the
latest	thing.	(From	far	enough	away,	all	you	can	see	is	the	large,
flashing	billboard	paid	for	by	Sun.)	But	if	you	look	at	this	world
up	close,	you	find	that	there	are	degrees	of	coolness.	Within	the
hacker	subculture,	there	is	another	language	called	Perl	that	is
considered	a	lot	cooler	than	Java.	Slashdot,	for	example,	is
generated	by	Perl.	I	don't	think	you	would	find	those	guys	using
Java	Server	Pages.	But	there	is	another,	newer	language,	called
Python,	whose	users	tend	to	look	down	on	Perl,	and	more	waiting
in	the	wings.

If	you	look	at	these	languages	in	order,	Java,	Perl,	Python,	you
notice	an	interesting	pattern.	At	least,	you	notice	this	pattern	if
you	are	a	Lisp	hacker.	Each	one	is	progressively	more	like	Lisp.
Python	copies	even	features	that	many	Lisp	hackers	consider	to
be	mistakes.	You	could	translate	simple	Lisp	programs	into
Python	line	for	line.	It's	2002,	and	programming	languages	have
almost	caught	up	with	1958.

Catching	Up	with	Math

What	I	mean	is	that	Lisp	was	first	discovered	by	John	McCarthy
in	1958,	and	popular	programming	languages	are	only	now
catching	up	with	the	ideas	he	developed	then.

accgen.html

Now,	how	could	that	be	true?	Isn't	computer	technology
something	that	changes	very	rapidly?	I	mean,	in	1958,	computers
were	refrigerator-sized	behemoths	with	the	processing	power	of
a	wristwatch.	How	could	any	technology	that	old	even	be
relevant,	let	alone	superior	to	the	latest	developments?

I'll	tell	you	how.	It's	because	Lisp	was	not	really	designed	to	be	a
programming	language,	at	least	not	in	the	sense	we	mean	today.
What	we	mean	by	a	programming	language	is	something	we	use
to	tell	a	computer	what	to	do.	McCarthy	did	eventually	intend	to
develop	a	programming	language	in	this	sense,	but	the	Lisp	that
we	actually	ended	up	with	was	based	on	something	separate	that
he	did	as	a	theoretical	exercise--	an	effort	to	define	a	more
convenient	alternative	to	the	Turing	Machine.	As	McCarthy	said
later,

Another	way	to	show	that	Lisp	was	neater	than
Turing	machines	was	to	write	a	universal	Lisp
function	and	show	that	it	is	briefer	and	more
comprehensible	than	the	description	of	a	universal
Turing	machine.	This	was	the	Lisp	function	eval...,
which	computes	the	value	of	a	Lisp	expression....
Writing	eval	required	inventing	a	notation
representing	Lisp	functions	as	Lisp	data,	and	such	a
notation	was	devised	for	the	purposes	of	the	paper
with	no	thought	that	it	would	be	used	to	express	Lisp
programs	in	practice.

What	happened	next	was	that,	some	time	in	late	1958,	Steve
Russell,	one	of	McCarthy's	grad	students,	looked	at	this
definition	of	eval	and	realized	that	if	he	translated	it	into	machine
language,	the	result	would	be	a	Lisp	interpreter.

This	was	a	big	surprise	at	the	time.	Here	is	what	McCarthy	said
about	it	later	in	an	interview:

Steve	Russell	said,	look,	why	don't	I	program	this
eval...,	and	I	said	to	him,	ho,	ho,	you're	confusing
theory	with	practice,	this	eval	is	intended	for
reading,	not	for	computing.	But	he	went	ahead	and

rootsoflisp.html
https://sep.turbifycdn.com/ty/cdn/paulgraham/jmc.lisp?t=1688221954&

did	it.	That	is,	he	compiled	the	eval	in	my	paper	into
[IBM]	704	machine	code,	fixing	bugs,	and	then
advertised	this	as	a	Lisp	interpreter,	which	it
certainly	was.	So	at	that	point	Lisp	had	essentially
the	form	that	it	has	today....

Suddenly,	in	a	matter	of	weeks	I	think,	McCarthy	found	his
theoretical	exercise	transformed	into	an	actual	programming
language--	and	a	more	powerful	one	than	he	had	intended.

So	the	short	explanation	of	why	this	1950s	language	is	not
obsolete	is	that	it	was	not	technology	but	math,	and	math	doesn't
get	stale.	The	right	thing	to	compare	Lisp	to	is	not	1950s
hardware,	but,	say,	the	Quicksort	algorithm,	which	was
discovered	in	1960	and	is	still	the	fastest	general-purpose	sort.

There	is	one	other	language	still	surviving	from	the	1950s,
Fortran,	and	it	represents	the	opposite	approach	to	language
design.	Lisp	was	a	piece	of	theory	that	unexpectedly	got	turned
into	a	programming	language.	Fortran	was	developed
intentionally	as	a	programming	language,	but	what	we	would
now	consider	a	very	low-level	one.

Fortran	I,	the	language	that	was	developed	in	1956,	was	a	very
different	animal	from	present-day	Fortran.	Fortran	I	was	pretty
much	assembly	language	with	math.	In	some	ways	it	was	less
powerful	than	more	recent	assembly	languages;	there	were	no
subroutines,	for	example,	only	branches.	Present-day	Fortran	is
now	arguably	closer	to	Lisp	than	to	Fortran	I.

Lisp	and	Fortran	were	the	trunks	of	two	separate	evolutionary
trees,	one	rooted	in	math	and	one	rooted	in	machine
architecture.	These	two	trees	have	been	converging	ever	since.
Lisp	started	out	powerful,	and	over	the	next	twenty	years	got
fast.	So-called	mainstream	languages	started	out	fast,	and	over
the	next	forty	years	gradually	got	more	powerful,	until	now	the
most	advanced	of	them	are	fairly	close	to	Lisp.	Close,	but	they
are	still	missing	a	few	things....

What	Made	Lisp	Different

history.html

When	it	was	first	developed,	Lisp	embodied	nine	new	ideas.
Some	of	these	we	now	take	for	granted,	others	are	only	seen	in
more	advanced	languages,	and	two	are	still	unique	to	Lisp.	The
nine	ideas	are,	in	order	of	their	adoption	by	the	mainstream,

1.	 Conditionals.	A	conditional	is	an	if-then-else	construct.	We
take	these	for	granted	now,	but	Fortran	I	didn't	have	them.
It	had	only	a	conditional	goto	closely	based	on	the
underlying	machine	instruction.

2.	 A	function	type.	In	Lisp,	functions	are	a	data	type	just	like
integers	or	strings.	They	have	a	literal	representation,	can
be	stored	in	variables,	can	be	passed	as	arguments,	and	so
on.

3.	 Recursion.	Lisp	was	the	first	programming	language	to
support	it.

4.	 Dynamic	typing.	In	Lisp,	all	variables	are	effectively
pointers.	Values	are	what	have	types,	not	variables,	and
assigning	or	binding	variables	means	copying	pointers,	not
what	they	point	to.

5.	 Garbage-collection.

6.	 Programs	composed	of	expressions.	Lisp	programs	are
trees	of	expressions,	each	of	which	returns	a	value.	This	is
in	contrast	to	Fortran	and	most	succeeding	languages,
which	distinguish	between	expressions	and	statements.

It	was	natural	to	have	this	distinction	in	Fortran	I	because
you	could	not	nest	statements.	And	so	while	you	needed
expressions	for	math	to	work,	there	was	no	point	in	making
anything	else	return	a	value,	because	there	could	not	be
anything	waiting	for	it.

This	limitation	went	away	with	the	arrival	of	block-
structured	languages,	but	by	then	it	was	too	late.	The
distinction	between	expressions	and	statements	was
entrenched.	It	spread	from	Fortran	into	Algol	and	then	to
both	their	descendants.

7.	 A	symbol	type.	Symbols	are	effectively	pointers	to	strings
stored	in	a	hash	table.	So	you	can	test	equality	by
comparing	a	pointer,	instead	of	comparing	each	character.

8.	 A	notation	for	code	using	trees	of	symbols	and	constants.

9.	 The	whole	language	there	all	the	time.	There	is	no	real
distinction	between	read-time,	compile-time,	and	runtime.
You	can	compile	or	run	code	while	reading,	read	or	run
code	while	compiling,	and	read	or	compile	code	at	runtime.

Running	code	at	read-time	lets	users	reprogram	Lisp's
syntax;	running	code	at	compile-time	is	the	basis	of
macros;	compiling	at	runtime	is	the	basis	of	Lisp's	use	as
an	extension	language	in	programs	like	Emacs;	and
reading	at	runtime	enables	programs	to	communicate
using	s-expressions,	an	idea	recently	reinvented	as	XML.

When	Lisp	first	appeared,	these	ideas	were	far	removed	from
ordinary	programming	practice,	which	was	dictated	largely	by
the	hardware	available	in	the	late	1950s.	Over	time,	the	default
language,	embodied	in	a	succession	of	popular	languages,	has
gradually	evolved	toward	Lisp.	Ideas	1-5	are	now	widespread.
Number	6	is	starting	to	appear	in	the	mainstream.	Python	has	a
form	of	7,	though	there	doesn't	seem	to	be	any	syntax	for	it.

As	for	number	8,	this	may	be	the	most	interesting	of	the	lot.
Ideas	8	and	9	only	became	part	of	Lisp	by	accident,	because
Steve	Russell	implemented	something	McCarthy	had	never
intended	to	be	implemented.	And	yet	these	ideas	turn	out	to	be
responsible	for	both	Lisp's	strange	appearance	and	its	most
distinctive	features.	Lisp	looks	strange	not	so	much	because	it
has	a	strange	syntax	as	because	it	has	no	syntax;	you	express
programs	directly	in	the	parse	trees	that	get	built	behind	the
scenes	when	other	languages	are	parsed,	and	these	trees	are
made	of	lists,	which	are	Lisp	data	structures.

Expressing	the	language	in	its	own	data	structures	turns	out	to
be	a	very	powerful	feature.	Ideas	8	and	9	together	mean	that	you
can	write	programs	that	write	programs.	That	may	sound	like	a

bizarre	idea,	but	it's	an	everyday	thing	in	Lisp.	The	most	common
way	to	do	it	is	with	something	called	a	macro.

The	term	"macro"	does	not	mean	in	Lisp	what	it	means	in	other
languages.	A	Lisp	macro	can	be	anything	from	an	abbreviation	to
a	compiler	for	a	new	language.	If	you	want	to	really	understand
Lisp,	or	just	expand	your	programming	horizons,	I	would	learn
more	about	macros.

Macros	(in	the	Lisp	sense)	are	still,	as	far	as	I	know,	unique	to
Lisp.	This	is	partly	because	in	order	to	have	macros	you	probably
have	to	make	your	language	look	as	strange	as	Lisp.	It	may	also
be	because	if	you	do	add	that	final	increment	of	power,	you	can
no	longer	claim	to	have	invented	a	new	language,	but	only	a	new
dialect	of	Lisp.

I	mention	this	mostly	as	a	joke,	but	it	is	quite	true.	If	you	define	a
language	that	has	car,	cdr,	cons,	quote,	cond,	atom,	eq,	and	a
notation	for	functions	expressed	as	lists,	then	you	can	build	all
the	rest	of	Lisp	out	of	it.	That	is	in	fact	the	defining	quality	of
Lisp:	it	was	in	order	to	make	this	so	that	McCarthy	gave	Lisp	the
shape	it	has.

Where	Languages	Matter

So	suppose	Lisp	does	represent	a	kind	of	limit	that	mainstream
languages	are	approaching	asymptotically--	does	that	mean	you
should	actually	use	it	to	write	software?	How	much	do	you	lose
by	using	a	less	powerful	language?	Isn't	it	wiser,	sometimes,	not
to	be	at	the	very	edge	of	innovation?	And	isn't	popularity	to	some
extent	its	own	justification?	Isn't	the	pointy-haired	boss	right,	for
example,	to	want	to	use	a	language	for	which	he	can	easily	hire
programmers?

There	are,	of	course,	projects	where	the	choice	of	programming
language	doesn't	matter	much.	As	a	rule,	the	more	demanding
the	application,	the	more	leverage	you	get	from	using	a	powerful
language.	But	plenty	of	projects	are	not	demanding	at	all.	Most
programming	probably	consists	of	writing	little	glue	programs,
and	for	little	glue	programs	you	can	use	any	language	that	you're
already	familiar	with	and	that	has	good	libraries	for	whatever

onlisp.html

you	need	to	do.	If	you	just	need	to	feed	data	from	one	Windows
app	to	another,	sure,	use	Visual	Basic.

You	can	write	little	glue	programs	in	Lisp	too	(I	use	it	as	a
desktop	calculator),	but	the	biggest	win	for	languages	like	Lisp	is
at	the	other	end	of	the	spectrum,	where	you	need	to	write
sophisticated	programs	to	solve	hard	problems	in	the	face	of
fierce	competition.	A	good	example	is	the	airline	fare	search
program	that	ITA	Software	licenses	to	Orbitz.	These	guys	entered
a	market	already	dominated	by	two	big,	entrenched	competitors,
Travelocity	and	Expedia,	and	seem	to	have	just	humiliated	them
technologically.

The	core	of	ITA's	application	is	a	200,000	line	Common	Lisp
program	that	searches	many	orders	of	magnitude	more
possibilities	than	their	competitors,	who	apparently	are	still
using	mainframe-era	programming	techniques.	(Though	ITA	is
also	in	a	sense	using	a	mainframe-era	programming	language.)	I
have	never	seen	any	of	ITA's	code,	but	according	to	one	of	their
top	hackers	they	use	a	lot	of	macros,	and	I	am	not	surprised	to
hear	it.

Centripetal	Forces

I'm	not	saying	there	is	no	cost	to	using	uncommon	technologies.
The	pointy-haired	boss	is	not	completely	mistaken	to	worry	about
this.	But	because	he	doesn't	understand	the	risks,	he	tends	to
magnify	them.

I	can	think	of	three	problems	that	could	arise	from	using	less
common	languages.	Your	programs	might	not	work	well	with
programs	written	in	other	languages.	You	might	have	fewer
libraries	at	your	disposal.	And	you	might	have	trouble	hiring
programmers.

How	much	of	a	problem	is	each	of	these?	The	importance	of	the
first	varies	depending	on	whether	you	have	control	over	the
whole	system.	If	you're	writing	software	that	has	to	run	on	a
remote	user's	machine	on	top	of	a	buggy,	closed	operating
system	(I	mention	no	names),	there	may	be	advantages	to	writing
your	application	in	the	same	language	as	the	OS.	But	if	you

carl.html

control	the	whole	system	and	have	the	source	code	of	all	the
parts,	as	ITA	presumably	does,	you	can	use	whatever	languages
you	want.	If	any	incompatibility	arises,	you	can	fix	it	yourself.

In	server-based	applications	you	can	get	away	with	using	the
most	advanced	technologies,	and	I	think	this	is	the	main	cause	of
what	Jonathan	Erickson	calls	the	"programming	language
renaissance."	This	is	why	we	even	hear	about	new	languages	like
Perl	and	Python.	We're	not	hearing	about	these	languages
because	people	are	using	them	to	write	Windows	apps,	but
because	people	are	using	them	on	servers.	And	as	software	shifts
off	the	desktop	and	onto	servers	(a	future	even	Microsoft	seems
resigned	to),	there	will	be	less	and	less	pressure	to	use	middle-of-
the-road	technologies.

As	for	libraries,	their	importance	also	depends	on	the	application.
For	less	demanding	problems,	the	availability	of	libraries	can
outweigh	the	intrinsic	power	of	the	language.	Where	is	the
breakeven	point?	Hard	to	say	exactly,	but	wherever	it	is,	it	is
short	of	anything	you'd	be	likely	to	call	an	application.	If	a
company	considers	itself	to	be	in	the	software	business,	and
they're	writing	an	application	that	will	be	one	of	their	products,
then	it	will	probably	involve	several	hackers	and	take	at	least	six
months	to	write.	In	a	project	of	that	size,	powerful	languages
probably	start	to	outweigh	the	convenience	of	pre-existing
libraries.

The	third	worry	of	the	pointy-haired	boss,	the	difficulty	of	hiring
programmers,	I	think	is	a	red	herring.	How	many	hackers	do	you
need	to	hire,	after	all?	Surely	by	now	we	all	know	that	software	is
best	developed	by	teams	of	less	than	ten	people.	And	you
shouldn't	have	trouble	hiring	hackers	on	that	scale	for	any
language	anyone	has	ever	heard	of.	If	you	can't	find	ten	Lisp
hackers,	then	your	company	is	probably	based	in	the	wrong	city
for	developing	software.

In	fact,	choosing	a	more	powerful	language	probably	decreases
the	size	of	the	team	you	need,	because	(a)	if	you	use	a	more
powerful	language	you	probably	won't	need	as	many	hackers,
and	(b)	hackers	who	work	in	more	advanced	languages	are	likely
to	be	smarter.

http://www.byte.com/documents/s=1821/byt20011214s0003/
road.html

I'm	not	saying	that	you	won't	get	a	lot	of	pressure	to	use	what
are	perceived	as	"standard"	technologies.	At	Viaweb	(now	Yahoo
Store),	we	raised	some	eyebrows	among	VCs	and	potential
acquirers	by	using	Lisp.	But	we	also	raised	eyebrows	by	using
generic	Intel	boxes	as	servers	instead	of	"industrial	strength"
servers	like	Suns,	for	using	a	then-obscure	open-source	Unix
variant	called	FreeBSD	instead	of	a	real	commercial	OS	like
Windows	NT,	for	ignoring	a	supposed	e-commerce	standard
called	SET	that	no	one	now	even	remembers,	and	so	on.

You	can't	let	the	suits	make	technical	decisions	for	you.	Did	it
alarm	some	potential	acquirers	that	we	used	Lisp?	Some,	slightly,
but	if	we	hadn't	used	Lisp,	we	wouldn't	have	been	able	to	write
the	software	that	made	them	want	to	buy	us.	What	seemed	like
an	anomaly	to	them	was	in	fact	cause	and	effect.

If	you	start	a	startup,	don't	design	your	product	to	please	VCs	or
potential	acquirers.	Design	your	product	to	please	the	users.	If
you	win	the	users,	everything	else	will	follow.	And	if	you	don't,	no
one	will	care	how	comfortingly	orthodox	your	technology	choices
were.

The	Cost	of	Being	Average

How	much	do	you	lose	by	using	a	less	powerful	language?	There
is	actually	some	data	out	there	about	that.

The	most	convenient	measure	of	power	is	probably	code	size.	The
point	of	high-level	languages	is	to	give	you	bigger	abstractions--
bigger	bricks,	as	it	were,	so	you	don't	need	as	many	to	build	a
wall	of	a	given	size.	So	the	more	powerful	the	language,	the
shorter	the	program	(not	simply	in	characters,	of	course,	but	in
distinct	elements).

How	does	a	more	powerful	language	enable	you	to	write	shorter
programs?	One	technique	you	can	use,	if	the	language	will	let
you,	is	something	called	bottom-up	programming.	Instead	of
simply	writing	your	application	in	the	base	language,	you	build
on	top	of	the	base	language	a	language	for	writing	programs	like
yours,	then	write	your	program	in	it.	The	combined	code	can	be

http://news.com.com/2100-1017-225723.html
power.html
progbot.html

much	shorter	than	if	you	had	written	your	whole	program	in	the
base	language--	indeed,	this	is	how	most	compression	algorithms
work.	A	bottom-up	program	should	be	easier	to	modify	as	well,
because	in	many	cases	the	language	layer	won't	have	to	change
at	all.

Code	size	is	important,	because	the	time	it	takes	to	write	a
program	depends	mostly	on	its	length.	If	your	program	would	be
three	times	as	long	in	another	language,	it	will	take	three	times
as	long	to	write--	and	you	can't	get	around	this	by	hiring	more
people,	because	beyond	a	certain	size	new	hires	are	actually	a
net	lose.	Fred	Brooks	described	this	phenomenon	in	his	famous
book	The	Mythical	Man-Month,	and	everything	I've	seen	has
tended	to	confirm	what	he	said.

So	how	much	shorter	are	your	programs	if	you	write	them	in
Lisp?	Most	of	the	numbers	I've	heard	for	Lisp	versus	C,	for
example,	have	been	around	7-10x.	But	a	recent	article	about	ITA
in	New	Architect	magazine	said	that	"one	line	of	Lisp	can	replace
20	lines	of	C,"	and	since	this	article	was	full	of	quotes	from	ITA's
president,	I	assume	they	got	this	number	from	ITA.	If	so	then	we
can	put	some	faith	in	it;	ITA's	software	includes	a	lot	of	C	and
C++	as	well	as	Lisp,	so	they	are	speaking	from	experience.

My	guess	is	that	these	multiples	aren't	even	constant.	I	think
they	increase	when	you	face	harder	problems	and	also	when	you
have	smarter	programmers.	A	really	good	hacker	can	squeeze
more	out	of	better	tools.

As	one	data	point	on	the	curve,	at	any	rate,	if	you	were	to
compete	with	ITA	and	chose	to	write	your	software	in	C,	they
would	be	able	to	develop	software	twenty	times	faster	than	you.
If	you	spent	a	year	on	a	new	feature,	they'd	be	able	to	duplicate
it	in	less	than	three	weeks.	Whereas	if	they	spent	just	three
months	developing	something	new,	it	would	be	five	years	before
you	had	it	too.

And	you	know	what?	That's	the	best-case	scenario.	When	you	talk
about	code-size	ratios,	you're	implicitly	assuming	that	you	can
actually	write	the	program	in	the	weaker	language.	But	in	fact
there	are	limits	on	what	programmers	can	do.	If	you're	trying	to

http://www.newarchitectmag.com/documents/s=2286/new1015626014044/

solve	a	hard	problem	with	a	language	that's	too	low-level,	you
reach	a	point	where	there	is	just	too	much	to	keep	in	your	head
at	once.

So	when	I	say	it	would	take	ITA's	imaginary	competitor	five	years
to	duplicate	something	ITA	could	write	in	Lisp	in	three	months,	I
mean	five	years	if	nothing	goes	wrong.	In	fact,	the	way	things
work	in	most	companies,	any	development	project	that	would
take	five	years	is	likely	never	to	get	finished	at	all.

I	admit	this	is	an	extreme	case.	ITA's	hackers	seem	to	be
unusually	smart,	and	C	is	a	pretty	low-level	language.	But	in	a
competitive	market,	even	a	differential	of	two	or	three	to	one
would	be	enough	to	guarantee	that	you'd	always	be	behind.

A	Recipe

This	is	the	kind	of	possibility	that	the	pointy-haired	boss	doesn't
even	want	to	think	about.	And	so	most	of	them	don't.	Because,
you	know,	when	it	comes	down	to	it,	the	pointy-haired	boss
doesn't	mind	if	his	company	gets	their	ass	kicked,	so	long	as	no
one	can	prove	it's	his	fault.	The	safest	plan	for	him	personally	is
to	stick	close	to	the	center	of	the	herd.

Within	large	organizations,	the	phrase	used	to	describe	this
approach	is	"industry	best	practice."	Its	purpose	is	to	shield	the
pointy-haired	boss	from	responsibility:	if	he	chooses	something
that	is	"industry	best	practice,"	and	the	company	loses,	he	can't
be	blamed.	He	didn't	choose,	the	industry	did.

I	believe	this	term	was	originally	used	to	describe	accounting
methods	and	so	on.	What	it	means,	roughly,	is	don't	do	anything
weird.	And	in	accounting	that's	probably	a	good	idea.	The	terms
"cutting-edge"	and	"accounting"	do	not	sound	good	together.	But
when	you	import	this	criterion	into	decisions	about	technology,
you	start	to	get	the	wrong	answers.

Technology	often	should	be	cutting-edge.	In	programming
languages,	as	Erann	Gat	has	pointed	out,	what	"industry	best
practice"	actually	gets	you	is	not	the	best,	but	merely	the
average.	When	a	decision	causes	you	to	develop	software	at	a

fraction	of	the	rate	of	more	aggressive	competitors,	"best
practice"	is	a	misnomer.

So	here	we	have	two	pieces	of	information	that	I	think	are	very
valuable.	In	fact,	I	know	it	from	my	own	experience.	Number	1,
languages	vary	in	power.	Number	2,	most	managers	deliberately
ignore	this.	Between	them,	these	two	facts	are	literally	a	recipe
for	making	money.	ITA	is	an	example	of	this	recipe	in	action.	If
you	want	to	win	in	a	software	business,	just	take	on	the	hardest
problem	you	can	find,	use	the	most	powerful	language	you	can
get,	and	wait	for	your	competitors'	pointy-haired	bosses	to	revert
to	the	mean.

Appendix:	Power

As	an	illustration	of	what	I	mean	about	the	relative	power	of
programming	languages,	consider	the	following	problem.	We
want	to	write	a	function	that	generates	accumulators--	a	function
that	takes	a	number	n,	and	returns	a	function	that	takes	another
number	i	and	returns	n	incremented	by	i.

(That's	incremented	by,	not	plus.	An	accumulator	has	to
accumulate.)

In	Common	Lisp	this	would	be

(defun	foo	(n)
		(lambda	(i)	(incf	n	i)))

and	in	Perl	5,

sub	foo	{		
		my	($n)	=	@_;
		sub	{$n	+=	shift}

}

which	has	more	elements	than	the	Lisp	version	because	you	have
to	extract	parameters	manually	in	Perl.

In	Smalltalk	the	code	is	slightly	longer	than	in	Lisp

foo:	n																														
		|s|																						
		s	:=	n.																										
		^[:i|	s	:=	s+i.]	

because	although	in	general	lexical	variables	work,	you	can't	do
an	assignment	to	a	parameter,	so	you	have	to	create	a	new
variable	s.

In	Javascript	the	example	is,	again,	slightly	longer,	because
Javascript	retains	the	distinction	between	statements	and
expressions,	so	you	need	explicit	return	statements	to	return
values:

function	foo(n)	{	
		return	function	(i)	{	
											return	n	+=	i	}	}

(To	be	fair,	Perl	also	retains	this	distinction,	but	deals	with	it	in
typical	Perl	fashion	by	letting	you	omit	returns.)

If	you	try	to	translate	the	Lisp/Perl/Smalltalk/Javascript	code	into
Python	you	run	into	some	limitations.	Because	Python	doesn't
fully	support	lexical	variables,	you	have	to	create	a	data
structure	to	hold	the	value	of	n.	And	although	Python	does	have	a
function	data	type,	there	is	no	literal	representation	for	one
(unless	the	body	is	only	a	single	expression)	so	you	need	to
create	a	named	function	to	return.	This	is	what	you	end	up	with:

def	foo(n):
		s	=	[n]
		def	bar(i):

				s[0]	+=	i
				return	s[0]	
		return	bar

Python	users	might	legitimately	ask	why	they	can't	just	write

def	foo(n):
		return	lambda	i:	return	n	+=	i

or	even

def	foo(n):
		lambda	i:	n	+=	i

and	my	guess	is	that	they	probably	will,	one	day.	(But	if	they
don't	want	to	wait	for	Python	to	evolve	the	rest	of	the	way	into
Lisp,	they	could	always	just...)	

In	OO	languages,	you	can,	to	a	limited	extent,	simulate	a	closure
(a	function	that	refers	to	variables	defined	in	enclosing	scopes)
by	defining	a	class	with	one	method	and	a	field	to	replace	each
variable	from	an	enclosing	scope.	This	makes	the	programmer	do
the	kind	of	code	analysis	that	would	be	done	by	the	compiler	in	a
language	with	full	support	for	lexical	scope,	and	it	won't	work	if
more	than	one	function	refers	to	the	same	variable,	but	it	is
enough	in	simple	cases	like	this.

Python	experts	seem	to	agree	that	this	is	the	preferred	way	to
solve	the	problem	in	Python,	writing	either

def	foo(n):
		class	acc:
				def	__init__(self,	s):
								self.s	=	s
				def	inc(self,	i):
								self.s	+=	i
								return	self.s
		return	acc(n).inc

or

class	foo:
		def	__init__(self,	n):
						self.n	=	n
		def	__call__(self,	i):
						self.n	+=	i
						return	self.n

I	include	these	because	I	wouldn't	want	Python	advocates	to	say	I
was	misrepresenting	the	language,	but	both	seem	to	me	more
complex	than	the	first	version.	You're	doing	the	same	thing,
setting	up	a	separate	place	to	hold	the	accumulator;	it's	just	a
field	in	an	object	instead	of	the	head	of	a	list.	And	the	use	of
these	special,	reserved	field	names,	especially	__call__,	seems	a
bit	of	a	hack.

In	the	rivalry	between	Perl	and	Python,	the	claim	of	the	Python
hackers	seems	to	be	that	that	Python	is	a	more	elegant
alternative	to	Perl,	but	what	this	case	shows	is	that	power	is	the
ultimate	elegance:	the	Perl	program	is	simpler	(has	fewer
elements),	even	if	the	syntax	is	a	bit	uglier.

How	about	other	languages?	In	the	other	languages	mentioned	in
this	talk--	Fortran,	C,	C++,	Java,	and	Visual	Basic--	it	is	not	clear
whether	you	can	actually	solve	this	problem.	Ken	Anderson	says
that	the	following	code	is	about	as	close	as	you	can	get	in	Java:

public	interface	Inttoint	{
		public	int	call(int	i);
}

public	static	Inttoint	foo(final	int	n)	{
		return	new	Inttoint()	{
				int	s	=	n;
				public	int	call(int	i)	{
				s	=	s	+	i;
				return	s;

				}};
}

This	falls	short	of	the	spec	because	it	only	works	for	integers.
After	many	email	exchanges	with	Java	hackers,	I	would	say	that
writing	a	properly	polymorphic	version	that	behaves	like	the
preceding	examples	is	somewhere	between	damned	awkward
and	impossible.	If	anyone	wants	to	write	one	I'd	be	very	curious
to	see	it,	but	I	personally	have	timed	out.

It's	not	literally	true	that	you	can't	solve	this	problem	in	other
languages,	of	course.	The	fact	that	all	these	languages	are
Turing-equivalent	means	that,	strictly	speaking,	you	can	write
any	program	in	any	of	them.	So	how	would	you	do	it?	In	the	limit
case,	by	writing	a	Lisp	interpreter	in	the	less	powerful	language.

That	sounds	like	a	joke,	but	it	happens	so	often	to	varying
degrees	in	large	programming	projects	that	there	is	a	name	for
the	phenomenon,	Greenspun's	Tenth	Rule:

Any	sufficiently	complicated	C	or	Fortran	program
contains	an	ad	hoc	informally-specified	bug-ridden
slow	implementation	of	half	of	Common	Lisp.

If	you	try	to	solve	a	hard	problem,	the	question	is	not	whether
you	will	use	a	powerful	enough	language,	but	whether	you	will
(a)	use	a	powerful	language,	(b)	write	a	de	facto	interpreter	for
one,	or	(c)	yourself	become	a	human	compiler	for	one.	We	see
this	already	begining	to	happen	in	the	Python	example,	where	we
are	in	effect	simulating	the	code	that	a	compiler	would	generate
to	implement	a	lexical	variable.

This	practice	is	not	only	common,	but	institutionalized.	For
example,	in	the	OO	world	you	hear	a	good	deal	about	"patterns".
I	wonder	if	these	patterns	are	not	sometimes	evidence	of	case
(c),	the	human	compiler,	at	work.	When	I	see	patterns	in	my
programs,	I	consider	it	a	sign	of	trouble.	The	shape	of	a	program
should	reflect	only	the	problem	it	needs	to	solve.	Any	other
regularity	in	the	code	is	a	sign,	to	me	at	least,	that	I'm	using
abstractions	that	aren't	powerful	enough--	often	that	I'm
generating	by	hand	the	expansions	of	some	macro	that	I	need	to

write.

Notes

The	IBM	704	CPU	was	about	the	size	of	a	refrigerator,	but
a	lot	heavier.	The	CPU	weighed	3150	pounds,	and	the	4K	of
RAM	was	in	a	separate	box	weighing	another	4000	pounds.
The	Sub-Zero	690,	one	of	the	largest	household
refrigerators,	weighs	656	pounds.

Steve	Russell	also	wrote	the	first	(digital)	computer	game,
Spacewar,	in	1962.

If	you	want	to	trick	a	pointy-haired	boss	into	letting	you
write	software	in	Lisp,	you	could	try	telling	him	it's	XML.

Here	is	the	accumulator	generator	in	other	Lisp	dialects:

Scheme:	(define	(foo	n)	
										(lambda	(i)	(set!	n	(+	n	i))	n))
Goo:				(df	foo	(n)	(op	incf	n	_)))
Arc:				(def	foo	(n)	[++	n	_])

Erann	Gat's	sad	tale	about	"industry	best	practice"	at	JPL
inspired	me	to	address	this	generally	misapplied	phrase.

Peter	Norvig	found	that	16	of	the	23	patterns	in	Design
Patterns	were	"invisible	or	simpler"	in	Lisp.

Thanks	to	the	many	people	who	answered	my	questions
about	various	languages	and/or	read	drafts	of	this,
including	Ken	Anderson,	Trevor	Blackwell,	Erann	Gat,	Dan
Giffin,	Sarah	Harlin,	Jeremy	Hylton,	Robert	Morris,	Peter
Norvig,	Guy	Steele,	and	Anton	van	Straaten.	They	bear	no
blame	for	any	opinions	expressed.

http://www.norvig.com/design-patterns/

Related:

Many	people	have	responded	to	this	talk,	so	I	have	set	up	an
additional	page	to	deal	with	the	issues	they	have	raised:	Re:
Revenge	of	the	Nerds.

It	also	set	off	an	extensive	and	often	useful	discussion	on	the	LL1
mailing	list.	See	particularly	the	mail	by	Anton	van	Straaten	on
semantic	compression.

Some	of	the	mail	on	LL1	led	me	to	try	to	go	deeper	into	the
subject	of	language	power	in	Succinctness	is	Power.

A	larger	set	of	canonical	implementations	of	the	accumulator
generator	benchmark	are	collected	together	on	their	own	page.

Japanese	Translation,	Spanish	Translation,	Chinese	Translation

icadmore.html
http://www.ai.mit.edu/~gregs/ll1-discuss-archive-html/threads.html
power.html
accgen.html
http://www.shiro.dreamhost.com/scheme/trans/icad-j.html
http://kapcoweb.com/p/docs/translations/revenge_of_the_nerds/revenge_of_the_nerds-es.html
http://flyingapplet.spaces.live.com/blog/cns!F682AFBD82F7E261!375.entry

	

A	Plan	for	Spam
	Like	to	build	things?	Try	Hacker	News.	

August	2002

(This	article	describes	the	spam-filtering	techniques	used	in	the
spamproof	web-based	mail	reader	we	built	to	exercise	Arc.	An
improved	algorithm	is	described	in	Better	Bayesian	Filtering.)

I	think	it's	possible	to	stop	spam,	and	that	content-based	filters
are	the	way	to	do	it.	The	Achilles	heel	of	the	spammers	is	their
message.	They	can	circumvent	any	other	barrier	you	set	up.	They
have	so	far,	at	least.	But	they	have	to	deliver	their	message,
whatever	it	is.	If	we	can	write	software	that	recognizes	their
messages,	there	is	no	way	they	can	get	around	that.

_	_	_

To	the	recipient,	spam	is	easily	recognizable.	If	you	hired
someone	to	read	your	mail	and	discard	the	spam,	they	would
have	little	trouble	doing	it.	How	much	do	we	have	to	do,	short	of
AI,	to	automate	this	process?

I	think	we	will	be	able	to	solve	the	problem	with	fairly	simple
algorithms.	In	fact,	I've	found	that	you	can	filter	present-day
spam	acceptably	well	using	nothing	more	than	a	Bayesian
combination	of	the	spam	probabilities	of	individual	words.	Using
a	slightly	tweaked	(as	described	below)	Bayesian	filter,	we	now
miss	less	than	5	per	1000	spams,	with	0	false	positives.

The	statistical	approach	is	not	usually	the	first	one	people	try
when	they	write	spam	filters.	Most	hackers'	first	instinct	is	to	try
to	write	software	that	recognizes	individual	properties	of	spam.
You	look	at	spams	and	you	think,	the	gall	of	these	guys	to	try

http://news.ycombinator.com/
arc.html
better.html

sending	me	mail	that	begins	"Dear	Friend"	or	has	a	subject	line
that's	all	uppercase	and	ends	in	eight	exclamation	points.	I	can
filter	out	that	stuff	with	about	one	line	of	code.

And	so	you	do,	and	in	the	beginning	it	works.	A	few	simple	rules
will	take	a	big	bite	out	of	your	incoming	spam.	Merely	looking	for
the	word	"click"	will	catch	79.7%	of	the	emails	in	my	spam
corpus,	with	only	1.2%	false	positives.

I	spent	about	six	months	writing	software	that	looked	for
individual	spam	features	before	I	tried	the	statistical	approach.
What	I	found	was	that	recognizing	that	last	few	percent	of	spams
got	very	hard,	and	that	as	I	made	the	filters	stricter	I	got	more
false	positives.

False	positives	are	innocent	emails	that	get	mistakenly	identified
as	spams.	For	most	users,	missing	legitimate	email	is	an	order	of
magnitude	worse	than	receiving	spam,	so	a	filter	that	yields	false
positives	is	like	an	acne	cure	that	carries	a	risk	of	death	to	the
patient.

The	more	spam	a	user	gets,	the	less	likely	he'll	be	to	notice	one
innocent	mail	sitting	in	his	spam	folder.	And	strangely	enough,
the	better	your	spam	filters	get,	the	more	dangerous	false
positives	become,	because	when	the	filters	are	really	good,	users
will	be	more	likely	to	ignore	everything	they	catch.

I	don't	know	why	I	avoided	trying	the	statistical	approach	for	so
long.	I	think	it	was	because	I	got	addicted	to	trying	to	identify
spam	features	myself,	as	if	I	were	playing	some	kind	of
competitive	game	with	the	spammers.	(Nonhackers	don't	often
realize	this,	but	most	hackers	are	very	competitive.)	When	I	did
try	statistical	analysis,	I	found	immediately	that	it	was	much
cleverer	than	I	had	been.	It	discovered,	of	course,	that	terms	like
"virtumundo"	and	"teens"	were	good	indicators	of	spam.	But	it
also	discovered	that	"per"	and	"FL"	and	"ff0000"	are	good
indicators	of	spam.	In	fact,	"ff0000"	(html	for	bright	red)	turns
out	to	be	as	good	an	indicator	of	spam	as	any	pornographic	term.

_	_	_

Here's	a	sketch	of	how	I	do	statistical	filtering.	I	start	with	one
corpus	of	spam	and	one	of	nonspam	mail.	At	the	moment	each
one	has	about	4000	messages	in	it.	I	scan	the	entire	text,
including	headers	and	embedded	html	and	javascript,	of	each
message	in	each	corpus.	I	currently	consider	alphanumeric
characters,	dashes,	apostrophes,	and	dollar	signs	to	be	part	of
tokens,	and	everything	else	to	be	a	token	separator.	(There	is
probably	room	for	improvement	here.)	I	ignore	tokens	that	are	all
digits,	and	I	also	ignore	html	comments,	not	even	considering
them	as	token	separators.

I	count	the	number	of	times	each	token	(ignoring	case,	currently)
occurs	in	each	corpus.	At	this	stage	I	end	up	with	two	large	hash
tables,	one	for	each	corpus,	mapping	tokens	to	number	of
occurrences.

Next	I	create	a	third	hash	table,	this	time	mapping	each	token	to
the	probability	that	an	email	containing	it	is	a	spam,	which	I
calculate	as	follows	[1]:

(let	((g	(*	2	(or	(gethash	word	good)	0)))
						(b	(or	(gethash	word	bad)	0)))
			(unless	(<	(+	g	b)	5)
					(max	.01
										(min	.99	(float	(/	(min	1	(/	b	nbad))
																													(+	(min	1	(/	g	ngood))			
																																(min	1	(/	b	nbad)))))))))

where	word	is	the	token	whose	probability	we're	calculating,
good	and	bad	are	the	hash	tables	I	created	in	the	first	step,	and
ngood	and	nbad	are	the	number	of	nonspam	and	spam	messages
respectively.

I	explained	this	as	code	to	show	a	couple	of	important	details.	I
want	to	bias	the	probabilities	slightly	to	avoid	false	positives,	and
by	trial	and	error	I've	found	that	a	good	way	to	do	it	is	to	double
all	the	numbers	in	good.	This	helps	to	distinguish	between	words
that	occasionally	do	occur	in	legitimate	email	and	words	that
almost	never	do.	I	only	consider	words	that	occur	more	than	five

times	in	total	(actually,	because	of	the	doubling,	occurring	three
times	in	nonspam	mail	would	be	enough).	And	then	there	is	the
question	of	what	probability	to	assign	to	words	that	occur	in	one
corpus	but	not	the	other.	Again	by	trial	and	error	I	chose	.01	and
.99.	There	may	be	room	for	tuning	here,	but	as	the	corpus	grows
such	tuning	will	happen	automatically	anyway.

The	especially	observant	will	notice	that	while	I	consider	each
corpus	to	be	a	single	long	stream	of	text	for	purposes	of	counting
occurrences,	I	use	the	number	of	emails	in	each,	rather	than
their	combined	length,	as	the	divisor	in	calculating	spam
probabilities.	This	adds	another	slight	bias	to	protect	against
false	positives.

When	new	mail	arrives,	it	is	scanned	into	tokens,	and	the	most
interesting	fifteen	tokens,	where	interesting	is	measured	by	how
far	their	spam	probability	is	from	a	neutral	.5,	are	used	to
calculate	the	probability	that	the	mail	is	spam.	If	probs	is	a	list	of
the	fifteen	individual	probabilities,	you	calculate	the	combined
probability	thus:

(let	((prod	(apply	#'*	probs)))
		(/	prod	(+	prod	(apply	#'*	(mapcar	#'(lambda	(x)	
																																									(-	1	x))
																																					probs)))))

One	question	that	arises	in	practice	is	what	probability	to	assign
to	a	word	you've	never	seen,	i.e.	one	that	doesn't	occur	in	the
hash	table	of	word	probabilities.	I've	found,	again	by	trial	and
error,	that	.4	is	a	good	number	to	use.	If	you've	never	seen	a
word	before,	it	is	probably	fairly	innocent;	spam	words	tend	to	be
all	too	familiar.

There	are	examples	of	this	algorithm	being	applied	to	actual
emails	in	an	appendix	at	the	end.

I	treat	mail	as	spam	if	the	algorithm	above	gives	it	a	probability
of	more	than	.9	of	being	spam.	But	in	practice	it	would	not
matter	much	where	I	put	this	threshold,	because	few
probabilities	end	up	in	the	middle	of	the	range.

naivebayes.html

_	_	_

One	great	advantage	of	the	statistical	approach	is	that	you	don't
have	to	read	so	many	spams.	Over	the	past	six	months,	I've	read
literally	thousands	of	spams,	and	it	is	really	kind	of	demoralizing.
Norbert	Wiener	said	if	you	compete	with	slaves	you	become	a
slave,	and	there	is	something	similarly	degrading	about
competing	with	spammers.	To	recognize	individual	spam	features
you	have	to	try	to	get	into	the	mind	of	the	spammer,	and	frankly	I
want	to	spend	as	little	time	inside	the	minds	of	spammers	as
possible.

But	the	real	advantage	of	the	Bayesian	approach,	of	course,	is
that	you	know	what	you're	measuring.	Feature-recognizing	filters
like	SpamAssassin	assign	a	spam	"score"	to	email.	The	Bayesian
approach	assigns	an	actual	probability.	The	problem	with	a
"score"	is	that	no	one	knows	what	it	means.	The	user	doesn't
know	what	it	means,	but	worse	still,	neither	does	the	developer
of	the	filter.	How	many	points	should	an	email	get	for	having	the
word	"sex"	in	it?	A	probability	can	of	course	be	mistaken,	but
there	is	little	ambiguity	about	what	it	means,	or	how	evidence
should	be	combined	to	calculate	it.	Based	on	my	corpus,	"sex"
indicates	a	.97	probability	of	the	containing	email	being	a	spam,
whereas	"sexy"	indicates	.99	probability.	And	Bayes'	Rule,	equally
unambiguous,	says	that	an	email	containing	both	words	would,	in
the	(unlikely)	absence	of	any	other	evidence,	have	a	99.97%
chance	of	being	a	spam.

Because	it	is	measuring	probabilities,	the	Bayesian	approach
considers	all	the	evidence	in	the	email,	both	good	and	bad.	Words
that	occur	disproportionately	rarely	in	spam	(like	"though"	or
"tonight"	or	"apparently")	contribute	as	much	to	decreasing	the
probability	as	bad	words	like	"unsubscribe"	and	"opt-in"	do	to
increasing	it.	So	an	otherwise	innocent	email	that	happens	to
include	the	word	"sex"	is	not	going	to	get	tagged	as	spam.

Ideally,	of	course,	the	probabilities	should	be	calculated
individually	for	each	user.	I	get	a	lot	of	email	containing	the	word
"Lisp",	and	(so	far)	no	spam	that	does.	So	a	word	like	that	is

effectively	a	kind	of	password	for	sending	mail	to	me.	In	my
earlier	spam-filtering	software,	the	user	could	set	up	a	list	of
such	words	and	mail	containing	them	would	automatically	get
past	the	filters.	On	my	list	I	put	words	like	"Lisp"	and	also	my
zipcode,	so	that	(otherwise	rather	spammy-sounding)	receipts
from	online	orders	would	get	through.	I	thought	I	was	being	very
clever,	but	I	found	that	the	Bayesian	filter	did	the	same	thing	for
me,	and	moreover	discovered	of	a	lot	of	words	I	hadn't	thought
of.

When	I	said	at	the	start	that	our	filters	let	through	less	than	5
spams	per	1000	with	0	false	positives,	I'm	talking	about	filtering
my	mail	based	on	a	corpus	of	my	mail.	But	these	numbers	are	not
misleading,	because	that	is	the	approach	I'm	advocating:	filter
each	user's	mail	based	on	the	spam	and	nonspam	mail	he
receives.	Essentially,	each	user	should	have	two	delete	buttons,
ordinary	delete	and	delete-as-spam.	Anything	deleted	as	spam
goes	into	the	spam	corpus,	and	everything	else	goes	into	the
nonspam	corpus.

You	could	start	users	with	a	seed	filter,	but	ultimately	each	user
should	have	his	own	per-word	probabilities	based	on	the	actual
mail	he	receives.	This	(a)	makes	the	filters	more	effective,	(b)	lets
each	user	decide	their	own	precise	definition	of	spam,	and	(c)
perhaps	best	of	all	makes	it	hard	for	spammers	to	tune	mails	to
get	through	the	filters.	If	a	lot	of	the	brain	of	the	filter	is	in	the
individual	databases,	then	merely	tuning	spams	to	get	through
the	seed	filters	won't	guarantee	anything	about	how	well	they'll
get	through	individual	users'	varying	and	much	more	trained
filters.

Content-based	spam	filtering	is	often	combined	with	a	whitelist,
a	list	of	senders	whose	mail	can	be	accepted	with	no	filtering.
One	easy	way	to	build	such	a	whitelist	is	to	keep	a	list	of	every
address	the	user	has	ever	sent	mail	to.	If	a	mail	reader	has	a
delete-as-spam	button	then	you	could	also	add	the	from	address
of	every	email	the	user	has	deleted	as	ordinary	trash.

I'm	an	advocate	of	whitelists,	but	more	as	a	way	to	save
computation	than	as	a	way	to	improve	filtering.	I	used	to	think
that	whitelists	would	make	filtering	easier,	because	you'd	only

have	to	filter	email	from	people	you'd	never	heard	from,	and
someone	sending	you	mail	for	the	first	time	is	constrained	by
convention	in	what	they	can	say	to	you.	Someone	you	already
know	might	send	you	an	email	talking	about	sex,	but	someone
sending	you	mail	for	the	first	time	would	not	be	likely	to.	The
problem	is,	people	can	have	more	than	one	email	address,	so	a
new	from-address	doesn't	guarantee	that	the	sender	is	writing	to
you	for	the	first	time.	It	is	not	unusual	for	an	old	friend
(especially	if	he	is	a	hacker)	to	suddenly	send	you	an	email	with	a
new	from-address,	so	you	can't	risk	false	positives	by	filtering
mail	from	unknown	addresses	especially	stringently.

In	a	sense,	though,	my	filters	do	themselves	embody	a	kind	of
whitelist	(and	blacklist)	because	they	are	based	on	entire
messages,	including	the	headers.	So	to	that	extent	they	"know"
the	email	addresses	of	trusted	senders	and	even	the	routes	by
which	mail	gets	from	them	to	me.	And	they	know	the	same	about
spam,	including	the	server	names,	mailer	versions,	and	protocols.

_	_	_

If	I	thought	that	I	could	keep	up	current	rates	of	spam	filtering,	I
would	consider	this	problem	solved.	But	it	doesn't	mean	much	to
be	able	to	filter	out	most	present-day	spam,	because	spam
evolves.	Indeed,	most	antispam	techniques	so	far	have	been	like
pesticides	that	do	nothing	more	than	create	a	new,	resistant
strain	of	bugs.

I'm	more	hopeful	about	Bayesian	filters,	because	they	evolve	with
the	spam.	So	as	spammers	start	using	"c0ck"	instead	of	"cock"	to
evade	simple-minded	spam	filters	based	on	individual	words,
Bayesian	filters	automatically	notice.	Indeed,	"c0ck"	is	far	more
damning	evidence	than	"cock",	and	Bayesian	filters	know
precisely	how	much	more.

Still,	anyone	who	proposes	a	plan	for	spam	filtering	has	to	be
able	to	answer	the	question:	if	the	spammers	knew	exactly	what
you	were	doing,	how	well	could	they	get	past	you?	For	example,	I
think	that	if	checksum-based	spam	filtering	becomes	a	serious
obstacle,	the	spammers	will	just	switch	to	mad-lib	techniques	for

falsepositives.html

generating	message	bodies.

To	beat	Bayesian	filters,	it	would	not	be	enough	for	spammers	to
make	their	emails	unique	or	to	stop	using	individual	naughty
words.	They'd	have	to	make	their	mails	indistinguishable	from
your	ordinary	mail.	And	this	I	think	would	severely	constrain
them.	Spam	is	mostly	sales	pitches,	so	unless	your	regular	mail	is
all	sales	pitches,	spams	will	inevitably	have	a	different	character.
And	the	spammers	would	also,	of	course,	have	to	change	(and
keep	changing)	their	whole	infrastructure,	because	otherwise	the
headers	would	look	as	bad	to	the	Bayesian	filters	as	ever,	no
matter	what	they	did	to	the	message	body.	I	don't	know	enough
about	the	infrastructure	that	spammers	use	to	know	how	hard	it
would	be	to	make	the	headers	look	innocent,	but	my	guess	is	that
it	would	be	even	harder	than	making	the	message	look	innocent.

Assuming	they	could	solve	the	problem	of	the	headers,	the	spam
of	the	future	will	probably	look	something	like	this:

Hey	there.		Thought	you	should	check	out	the	following:
http://www.27meg.com/foo

because	that	is	about	as	much	sales	pitch	as	content-based
filtering	will	leave	the	spammer	room	to	make.	(Indeed,	it	will	be
hard	even	to	get	this	past	filters,	because	if	everything	else	in	the
email	is	neutral,	the	spam	probability	will	hinge	on	the	url,	and	it
will	take	some	effort	to	make	that	look	neutral.)

Spammers	range	from	businesses	running	so-called	opt-in	lists
who	don't	even	try	to	conceal	their	identities,	to	guys	who	hijack
mail	servers	to	send	out	spams	promoting	porn	sites.	If	we	use
filtering	to	whittle	their	options	down	to	mails	like	the	one	above,
that	should	pretty	much	put	the	spammers	on	the	"legitimate"
end	of	the	spectrum	out	of	business;	they	feel	obliged	by	various
state	laws	to	include	boilerplate	about	why	their	spam	is	not
spam,	and	how	to	cancel	your	"subscription,"	and	that	kind	of
text	is	easy	to	recognize.

(I	used	to	think	it	was	naive	to	believe	that	stricter	laws	would
decrease	spam.	Now	I	think	that	while	stricter	laws	may	not

decrease	the	amount	of	spam	that	spammers	send,	they	can
certainly	help	filters	to	decrease	the	amount	of	spam	that
recipients	actually	see.)

All	along	the	spectrum,	if	you	restrict	the	sales	pitches	spammers
can	make,	you	will	inevitably	tend	to	put	them	out	of	business.
That	word	business	is	an	important	one	to	remember.	The
spammers	are	businessmen.	They	send	spam	because	it	works.	It
works	because	although	the	response	rate	is	abominably	low	(at
best	15	per	million,	vs	3000	per	million	for	a	catalog	mailing),	the
cost,	to	them,	is	practically	nothing.	The	cost	is	enormous	for	the
recipients,	about	5	man-weeks	for	each	million	recipients	who
spend	a	second	to	delete	the	spam,	but	the	spammer	doesn't
have	to	pay	that.

Sending	spam	does	cost	the	spammer	something,	though.	[2]	So
the	lower	we	can	get	the	response	rate--	whether	by	filtering,	or
by	using	filters	to	force	spammers	to	dilute	their	pitches--	the
fewer	businesses	will	find	it	worth	their	while	to	send	spam.

The	reason	the	spammers	use	the	kinds	of	sales	pitches	that	they
do	is	to	increase	response	rates.	This	is	possibly	even	more
disgusting	than	getting	inside	the	mind	of	a	spammer,	but	let's
take	a	quick	look	inside	the	mind	of	someone	who	responds	to	a
spam.	This	person	is	either	astonishingly	credulous	or	deeply	in
denial	about	their	sexual	interests.	In	either	case,	repulsive	or
idiotic	as	the	spam	seems	to	us,	it	is	exciting	to	them.	The
spammers	wouldn't	say	these	things	if	they	didn't	sound	exciting.
And	"thought	you	should	check	out	the	following"	is	just	not
going	to	have	nearly	the	pull	with	the	spam	recipient	as	the	kinds
of	things	that	spammers	say	now.	Result:	if	it	can't	contain
exciting	sales	pitches,	spam	becomes	less	effective	as	a
marketing	vehicle,	and	fewer	businesses	want	to	use	it.

That	is	the	big	win	in	the	end.	I	started	writing	spam	filtering
software	because	I	didn't	want	have	to	look	at	the	stuff	anymore.
But	if	we	get	good	enough	at	filtering	out	spam,	it	will	stop
working,	and	the	spammers	will	actually	stop	sending	it.

_	_	_

http://www.milliondollaremails.com/

Of	all	the	approaches	to	fighting	spam,	from	software	to	laws,	I
believe	Bayesian	filtering	will	be	the	single	most	effective.	But	I
also	think	that	the	more	different	kinds	of	antispam	efforts	we
undertake,	the	better,	because	any	measure	that	constrains
spammers	will	tend	to	make	filtering	easier.	And	even	within	the
world	of	content-based	filtering,	I	think	it	will	be	a	good	thing	if
there	are	many	different	kinds	of	software	being	used
simultaneously.	The	more	different	filters	there	are,	the	harder	it
will	be	for	spammers	to	tune	spams	to	get	through	them.

Appendix:	Examples	of	Filtering

Here	is	an	example	of	a	spam	that	arrived	while	I	was	writing
this	article.	The	fifteen	most	interesting	words	in	this	spam	are:

qvp0045
indira
mx-05
intimail
$7500
freeyankeedom
cdo
bluefoxmedia
jpg
unsecured
platinum
3d0
qves
7c5
7c266675

The	words	are	a	mix	of	stuff	from	the	headers	and	from	the
message	body,	which	is	typical	of	spam.	Also	typical	of	spam	is
that	every	one	of	these	words	has	a	spam	probability,	in	my
database,	of	.99.	In	fact	there	are	more	than	fifteen	words	with
probabilities	of	.99,	and	these	are	just	the	first	fifteen	seen.

https://sep.turbifycdn.com/ty/cdn/paulgraham/spam1.txt?t=1688221954&

Unfortunately	that	makes	this	email	a	boring	example	of	the	use
of	Bayes'	Rule.	To	see	an	interesting	variety	of	probabilities	we
have	to	look	at	this	actually	quite	atypical	spam.

The	fifteen	most	interesting	words	in	this	spam,	with	their
probabilities,	are:

madam											0.99
promotion							0.99
republic								0.99
shortest								0.047225013
mandatory							0.047225013
standardization	0.07347802
sorry											0.08221981
supported							0.09019077
people's								0.09019077
enter											0.9075001
quality									0.8921298
organization				0.12454646
investment						0.8568143
very												0.14758544
valuable								0.82347786	

This	time	the	evidence	is	a	mix	of	good	and	bad.	A	word	like
"shortest"	is	almost	as	much	evidence	for	innocence	as	a	word
like	"madam"	or	"promotion"	is	for	guilt.	But	still	the	case	for
guilt	is	stronger.	If	you	combine	these	numbers	according	to
Bayes'	Rule,	the	resulting	probability	is	.9027.

"Madam"	is	obviously	from	spams	beginning	"Dear	Sir	or
Madam."	They're	not	very	common,	but	the	word	"madam"	never
occurs	in	my	legitimate	email,	and	it's	all	about	the	ratio.

"Republic"	scores	high	because	it	often	shows	up	in	Nigerian
scam	emails,	and	also	occurs	once	or	twice	in	spams	referring	to
Korea	and	South	Africa.	You	might	say	that	it's	an	accident	that	it
thus	helps	identify	this	spam.	But	I've	found	when	examining
spam	probabilities	that	there	are	a	lot	of	these	accidents,	and
they	have	an	uncanny	tendency	to	push	things	in	the	right
direction	rather	than	the	wrong	one.	In	this	case,	it	is	not	entirely

https://sep.turbifycdn.com/ty/cdn/paulgraham/spam2.txt?t=1688221954&

a	coincidence	that	the	word	"Republic"	occurs	in	Nigerian	scam
emails	and	this	spam.	There	is	a	whole	class	of	dubious	business
propositions	involving	less	developed	countries,	and	these	in	turn
are	more	likely	to	have	names	that	specify	explicitly	(because
they	aren't)	that	they	are	republics.[3]

On	the	other	hand,	"enter"	is	a	genuine	miss.	It	occurs	mostly	in
unsubscribe	instructions,	but	here	is	used	in	a	completely
innocent	way.	Fortunately	the	statistical	approach	is	fairly	robust,
and	can	tolerate	quite	a	lot	of	misses	before	the	results	start	to
be	thrown	off.

For	comparison,	here	is	an	example	of	that	rare	bird,	a	spam	that
gets	through	the	filters.	Why?	Because	by	sheer	chance	it
happens	to	be	loaded	with	words	that	occur	in	my	actual	email:

perl							0.01
python					0.01
tcl								0.01
scripting		0.01
morris					0.01
graham					0.01491078
guarantee		0.9762507
cgi								0.9734398
paul							0.027040077
quite						0.030676773
pop3							0.042199217
various				0.06080265
prices					0.9359873
managed				0.06451222
difficult		0.071706355

There	are	a	couple	pieces	of	good	news	here.	First,	this	mail
probably	wouldn't	get	through	the	filters	of	someone	who	didn't
happen	to	specialize	in	programming	languages	and	have	a	good
friend	called	Morris.	For	the	average	user,	all	the	top	five	words
here	would	be	neutral	and	would	not	contribute	to	the	spam
probability.

Second,	I	think	filtering	based	on	word	pairs	(see	below)	might

https://sep.turbifycdn.com/ty/cdn/paulgraham/hostexspam.txt?t=1688221954&

well	catch	this	one:	"cost	effective",	"setup	fee",	"money	back"	--
pretty	incriminating	stuff.	And	of	course	if	they	continued	to
spam	me	(or	a	network	I	was	part	of),	"Hostex"	itself	would	be
recognized	as	a	spam	term.

Finally,	here	is	an	innocent	email.	Its	fifteen	most	interesting
words	are	as	follows:

continuation		0.01
describe						0.01
continuations	0.01
example							0.033600237
programming			0.05214485	
i'm											0.055427782
examples						0.07972858	
color									0.9189189		
localhost					0.09883721
hi												0.116539136
california				0.84421706
same										0.15981844
spot										0.1654587
us-ascii						0.16804294
what										0.19212411

Most	of	the	words	here	indicate	the	mail	is	an	innocent	one.
There	are	two	bad	smelling	words,	"color"	(spammers	love
colored	fonts)	and	"California"	(which	occurs	in	testimonials	and
also	in	menus	in	forms),	but	they	are	not	enough	to	outweigh
obviously	innocent	words	like	"continuation"	and	"example".

It's	interesting	that	"describe"	rates	as	so	thoroughly	innocent.	It
hasn't	occurred	in	a	single	one	of	my	4000	spams.	The	data	turns
out	to	be	full	of	such	surprises.	One	of	the	things	you	learn	when
you	analyze	spam	texts	is	how	narrow	a	subset	of	the	language
spammers	operate	in.	It's	that	fact,	together	with	the	equally
characteristic	vocabulary	of	any	individual	user's	mail,	that
makes	Bayesian	filtering	a	good	bet.

Appendix:	More	Ideas

https://sep.turbifycdn.com/ty/cdn/paulgraham/legit.txt?t=1688221954&

One	idea	that	I	haven't	tried	yet	is	to	filter	based	on	word	pairs,
or	even	triples,	rather	than	individual	words.	This	should	yield	a
much	sharper	estimate	of	the	probability.	For	example,	in	my
current	database,	the	word	"offers"	has	a	probability	of	.96.	If
you	based	the	probabilities	on	word	pairs,	you'd	end	up	with
"special	offers"	and	"valuable	offers"	having	probabilities	of	.99
and,	say,	"approach	offers"	(as	in	"this	approach	offers")	having	a
probability	of	.1	or	less.

The	reason	I	haven't	done	this	is	that	filtering	based	on	individual
words	already	works	so	well.	But	it	does	mean	that	there	is	room
to	tighten	the	filters	if	spam	gets	harder	to	detect.	(Curiously,	a
filter	based	on	word	pairs	would	be	in	effect	a	Markov-chaining
text	generator	running	in	reverse.)

Specific	spam	features	(e.g.	not	seeing	the	recipient's	address	in
the	to:	field)	do	of	course	have	value	in	recognizing	spam.	They
can	be	considered	in	this	algorithm	by	treating	them	as	virtual
words.	I'll	probably	do	this	in	future	versions,	at	least	for	a
handful	of	the	most	egregious	spam	indicators.	Feature-
recognizing	spam	filters	are	right	in	many	details;	what	they	lack
is	an	overall	discipline	for	combining	evidence.

Recognizing	nonspam	features	may	be	more	important	than
recognizing	spam	features.	False	positives	are	such	a	worry	that
they	demand	extraordinary	measures.	I	will	probably	in	future
versions	add	a	second	level	of	testing	designed	specifically	to
avoid	false	positives.	If	a	mail	triggers	this	second	level	of	filters
it	will	be	accepted	even	if	its	spam	probability	is	above	the
threshold.

I	don't	expect	this	second	level	of	filtering	to	be	Bayesian.	It	will
inevitably	be	not	only	ad	hoc,	but	based	on	guesses,	because	the
number	of	false	positives	will	not	tend	to	be	large	enough	to
notice	patterns.	(It	is	just	as	well,	anyway,	if	a	backup	system
doesn't	rely	on	the	same	technology	as	the	primary	system.)

Another	thing	I	may	try	in	the	future	is	to	focus	extra	attention
on	specific	parts	of	the	email.	For	example,	about	95%	of	current
spam	includes	the	url	of	a	site	they	want	you	to	visit.	(The
remaining	5%	want	you	to	call	a	phone	number,	reply	by	email	or

to	a	US	mail	address,	or	in	a	few	cases	to	buy	a	certain	stock.)
The	url	is	in	such	cases	practically	enough	by	itself	to	determine
whether	the	email	is	spam.

Domain	names	differ	from	the	rest	of	the	text	in	a	(non-German)
email	in	that	they	often	consist	of	several	words	stuck	together.
Though	computationally	expensive	in	the	general	case,	it	might
be	worth	trying	to	decompose	them.	If	a	filter	has	never	seen	the
token	"xxxporn"	before	it	will	have	an	individual	spam	probability
of	.4,	whereas	"xxx"	and	"porn"	individually	have	probabilities	(in
my	corpus)	of	.9889	and	.99	respectively,	and	a	combined
probability	of	.9998.

I	expect	decomposing	domain	names	to	become	more	important
as	spammers	are	gradually	forced	to	stop	using	incriminating
words	in	the	text	of	their	messages.	(A	url	with	an	ip	address	is	of
course	an	extremely	incriminating	sign,	except	in	the	mail	of	a
few	sysadmins.)

It	might	be	a	good	idea	to	have	a	cooperatively	maintained	list	of
urls	promoted	by	spammers.	We'd	need	a	trust	metric	of	the	type
studied	by	Raph	Levien	to	prevent	malicious	or	incompetent
submissions,	but	if	we	had	such	a	thing	it	would	provide	a	boost
to	any	filtering	software.	It	would	also	be	a	convenient	basis	for
boycotts.

Another	way	to	test	dubious	urls	would	be	to	send	out	a	crawler
to	look	at	the	site	before	the	user	looked	at	the	email	mentioning
it.	You	could	use	a	Bayesian	filter	to	rate	the	site	just	as	you
would	an	email,	and	whatever	was	found	on	the	site	could	be
included	in	calculating	the	probability	of	the	email	being	a	spam.
A	url	that	led	to	a	redirect	would	of	course	be	especially
suspicious.

One	cooperative	project	that	I	think	really	would	be	a	good	idea
would	be	to	accumulate	a	giant	corpus	of	spam.	A	large,	clean
corpus	is	the	key	to	making	Bayesian	filtering	work	well.
Bayesian	filters	could	actually	use	the	corpus	as	input.	But	such	a
corpus	would	be	useful	for	other	kinds	of	filters	too,	because	it
could	be	used	to	test	them.

Creating	such	a	corpus	poses	some	technical	problems.	We'd
need	trust	metrics	to	prevent	malicious	or	incompetent
submissions,	of	course.	We'd	also	need	ways	of	erasing	personal
information	(not	just	to-addresses	and	ccs,	but	also	e.g.	the
arguments	to	unsubscribe	urls,	which	often	encode	the	to-
address)	from	mails	in	the	corpus.	If	anyone	wants	to	take	on	this
project,	it	would	be	a	good	thing	for	the	world.

Appendix:	Defining	Spam

I	think	there	is	a	rough	consensus	on	what	spam	is,	but	it	would
be	useful	to	have	an	explicit	definition.	We'll	need	to	do	this	if	we
want	to	establish	a	central	corpus	of	spam,	or	even	to	compare
spam	filtering	rates	meaningfully.

To	start	with,	spam	is	not	unsolicited	commercial	email.	If
someone	in	my	neighborhood	heard	that	I	was	looking	for	an	old
Raleigh	three-speed	in	good	condition,	and	sent	me	an	email
offering	to	sell	me	one,	I'd	be	delighted,	and	yet	this	email	would
be	both	commercial	and	unsolicited.	The	defining	feature	of	spam
(in	fact,	its	raison	d'etre)	is	not	that	it	is	unsolicited,	but	that	it	is
automated.

It	is	merely	incidental,	too,	that	spam	is	usually	commercial.	If
someone	started	sending	mass	email	to	support	some	political
cause,	for	example,	it	would	be	just	as	much	spam	as	email
promoting	a	porn	site.

I	propose	we	define	spam	as	unsolicited	automated	email.	This
definition	thus	includes	some	email	that	many	legal	definitions	of
spam	don't.	Legal	definitions	of	spam,	influenced	presumably	by
lobbyists,	tend	to	exclude	mail	sent	by	companies	that	have	an
"existing	relationship"	with	the	recipient.	But	buying	something
from	a	company,	for	example,	does	not	imply	that	you	have
solicited	ongoing	email	from	them.	If	I	order	something	from	an
online	store,	and	they	then	send	me	a	stream	of	spam,	it's	still
spam.

Companies	sending	spam	often	give	you	a	way	to	"unsubscribe,"
or	ask	you	to	go	to	their	site	and	change	your	"account
preferences"	if	you	want	to	stop	getting	spam.	This	is	not	enough

to	stop	the	mail	from	being	spam.	Not	opting	out	is	not	the	same
as	opting	in.	Unless	the	recipient	explicitly	checked	a	clearly
labelled	box	(whose	default	was	no)	asking	to	receive	the	email,
then	it	is	spam.

In	some	business	relationships,	you	do	implicitly	solicit	certain
kinds	of	mail.	When	you	order	online,	I	think	you	implicitly	solicit
a	receipt,	and	notification	when	the	order	ships.	I	don't	mind
when	Verisign	sends	me	mail	warning	that	a	domain	name	is
about	to	expire	(at	least,	if	they	are	the	actual	registrar	for	it).
But	when	Verisign	sends	me	email	offering	a	FREE	Guide	to
Building	My	E-Commerce	Web	Site,	that's	spam.

Notes:

[1]	The	examples	in	this	article	are	translated	into	Common	Lisp
for,	believe	it	or	not,	greater	accessibility.	The	application
described	here	is	one	that	we	wrote	in	order	to	test	a	new	Lisp
dialect	called	Arc	that	is	not	yet	released.

[2]	Currently	the	lowest	rate	seems	to	be	about	$200	to	send	a
million	spams.	That's	very	cheap,	1/50th	of	a	cent	per	spam.	But
filtering	out	95%	of	spam,	for	example,	would	increase	the
spammers'	cost	to	reach	a	given	audience	by	a	factor	of	20.	Few
can	have	margins	big	enough	to	absorb	that.

[3]	As	a	rule	of	thumb,	the	more	qualifiers	there	are	before	the
name	of	a	country,	the	more	corrupt	the	rulers.	A	country	called
The	Socialist	People's	Democratic	Republic	of	X	is	probably	the
last	place	in	the	world	you'd	want	to	live.

Thanks	to	Sarah	Harlin	for	reading	drafts	of	this;	Daniel	Giffin
(who	is	also	writing	the	production	Arc	interpreter)	for	several
good	ideas	about	filtering	and	for	creating	our	mail
infrastructure;	Robert	Morris,	Trevor	Blackwell	and	Erann	Gat
for	many	discussions	about	spam;	Raph	Levien	for	advice	about
trust	metrics;	and	Chip	Coldwell	and	Sam	Steingold	for	advice
about	statistics.

	You'll	find	this	essay	and	14	others	in	Hackers	&	Painters.	

http://siliconvalley.internet.com/news/article.php/1441651
arc.html
http://www.amazon.com/gp/product/0596006624

More	Info:

	

Design	and	Research
January	2003

(This	article	is	derived	from	a	keynote	talk	at	the	fall	2002
meeting	of	NEPLS.)

Visitors	to	this	country	are	often	surprised	to	find	that	Americans
like	to	begin	a	conversation	by	asking	"what	do	you	do?"	I've
never	liked	this	question.	I've	rarely	had	a	neat	answer	to	it.	But	I
think	I	have	finally	solved	the	problem.	Now,	when	someone	asks
me	what	I	do,	I	look	them	straight	in	the	eye	and	say	"I'm
designing	a	new	dialect	of	Lisp."	I	recommend	this	answer	to
anyone	who	doesn't	like	being	asked	what	they	do.	The
conversation	will	turn	immediately	to	other	topics.

I	don't	consider	myself	to	be	doing	research	on	programming
languages.	I'm	just	designing	one,	in	the	same	way	that	someone
might	design	a	building	or	a	chair	or	a	new	typeface.	I'm	not
trying	to	discover	anything	new.	I	just	want	to	make	a	language
that	will	be	good	to	program	in.	In	some	ways,	this	assumption
makes	life	a	lot	easier.

The	difference	between	design	and	research	seems	to	be	a
question	of	new	versus	good.	Design	doesn't	have	to	be	new,	but
it	has	to	be	good.	Research	doesn't	have	to	be	good,	but	it	has	to
be	new.	I	think	these	two	paths	converge	at	the	top:	the	best
design	surpasses	its	predecessors	by	using	new	ideas,	and	the
best	research	solves	problems	that	are	not	only	new,	but	actually
worth	solving.	So	ultimately	we're	aiming	for	the	same
destination,	just	approaching	it	from	different	directions.

What	I'm	going	to	talk	about	today	is	what	your	target	looks	like
from	the	back.	What	do	you	do	differently	when	you	treat
programming	languages	as	a	design	problem	instead	of	a
research	topic?

arc.html

The	biggest	difference	is	that	you	focus	more	on	the	user.	Design
begins	by	asking,	who	is	this	for	and	what	do	they	need	from	it?
A	good	architect,	for	example,	does	not	begin	by	creating	a
design	that	he	then	imposes	on	the	users,	but	by	studying	the
intended	users	and	figuring	out	what	they	need.

Notice	I	said	"what	they	need,"	not	"what	they	want."	I	don't
mean	to	give	the	impression	that	working	as	a	designer	means
working	as	a	sort	of	short-order	cook,	making	whatever	the	client
tells	you	to.	This	varies	from	field	to	field	in	the	arts,	but	I	don't
think	there	is	any	field	in	which	the	best	work	is	done	by	the
people	who	just	make	exactly	what	the	customers	tell	them	to.

The	customer	is	always	right	in	the	sense	that	the	measure	of
good	design	is	how	well	it	works	for	the	user.	If	you	make	a	novel
that	bores	everyone,	or	a	chair	that's	horribly	uncomfortable	to
sit	in,	then	you've	done	a	bad	job,	period.	It's	no	defense	to	say
that	the	novel	or	the	chair	is	designed	according	to	the	most
advanced	theoretical	principles.

And	yet,	making	what	works	for	the	user	doesn't	mean	simply
making	what	the	user	tells	you	to.	Users	don't	know	what	all	the
choices	are,	and	are	often	mistaken	about	what	they	really	want.

The	answer	to	the	paradox,	I	think,	is	that	you	have	to	design	for
the	user,	but	you	have	to	design	what	the	user	needs,	not	simply
what	he	says	he	wants.	It's	much	like	being	a	doctor.	You	can't
just	treat	a	patient's	symptoms.	When	a	patient	tells	you	his
symptoms,	you	have	to	figure	out	what's	actually	wrong	with	him,
and	treat	that.

This	focus	on	the	user	is	a	kind	of	axiom	from	which	most	of	the
practice	of	good	design	can	be	derived,	and	around	which	most
design	issues	center.

If	good	design	must	do	what	the	user	needs,	who	is	the	user?
When	I	say	that	design	must	be	for	users,	I	don't	mean	to	imply

that	good	design	aims	at	some	kind	of	lowest	common
denominator.	You	can	pick	any	group	of	users	you	want.	If	you're
designing	a	tool,	for	example,	you	can	design	it	for	anyone	from
beginners	to	experts,	and	what's	good	design	for	one	group
might	be	bad	for	another.	The	point	is,	you	have	to	pick	some
group	of	users.	I	don't	think	you	can	even	talk	about	good	or	bad
design	except	with	reference	to	some	intended	user.

You're	most	likely	to	get	good	design	if	the	intended	users
include	the	designer	himself.	When	you	design	something	for	a
group	that	doesn't	include	you,	it	tends	to	be	for	people	you
consider	to	be	less	sophisticated	than	you,	not	more
sophisticated.

That's	a	problem,	because	looking	down	on	the	user,	however
benevolently,	seems	inevitably	to	corrupt	the	designer.	I	suspect
that	very	few	housing	projects	in	the	US	were	designed	by
architects	who	expected	to	live	in	them.	You	can	see	the	same
thing	in	programming	languages.	C,	Lisp,	and	Smalltalk	were
created	for	their	own	designers	to	use.	Cobol,	Ada,	and	Java,
were	created	for	other	people	to	use.

If	you	think	you're	designing	something	for	idiots,	the	odds	are
that	you're	not	designing	something	good,	even	for	idiots.

Even	if	you're	designing	something	for	the	most	sophisticated
users,	though,	you're	still	designing	for	humans.	It's	different	in
research.	In	math	you	don't	choose	abstractions	because	they're
easy	for	humans	to	understand;	you	choose	whichever	make	the
proof	shorter.	I	think	this	is	true	for	the	sciences	generally.
Scientific	ideas	are	not	meant	to	be	ergonomic.

Over	in	the	arts,	things	are	very	different.	Design	is	all	about
people.	The	human	body	is	a	strange	thing,	but	when	you're
designing	a	chair,	that's	what	you're	designing	for,	and	there's	no
way	around	it.	All	the	arts	have	to	pander	to	the	interests	and
limitations	of	humans.	In	painting,	for	example,	all	other	things
being	equal	a	painting	with	people	in	it	will	be	more	interesting
than	one	without.	It	is	not	merely	an	accident	of	history	that	the

great	paintings	of	the	Renaissance	are	all	full	of	people.	If	they
hadn't	been,	painting	as	a	medium	wouldn't	have	the	prestige
that	it	does.

Like	it	or	not,	programming	languages	are	also	for	people,	and	I
suspect	the	human	brain	is	just	as	lumpy	and	idiosyncratic	as	the
human	body.	Some	ideas	are	easy	for	people	to	grasp	and	some
aren't.	For	example,	we	seem	to	have	a	very	limited	capacity	for
dealing	with	detail.	It's	this	fact	that	makes	programing
languages	a	good	idea	in	the	first	place;	if	we	could	handle	the
detail,	we	could	just	program	in	machine	language.

Remember,	too,	that	languages	are	not	primarily	a	form	for
finished	programs,	but	something	that	programs	have	to	be
developed	in.	Anyone	in	the	arts	could	tell	you	that	you	might
want	different	mediums	for	the	two	situations.	Marble,	for
example,	is	a	nice,	durable	medium	for	finished	ideas,	but	a
hopelessly	inflexible	one	for	developing	new	ideas.

A	program,	like	a	proof,	is	a	pruned	version	of	a	tree	that	in	the
past	has	had	false	starts	branching	off	all	over	it.	So	the	test	of	a
language	is	not	simply	how	clean	the	finished	program	looks	in	it,
but	how	clean	the	path	to	the	finished	program	was.	A	design
choice	that	gives	you	elegant	finished	programs	may	not	give	you
an	elegant	design	process.	For	example,	I've	written	a	few
macro-defining	macros	full	of	nested	backquotes	that	look	now
like	little	gems,	but	writing	them	took	hours	of	the	ugliest	trial
and	error,	and	frankly,	I'm	still	not	entirely	sure	they're	correct.

We	often	act	as	if	the	test	of	a	language	were	how	good	finished
programs	look	in	it.	It	seems	so	convincing	when	you	see	the
same	program	written	in	two	languages,	and	one	version	is	much
shorter.	When	you	approach	the	problem	from	the	direction	of
the	arts,	you're	less	likely	to	depend	on	this	sort	of	test.	You	don't
want	to	end	up	with	a	programming	language	like	marble.

For	example,	it	is	a	huge	win	in	developing	software	to	have	an
interactive	toplevel,	what	in	Lisp	is	called	a	read-eval-print	loop.
And	when	you	have	one	this	has	real	effects	on	the	design	of	the
language.	It	would	not	work	well	for	a	language	where	you	have
to	declare	variables	before	using	them,	for	example.	When	you're

just	typing	expressions	into	the	toplevel,	you	want	to	be	able	to
set	x	to	some	value	and	then	start	doing	things	to	x.	You	don't
want	to	have	to	declare	the	type	of	x	first.	You	may	dispute	either
of	the	premises,	but	if	a	language	has	to	have	a	toplevel	to	be
convenient,	and	mandatory	type	declarations	are	incompatible
with	a	toplevel,	then	no	language	that	makes	type	declarations
mandatory	could	be	convenient	to	program	in.

In	practice,	to	get	good	design	you	have	to	get	close,	and	stay
close,	to	your	users.	You	have	to	calibrate	your	ideas	on	actual
users	constantly,	especially	in	the	beginning.	One	of	the	reasons
Jane	Austen's	novels	are	so	good	is	that	she	read	them	out	loud
to	her	family.	That's	why	she	never	sinks	into	self-indulgently	arty
descriptions	of	landscapes,	or	pretentious	philosophizing.	(The
philosophy's	there,	but	it's	woven	into	the	story	instead	of	being
pasted	onto	it	like	a	label.)	If	you	open	an	average	"literary"
novel	and	imagine	reading	it	out	loud	to	your	friends	as
something	you'd	written,	you'll	feel	all	too	keenly	what	an
imposition	that	kind	of	thing	is	upon	the	reader.

In	the	software	world,	this	idea	is	known	as	Worse	is	Better.
Actually,	there	are	several	ideas	mixed	together	in	the	concept	of
Worse	is	Better,	which	is	why	people	are	still	arguing	about
whether	worse	is	actually	better	or	not.	But	one	of	the	main	ideas
in	that	mix	is	that	if	you're	building	something	new,	you	should
get	a	prototype	in	front	of	users	as	soon	as	possible.

The	alternative	approach	might	be	called	the	Hail	Mary	strategy.
Instead	of	getting	a	prototype	out	quickly	and	gradually	refining
it,	you	try	to	create	the	complete,	finished,	product	in	one	long
touchdown	pass.	As	far	as	I	know,	this	is	a	recipe	for	disaster.
Countless	startups	destroyed	themselves	this	way	during	the
Internet	bubble.	I've	never	heard	of	a	case	where	it	worked.

What	people	outside	the	software	world	may	not	realize	is	that
Worse	is	Better	is	found	throughout	the	arts.	In	drawing,	for
example,	the	idea	was	discovered	during	the	Renaissance.	Now
almost	every	drawing	teacher	will	tell	you	that	the	right	way	to
get	an	accurate	drawing	is	not	to	work	your	way	slowly	around

the	contour	of	an	object,	because	errors	will	accumulate	and
you'll	find	at	the	end	that	the	lines	don't	meet.	Instead	you	should
draw	a	few	quick	lines	in	roughly	the	right	place,	and	then
gradually	refine	this	initial	sketch.

In	most	fields,	prototypes	have	traditionally	been	made	out	of
different	materials.	Typefaces	to	be	cut	in	metal	were	initially
designed	with	a	brush	on	paper.	Statues	to	be	cast	in	bronze
were	modelled	in	wax.	Patterns	to	be	embroidered	on	tapestries
were	drawn	on	paper	with	ink	wash.	Buildings	to	be	constructed
from	stone	were	tested	on	a	smaller	scale	in	wood.

What	made	oil	paint	so	exciting,	when	it	first	became	popular	in
the	fifteenth	century,	was	that	you	could	actually	make	the
finished	work	from	the	prototype.	You	could	make	a	preliminary
drawing	if	you	wanted	to,	but	you	weren't	held	to	it;	you	could
work	out	all	the	details,	and	even	make	major	changes,	as	you
finished	the	painting.

You	can	do	this	in	software	too.	A	prototype	doesn't	have	to	be
just	a	model;	you	can	refine	it	into	the	finished	product.	I	think
you	should	always	do	this	when	you	can.	It	lets	you	take
advantage	of	new	insights	you	have	along	the	way.	But	perhaps
even	more	important,	it's	good	for	morale.

Morale	is	key	in	design.	I'm	surprised	people	don't	talk	more
about	it.	One	of	my	first	drawing	teachers	told	me:	if	you're
bored	when	you're	drawing	something,	the	drawing	will	look
boring.	For	example,	suppose	you	have	to	draw	a	building,	and
you	decide	to	draw	each	brick	individually.	You	can	do	this	if	you
want,	but	if	you	get	bored	halfway	through	and	start	making	the
bricks	mechanically	instead	of	observing	each	one,	the	drawing
will	look	worse	than	if	you	had	merely	suggested	the	bricks.

Building	something	by	gradually	refining	a	prototype	is	good	for
morale	because	it	keeps	you	engaged.	In	software,	my	rule	is:
always	have	working	code.	If	you're	writing	something	that	you'll
be	able	to	test	in	an	hour,	then	you	have	the	prospect	of	an
immediate	reward	to	motivate	you.	The	same	is	true	in	the	arts,

and	particularly	in	oil	painting.	Most	painters	start	with	a	blurry
sketch	and	gradually	refine	it.	If	you	work	this	way,	then	in
principle	you	never	have	to	end	the	day	with	something	that
actually	looks	unfinished.	Indeed,	there	is	even	a	saying	among
painters:	"A	painting	is	never	finished,	you	just	stop	working	on
it."	This	idea	will	be	familiar	to	anyone	who	has	worked	on
software.

Morale	is	another	reason	that	it's	hard	to	design	something	for
an	unsophisticated	user.	It's	hard	to	stay	interested	in	something
you	don't	like	yourself.	To	make	something	good,	you	have	to	be
thinking,	"wow,	this	is	really	great,"	not	"what	a	piece	of	shit;
those	fools	will	love	it."

Design	means	making	things	for	humans.	But	it's	not	just	the
user	who's	human.	The	designer	is	human	too.

Notice	all	this	time	I've	been	talking	about	"the	designer."	Design
usually	has	to	be	under	the	control	of	a	single	person	to	be	any
good.	And	yet	it	seems	to	be	possible	for	several	people	to
collaborate	on	a	research	project.	This	seems	to	me	one	of	the
most	interesting	differences	between	research	and	design.

There	have	been	famous	instances	of	collaboration	in	the	arts,
but	most	of	them	seem	to	have	been	cases	of	molecular	bonding
rather	than	nuclear	fusion.	In	an	opera	it's	common	for	one
person	to	write	the	libretto	and	another	to	write	the	music.	And
during	the	Renaissance,	journeymen	from	northern	Europe	were
often	employed	to	do	the	landscapes	in	the	backgrounds	of
Italian	paintings.	But	these	aren't	true	collaborations.	They're
more	like	examples	of	Robert	Frost's	"good	fences	make	good
neighbors."	You	can	stick	instances	of	good	design	together,	but
within	each	individual	project,	one	person	has	to	be	in	control.

I'm	not	saying	that	good	design	requires	that	one	person	think	of
everything.	There's	nothing	more	valuable	than	the	advice	of
someone	whose	judgement	you	trust.	But	after	the	talking	is
done,	the	decision	about	what	to	do	has	to	rest	with	one	person.

Why	is	it	that	research	can	be	done	by	collaborators	and	design
can't?	This	is	an	interesting	question.	I	don't	know	the	answer.
Perhaps,	if	design	and	research	converge,	the	best	research	is
also	good	design,	and	in	fact	can't	be	done	by	collaborators.	A	lot
of	the	most	famous	scientists	seem	to	have	worked	alone.	But	I
don't	know	enough	to	say	whether	there	is	a	pattern	here.	It
could	be	simply	that	many	famous	scientists	worked	when
collaboration	was	less	common.

Whatever	the	story	is	in	the	sciences,	true	collaboration	seems	to
be	vanishingly	rare	in	the	arts.	Design	by	committee	is	a
synonym	for	bad	design.	Why	is	that	so?	Is	there	some	way	to
beat	this	limitation?

I'm	inclined	to	think	there	isn't--	that	good	design	requires	a
dictator.	One	reason	is	that	good	design	has	to	be	all	of	a	piece.
Design	is	not	just	for	humans,	but	for	individual	humans.	If	a
design	represents	an	idea	that	fits	in	one	person's	head,	then	the
idea	will	fit	in	the	user's	head	too.

Related:

	

Better	Bayesian	Filtering
January	2003

(This	article	was	given	as	a	talk	at	the	2003	Spam	Conference.	It
describes	the	work	I've	done	to	improve	the	performance	of	the
algorithm	described	in	A	Plan	for	Spam,	and	what	I	plan	to	do	in
the	future.)

The	first	discovery	I'd	like	to	present	here	is	an	algorithm	for	lazy
evaluation	of	research	papers.	Just	write	whatever	you	want	and
don't	cite	any	previous	work,	and	indignant	readers	will	send	you
references	to	all	the	papers	you	should	have	cited.	I	discovered
this	algorithm	after	``A	Plan	for	Spam''	[1]	was	on	Slashdot.

Spam	filtering	is	a	subset	of	text	classification,	which	is	a	well
established	field,	but	the	first	papers	about	Bayesian	spam
filtering	per	se	seem	to	have	been	two	given	at	the	same
conference	in	1998,	one	by	Pantel	and	Lin	[2],	and	another	by	a
group	from	Microsoft	Research	[3].

When	I	heard	about	this	work	I	was	a	bit	surprised.	If	people	had
been	onto	Bayesian	filtering	four	years	ago,	why	wasn't	everyone
using	it?	When	I	read	the	papers	I	found	out	why.	Pantel	and
Lin's	filter	was	the	more	effective	of	the	two,	but	it	only	caught
92%	of	spam,	with	1.16%	false	positives.

When	I	tried	writing	a	Bayesian	spam	filter,	it	caught	99.5%	of
spam	with	less	than	.03%	false	positives	[4].	It's	always	alarming
when	two	people	trying	the	same	experiment	get	widely
divergent	results.	It's	especially	alarming	here	because	those	two
sets	of	numbers	might	yield	opposite	conclusions.	Different	users
have	different	requirements,	but	I	think	for	many	people	a
filtering	rate	of	92%	with	1.16%	false	positives	means	that
filtering	is	not	an	acceptable	solution,	whereas	99.5%	with	less
than	.03%	false	positives	means	that	it	is.

spam.html

So	why	did	we	get	such	different	numbers?	I	haven't	tried	to
reproduce	Pantel	and	Lin's	results,	but	from	reading	the	paper	I
see	five	things	that	probably	account	for	the	difference.

One	is	simply	that	they	trained	their	filter	on	very	little	data:	160
spam	and	466	nonspam	mails.	Filter	performance	should	still	be
climbing	with	data	sets	that	small.	So	their	numbers	may	not
even	be	an	accurate	measure	of	the	performance	of	their
algorithm,	let	alone	of	Bayesian	spam	filtering	in	general.

But	I	think	the	most	important	difference	is	probably	that	they
ignored	message	headers.	To	anyone	who	has	worked	on	spam
filters,	this	will	seem	a	perverse	decision.	And	yet	in	the	very	first
filters	I	tried	writing,	I	ignored	the	headers	too.	Why?	Because	I
wanted	to	keep	the	problem	neat.	I	didn't	know	much	about	mail
headers	then,	and	they	seemed	to	me	full	of	random	stuff.	There
is	a	lesson	here	for	filter	writers:	don't	ignore	data.	You'd	think
this	lesson	would	be	too	obvious	to	mention,	but	I've	had	to	learn
it	several	times.

Third,	Pantel	and	Lin	stemmed	the	tokens,	meaning	they	reduced
e.g.	both	``mailing''	and	``mailed''	to	the	root	``mail''.	They	may
have	felt	they	were	forced	to	do	this	by	the	small	size	of	their
corpus,	but	if	so	this	is	a	kind	of	premature	optimization.

Fourth,	they	calculated	probabilities	differently.	They	used	all	the
tokens,	whereas	I	only	use	the	15	most	significant.	If	you	use	all
the	tokens	you'll	tend	to	miss	longer	spams,	the	type	where
someone	tells	you	their	life	story	up	to	the	point	where	they	got
rich	from	some	multilevel	marketing	scheme.	And	such	an
algorithm	would	be	easy	for	spammers	to	spoof:	just	add	a	big
chunk	of	random	text	to	counterbalance	the	spam	terms.

Finally,	they	didn't	bias	against	false	positives.	I	think	any	spam
filtering	algorithm	ought	to	have	a	convenient	knob	you	can	twist
to	decrease	the	false	positive	rate	at	the	expense	of	the	filtering
rate.	I	do	this	by	counting	the	occurrences	of	tokens	in	the
nonspam	corpus	double.	

I	don't	think	it's	a	good	idea	to	treat	spam	filtering	as	a	straight
text	classification	problem.	You	can	use	text	classification

techniques,	but	solutions	can	and	should	reflect	the	fact	that	the
text	is	email,	and	spam	in	particular.	Email	is	not	just	text;	it	has
structure.	Spam	filtering	is	not	just	classification,	because	false
positives	are	so	much	worse	than	false	negatives	that	you	should
treat	them	as	a	different	kind	of	error.	And	the	source	of	error	is
not	just	random	variation,	but	a	live	human	spammer	working
actively	to	defeat	your	filter.

Tokens

Another	project	I	heard	about	after	the	Slashdot	article	was	Bill
Yerazunis'	CRM114	[5].	This	is	the	counterexample	to	the	design
principle	I	just	mentioned.	It's	a	straight	text	classifier,	but	such
a	stunningly	effective	one	that	it	manages	to	filter	spam	almost
perfectly	without	even	knowing	that's	what	it's	doing.

Once	I	understood	how	CRM114	worked,	it	seemed	inevitable
that	I	would	eventually	have	to	move	from	filtering	based	on
single	words	to	an	approach	like	this.	But	first,	I	thought,	I'll	see
how	far	I	can	get	with	single	words.	And	the	answer	is,
surprisingly	far.

Mostly	I've	been	working	on	smarter	tokenization.	On	current
spam,	I've	been	able	to	achieve	filtering	rates	that	approach
CRM114's.	These	techniques	are	mostly	orthogonal	to	Bill's;	an
optimal	solution	might	incorporate	both.

``A	Plan	for	Spam''	uses	a	very	simple	definition	of	a	token.
Letters,	digits,	dashes,	apostrophes,	and	dollar	signs	are
constituent	characters,	and	everything	else	is	a	token	separator.	I
also	ignored	case.

Now	I	have	a	more	complicated	definition	of	a	token:

1.	 Case	is	preserved.

2.	 Exclamation	points	are	constituent	characters.

3.	 Periods	and	commas	are	constituents	if	they	occur	between
two	digits.	This	lets	me	get	ip	addresses	and	prices	intact.

http://crm114.sourceforge.net/

4.	 A	price	range	like	$20-25	yields	two	tokens,	$20	and	$25.

5.	 Tokens	that	occur	within	the	To,	From,	Subject,	and
Return-Path	lines,	or	within	urls,	get	marked	accordingly.
E.g.	``foo''	in	the	Subject	line	becomes	``Subject*foo''.
(The	asterisk	could	be	any	character	you	don't	allow	as	a
constituent.)

Such	measures	increase	the	filter's	vocabulary,	which	makes	it
more	discriminating.	For	example,	in	the	current	filter,	``free''	in
the	Subject	line	has	a	spam	probability	of	98%,	whereas	the	same
token	in	the	body	has	a	spam	probability	of	only	65%.

Here	are	some	of	the	current	probabilities	[6]:

Subject*FREE						0.9999
free!!												0.9999
To*free											0.9998
Subject*free						0.9782
free!													0.9199
Free														0.9198
Url*free										0.9091
FREE														0.8747
From*free									0.7636
free														0.6546

In	the	Plan	for	Spam	filter,	all	these	tokens	would	have	had	the
same	probability,	.7602.	That	filter	recognized	about	23,000
tokens.	The	current	one	recognizes	about	187,000.

The	disadvantage	of	having	a	larger	universe	of	tokens	is	that
there	is	more	chance	of	misses.	Spreading	your	corpus	out	over
more	tokens	has	the	same	effect	as	making	it	smaller.	If	you
consider	exclamation	points	as	constituents,	for	example,	then
you	could	end	up	not	having	a	spam	probability	for	free	with
seven	exclamation	points,	even	though	you	know	that	free	with
just	two	exclamation	points	has	a	probability	of	99.99%.

One	solution	to	this	is	what	I	call	degeneration.	If	you	can't	find
an	exact	match	for	a	token,	treat	it	as	if	it	were	a	less	specific

version.	I	consider	terminal	exclamation	points,	uppercase
letters,	and	occurring	in	one	of	the	five	marked	contexts	as
making	a	token	more	specific.	For	example,	if	I	don't	find	a
probability	for	``Subject*free!'',	I	look	for	probabilities	for
``Subject*free'',	``free!'',	and	``free'',	and	take	whichever	one	is
farthest	from	.5.

Here	are	the	alternatives	[7]	considered	if	the	filter	sees
``FREE!!!''	in	the	Subject	line	and	doesn't	have	a	probability	for
it.

Subject*Free!!!
Subject*free!!!
Subject*FREE!
Subject*Free!
Subject*free!
Subject*FREE
Subject*Free
Subject*free
FREE!!!
Free!!!
free!!!
FREE!
Free!
free!
FREE
Free
free														

If	you	do	this,	be	sure	to	consider	versions	with	initial	caps	as
well	as	all	uppercase	and	all	lowercase.	Spams	tend	to	have	more
sentences	in	imperative	mood,	and	in	those	the	first	word	is	a
verb.	So	verbs	with	initial	caps	have	higher	spam	probabilities
than	they	would	in	all	lowercase.	In	my	filter,	the	spam
probability	of	``Act''	is	98%	and	for	``act''	only	62%.

If	you	increase	your	filter's	vocabulary,	you	can	end	up	counting
the	same	word	multiple	times,	according	to	your	old	definition	of
``same''.	Logically,	they're	not	the	same	token	anymore.	But	if
this	still	bothers	you,	let	me	add	from	experience	that	the	words

you	seem	to	be	counting	multiple	times	tend	to	be	exactly	the
ones	you'd	want	to.

Another	effect	of	a	larger	vocabulary	is	that	when	you	look	at	an
incoming	mail	you	find	more	interesting	tokens,	meaning	those
with	probabilities	far	from	.5.	I	use	the	15	most	interesting	to
decide	if	mail	is	spam.	But	you	can	run	into	a	problem	when	you
use	a	fixed	number	like	this.	If	you	find	a	lot	of	maximally
interesting	tokens,	the	result	can	end	up	being	decided	by
whatever	random	factor	determines	the	ordering	of	equally
interesting	tokens.	One	way	to	deal	with	this	is	to	treat	some	as
more	interesting	than	others.

For	example,	the	token	``dalco''	occurs	3	times	in	my	spam
corpus	and	never	in	my	legitimate	corpus.	The	token
``Url*optmails''	(meaning	``optmails''	within	a	url)	occurs	1223
times.	And	yet,	as	I	used	to	calculate	probabilities	for	tokens,
both	would	have	the	same	spam	probability,	the	threshold	of	.99.

That	doesn't	feel	right.	There	are	theoretical	arguments	for
giving	these	two	tokens	substantially	different	probabilities
(Pantel	and	Lin	do),	but	I	haven't	tried	that	yet.	It	does	seem	at
least	that	if	we	find	more	than	15	tokens	that	only	occur	in	one
corpus	or	the	other,	we	ought	to	give	priority	to	the	ones	that
occur	a	lot.	So	now	there	are	two	threshold	values.	For	tokens
that	occur	only	in	the	spam	corpus,	the	probability	is	.9999	if
they	occur	more	than	10	times	and	.9998	otherwise.	Ditto	at	the
other	end	of	the	scale	for	tokens	found	only	in	the	legitimate
corpus.

I	may	later	scale	token	probabilities	substantially,	but	this	tiny
amount	of	scaling	at	least	ensures	that	tokens	get	sorted	the
right	way.

Another	possibility	would	be	to	consider	not	just	15	tokens,	but
all	the	tokens	over	a	certain	threshold	of	interestingness.	Steven
Hauser	does	this	in	his	statistical	spam	filter	[8].	If	you	use	a
threshold,	make	it	very	high,	or	spammers	could	spoof	you	by
packing	messages	with	more	innocent	words.

Finally,	what	should	one	do	about	html?	I've	tried	the	whole

spectrum	of	options,	from	ignoring	it	to	parsing	it	all.	Ignoring
html	is	a	bad	idea,	because	it's	full	of	useful	spam	signs.	But	if
you	parse	it	all,	your	filter	might	degenerate	into	a	mere	html
recognizer.	The	most	effective	approach	seems	to	be	the	middle
course,	to	notice	some	tokens	but	not	others.	I	look	at	a,	img,	and
font	tags,	and	ignore	the	rest.	Links	and	images	you	should
certainly	look	at,	because	they	contain	urls.

I	could	probably	be	smarter	about	dealing	with	html,	but	I	don't
think	it's	worth	putting	a	lot	of	time	into	this.	Spams	full	of	html
are	easy	to	filter.	The	smarter	spammers	already	avoid	it.	So
performance	in	the	future	should	not	depend	much	on	how	you
deal	with	html.

Performance

Between	December	10	2002	and	January	10	2003	I	got	about
1750	spams.	Of	these,	4	got	through.	That's	a	filtering	rate	of
about	99.75%.

Two	of	the	four	spams	I	missed	got	through	because	they
happened	to	use	words	that	occur	often	in	my	legitimate	email.

The	third	was	one	of	those	that	exploit	an	insecure	cgi	script	to
send	mail	to	third	parties.	They're	hard	to	filter	based	just	on	the
content	because	the	headers	are	innocent	and	they're	careful
about	the	words	they	use.	Even	so	I	can	usually	catch	them.	This
one	squeaked	by	with	a	probability	of	.88,	just	under	the
threshold	of	.9.

Of	course,	looking	at	multiple	token	sequences	would	catch	it
easily.	``Below	is	the	result	of	your	feedback	form''	is	an	instant
giveaway.

The	fourth	spam	was	what	I	call	a	spam-of-the-future,	because
this	is	what	I	expect	spam	to	evolve	into:	some	completely
neutral	text	followed	by	a	url.	In	this	case	it	was	was	from
someone	saying	they	had	finally	finished	their	homepage	and
would	I	go	look	at	it.	(The	page	was	of	course	an	ad	for	a	porn
site.)

If	the	spammers	are	careful	about	the	headers	and	use	a	fresh
url,	there	is	nothing	in	spam-of-the-future	for	filters	to	notice.	We
can	of	course	counter	by	sending	a	crawler	to	look	at	the	page.
But	that	might	not	be	necessary.	The	response	rate	for	spam-of-
the-future	must	be	low,	or	everyone	would	be	doing	it.	If	it's	low
enough,	it	won't	pay	for	spammers	to	send	it,	and	we	won't	have
to	work	too	hard	on	filtering	it.

Now	for	the	really	shocking	news:	during	that	same	one-month
period	I	got	three	false	positives.

In	a	way	it's	a	relief	to	get	some	false	positives.	When	I	wrote	``A
Plan	for	Spam''	I	hadn't	had	any,	and	I	didn't	know	what	they'd	be
like.	Now	that	I've	had	a	few,	I'm	relieved	to	find	they're	not	as
bad	as	I	feared.	False	positives	yielded	by	statistical	filters	turn
out	to	be	mails	that	sound	a	lot	like	spam,	and	these	tend	to	be
the	ones	you	would	least	mind	missing	[9].

Two	of	the	false	positives	were	newsletters	from	companies	I've
bought	things	from.	I	never	asked	to	receive	them,	so	arguably
they	were	spams,	but	I	count	them	as	false	positives	because	I
hadn't	been	deleting	them	as	spams	before.	The	reason	the	filters
caught	them	was	that	both	companies	in	January	switched	to
commercial	email	senders	instead	of	sending	the	mails	from	their
own	servers,	and	both	the	headers	and	the	bodies	became	much
spammier.

The	third	false	positive	was	a	bad	one,	though.	It	was	from
someone	in	Egypt	and	written	in	all	uppercase.	This	was	a	direct
result	of	making	tokens	case	sensitive;	the	Plan	for	Spam	filter
wouldn't	have	caught	it.

It's	hard	to	say	what	the	overall	false	positive	rate	is,	because
we're	up	in	the	noise,	statistically.	Anyone	who	has	worked	on
filters	(at	least,	effective	filters)	will	be	aware	of	this	problem.
With	some	emails	it's	hard	to	say	whether	they're	spam	or	not,
and	these	are	the	ones	you	end	up	looking	at	when	you	get	filters
really	tight.	For	example,	so	far	the	filter	has	caught	two	emails
that	were	sent	to	my	address	because	of	a	typo,	and	one	sent	to
me	in	the	belief	that	I	was	someone	else.	Arguably,	these	are
neither	my	spam	nor	my	nonspam	mail.

wfks.html

Another	false	positive	was	from	a	vice	president	at	Virtumundo.	I
wrote	to	them	pretending	to	be	a	customer,	and	since	the	reply
came	back	through	Virtumundo's	mail	servers	it	had	the	most
incriminating	headers	imaginable.	Arguably	this	isn't	a	real	false
positive	either,	but	a	sort	of	Heisenberg	uncertainty	effect:	I	only
got	it	because	I	was	writing	about	spam	filtering.

Not	counting	these,	I've	had	a	total	of	five	false	positives	so	far,
out	of	about	7740	legitimate	emails,	a	rate	of	.06%.	The	other
two	were	a	notice	that	something	I	bought	was	back-ordered,	and
a	party	reminder	from	Evite.

I	don't	think	this	number	can	be	trusted,	partly	because	the
sample	is	so	small,	and	partly	because	I	think	I	can	fix	the	filter
not	to	catch	some	of	these.

False	positives	seem	to	me	a	different	kind	of	error	from	false
negatives.	Filtering	rate	is	a	measure	of	performance.	False
positives	I	consider	more	like	bugs.	I	approach	improving	the
filtering	rate	as	optimization,	and	decreasing	false	positives	as
debugging.

So	these	five	false	positives	are	my	bug	list.	For	example,	the
mail	from	Egypt	got	nailed	because	the	uppercase	text	made	it
look	to	the	filter	like	a	Nigerian	spam.	This	really	is	kind	of	a	bug.
As	with	html,	the	email	being	all	uppercase	is	really	conceptually
one	feature,	not	one	for	each	word.	I	need	to	handle	case	in	a
more	sophisticated	way.

So	what	to	make	of	this	.06%?	Not	much,	I	think.	You	could	treat
it	as	an	upper	bound,	bearing	in	mind	the	small	sample	size.	But
at	this	stage	it	is	more	a	measure	of	the	bugs	in	my
implementation	than	some	intrinsic	false	positive	rate	of
Bayesian	filtering.

Future

What	next?	Filtering	is	an	optimization	problem,	and	the	key	to
optimization	is	profiling.	Don't	try	to	guess	where	your	code	is
slow,	because	you'll	guess	wrong.	Look	at	where	your	code	is

slow,	and	fix	that.	In	filtering,	this	translates	to:	look	at	the	spams
you	miss,	and	figure	out	what	you	could	have	done	to	catch	them.

For	example,	spammers	are	now	working	aggressively	to	evade
filters,	and	one	of	the	things	they're	doing	is	breaking	up	and
misspelling	words	to	prevent	filters	from	recognizing	them.	But
working	on	this	is	not	my	first	priority,	because	I	still	have	no
trouble	catching	these	spams	[10].

There	are	two	kinds	of	spams	I	currently	do	have	trouble	with.
One	is	the	type	that	pretends	to	be	an	email	from	a	woman
inviting	you	to	go	chat	with	her	or	see	her	profile	on	a	dating
site.	These	get	through	because	they're	the	one	type	of	sales
pitch	you	can	make	without	using	sales	talk.	They	use	the	same
vocabulary	as	ordinary	email.

The	other	kind	of	spams	I	have	trouble	filtering	are	those	from
companies	in	e.g.	Bulgaria	offering	contract	programming
services.	These	get	through	because	I'm	a	programmer	too,	and
the	spams	are	full	of	the	same	words	as	my	real	mail.

I'll	probably	focus	on	the	personal	ad	type	first.	I	think	if	I	look
closer	I'll	be	able	to	find	statistical	differences	between	these	and
my	real	mail.	The	style	of	writing	is	certainly	different,	though	it
may	take	multiword	filtering	to	catch	that.	Also,	I	notice	they
tend	to	repeat	the	url,	and	someone	including	a	url	in	a
legitimate	mail	wouldn't	do	that	[11].

The	outsourcing	type	are	going	to	be	hard	to	catch.	Even	if	you
sent	a	crawler	to	the	site,	you	wouldn't	find	a	smoking	statistical
gun.	Maybe	the	only	answer	is	a	central	list	of	domains
advertised	in	spams	[12].	But	there	can't	be	that	many	of	this
type	of	mail.	If	the	only	spams	left	were	unsolicited	offers	of
contract	programming	services	from	Bulgaria,	we	could	all
probably	move	on	to	working	on	something	else.

Will	statistical	filtering	actually	get	us	to	that	point?	I	don't	know.
Right	now,	for	me	personally,	spam	is	not	a	problem.	But
spammers	haven't	yet	made	a	serious	effort	to	spoof	statistical
filters.	What	will	happen	when	they	do?

I'm	not	optimistic	about	filters	that	work	at	the	network	level
[13].	When	there	is	a	static	obstacle	worth	getting	past,
spammers	are	pretty	efficient	at	getting	past	it.	There	is	already
a	company	called	Assurance	Systems	that	will	run	your	mail
through	Spamassassin	and	tell	you	whether	it	will	get	filtered
out.

Network-level	filters	won't	be	completely	useless.	They	may	be
enough	to	kill	all	the	"opt-in"	spam,	meaning	spam	from
companies	like	Virtumundo	and	Equalamail	who	claim	that
they're	really	running	opt-in	lists.	You	can	filter	those	based	just
on	the	headers,	no	matter	what	they	say	in	the	body.	But	anyone
willing	to	falsify	headers	or	use	open	relays,	presumably
including	most	porn	spammers,	should	be	able	to	get	some
message	past	network-level	filters	if	they	want	to.	(By	no	means
the	message	they'd	like	to	send	though,	which	is	something.)

The	kind	of	filters	I'm	optimistic	about	are	ones	that	calculate
probabilities	based	on	each	individual	user's	mail.	These	can	be
much	more	effective,	not	only	in	avoiding	false	positives,	but	in
filtering	too:	for	example,	finding	the	recipient's	email	address
base-64	encoded	anywhere	in	a	message	is	a	very	good	spam
indicator.

But	the	real	advantage	of	individual	filters	is	that	they'll	all	be
different.	If	everyone's	filters	have	different	probabilities,	it	will
make	the	spammers'	optimization	loop,	what	programmers	would
call	their	edit-compile-test	cycle,	appallingly	slow.	Instead	of	just
tweaking	a	spam	till	it	gets	through	a	copy	of	some	filter	they
have	on	their	desktop,	they'll	have	to	do	a	test	mailing	for	each
tweak.	It	would	be	like	programming	in	a	language	without	an
interactive	toplevel,	and	I	wouldn't	wish	that	on	anyone.

Notes

[1]	Paul	Graham.	``A	Plan	for	Spam.''	August	2002.
http://paulgraham.com/spam.html.

Probabilities	in	this	algorithm	are	calculated	using	a	degenerate

case	of	Bayes'	Rule.	There	are	two	simplifying	assumptions:	that
the	probabilities	of	features	(i.e.	words)	are	independent,	and
that	we	know	nothing	about	the	prior	probability	of	an	email
being	spam.

The	first	assumption	is	widespread	in	text	classification.
Algorithms	that	use	it	are	called	``naive	Bayesian.''

The	second	assumption	I	made	because	the	proportion	of	spam	in
my	incoming	mail	fluctuated	so	much	from	day	to	day	(indeed,
from	hour	to	hour)	that	the	overall	prior	ratio	seemed	worthless
as	a	predictor.	If	you	assume	that	P(spam)	and	P(nonspam)	are
both	.5,	they	cancel	out	and	you	can	remove	them	from	the
formula.

If	you	were	doing	Bayesian	filtering	in	a	situation	where	the	ratio
of	spam	to	nonspam	was	consistently	very	high	or	(especially)
very	low,	you	could	probably	improve	filter	performance	by
incorporating	prior	probabilities.	To	do	this	right	you'd	have	to
track	ratios	by	time	of	day,	because	spam	and	legitimate	mail
volume	both	have	distinct	daily	patterns.

[2]	Patrick	Pantel	and	Dekang	Lin.	``SpamCop--	A	Spam
Classification	&	Organization	Program.''	Proceedings	of	AAAI-98
Workshop	on	Learning	for	Text	Categorization.

[3]	Mehran	Sahami,	Susan	Dumais,	David	Heckerman	and	Eric
Horvitz.	``A	Bayesian	Approach	to	Filtering	Junk	E-Mail.''
Proceedings	of	AAAI-98	Workshop	on	Learning	for	Text
Categorization.

[4]	At	the	time	I	had	zero	false	positives	out	of	about	4,000
legitimate	emails.	If	the	next	legitimate	email	was	a	false
positive,	this	would	give	us	.03%.	These	false	positive	rates	are
untrustworthy,	as	I	explain	later.	I	quote	a	number	here	only	to
emphasize	that	whatever	the	false	positive	rate	is,	it	is	less	than
1.16%.	

[5]	Bill	Yerazunis.	``Sparse	Binary	Polynomial	Hash	Message
Filtering	and	The	CRM114	Discriminator.''	Proceedings	of	2003
Spam	Conference.

[6]	In	``A	Plan	for	Spam''	I	used	thresholds	of	.99	and	.01.	It
seems	justifiable	to	use	thresholds	proportionate	to	the	size	of
the	corpora.	Since	I	now	have	on	the	order	of	10,000	of	each	type
of	mail,	I	use	.9999	and	.0001.

[7]	There	is	a	flaw	here	I	should	probably	fix.	Currently,	when
``Subject*foo''	degenerates	to	just	``foo'',	what	that	means	is
you're	getting	the	stats	for	occurrences	of	``foo''	in	the	body	or
header	lines	other	than	those	I	mark.	What	I	should	do	is	keep
track	of	statistics	for	``foo''	overall	as	well	as	specific	versions,
and	degenerate	from	``Subject*foo''	not	to	``foo''	but	to
``Anywhere*foo''.	Ditto	for	case:	I	should	degenerate	from
uppercase	to	any-case,	not	lowercase.

It	would	probably	be	a	win	to	do	this	with	prices	too,	e.g.	to
degenerate	from	``$129.99''	to	``$--9.99'',	``$--.99'',	and	``$--''.

You	could	also	degenerate	from	words	to	their	stems,	but	this
would	probably	only	improve	filtering	rates	early	on	when	you
had	small	corpora.

[8]	Steven	Hauser.	``Statistical	Spam	Filter	Works	for	Me.''
http://www.sofbot.com.

[9]	False	positives	are	not	all	equal,	and	we	should	remember
this	when	comparing	techniques	for	stopping	spam.	Whereas
many	of	the	false	positives	caused	by	filters	will	be	near-spams
that	you	wouldn't	mind	missing,	false	positives	caused	by
blacklists,	for	example,	will	be	just	mail	from	people	who	chose
the	wrong	ISP.	In	both	cases	you	catch	mail	that's	near	spam,	but
for	blacklists	nearness	is	physical,	and	for	filters	it's	textual.	

[10]	If	spammers	get	good	enough	at	obscuring	tokens	for	this	to
be	a	problem,	we	can	respond	by	simply	removing	whitespace,
periods,	commas,	etc.	and	using	a	dictionary	to	pick	the	words
out	of	the	resulting	sequence.	And	of	course	finding	words	this
way	that	weren't	visible	in	the	original	text	would	in	itself	be
evidence	of	spam.

Picking	out	the	words	won't	be	trivial.	It	will	require	more	than

just	reconstructing	word	boundaries;	spammers	both	add	(``xHot
nPorn	cSite'')	and	omit	(``P#rn'')	letters.	Vision	research	may	be
useful	here,	since	human	vision	is	the	limit	that	such	tricks	will
approach.

[11]	In	general,	spams	are	more	repetitive	than	regular	email.
They	want	to	pound	that	message	home.	I	currently	don't	allow
duplicates	in	the	top	15	tokens,	because	you	could	get	a	false
positive	if	the	sender	happens	to	use	some	bad	word	multiple
times.	(In	my	current	filter,	``dick''	has	a	spam	probabilty	of
.9999,	but	it's	also	a	name.)	It	seems	we	should	at	least	notice
duplication	though,	so	I	may	try	allowing	up	to	two	of	each	token,
as	Brian	Burton	does	in	SpamProbe.

[12]	This	is	what	approaches	like	Brightmail's	will	degenerate
into	once	spammers	are	pushed	into	using	mad-lib	techniques	to
generate	everything	else	in	the	message.

[13]	It's	sometimes	argued	that	we	should	be	working	on	filtering
at	the	network	level,	because	it	is	more	efficient.	What	people
usually	mean	when	they	say	this	is:	we	currently	filter	at	the
network	level,	and	we	don't	want	to	start	over	from	scratch.	But
you	can't	dictate	the	problem	to	fit	your	solution.

Historically,	scarce-resource	arguments	have	been	the	losing	side
in	debates	about	software	design.	People	only	tend	to	use	them
to	justify	choices	(inaction	in	particular)	made	for	other	reasons.

Thanks	to	Sarah	Harlin,	Trevor	Blackwell,	and	Dan	Giffin	for
reading	drafts	of	this	paper,	and	to	Dan	again	for	most	of	the
infrastructure	that	this	filter	runs	on.

Related:

	

Why	Nerds	are	Unpopular
February	2003

When	we	were	in	junior	high	school,	my	friend	Rich	and	I	made	a
map	of	the	school	lunch	tables	according	to	popularity.	This	was
easy	to	do,	because	kids	only	ate	lunch	with	others	of	about	the
same	popularity.	We	graded	them	from	A	to	E.	A	tables	were	full
of	football	players	and	cheerleaders	and	so	on.	E	tables
contained	the	kids	with	mild	cases	of	Down's	Syndrome,	what	in
the	language	of	the	time	we	called	"retards."

We	sat	at	a	D	table,	as	low	as	you	could	get	without	looking
physically	different.	We	were	not	being	especially	candid	to
grade	ourselves	as	D.	It	would	have	taken	a	deliberate	lie	to	say
otherwise.	Everyone	in	the	school	knew	exactly	how	popular
everyone	else	was,	including	us.

My	stock	gradually	rose	during	high	school.	Puberty	finally
arrived;	I	became	a	decent	soccer	player;	I	started	a	scandalous
underground	newspaper.	So	I've	seen	a	good	part	of	the
popularity	landscape.

I	know	a	lot	of	people	who	were	nerds	in	school,	and	they	all	tell
the	same	story:	there	is	a	strong	correlation	between	being	smart
and	being	a	nerd,	and	an	even	stronger	inverse	correlation
between	being	a	nerd	and	being	popular.	Being	smart	seems	to
make	you	unpopular.

Why?	To	someone	in	school	now,	that	may	seem	an	odd	question
to	ask.	The	mere	fact	is	so	overwhelming	that	it	may	seem
strange	to	imagine	that	it	could	be	any	other	way.	But	it	could.
Being	smart	doesn't	make	you	an	outcast	in	elementary	school.
Nor	does	it	harm	you	in	the	real	world.	Nor,	as	far	as	I	can	tell,	is
the	problem	so	bad	in	most	other	countries.	But	in	a	typical
American	secondary	school,	being	smart	is	likely	to	make	your
life	difficult.	Why?

The	key	to	this	mystery	is	to	rephrase	the	question	slightly.	Why
don't	smart	kids	make	themselves	popular?	If	they're	so	smart,
why	don't	they	figure	out	how	popularity	works	and	beat	the
system,	just	as	they	do	for	standardized	tests?

One	argument	says	that	this	would	be	impossible,	that	the	smart
kids	are	unpopular	because	the	other	kids	envy	them	for	being
smart,	and	nothing	they	could	do	could	make	them	popular.	I
wish.	If	the	other	kids	in	junior	high	school	envied	me,	they	did	a
great	job	of	concealing	it.	And	in	any	case,	if	being	smart	were
really	an	enviable	quality,	the	girls	would	have	broken	ranks.	The
guys	that	guys	envy,	girls	like.

In	the	schools	I	went	to,	being	smart	just	didn't	matter	much.
Kids	didn't	admire	it	or	despise	it.	All	other	things	being	equal,
they	would	have	preferred	to	be	on	the	smart	side	of	average
rather	than	the	dumb	side,	but	intelligence	counted	far	less	than,
say,	physical	appearance,	charisma,	or	athletic	ability.

So	if	intelligence	in	itself	is	not	a	factor	in	popularity,	why	are
smart	kids	so	consistently	unpopular?	The	answer,	I	think,	is	that
they	don't	really	want	to	be	popular.

If	someone	had	told	me	that	at	the	time,	I	would	have	laughed	at
him.	Being	unpopular	in	school	makes	kids	miserable,	some	of
them	so	miserable	that	they	commit	suicide.	Telling	me	that	I
didn't	want	to	be	popular	would	have	seemed	like	telling
someone	dying	of	thirst	in	a	desert	that	he	didn't	want	a	glass	of
water.	Of	course	I	wanted	to	be	popular.

But	in	fact	I	didn't,	not	enough.	There	was	something	else	I
wanted	more:	to	be	smart.	Not	simply	to	do	well	in	school,
though	that	counted	for	something,	but	to	design	beautiful
rockets,	or	to	write	well,	or	to	understand	how	to	program
computers.	In	general,	to	make	great	things.

At	the	time	I	never	tried	to	separate	my	wants	and	weigh	them
against	one	another.	If	I	had,	I	would	have	seen	that	being	smart

was	more	important.	If	someone	had	offered	me	the	chance	to	be
the	most	popular	kid	in	school,	but	only	at	the	price	of	being	of
average	intelligence	(humor	me	here),	I	wouldn't	have	taken	it.

Much	as	they	suffer	from	their	unpopularity,	I	don't	think	many
nerds	would.	To	them	the	thought	of	average	intelligence	is
unbearable.	But	most	kids	would	take	that	deal.	For	half	of	them,
it	would	be	a	step	up.	Even	for	someone	in	the	eightieth
percentile	(assuming,	as	everyone	seemed	to	then,	that
intelligence	is	a	scalar),	who	wouldn't	drop	thirty	points	in
exchange	for	being	loved	and	admired	by	everyone?

And	that,	I	think,	is	the	root	of	the	problem.	Nerds	serve	two
masters.	They	want	to	be	popular,	certainly,	but	they	want	even
more	to	be	smart.	And	popularity	is	not	something	you	can	do	in
your	spare	time,	not	in	the	fiercely	competitive	environment	of	an
American	secondary	school.

Alberti,	arguably	the	archetype	of	the	Renaissance	Man,	writes
that	"no	art,	however	minor,	demands	less	than	total	dedication	if
you	want	to	excel	in	it."	I	wonder	if	anyone	in	the	world	works
harder	at	anything	than	American	school	kids	work	at	popularity.
Navy	SEALs	and	neurosurgery	residents	seem	slackers	by
comparison.	They	occasionally	take	vacations;	some	even	have
hobbies.	An	American	teenager	may	work	at	being	popular	every
waking	hour,	365	days	a	year.

I	don't	mean	to	suggest	they	do	this	consciously.	Some	of	them
truly	are	little	Machiavellis,	but	what	I	really	mean	here	is	that
teenagers	are	always	on	duty	as	conformists.

For	example,	teenage	kids	pay	a	great	deal	of	attention	to
clothes.	They	don't	consciously	dress	to	be	popular.	They	dress	to
look	good.	But	to	who?	To	the	other	kids.	Other	kids'	opinions
become	their	definition	of	right,	not	just	for	clothes,	but	for
almost	everything	they	do,	right	down	to	the	way	they	walk.	And
so	every	effort	they	make	to	do	things	"right"	is	also,	consciously
or	not,	an	effort	to	be	more	popular.

Nerds	don't	realize	this.	They	don't	realize	that	it	takes	work	to
be	popular.	In	general,	people	outside	some	very	demanding	field
don't	realize	the	extent	to	which	success	depends	on	constant
(though	often	unconscious)	effort.	For	example,	most	people
seem	to	consider	the	ability	to	draw	as	some	kind	of	innate
quality,	like	being	tall.	In	fact,	most	people	who	"can	draw"	like
drawing,	and	have	spent	many	hours	doing	it;	that's	why	they're
good	at	it.	Likewise,	popular	isn't	just	something	you	are	or	you
aren't,	but	something	you	make	yourself.

The	main	reason	nerds	are	unpopular	is	that	they	have	other
things	to	think	about.	Their	attention	is	drawn	to	books	or	the
natural	world,	not	fashions	and	parties.	They're	like	someone
trying	to	play	soccer	while	balancing	a	glass	of	water	on	his
head.	Other	players	who	can	focus	their	whole	attention	on	the
game	beat	them	effortlessly,	and	wonder	why	they	seem	so
incapable.

Even	if	nerds	cared	as	much	as	other	kids	about	popularity,	being
popular	would	be	more	work	for	them.	The	popular	kids	learned
to	be	popular,	and	to	want	to	be	popular,	the	same	way	the	nerds
learned	to	be	smart,	and	to	want	to	be	smart:	from	their	parents.
While	the	nerds	were	being	trained	to	get	the	right	answers,	the
popular	kids	were	being	trained	to	please.

So	far	I've	been	finessing	the	relationship	between	smart	and
nerd,	using	them	as	if	they	were	interchangeable.	In	fact	it's	only
the	context	that	makes	them	so.	A	nerd	is	someone	who	isn't
socially	adept	enough.	But	"enough"	depends	on	where	you	are.
In	a	typical	American	school,	standards	for	coolness	are	so	high
(or	at	least,	so	specific)	that	you	don't	have	to	be	especially
awkward	to	look	awkward	by	comparison.

Few	smart	kids	can	spare	the	attention	that	popularity	requires.
Unless	they	also	happen	to	be	good-looking,	natural	athletes,	or
siblings	of	popular	kids,	they'll	tend	to	become	nerds.	And	that's
why	smart	people's	lives	are	worst	between,	say,	the	ages	of
eleven	and	seventeen.	Life	at	that	age	revolves	far	more	around
popularity	than	before	or	after.

Before	that,	kids'	lives	are	dominated	by	their	parents,	not	by
other	kids.	Kids	do	care	what	their	peers	think	in	elementary
school,	but	this	isn't	their	whole	life,	as	it	later	becomes.

Around	the	age	of	eleven,	though,	kids	seem	to	start	treating
their	family	as	a	day	job.	They	create	a	new	world	among
themselves,	and	standing	in	this	world	is	what	matters,	not
standing	in	their	family.	Indeed,	being	in	trouble	in	their	family
can	win	them	points	in	the	world	they	care	about.

The	problem	is,	the	world	these	kids	create	for	themselves	is	at
first	a	very	crude	one.	If	you	leave	a	bunch	of	eleven-year-olds	to
their	own	devices,	what	you	get	is	Lord	of	the	Flies.	Like	a	lot	of
American	kids,	I	read	this	book	in	school.	Presumably	it	was	not
a	coincidence.	Presumably	someone	wanted	to	point	out	to	us
that	we	were	savages,	and	that	we	had	made	ourselves	a	cruel
and	stupid	world.	This	was	too	subtle	for	me.	While	the	book
seemed	entirely	believable,	I	didn't	get	the	additional	message.	I
wish	they	had	just	told	us	outright	that	we	were	savages	and	our
world	was	stupid.

Nerds	would	find	their	unpopularity	more	bearable	if	it	merely
caused	them	to	be	ignored.	Unfortunately,	to	be	unpopular	in
school	is	to	be	actively	persecuted.

Why?	Once	again,	anyone	currently	in	school	might	think	this	a
strange	question	to	ask.	How	could	things	be	any	other	way?	But
they	could	be.	Adults	don't	normally	persecute	nerds.	Why	do
teenage	kids	do	it?

Partly	because	teenagers	are	still	half	children,	and	many
children	are	just	intrinsically	cruel.	Some	torture	nerds	for	the
same	reason	they	pull	the	legs	off	spiders.	Before	you	develop	a
conscience,	torture	is	amusing.

Another	reason	kids	persecute	nerds	is	to	make	themselves	feel
better.	When	you	tread	water,	you	lift	yourself	up	by	pushing
water	down.	Likewise,	in	any	social	hierarchy,	people	unsure	of

their	own	position	will	try	to	emphasize	it	by	maltreating	those
they	think	rank	below.	I've	read	that	this	is	why	poor	whites	in
the	United	States	are	the	group	most	hostile	to	blacks.

But	I	think	the	main	reason	other	kids	persecute	nerds	is	that	it's
part	of	the	mechanism	of	popularity.	Popularity	is	only	partially
about	individual	attractiveness.	It's	much	more	about	alliances.
To	become	more	popular,	you	need	to	be	constantly	doing	things
that	bring	you	close	to	other	popular	people,	and	nothing	brings
people	closer	than	a	common	enemy.

Like	a	politician	who	wants	to	distract	voters	from	bad	times	at
home,	you	can	create	an	enemy	if	there	isn't	a	real	one.	By
singling	out	and	persecuting	a	nerd,	a	group	of	kids	from	higher
in	the	hierarchy	create	bonds	between	themselves.	Attacking	an
outsider	makes	them	all	insiders.	This	is	why	the	worst	cases	of
bullying	happen	with	groups.	Ask	any	nerd:	you	get	much	worse
treatment	from	a	group	of	kids	than	from	any	individual	bully,
however	sadistic.

If	it's	any	consolation	to	the	nerds,	it's	nothing	personal.	The
group	of	kids	who	band	together	to	pick	on	you	are	doing	the
same	thing,	and	for	the	same	reason,	as	a	bunch	of	guys	who	get
together	to	go	hunting.	They	don't	actually	hate	you.	They	just
need	something	to	chase.

Because	they're	at	the	bottom	of	the	scale,	nerds	are	a	safe
target	for	the	entire	school.	If	I	remember	correctly,	the	most
popular	kids	don't	persecute	nerds;	they	don't	need	to	stoop	to
such	things.	Most	of	the	persecution	comes	from	kids	lower
down,	the	nervous	middle	classes.

The	trouble	is,	there	are	a	lot	of	them.	The	distribution	of
popularity	is	not	a	pyramid,	but	tapers	at	the	bottom	like	a	pear.
The	least	popular	group	is	quite	small.	(I	believe	we	were	the
only	D	table	in	our	cafeteria	map.)	So	there	are	more	people	who
want	to	pick	on	nerds	than	there	are	nerds.

As	well	as	gaining	points	by	distancing	oneself	from	unpopular
kids,	one	loses	points	by	being	close	to	them.	A	woman	I	know
says	that	in	high	school	she	liked	nerds,	but	was	afraid	to	be	seen

talking	to	them	because	the	other	girls	would	make	fun	of	her.
Unpopularity	is	a	communicable	disease;	kids	too	nice	to	pick	on
nerds	will	still	ostracize	them	in	self-defense.

It's	no	wonder,	then,	that	smart	kids	tend	to	be	unhappy	in
middle	school	and	high	school.	Their	other	interests	leave	them
little	attention	to	spare	for	popularity,	and	since	popularity
resembles	a	zero-sum	game,	this	in	turn	makes	them	targets	for
the	whole	school.	And	the	strange	thing	is,	this	nightmare
scenario	happens	without	any	conscious	malice,	merely	because
of	the	shape	of	the	situation.

For	me	the	worst	stretch	was	junior	high,	when	kid	culture	was
new	and	harsh,	and	the	specialization	that	would	later	gradually
separate	the	smarter	kids	had	barely	begun.	Nearly	everyone	I've
talked	to	agrees:	the	nadir	is	somewhere	between	eleven	and
fourteen.

In	our	school	it	was	eighth	grade,	which	was	ages	twelve	and
thirteen	for	me.	There	was	a	brief	sensation	that	year	when	one
of	our	teachers	overheard	a	group	of	girls	waiting	for	the	school
bus,	and	was	so	shocked	that	the	next	day	she	devoted	the	whole
class	to	an	eloquent	plea	not	to	be	so	cruel	to	one	another.

It	didn't	have	any	noticeable	effect.	What	struck	me	at	the	time
was	that	she	was	surprised.	You	mean	she	doesn't	know	the	kind
of	things	they	say	to	one	another?	You	mean	this	isn't	normal?

It's	important	to	realize	that,	no,	the	adults	don't	know	what	the
kids	are	doing	to	one	another.	They	know,	in	the	abstract,	that
kids	are	monstrously	cruel	to	one	another,	just	as	we	know	in	the
abstract	that	people	get	tortured	in	poorer	countries.	But,	like
us,	they	don't	like	to	dwell	on	this	depressing	fact,	and	they	don't
see	evidence	of	specific	abuses	unless	they	go	looking	for	it.

Public	school	teachers	are	in	much	the	same	position	as	prison
wardens.	Wardens'	main	concern	is	to	keep	the	prisoners	on	the
premises.	They	also	need	to	keep	them	fed,	and	as	far	as	possible
prevent	them	from	killing	one	another.	Beyond	that,	they	want	to

have	as	little	to	do	with	the	prisoners	as	possible,	so	they	leave
them	to	create	whatever	social	organization	they	want.	From
what	I've	read,	the	society	that	the	prisoners	create	is	warped,
savage,	and	pervasive,	and	it	is	no	fun	to	be	at	the	bottom	of	it.

In	outline,	it	was	the	same	at	the	schools	I	went	to.	The	most
important	thing	was	to	stay	on	the	premises.	While	there,	the
authorities	fed	you,	prevented	overt	violence,	and	made	some
effort	to	teach	you	something.	But	beyond	that	they	didn't	want
to	have	too	much	to	do	with	the	kids.	Like	prison	wardens,	the
teachers	mostly	left	us	to	ourselves.	And,	like	prisoners,	the
culture	we	created	was	barbaric.

Why	is	the	real	world	more	hospitable	to	nerds?	It	might	seem
that	the	answer	is	simply	that	it's	populated	by	adults,	who	are
too	mature	to	pick	on	one	another.	But	I	don't	think	this	is	true.
Adults	in	prison	certainly	pick	on	one	another.	And	so,
apparently,	do	society	wives;	in	some	parts	of	Manhattan,	life	for
women	sounds	like	a	continuation	of	high	school,	with	all	the
same	petty	intrigues.

I	think	the	important	thing	about	the	real	world	is	not	that	it's
populated	by	adults,	but	that	it's	very	large,	and	the	things	you
do	have	real	effects.	That's	what	school,	prison,	and	ladies-who-
lunch	all	lack.	The	inhabitants	of	all	those	worlds	are	trapped	in
little	bubbles	where	nothing	they	do	can	have	more	than	a	local
effect.	Naturally	these	societies	degenerate	into	savagery.	They
have	no	function	for	their	form	to	follow.

When	the	things	you	do	have	real	effects,	it's	no	longer	enough
just	to	be	pleasing.	It	starts	to	be	important	to	get	the	right
answers,	and	that's	where	nerds	show	to	advantage.	Bill	Gates
will	of	course	come	to	mind.	Though	notoriously	lacking	in	social
skills,	he	gets	the	right	answers,	at	least	as	measured	in	revenue.

The	other	thing	that's	different	about	the	real	world	is	that	it's
much	larger.	In	a	large	enough	pool,	even	the	smallest	minorities
can	achieve	a	critical	mass	if	they	clump	together.	Out	in	the	real
world,	nerds	collect	in	certain	places	and	form	their	own

societies	where	intelligence	is	the	most	important	thing.
Sometimes	the	current	even	starts	to	flow	in	the	other	direction:
sometimes,	particularly	in	university	math	and	science
departments,	nerds	deliberately	exaggerate	their	awkwardness
in	order	to	seem	smarter.	John	Nash	so	admired	Norbert	Wiener
that	he	adopted	his	habit	of	touching	the	wall	as	he	walked	down
a	corridor.

As	a	thirteen-year-old	kid,	I	didn't	have	much	more	experience	of
the	world	than	what	I	saw	immediately	around	me.	The	warped
little	world	we	lived	in	was,	I	thought,	the	world.	The	world
seemed	cruel	and	boring,	and	I'm	not	sure	which	was	worse.

Because	I	didn't	fit	into	this	world,	I	thought	that	something	must
be	wrong	with	me.	I	didn't	realize	that	the	reason	we	nerds	didn't
fit	in	was	that	in	some	ways	we	were	a	step	ahead.	We	were
already	thinking	about	the	kind	of	things	that	matter	in	the	real
world,	instead	of	spending	all	our	time	playing	an	exacting	but
mostly	pointless	game	like	the	others.

We	were	a	bit	like	an	adult	would	be	if	he	were	thrust	back	into
middle	school.	He	wouldn't	know	the	right	clothes	to	wear,	the
right	music	to	like,	the	right	slang	to	use.	He'd	seem	to	the	kids	a
complete	alien.	The	thing	is,	he'd	know	enough	not	to	care	what
they	thought.	We	had	no	such	confidence.

A	lot	of	people	seem	to	think	it's	good	for	smart	kids	to	be	thrown
together	with	"normal"	kids	at	this	stage	of	their	lives.	Perhaps.
But	in	at	least	some	cases	the	reason	the	nerds	don't	fit	in	really
is	that	everyone	else	is	crazy.	I	remember	sitting	in	the	audience
at	a	"pep	rally"	at	my	high	school,	watching	as	the	cheerleaders
threw	an	effigy	of	an	opposing	player	into	the	audience	to	be	torn
to	pieces.	I	felt	like	an	explorer	witnessing	some	bizarre	tribal
ritual.

If	I	could	go	back	and	give	my	thirteen	year	old	self	some	advice,
the	main	thing	I'd	tell	him	would	be	to	stick	his	head	up	and	look

around.	I	didn't	really	grasp	it	at	the	time,	but	the	whole	world
we	lived	in	was	as	fake	as	a	Twinkie.	Not	just	school,	but	the
entire	town.	Why	do	people	move	to	suburbia?	To	have	kids!	So
no	wonder	it	seemed	boring	and	sterile.	The	whole	place	was	a
giant	nursery,	an	artificial	town	created	explicitly	for	the	purpose
of	breeding	children.

Where	I	grew	up,	it	felt	as	if	there	was	nowhere	to	go,	and
nothing	to	do.	This	was	no	accident.	Suburbs	are	deliberately
designed	to	exclude	the	outside	world,	because	it	contains	things
that	could	endanger	children.

And	as	for	the	schools,	they	were	just	holding	pens	within	this
fake	world.	Officially	the	purpose	of	schools	is	to	teach	kids.	In
fact	their	primary	purpose	is	to	keep	kids	locked	up	in	one	place
for	a	big	chunk	of	the	day	so	adults	can	get	things	done.	And	I
have	no	problem	with	this:	in	a	specialized	industrial	society,	it
would	be	a	disaster	to	have	kids	running	around	loose.

What	bothers	me	is	not	that	the	kids	are	kept	in	prisons,	but	that
(a)	they	aren't	told	about	it,	and	(b)	the	prisons	are	run	mostly	by
the	inmates.	Kids	are	sent	off	to	spend	six	years	memorizing
meaningless	facts	in	a	world	ruled	by	a	caste	of	giants	who	run
after	an	oblong	brown	ball,	as	if	this	were	the	most	natural	thing
in	the	world.	And	if	they	balk	at	this	surreal	cocktail,	they're
called	misfits.

Life	in	this	twisted	world	is	stressful	for	the	kids.	And	not	just	for
the	nerds.	Like	any	war,	it's	damaging	even	to	the	winners.

Adults	can't	avoid	seeing	that	teenage	kids	are	tormented.	So
why	don't	they	do	something	about	it?	Because	they	blame	it	on
puberty.	The	reason	kids	are	so	unhappy,	adults	tell	themselves,
is	that	monstrous	new	chemicals,	hormones,	are	now	coursing
through	their	bloodstream	and	messing	up	everything.	There's
nothing	wrong	with	the	system;	it's	just	inevitable	that	kids	will
be	miserable	at	that	age.

This	idea	is	so	pervasive	that	even	the	kids	believe	it,	which

probably	doesn't	help.	Someone	who	thinks	his	feet	naturally
hurt	is	not	going	to	stop	to	consider	the	possibility	that	he	is
wearing	the	wrong	size	shoes.

I'm	suspicious	of	this	theory	that	thirteen-year-old	kids	are
intrinsically	messed	up.	If	it's	physiological,	it	should	be
universal.	Are	Mongol	nomads	all	nihilists	at	thirteen?	I've	read	a
lot	of	history,	and	I	have	not	seen	a	single	reference	to	this
supposedly	universal	fact	before	the	twentieth	century.	Teenage
apprentices	in	the	Renaissance	seem	to	have	been	cheerful	and
eager.	They	got	in	fights	and	played	tricks	on	one	another	of
course	(Michelangelo	had	his	nose	broken	by	a	bully),	but	they
weren't	crazy.

As	far	as	I	can	tell,	the	concept	of	the	hormone-crazed	teenager
is	coeval	with	suburbia.	I	don't	think	this	is	a	coincidence.	I	think
teenagers	are	driven	crazy	by	the	life	they're	made	to	lead.
Teenage	apprentices	in	the	Renaissance	were	working	dogs.
Teenagers	now	are	neurotic	lapdogs.	Their	craziness	is	the
craziness	of	the	idle	everywhere.

When	I	was	in	school,	suicide	was	a	constant	topic	among	the
smarter	kids.	No	one	I	knew	did	it,	but	several	planned	to,	and
some	may	have	tried.	Mostly	this	was	just	a	pose.	Like	other
teenagers,	we	loved	the	dramatic,	and	suicide	seemed	very
dramatic.	But	partly	it	was	because	our	lives	were	at	times
genuinely	miserable.

Bullying	was	only	part	of	the	problem.	Another	problem,	and
possibly	an	even	worse	one,	was	that	we	never	had	anything	real
to	work	on.	Humans	like	to	work;	in	most	of	the	world,	your	work
is	your	identity.	And	all	the	work	we	did	was	pointless,	or	seemed
so	at	the	time.

At	best	it	was	practice	for	real	work	we	might	do	far	in	the
future,	so	far	that	we	didn't	even	know	at	the	time	what	we	were
practicing	for.	More	often	it	was	just	an	arbitrary	series	of	hoops
to	jump	through,	words	without	content	designed	mainly	for
testability.	(The	three	main	causes	of	the	Civil	War	were....	Test:

essay.html

List	the	three	main	causes	of	the	Civil	War.)

And	there	was	no	way	to	opt	out.	The	adults	had	agreed	among
themselves	that	this	was	to	be	the	route	to	college.	The	only	way
to	escape	this	empty	life	was	to	submit	to	it.

Teenage	kids	used	to	have	a	more	active	role	in	society.	In	pre-
industrial	times,	they	were	all	apprentices	of	one	sort	or	another,
whether	in	shops	or	on	farms	or	even	on	warships.	They	weren't
left	to	create	their	own	societies.	They	were	junior	members	of
adult	societies.

Teenagers	seem	to	have	respected	adults	more	then,	because	the
adults	were	the	visible	experts	in	the	skills	they	were	trying	to
learn.	Now	most	kids	have	little	idea	what	their	parents	do	in
their	distant	offices,	and	see	no	connection	(indeed,	there	is
precious	little)	between	schoolwork	and	the	work	they'll	do	as
adults.

And	if	teenagers	respected	adults	more,	adults	also	had	more	use
for	teenagers.	After	a	couple	years'	training,	an	apprentice	could
be	a	real	help.	Even	the	newest	apprentice	could	be	made	to
carry	messages	or	sweep	the	workshop.

Now	adults	have	no	immediate	use	for	teenagers.	They	would	be
in	the	way	in	an	office.	So	they	drop	them	off	at	school	on	their
way	to	work,	much	as	they	might	drop	the	dog	off	at	a	kennel	if
they	were	going	away	for	the	weekend.

What	happened?	We're	up	against	a	hard	one	here.	The	cause	of
this	problem	is	the	same	as	the	cause	of	so	many	present	ills:
specialization.	As	jobs	become	more	specialized,	we	have	to	train
longer	for	them.	Kids	in	pre-industrial	times	started	working	at
about	14	at	the	latest;	kids	on	farms,	where	most	people	lived,
began	far	earlier.	Now	kids	who	go	to	college	don't	start	working
full-time	till	21	or	22.	With	some	degrees,	like	MDs	and	PhDs,
you	may	not	finish	your	training	till	30.

Teenagers	now	are	useless,	except	as	cheap	labor	in	industries

like	fast	food,	which	evolved	to	exploit	precisely	this	fact.	In
almost	any	other	kind	of	work,	they'd	be	a	net	loss.	But	they're
also	too	young	to	be	left	unsupervised.	Someone	has	to	watch
over	them,	and	the	most	efficient	way	to	do	this	is	to	collect	them
together	in	one	place.	Then	a	few	adults	can	watch	all	of	them.

If	you	stop	there,	what	you're	describing	is	literally	a	prison,
albeit	a	part-time	one.	The	problem	is,	many	schools	practically
do	stop	there.	The	stated	purpose	of	schools	is	to	educate	the
kids.	But	there	is	no	external	pressure	to	do	this	well.	And	so
most	schools	do	such	a	bad	job	of	teaching	that	the	kids	don't
really	take	it	seriously--	not	even	the	smart	kids.	Much	of	the
time	we	were	all,	students	and	teachers	both,	just	going	through
the	motions.

In	my	high	school	French	class	we	were	supposed	to	read	Hugo's
Les	Miserables.	I	don't	think	any	of	us	knew	French	well	enough
to	make	our	way	through	this	enormous	book.	Like	the	rest	of	the
class,	I	just	skimmed	the	Cliff's	Notes.	When	we	were	given	a	test
on	the	book,	I	noticed	that	the	questions	sounded	odd.	They	were
full	of	long	words	that	our	teacher	wouldn't	have	used.	Where
had	these	questions	come	from?	From	the	Cliff's	Notes,	it	turned
out.	The	teacher	was	using	them	too.	We	were	all	just
pretending.

There	are	certainly	great	public	school	teachers.	The	energy	and
imagination	of	my	fourth	grade	teacher,	Mr.	Mihalko,	made	that
year	something	his	students	still	talk	about,	thirty	years	later.	But
teachers	like	him	were	individuals	swimming	upstream.	They
couldn't	fix	the	system.

In	almost	any	group	of	people	you'll	find	hierarchy.	When	groups
of	adults	form	in	the	real	world,	it's	generally	for	some	common
purpose,	and	the	leaders	end	up	being	those	who	are	best	at	it.
The	problem	with	most	schools	is,	they	have	no	purpose.	But
hierarchy	there	must	be.	And	so	the	kids	make	one	out	of
nothing.

We	have	a	phrase	to	describe	what	happens	when	rankings	have

to	be	created	without	any	meaningful	criteria.	We	say	that	the
situation	degenerates	into	a	popularity	contest.	And	that's
exactly	what	happens	in	most	American	schools.	Instead	of
depending	on	some	real	test,	one's	rank	depends	mostly	on	one's
ability	to	increase	one's	rank.	It's	like	the	court	of	Louis	XIV.
There	is	no	external	opponent,	so	the	kids	become	one	another's
opponents.

When	there	is	some	real	external	test	of	skill,	it	isn't	painful	to	be
at	the	bottom	of	the	hierarchy.	A	rookie	on	a	football	team
doesn't	resent	the	skill	of	the	veteran;	he	hopes	to	be	like	him
one	day	and	is	happy	to	have	the	chance	to	learn	from	him.	The
veteran	may	in	turn	feel	a	sense	of	noblesse	oblige.	And	most
importantly,	their	status	depends	on	how	well	they	do	against
opponents,	not	on	whether	they	can	push	the	other	down.

Court	hierarchies	are	another	thing	entirely.	This	type	of	society
debases	anyone	who	enters	it.	There	is	neither	admiration	at	the
bottom,	nor	noblesse	oblige	at	the	top.	It's	kill	or	be	killed.

This	is	the	sort	of	society	that	gets	created	in	American
secondary	schools.	And	it	happens	because	these	schools	have	no
real	purpose	beyond	keeping	the	kids	all	in	one	place	for	a
certain	number	of	hours	each	day.	What	I	didn't	realize	at	the
time,	and	in	fact	didn't	realize	till	very	recently,	is	that	the	twin
horrors	of	school	life,	the	cruelty	and	the	boredom,	both	have	the
same	cause.

The	mediocrity	of	American	public	schools	has	worse
consequences	than	just	making	kids	unhappy	for	six	years.	It
breeds	a	rebelliousness	that	actively	drives	kids	away	from	the
things	they're	supposed	to	be	learning.

Like	many	nerds,	probably,	it	was	years	after	high	school	before	I
could	bring	myself	to	read	anything	we'd	been	assigned	then.
And	I	lost	more	than	books.	I	mistrusted	words	like	"character"
and	"integrity"	because	they	had	been	so	debased	by	adults.	As
they	were	used	then,	these	words	all	seemed	to	mean	the	same
thing:	obedience.	The	kids	who	got	praised	for	these	qualities

tended	to	be	at	best	dull-witted	prize	bulls,	and	at	worst	facile
schmoozers.	If	that	was	what	character	and	integrity	were,	I
wanted	no	part	of	them.

The	word	I	most	misunderstood	was	"tact."	As	used	by	adults,	it
seemed	to	mean	keeping	your	mouth	shut.	I	assumed	it	was
derived	from	the	same	root	as	"tacit"	and	"taciturn,"	and	that	it
literally	meant	being	quiet.	I	vowed	that	I	would	never	be	tactful;
they	were	never	going	to	shut	me	up.	In	fact,	it's	derived	from
the	same	root	as	"tactile,"	and	what	it	means	is	to	have	a	deft
touch.	Tactful	is	the	opposite	of	clumsy.	I	don't	think	I	learned
this	until	college.

Nerds	aren't	the	only	losers	in	the	popularity	rat	race.	Nerds	are
unpopular	because	they're	distracted.	There	are	other	kids	who
deliberately	opt	out	because	they're	so	disgusted	with	the	whole
process.

Teenage	kids,	even	rebels,	don't	like	to	be	alone,	so	when	kids
opt	out	of	the	system,	they	tend	to	do	it	as	a	group.	At	the	schools
I	went	to,	the	focus	of	rebellion	was	drug	use,	specifically
marijuana.	The	kids	in	this	tribe	wore	black	concert	t-shirts	and
were	called	"freaks."

Freaks	and	nerds	were	allies,	and	there	was	a	good	deal	of
overlap	between	them.	Freaks	were	on	the	whole	smarter	than
other	kids,	though	never	studying	(or	at	least	never	appearing	to)
was	an	important	tribal	value.	I	was	more	in	the	nerd	camp,	but	I
was	friends	with	a	lot	of	freaks.

They	used	drugs,	at	least	at	first,	for	the	social	bonds	they
created.	It	was	something	to	do	together,	and	because	the	drugs
were	illegal,	it	was	a	shared	badge	of	rebellion.

I'm	not	claiming	that	bad	schools	are	the	whole	reason	kids	get
into	trouble	with	drugs.	After	a	while,	drugs	have	their	own
momentum.	No	doubt	some	of	the	freaks	ultimately	used	drugs	to
escape	from	other	problems--	trouble	at	home,	for	example.	But,
in	my	school	at	least,	the	reason	most	kids	started	using	drugs

was	rebellion.	Fourteen-year-olds	didn't	start	smoking	pot
because	they'd	heard	it	would	help	them	forget	their	problems.
They	started	because	they	wanted	to	join	a	different	tribe.

Misrule	breeds	rebellion;	this	is	not	a	new	idea.	And	yet	the
authorities	still	for	the	most	part	act	as	if	drugs	were	themselves
the	cause	of	the	problem.

The	real	problem	is	the	emptiness	of	school	life.	We	won't	see
solutions	till	adults	realize	that.	The	adults	who	may	realize	it
first	are	the	ones	who	were	themselves	nerds	in	school.	Do	you
want	your	kids	to	be	as	unhappy	in	eighth	grade	as	you	were?	I
wouldn't.	Well,	then,	is	there	anything	we	can	do	to	fix	things?
Almost	certainly.	There	is	nothing	inevitable	about	the	current
system.	It	has	come	about	mostly	by	default.

Adults,	though,	are	busy.	Showing	up	for	school	plays	is	one
thing.	Taking	on	the	educational	bureaucracy	is	another.	Perhaps
a	few	will	have	the	energy	to	try	to	change	things.	I	suspect	the
hardest	part	is	realizing	that	you	can.

Nerds	still	in	school	should	not	hold	their	breath.	Maybe	one	day
a	heavily	armed	force	of	adults	will	show	up	in	helicopters	to
rescue	you,	but	they	probably	won't	be	coming	this	month.	Any
immediate	improvement	in	nerds'	lives	is	probably	going	to	have
to	come	from	the	nerds	themselves.

Merely	understanding	the	situation	they're	in	should	make	it	less
painful.	Nerds	aren't	losers.	They're	just	playing	a	different
game,	and	a	game	much	closer	to	the	one	played	in	the	real
world.	Adults	know	this.	It's	hard	to	find	successful	adults	now
who	don't	claim	to	have	been	nerds	in	high	school.

It's	important	for	nerds	to	realize,	too,	that	school	is	not	life.
School	is	a	strange,	artificial	thing,	half	sterile	and	half	feral.	It's
all-encompassing,	like	life,	but	it	isn't	the	real	thing.	It's	only
temporary,	and	if	you	look,	you	can	see	beyond	it	even	while
you're	still	in	it.

If	life	seems	awful	to	kids,	it's	neither	because	hormones	are
turning	you	all	into	monsters	(as	your	parents	believe),	nor
because	life	actually	is	awful	(as	you	believe).	It's	because	the
adults,	who	no	longer	have	any	economic	use	for	you,	have
abandoned	you	to	spend	years	cooped	up	together	with	nothing
real	to	do.	Any	society	of	that	type	is	awful	to	live	in.	You	don't
have	to	look	any	further	to	explain	why	teenage	kids	are
unhappy.

I've	said	some	harsh	things	in	this	essay,	but	really	the	thesis	is
an	optimistic	one--	that	several	problems	we	take	for	granted	are
in	fact	not	insoluble	after	all.	Teenage	kids	are	not	inherently
unhappy	monsters.	That	should	be	encouraging	news	to	kids	and
adults	both.

Thanks	to	Sarah	Harlin,	Trevor	Blackwell,	Robert	Morris,	Eric
Raymond,	and	Jackie	Weicker	for	reading	drafts	of	this	essay,	and
Maria	Daniels	for	scanning	photos.

	

The	Hundred-Year	Language
April	2003

(This	essay	is	derived	from	a	keynote	talk	at	PyCon	2003.)

It's	hard	to	predict	what	life	will	be	like	in	a	hundred	years.
There	are	only	a	few	things	we	can	say	with	certainty.	We	know
that	everyone	will	drive	flying	cars,	that	zoning	laws	will	be
relaxed	to	allow	buildings	hundreds	of	stories	tall,	that	it	will	be
dark	most	of	the	time,	and	that	women	will	all	be	trained	in	the
martial	arts.	Here	I	want	to	zoom	in	on	one	detail	of	this	picture.
What	kind	of	programming	language	will	they	use	to	write	the
software	controlling	those	flying	cars?

This	is	worth	thinking	about	not	so	much	because	we'll	actually
get	to	use	these	languages	as	because,	if	we're	lucky,	we'll	use
languages	on	the	path	from	this	point	to	that.

I	think	that,	like	species,	languages	will	form	evolutionary	trees,
with	dead-ends	branching	off	all	over.	We	can	see	this	happening
already.	Cobol,	for	all	its	sometime	popularity,	does	not	seem	to
have	any	intellectual	descendants.	It	is	an	evolutionary	dead-end-
-	a	Neanderthal	language.

I	predict	a	similar	fate	for	Java.	People	sometimes	send	me	mail
saying,	"How	can	you	say	that	Java	won't	turn	out	to	be	a
successful	language?	It's	already	a	successful	language."	And	I
admit	that	it	is,	if	you	measure	success	by	shelf	space	taken	up
by	books	on	it	(particularly	individual	books	on	it),	or	by	the
number	of	undergrads	who	believe	they	have	to	learn	it	to	get	a
job.	When	I	say	Java	won't	turn	out	to	be	a	successful	language,	I
mean	something	more	specific:	that	Java	will	turn	out	to	be	an
evolutionary	dead-end,	like	Cobol.

This	is	just	a	guess.	I	may	be	wrong.	My	point	here	is	not	to	dis
Java,	but	to	raise	the	issue	of	evolutionary	trees	and	get	people
asking,	where	on	the	tree	is	language	X?	The	reason	to	ask	this
question	isn't	just	so	that	our	ghosts	can	say,	in	a	hundred	years,
I	told	you	so.	It's	because	staying	close	to	the	main	branches	is	a
useful	heuristic	for	finding	languages	that	will	be	good	to
program	in	now.

At	any	given	time,	you're	probably	happiest	on	the	main	branches
of	an	evolutionary	tree.	Even	when	there	were	still	plenty	of
Neanderthals,	it	must	have	sucked	to	be	one.	The	Cro-Magnons
would	have	been	constantly	coming	over	and	beating	you	up	and
stealing	your	food.

The	reason	I	want	to	know	what	languages	will	be	like	in	a
hundred	years	is	so	that	I	know	what	branch	of	the	tree	to	bet	on
now.

The	evolution	of	languages	differs	from	the	evolution	of	species
because	branches	can	converge.	The	Fortran	branch,	for
example,	seems	to	be	merging	with	the	descendants	of	Algol.	In
theory	this	is	possible	for	species	too,	but	it's	not	likely	to	have
happened	to	any	bigger	than	a	cell.

Convergence	is	more	likely	for	languages	partly	because	the
space	of	possibilities	is	smaller,	and	partly	because	mutations	are
not	random.	Language	designers	deliberately	incorporate	ideas
from	other	languages.

It's	especially	useful	for	language	designers	to	think	about	where
the	evolution	of	programming	languages	is	likely	to	lead,	because
they	can	steer	accordingly.	In	that	case,	"stay	on	a	main	branch"
becomes	more	than	a	way	to	choose	a	good	language.	It	becomes
a	heuristic	for	making	the	right	decisions	about	language	design.

Any	programming	language	can	be	divided	into	two	parts:	some
set	of	fundamental	operators	that	play	the	role	of	axioms,	and	the

rest	of	the	language,	which	could	in	principle	be	written	in	terms
of	these	fundamental	operators.

I	think	the	fundamental	operators	are	the	most	important	factor
in	a	language's	long	term	survival.	The	rest	you	can	change.	It's
like	the	rule	that	in	buying	a	house	you	should	consider	location
first	of	all.	Everything	else	you	can	fix	later,	but	you	can't	fix	the
location.

I	think	it's	important	not	just	that	the	axioms	be	well	chosen,	but
that	there	be	few	of	them.	Mathematicians	have	always	felt	this
way	about	axioms--	the	fewer,	the	better--	and	I	think	they're	onto
something.

At	the	very	least,	it	has	to	be	a	useful	exercise	to	look	closely	at
the	core	of	a	language	to	see	if	there	are	any	axioms	that	could
be	weeded	out.	I've	found	in	my	long	career	as	a	slob	that	cruft
breeds	cruft,	and	I've	seen	this	happen	in	software	as	well	as
under	beds	and	in	the	corners	of	rooms.

I	have	a	hunch	that	the	main	branches	of	the	evolutionary	tree
pass	through	the	languages	that	have	the	smallest,	cleanest
cores.	The	more	of	a	language	you	can	write	in	itself,	the	better.

Of	course,	I'm	making	a	big	assumption	in	even	asking	what
programming	languages	will	be	like	in	a	hundred	years.	Will	we
even	be	writing	programs	in	a	hundred	years?	Won't	we	just	tell
computers	what	we	want	them	to	do?

There	hasn't	been	a	lot	of	progress	in	that	department	so	far.	My
guess	is	that	a	hundred	years	from	now	people	will	still	tell
computers	what	to	do	using	programs	we	would	recognize	as
such.	There	may	be	tasks	that	we	solve	now	by	writing	programs
and	which	in	a	hundred	years	you	won't	have	to	write	programs
to	solve,	but	I	think	there	will	still	be	a	good	deal	of
programming	of	the	type	that	we	do	today.

It	may	seem	presumptuous	to	think	anyone	can	predict	what	any
technology	will	look	like	in	a	hundred	years.	But	remember	that

we	already	have	almost	fifty	years	of	history	behind	us.	Looking
forward	a	hundred	years	is	a	graspable	idea	when	we	consider
how	slowly	languages	have	evolved	in	the	past	fifty.

Languages	evolve	slowly	because	they're	not	really	technologies.
Languages	are	notation.	A	program	is	a	formal	description	of	the
problem	you	want	a	computer	to	solve	for	you.	So	the	rate	of
evolution	in	programming	languages	is	more	like	the	rate	of
evolution	in	mathematical	notation	than,	say,	transportation	or
communications.	Mathematical	notation	does	evolve,	but	not
with	the	giant	leaps	you	see	in	technology.

Whatever	computers	are	made	of	in	a	hundred	years,	it	seems
safe	to	predict	they	will	be	much	faster	than	they	are	now.	If
Moore's	Law	continues	to	put	out,	they	will	be	74	quintillion
(73,786,976,294,838,206,464)	times	faster.	That's	kind	of	hard	to
imagine.	And	indeed,	the	most	likely	prediction	in	the	speed
department	may	be	that	Moore's	Law	will	stop	working.	Anything
that	is	supposed	to	double	every	eighteen	months	seems	likely	to
run	up	against	some	kind	of	fundamental	limit	eventually.	But	I
have	no	trouble	believing	that	computers	will	be	very	much
faster.	Even	if	they	only	end	up	being	a	paltry	million	times
faster,	that	should	change	the	ground	rules	for	programming
languages	substantially.	Among	other	things,	there	will	be	more
room	for	what	would	now	be	considered	slow	languages,
meaning	languages	that	don't	yield	very	efficient	code.

And	yet	some	applications	will	still	demand	speed.	Some	of	the
problems	we	want	to	solve	with	computers	are	created	by
computers;	for	example,	the	rate	at	which	you	have	to	process
video	images	depends	on	the	rate	at	which	another	computer	can
generate	them.	And	there	is	another	class	of	problems	which
inherently	have	an	unlimited	capacity	to	soak	up	cycles:	image
rendering,	cryptography,	simulations.

If	some	applications	can	be	increasingly	inefficient	while	others
continue	to	demand	all	the	speed	the	hardware	can	deliver,	faster
computers	will	mean	that	languages	have	to	cover	an	ever	wider
range	of	efficiencies.	We've	seen	this	happening	already.	Current

implementations	of	some	popular	new	languages	are	shockingly
wasteful	by	the	standards	of	previous	decades.

This	isn't	just	something	that	happens	with	programming
languages.	It's	a	general	historical	trend.	As	technologies
improve,	each	generation	can	do	things	that	the	previous
generation	would	have	considered	wasteful.	People	thirty	years
ago	would	be	astonished	at	how	casually	we	make	long	distance
phone	calls.	People	a	hundred	years	ago	would	be	even	more
astonished	that	a	package	would	one	day	travel	from	Boston	to
New	York	via	Memphis.

I	can	already	tell	you	what's	going	to	happen	to	all	those	extra
cycles	that	faster	hardware	is	going	to	give	us	in	the	next
hundred	years.	They're	nearly	all	going	to	be	wasted.

I	learned	to	program	when	computer	power	was	scarce.	I	can
remember	taking	all	the	spaces	out	of	my	Basic	programs	so	they
would	fit	into	the	memory	of	a	4K	TRS-80.	The	thought	of	all	this
stupendously	inefficient	software	burning	up	cycles	doing	the
same	thing	over	and	over	seems	kind	of	gross	to	me.	But	I	think
my	intuitions	here	are	wrong.	I'm	like	someone	who	grew	up
poor,	and	can't	bear	to	spend	money	even	for	something
important,	like	going	to	the	doctor.

Some	kinds	of	waste	really	are	disgusting.	SUVs,	for	example,
would	arguably	be	gross	even	if	they	ran	on	a	fuel	which	would
never	run	out	and	generated	no	pollution.	SUVs	are	gross
because	they're	the	solution	to	a	gross	problem.	(How	to	make
minivans	look	more	masculine.)	But	not	all	waste	is	bad.	Now
that	we	have	the	infrastructure	to	support	it,	counting	the
minutes	of	your	long-distance	calls	starts	to	seem	niggling.	If	you
have	the	resources,	it's	more	elegant	to	think	of	all	phone	calls	as
one	kind	of	thing,	no	matter	where	the	other	person	is.

There's	good	waste,	and	bad	waste.	I'm	interested	in	good	waste-
-	the	kind	where,	by	spending	more,	we	can	get	simpler	designs.
How	will	we	take	advantage	of	the	opportunities	to	waste	cycles
that	we'll	get	from	new,	faster	hardware?

The	desire	for	speed	is	so	deeply	engrained	in	us,	with	our	puny
computers,	that	it	will	take	a	conscious	effort	to	overcome	it.	In
language	design,	we	should	be	consciously	seeking	out	situations
where	we	can	trade	efficiency	for	even	the	smallest	increase	in
convenience.

Most	data	structures	exist	because	of	speed.	For	example,	many
languages	today	have	both	strings	and	lists.	Semantically,	strings
are	more	or	less	a	subset	of	lists	in	which	the	elements	are
characters.	So	why	do	you	need	a	separate	data	type?	You	don't,
really.	Strings	only	exist	for	efficiency.	But	it's	lame	to	clutter	up
the	semantics	of	the	language	with	hacks	to	make	programs	run
faster.	Having	strings	in	a	language	seems	to	be	a	case	of
premature	optimization.

If	we	think	of	the	core	of	a	language	as	a	set	of	axioms,	surely	it's
gross	to	have	additional	axioms	that	add	no	expressive	power,
simply	for	the	sake	of	efficiency.	Efficiency	is	important,	but	I
don't	think	that's	the	right	way	to	get	it.

The	right	way	to	solve	that	problem,	I	think,	is	to	separate	the
meaning	of	a	program	from	the	implementation	details.	Instead
of	having	both	lists	and	strings,	have	just	lists,	with	some	way	to
give	the	compiler	optimization	advice	that	will	allow	it	to	lay	out
strings	as	contiguous	bytes	if	necessary.

Since	speed	doesn't	matter	in	most	of	a	program,	you	won't
ordinarily	need	to	bother	with	this	sort	of	micromanagement.
This	will	be	more	and	more	true	as	computers	get	faster.

Saying	less	about	implementation	should	also	make	programs
more	flexible.	Specifications	change	while	a	program	is	being
written,	and	this	is	not	only	inevitable,	but	desirable.

The	word	"essay"	comes	from	the	French	verb	"essayer",	which
means	"to	try".	An	essay,	in	the	original	sense,	is	something	you

write	to	try	to	figure	something	out.	This	happens	in	software
too.	I	think	some	of	the	best	programs	were	essays,	in	the	sense
that	the	authors	didn't	know	when	they	started	exactly	what	they
were	trying	to	write.

Lisp	hackers	already	know	about	the	value	of	being	flexible	with
data	structures.	We	tend	to	write	the	first	version	of	a	program
so	that	it	does	everything	with	lists.	These	initial	versions	can	be
so	shockingly	inefficient	that	it	takes	a	conscious	effort	not	to
think	about	what	they're	doing,	just	as,	for	me	at	least,	eating	a
steak	requires	a	conscious	effort	not	to	think	where	it	came	from.

What	programmers	in	a	hundred	years	will	be	looking	for,	most
of	all,	is	a	language	where	you	can	throw	together	an
unbelievably	inefficient	version	1	of	a	program	with	the	least
possible	effort.	At	least,	that's	how	we'd	describe	it	in	present-
day	terms.	What	they'll	say	is	that	they	want	a	language	that's
easy	to	program	in.

Inefficient	software	isn't	gross.	What's	gross	is	a	language	that
makes	programmers	do	needless	work.	Wasting	programmer
time	is	the	true	inefficiency,	not	wasting	machine	time.	This	will
become	ever	more	clear	as	computers	get	faster.

I	think	getting	rid	of	strings	is	already	something	we	could	bear
to	think	about.	We	did	it	in	Arc,	and	it	seems	to	be	a	win;	some
operations	that	would	be	awkward	to	describe	as	regular
expressions	can	be	described	easily	as	recursive	functions.

How	far	will	this	flattening	of	data	structures	go?	I	can	think	of
possibilities	that	shock	even	me,	with	my	conscientiously
broadened	mind.	Will	we	get	rid	of	arrays,	for	example?	After	all,
they're	just	a	subset	of	hash	tables	where	the	keys	are	vectors	of
integers.	Will	we	replace	hash	tables	themselves	with	lists?

There	are	more	shocking	prospects	even	than	that.	The	Lisp	that
McCarthy	described	in	1960,	for	example,	didn't	have	numbers.
Logically,	you	don't	need	to	have	a	separate	notion	of	numbers,
because	you	can	represent	them	as	lists:	the	integer	n	could	be

arc.html

represented	as	a	list	of	n	elements.	You	can	do	math	this	way.	It's
just	unbearably	inefficient.

No	one	actually	proposed	implementing	numbers	as	lists	in
practice.	In	fact,	McCarthy's	1960	paper	was	not,	at	the	time,
intended	to	be	implemented	at	all.	It	was	a	theoretical	exercise,
an	attempt	to	create	a	more	elegant	alternative	to	the	Turing
Machine.	When	someone	did,	unexpectedly,	take	this	paper	and
translate	it	into	a	working	Lisp	interpreter,	numbers	certainly
weren't	represented	as	lists;	they	were	represented	in	binary,	as
in	every	other	language.

Could	a	programming	language	go	so	far	as	to	get	rid	of	numbers
as	a	fundamental	data	type?	I	ask	this	not	so	much	as	a	serious
question	as	as	a	way	to	play	chicken	with	the	future.	It's	like	the
hypothetical	case	of	an	irresistible	force	meeting	an	immovable
object--	here,	an	unimaginably	inefficient	implementation
meeting	unimaginably	great	resources.	I	don't	see	why	not.	The
future	is	pretty	long.	If	there's	something	we	can	do	to	decrease
the	number	of	axioms	in	the	core	language,	that	would	seem	to
be	the	side	to	bet	on	as	t	approaches	infinity.	If	the	idea	still
seems	unbearable	in	a	hundred	years,	maybe	it	won't	in	a
thousand.

Just	to	be	clear	about	this,	I'm	not	proposing	that	all	numerical
calculations	would	actually	be	carried	out	using	lists.	I'm
proposing	that	the	core	language,	prior	to	any	additional
notations	about	implementation,	be	defined	this	way.	In	practice
any	program	that	wanted	to	do	any	amount	of	math	would
probably	represent	numbers	in	binary,	but	this	would	be	an
optimization,	not	part	of	the	core	language	semantics.

Another	way	to	burn	up	cycles	is	to	have	many	layers	of	software
between	the	application	and	the	hardware.	This	too	is	a	trend	we
see	happening	already:	many	recent	languages	are	compiled	into
byte	code.	Bill	Woods	once	told	me	that,	as	a	rule	of	thumb,	each
layer	of	interpretation	costs	a	factor	of	10	in	speed.	This	extra
cost	buys	you	flexibility.

rootsoflisp.html

The	very	first	version	of	Arc	was	an	extreme	case	of	this	sort	of
multi-level	slowness,	with	corresponding	benefits.	It	was	a	classic
"metacircular"	interpreter	written	on	top	of	Common	Lisp,	with	a
definite	family	resemblance	to	the	eval	function	defined	in
McCarthy's	original	Lisp	paper.	The	whole	thing	was	only	a
couple	hundred	lines	of	code,	so	it	was	very	easy	to	understand
and	change.	The	Common	Lisp	we	used,	CLisp,	itself	runs	on	top
of	a	byte	code	interpreter.	So	here	we	had	two	levels	of
interpretation,	one	of	them	(the	top	one)	shockingly	inefficient,
and	the	language	was	usable.	Barely	usable,	I	admit,	but	usable.

Writing	software	as	multiple	layers	is	a	powerful	technique	even
within	applications.	Bottom-up	programming	means	writing	a
program	as	a	series	of	layers,	each	of	which	serves	as	a	language
for	the	one	above.	This	approach	tends	to	yield	smaller,	more
flexible	programs.	It's	also	the	best	route	to	that	holy	grail,
reusability.	A	language	is	by	definition	reusable.	The	more	of
your	application	you	can	push	down	into	a	language	for	writing
that	type	of	application,	the	more	of	your	software	will	be
reusable.

Somehow	the	idea	of	reusability	got	attached	to	object-oriented
programming	in	the	1980s,	and	no	amount	of	evidence	to	the
contrary	seems	to	be	able	to	shake	it	free.	But	although	some
object-oriented	software	is	reusable,	what	makes	it	reusable	is	its
bottom-upness,	not	its	object-orientedness.	Consider	libraries:
they're	reusable	because	they're	language,	whether	they're
written	in	an	object-oriented	style	or	not.

I	don't	predict	the	demise	of	object-oriented	programming,	by	the
way.	Though	I	don't	think	it	has	much	to	offer	good
programmers,	except	in	certain	specialized	domains,	it	is
irresistible	to	large	organizations.	Object-oriented	programming
offers	a	sustainable	way	to	write	spaghetti	code.	It	lets	you
accrete	programs	as	a	series	of	patches.	Large	organizations
always	tend	to	develop	software	this	way,	and	I	expect	this	to	be
as	true	in	a	hundred	years	as	it	is	today.

As	long	as	we're	talking	about	the	future,	we	had	better	talk

about	parallel	computation,	because	that's	where	this	idea	seems
to	live.	That	is,	no	matter	when	you're	talking,	parallel
computation	seems	to	be	something	that	is	going	to	happen	in
the	future.

Will	the	future	ever	catch	up	with	it?	People	have	been	talking
about	parallel	computation	as	something	imminent	for	at	least	20
years,	and	it	hasn't	affected	programming	practice	much	so	far.
Or	hasn't	it?	Already	chip	designers	have	to	think	about	it,	and	so
must	people	trying	to	write	systems	software	on	multi-cpu
computers.

The	real	question	is,	how	far	up	the	ladder	of	abstraction	will
parallelism	go?	In	a	hundred	years	will	it	affect	even	application
programmers?	Or	will	it	be	something	that	compiler	writers	think
about,	but	which	is	usually	invisible	in	the	source	code	of
applications?

One	thing	that	does	seem	likely	is	that	most	opportunities	for
parallelism	will	be	wasted.	This	is	a	special	case	of	my	more
general	prediction	that	most	of	the	extra	computer	power	we're
given	will	go	to	waste.	I	expect	that,	as	with	the	stupendous
speed	of	the	underlying	hardware,	parallelism	will	be	something
that	is	available	if	you	ask	for	it	explicitly,	but	ordinarily	not	used.
This	implies	that	the	kind	of	parallelism	we	have	in	a	hundred
years	will	not,	except	in	special	applications,	be	massive
parallelism.	I	expect	for	ordinary	programmers	it	will	be	more
like	being	able	to	fork	off	processes	that	all	end	up	running	in
parallel.

And	this	will,	like	asking	for	specific	implementations	of	data
structures,	be	something	that	you	do	fairly	late	in	the	life	of	a
program,	when	you	try	to	optimize	it.	Version	1s	will	ordinarily
ignore	any	advantages	to	be	got	from	parallel	computation,	just
as	they	will	ignore	advantages	to	be	got	from	specific
representations	of	data.

Except	in	special	kinds	of	applications,	parallelism	won't	pervade
the	programs	that	are	written	in	a	hundred	years.	It	would	be
premature	optimization	if	it	did.

How	many	programming	languages	will	there	be	in	a	hundred
years?	There	seem	to	be	a	huge	number	of	new	programming
languages	lately.	Part	of	the	reason	is	that	faster	hardware	has
allowed	programmers	to	make	different	tradeoffs	between	speed
and	convenience,	depending	on	the	application.	If	this	is	a	real
trend,	the	hardware	we'll	have	in	a	hundred	years	should	only
increase	it.

And	yet	there	may	be	only	a	few	widely-used	languages	in	a
hundred	years.	Part	of	the	reason	I	say	this	is	optimism:	it	seems
that,	if	you	did	a	really	good	job,	you	could	make	a	language	that
was	ideal	for	writing	a	slow	version	1,	and	yet	with	the	right
optimization	advice	to	the	compiler,	would	also	yield	very	fast
code	when	necessary.	So,	since	I'm	optimistic,	I'm	going	to
predict	that	despite	the	huge	gap	they'll	have	between
acceptable	and	maximal	efficiency,	programmers	in	a	hundred
years	will	have	languages	that	can	span	most	of	it.

As	this	gap	widens,	profilers	will	become	increasingly	important.
Little	attention	is	paid	to	profiling	now.	Many	people	still	seem	to
believe	that	the	way	to	get	fast	applications	is	to	write	compilers
that	generate	fast	code.	As	the	gap	between	acceptable	and
maximal	performance	widens,	it	will	become	increasingly	clear
that	the	way	to	get	fast	applications	is	to	have	a	good	guide	from
one	to	the	other.

When	I	say	there	may	only	be	a	few	languages,	I'm	not	including
domain-specific	"little	languages".	I	think	such	embedded
languages	are	a	great	idea,	and	I	expect	them	to	proliferate.	But
I	expect	them	to	be	written	as	thin	enough	skins	that	users	can
see	the	general-purpose	language	underneath.

Who	will	design	the	languages	of	the	future?	One	of	the	most
exciting	trends	in	the	last	ten	years	has	been	the	rise	of	open-
source	languages	like	Perl,	Python,	and	Ruby.	Language	design	is
being	taken	over	by	hackers.	The	results	so	far	are	messy,	but
encouraging.	There	are	some	stunningly	novel	ideas	in	Perl,	for

example.	Many	are	stunningly	bad,	but	that's	always	true	of
ambitious	efforts.	At	its	current	rate	of	mutation,	God	knows
what	Perl	might	evolve	into	in	a	hundred	years.

It's	not	true	that	those	who	can't	do,	teach	(some	of	the	best
hackers	I	know	are	professors),	but	it	is	true	that	there	are	a	lot
of	things	that	those	who	teach	can't	do.	Research	imposes
constraining	caste	restrictions.	In	any	academic	field	there	are
topics	that	are	ok	to	work	on	and	others	that	aren't.
Unfortunately	the	distinction	between	acceptable	and	forbidden
topics	is	usually	based	on	how	intellectual	the	work	sounds	when
described	in	research	papers,	rather	than	how	important	it	is	for
getting	good	results.	The	extreme	case	is	probably	literature;
people	studying	literature	rarely	say	anything	that	would	be	of
the	slightest	use	to	those	producing	it.

Though	the	situation	is	better	in	the	sciences,	the	overlap
between	the	kind	of	work	you're	allowed	to	do	and	the	kind	of
work	that	yields	good	languages	is	distressingly	small.	(Olin
Shivers	has	grumbled	eloquently	about	this.)	For	example,	types
seem	to	be	an	inexhaustible	source	of	research	papers,	despite
the	fact	that	static	typing	seems	to	preclude	true	macros--
without	which,	in	my	opinion,	no	language	is	worth	using.

The	trend	is	not	merely	toward	languages	being	developed	as
open-source	projects	rather	than	"research",	but	toward
languages	being	designed	by	the	application	programmers	who
need	to	use	them,	rather	than	by	compiler	writers.	This	seems	a
good	trend	and	I	expect	it	to	continue.

Unlike	physics	in	a	hundred	years,	which	is	almost	necessarily
impossible	to	predict,	I	think	it	may	be	possible	in	principle	to
design	a	language	now	that	would	appeal	to	users	in	a	hundred
years.

One	way	to	design	a	language	is	to	just	write	down	the	program
you'd	like	to	be	able	to	write,	regardless	of	whether	there	is	a
compiler	that	can	translate	it	or	hardware	that	can	run	it.	When
you	do	this	you	can	assume	unlimited	resources.	It	seems	like	we

desres.html

ought	to	be	able	to	imagine	unlimited	resources	as	well	today	as
in	a	hundred	years.

What	program	would	one	like	to	write?	Whatever	is	least	work.
Except	not	quite:	whatever	would	be	least	work	if	your	ideas
about	programming	weren't	already	influenced	by	the	languages
you're	currently	used	to.	Such	influence	can	be	so	pervasive	that
it	takes	a	great	effort	to	overcome	it.	You'd	think	it	would	be
obvious	to	creatures	as	lazy	as	us	how	to	express	a	program	with
the	least	effort.	In	fact,	our	ideas	about	what's	possible	tend	to	be
so	limited	by	whatever	language	we	think	in	that	easier
formulations	of	programs	seem	very	surprising.	They're
something	you	have	to	discover,	not	something	you	naturally	sink
into.

One	helpful	trick	here	is	to	use	the	length	of	the	program	as	an
approximation	for	how	much	work	it	is	to	write.	Not	the	length	in
characters,	of	course,	but	the	length	in	distinct	syntactic
elements--	basically,	the	size	of	the	parse	tree.	It	may	not	be	quite
true	that	the	shortest	program	is	the	least	work	to	write,	but	it's
close	enough	that	you're	better	off	aiming	for	the	solid	target	of
brevity	than	the	fuzzy,	nearby	one	of	least	work.	Then	the
algorithm	for	language	design	becomes:	look	at	a	program	and
ask,	is	there	any	way	to	write	this	that's	shorter?

In	practice,	writing	programs	in	an	imaginary	hundred-year
language	will	work	to	varying	degrees	depending	on	how	close
you	are	to	the	core.	Sort	routines	you	can	write	now.	But	it	would
be	hard	to	predict	now	what	kinds	of	libraries	might	be	needed	in
a	hundred	years.	Presumably	many	libraries	will	be	for	domains
that	don't	even	exist	yet.	If	SETI@home	works,	for	example,	we'll
need	libraries	for	communicating	with	aliens.	Unless	of	course
they	are	sufficiently	advanced	that	they	already	communicate	in
XML.

At	the	other	extreme,	I	think	you	might	be	able	to	design	the	core
language	today.	In	fact,	some	might	argue	that	it	was	already
mostly	designed	in	1958.

avg.html
power.html

If	the	hundred	year	language	were	available	today,	would	we
want	to	program	in	it?	One	way	to	answer	this	question	is	to	look
back.	If	present-day	programming	languages	had	been	available
in	1960,	would	anyone	have	wanted	to	use	them?

In	some	ways,	the	answer	is	no.	Languages	today	assume
infrastructure	that	didn't	exist	in	1960.	For	example,	a	language
in	which	indentation	is	significant,	like	Python,	would	not	work
very	well	on	printer	terminals.	But	putting	such	problems	aside--
assuming,	for	example,	that	programs	were	all	just	written	on
paper--	would	programmers	of	the	1960s	have	liked	writing
programs	in	the	languages	we	use	now?

I	think	so.	Some	of	the	less	imaginative	ones,	who	had	artifacts	of
early	languages	built	into	their	ideas	of	what	a	program	was,
might	have	had	trouble.	(How	can	you	manipulate	data	without
doing	pointer	arithmetic?	How	can	you	implement	flow	charts
without	gotos?)	But	I	think	the	smartest	programmers	would
have	had	no	trouble	making	the	most	of	present-day	languages,	if
they'd	had	them.

If	we	had	the	hundred-year	language	now,	it	would	at	least	make
a	great	pseudocode.	What	about	using	it	to	write	software?	Since
the	hundred-year	language	will	need	to	generate	fast	code	for
some	applications,	presumably	it	could	generate	code	efficient
enough	to	run	acceptably	well	on	our	hardware.	We	might	have
to	give	more	optimization	advice	than	users	in	a	hundred	years,
but	it	still	might	be	a	net	win.

Now	we	have	two	ideas	that,	if	you	combine	them,	suggest
interesting	possibilities:	(1)	the	hundred-year	language	could,	in
principle,	be	designed	today,	and	(2)	such	a	language,	if	it
existed,	might	be	good	to	program	in	today.	When	you	see	these
ideas	laid	out	like	that,	it's	hard	not	to	think,	why	not	try	writing
the	hundred-year	language	now?

When	you're	working	on	language	design,	I	think	it	is	good	to
have	such	a	target	and	to	keep	it	consciously	in	mind.	When	you
learn	to	drive,	one	of	the	principles	they	teach	you	is	to	align	the

car	not	by	lining	up	the	hood	with	the	stripes	painted	on	the
road,	but	by	aiming	at	some	point	in	the	distance.	Even	if	all	you
care	about	is	what	happens	in	the	next	ten	feet,	this	is	the	right
answer.	I	think	we	can	and	should	do	the	same	thing	with
programming	languages.

Notes

I	believe	Lisp	Machine	Lisp	was	the	first	language	to	embody	the
principle	that	declarations	(except	those	of	dynamic	variables)
were	merely	optimization	advice,	and	would	not	change	the
meaning	of	a	correct	program.	Common	Lisp	seems	to	have	been
the	first	to	state	this	explicitly.

Thanks	to	Trevor	Blackwell,	Robert	Morris,	and	Dan	Giffin	for
reading	drafts	of	this,	and	to	Guido	van	Rossum,	Jeremy	Hylton,
and	the	rest	of	the	Python	crew	for	inviting	me	to	speak	at
PyCon.

	

If	Lisp	is	So	Great
May	2003

If	Lisp	is	so	great,	why	don't	more	people	use	it?	I	was	asked	this
question	by	a	student	in	the	audience	at	a	talk	I	gave	recently.
Not	for	the	first	time,	either.

In	languages,	as	in	so	many	things,	there's	not	much	correlation
between	popularity	and	quality.	Why	does	John	Grisham	(King	of
Torts	sales	rank,	44)	outsell	Jane	Austen	(Pride	and	Prejudice
sales	rank,	6191)?	Would	even	Grisham	claim	that	it's	because
he's	a	better	writer?

Here's	the	first	sentence	of	Pride	and	Prejudice:

It	is	a	truth	universally	acknowledged,	that	a	single
man	in	possession	of	a	good	fortune	must	be	in	want
of	a	wife.

"It	is	a	truth	universally	acknowledged?"	Long	words	for	the	first
sentence	of	a	love	story.

Like	Jane	Austen,	Lisp	looks	hard.	Its	syntax,	or	lack	of	syntax,
makes	it	look	completely	unlike	the	languages	most	people	are
used	to.	Before	I	learned	Lisp,	I	was	afraid	of	it	too.	I	recently
came	across	a	notebook	from	1983	in	which	I'd	written:

I	suppose	I	should	learn	Lisp,	but	it	seems	so	foreign.

Fortunately,	I	was	19	at	the	time	and	not	too	resistant	to	learning
new	things.	I	was	so	ignorant	that	learning	almost	anything
meant	learning	new	things.

People	frightened	by	Lisp	make	up	other	reasons	for	not	using	it.
The	standard	excuse,	back	when	C	was	the	default	language,	was
that	Lisp	was	too	slow.	Now	that	Lisp	dialects	are	among	the
faster	languages	available,	that	excuse	has	gone	away.	Now	the

https://sep.turbifycdn.com/ty/cdn/paulgraham/acl2.lisp?t=1688221954&
http://shootout.alioth.debian.org/benchmark.php?test=nestedloop&lang=all&sort=cpu

standard	excuse	is	openly	circular:	that	other	languages	are
more	popular.

(Beware	of	such	reasoning.	It	gets	you	Windows.)

Popularity	is	always	self-perpetuating,	but	it's	especially	so	in
programming	languages.	More	libraries	get	written	for	popular
languages,	which	makes	them	still	more	popular.	Programs	often
have	to	work	with	existing	programs,	and	this	is	easier	if	they're
written	in	the	same	language,	so	languages	spread	from	program
to	program	like	a	virus.	And	managers	prefer	popular	languages,
because	they	give	them	more	leverage	over	developers,	who	can
more	easily	be	replaced.

Indeed,	if	programming	languages	were	all	more	or	less
equivalent,	there	would	be	little	justification	for	using	any	but
the	most	popular.	But	they	aren't	all	equivalent,	not	by	a	long
shot.	And	that's	why	less	popular	languages,	like	Jane	Austen's
novels,	continue	to	survive	at	all.	When	everyone	else	is	reading
the	latest	John	Grisham	novel,	there	will	always	be	a	few	people
reading	Jane	Austen	instead.

icad.html

	

Hackers	and	Painters
May	2003

(This	essay	is	derived	from	a	guest	lecture	at	Harvard,	which
incorporated	an	earlier	talk	at	Northeastern.)

When	I	finished	grad	school	in	computer	science	I	went	to	art
school	to	study	painting.	A	lot	of	people	seemed	surprised	that
someone	interested	in	computers	would	also	be	interested	in
painting.	They	seemed	to	think	that	hacking	and	painting	were
very	different	kinds	of	work--	that	hacking	was	cold,	precise,	and
methodical,	and	that	painting	was	the	frenzied	expression	of
some	primal	urge.

Both	of	these	images	are	wrong.	Hacking	and	painting	have	a	lot
in	common.	In	fact,	of	all	the	different	types	of	people	I've	known,
hackers	and	painters	are	among	the	most	alike.

What	hackers	and	painters	have	in	common	is	that	they're	both
makers.	Along	with	composers,	architects,	and	writers,	what
hackers	and	painters	are	trying	to	do	is	make	good	things.
They're	not	doing	research	per	se,	though	if	in	the	course	of
trying	to	make	good	things	they	discover	some	new	technique,	so
much	the	better.

I've	never	liked	the	term	"computer	science."	The	main	reason	I
don't	like	it	is	that	there's	no	such	thing.	Computer	science	is	a
grab	bag	of	tenuously	related	areas	thrown	together	by	an
accident	of	history,	like	Yugoslavia.	At	one	end	you	have	people
who	are	really	mathematicians,	but	call	what	they're	doing
computer	science	so	they	can	get	DARPA	grants.	In	the	middle
you	have	people	working	on	something	like	the	natural	history	of
computers--	studying	the	behavior	of	algorithms	for	routing	data
through	networks,	for	example.	And	then	at	the	other	extreme

you	have	the	hackers,	who	are	trying	to	write	interesting
software,	and	for	whom	computers	are	just	a	medium	of
expression,	as	concrete	is	for	architects	or	paint	for	painters.	It's
as	if	mathematicians,	physicists,	and	architects	all	had	to	be	in
the	same	department.

Sometimes	what	the	hackers	do	is	called	"software	engineering,"
but	this	term	is	just	as	misleading.	Good	software	designers	are
no	more	engineers	than	architects	are.	The	border	between
architecture	and	engineering	is	not	sharply	defined,	but	it's
there.	It	falls	between	what	and	how:	architects	decide	what	to
do,	and	engineers	figure	out	how	to	do	it.

What	and	how	should	not	be	kept	too	separate.	You're	asking	for
trouble	if	you	try	to	decide	what	to	do	without	understanding
how	to	do	it.	But	hacking	can	certainly	be	more	than	just
deciding	how	to	implement	some	spec.	At	its	best,	it's	creating
the	spec--	though	it	turns	out	the	best	way	to	do	that	is	to
implement	it.

Perhaps	one	day	"computer	science"	will,	like	Yugoslavia,	get
broken	up	into	its	component	parts.	That	might	be	a	good	thing.
Especially	if	it	meant	independence	for	my	native	land,	hacking.

Bundling	all	these	different	types	of	work	together	in	one
department	may	be	convenient	administratively,	but	it's
confusing	intellectually.	That's	the	other	reason	I	don't	like	the
name	"computer	science."	Arguably	the	people	in	the	middle	are
doing	something	like	an	experimental	science.	But	the	people	at
either	end,	the	hackers	and	the	mathematicians,	are	not	actually
doing	science.

The	mathematicians	don't	seem	bothered	by	this.	They	happily
set	to	work	proving	theorems	like	the	other	mathematicians	over
in	the	math	department,	and	probably	soon	stop	noticing	that	the
building	they	work	in	says	``computer	science''	on	the	outside.
But	for	the	hackers	this	label	is	a	problem.	If	what	they're	doing
is	called	science,	it	makes	them	feel	they	ought	to	be	acting
scientific.	So	instead	of	doing	what	they	really	want	to	do,	which

is	to	design	beautiful	software,	hackers	in	universities	and
research	labs	feel	they	ought	to	be	writing	research	papers.

In	the	best	case,	the	papers	are	just	a	formality.	Hackers	write
cool	software,	and	then	write	a	paper	about	it,	and	the	paper
becomes	a	proxy	for	the	achievement	represented	by	the
software.	But	often	this	mismatch	causes	problems.	It's	easy	to
drift	away	from	building	beautiful	things	toward	building	ugly
things	that	make	more	suitable	subjects	for	research	papers.

Unfortunately,	beautiful	things	don't	always	make	the	best
subjects	for	papers.	Number	one,	research	must	be	original--	and
as	anyone	who	has	written	a	PhD	dissertation	knows,	the	way	to
be	sure	that	you're	exploring	virgin	territory	is	to	to	stake	out	a
piece	of	ground	that	no	one	wants.	Number	two,	research	must
be	substantial--	and	awkward	systems	yield	meatier	papers,
because	you	can	write	about	the	obstacles	you	have	to	overcome
in	order	to	get	things	done.	Nothing	yields	meaty	problems	like
starting	with	the	wrong	assumptions.	Most	of	AI	is	an	example	of
this	rule;	if	you	assume	that	knowledge	can	be	represented	as	a
list	of	predicate	logic	expressions	whose	arguments	represent
abstract	concepts,	you'll	have	a	lot	of	papers	to	write	about	how
to	make	this	work.	As	Ricky	Ricardo	used	to	say,	"Lucy,	you	got	a
lot	of	explaining	to	do."

The	way	to	create	something	beautiful	is	often	to	make	subtle
tweaks	to	something	that	already	exists,	or	to	combine	existing
ideas	in	a	slightly	new	way.	This	kind	of	work	is	hard	to	convey	in
a	research	paper.

So	why	do	universities	and	research	labs	continue	to	judge
hackers	by	publications?	For	the	same	reason	that	"scholastic
aptitude"	gets	measured	by	simple-minded	standardized	tests,	or
the	productivity	of	programmers	gets	measured	in	lines	of	code.
These	tests	are	easy	to	apply,	and	there	is	nothing	so	tempting	as
an	easy	test	that	kind	of	works.

Measuring	what	hackers	are	actually	trying	to	do,	designing
beautiful	software,	would	be	much	more	difficult.	You	need	a

good	sense	of	design	to	judge	good	design.	And	there	is	no
correlation,	except	possibly	a	negative	one,	between	people's
ability	to	recognize	good	design	and	their	confidence	that	they
can.

The	only	external	test	is	time.	Over	time,	beautiful	things	tend	to
thrive,	and	ugly	things	tend	to	get	discarded.	Unfortunately,	the
amounts	of	time	involved	can	be	longer	than	human	lifetimes.
Samuel	Johnson	said	it	took	a	hundred	years	for	a	writer's
reputation	to	converge.	You	have	to	wait	for	the	writer's
influential	friends	to	die,	and	then	for	all	their	followers	to	die.

I	think	hackers	just	have	to	resign	themselves	to	having	a	large
random	component	in	their	reputations.	In	this	they	are	no
different	from	other	makers.	In	fact,	they're	lucky	by	comparison.
The	influence	of	fashion	is	not	nearly	so	great	in	hacking	as	it	is
in	painting.

There	are	worse	things	than	having	people	misunderstand	your
work.	A	worse	danger	is	that	you	will	yourself	misunderstand
your	work.	Related	fields	are	where	you	go	looking	for	ideas.	If
you	find	yourself	in	the	computer	science	department,	there	is	a
natural	temptation	to	believe,	for	example,	that	hacking	is	the
applied	version	of	what	theoretical	computer	science	is	the
theory	of.	All	the	time	I	was	in	graduate	school	I	had	an
uncomfortable	feeling	in	the	back	of	my	mind	that	I	ought	to
know	more	theory,	and	that	it	was	very	remiss	of	me	to	have
forgotten	all	that	stuff	within	three	weeks	of	the	final	exam.

Now	I	realize	I	was	mistaken.	Hackers	need	to	understand	the
theory	of	computation	about	as	much	as	painters	need	to
understand	paint	chemistry.	You	need	to	know	how	to	calculate
time	and	space	complexity	and	about	Turing	completeness.	You
might	also	want	to	remember	at	least	the	concept	of	a	state
machine,	in	case	you	have	to	write	a	parser	or	a	regular
expression	library.	Painters	in	fact	have	to	remember	a	good	deal
more	about	paint	chemistry	than	that.

I've	found	that	the	best	sources	of	ideas	are	not	the	other	fields

taste.html
http://www.apa.org/journals/features/psp7761121.pdf

that	have	the	word	"computer"	in	their	names,	but	the	other
fields	inhabited	by	makers.	Painting	has	been	a	much	richer
source	of	ideas	than	the	theory	of	computation.

For	example,	I	was	taught	in	college	that	one	ought	to	figure	out
a	program	completely	on	paper	before	even	going	near	a
computer.	I	found	that	I	did	not	program	this	way.	I	found	that	I
liked	to	program	sitting	in	front	of	a	computer,	not	a	piece	of
paper.	Worse	still,	instead	of	patiently	writing	out	a	complete
program	and	assuring	myself	it	was	correct,	I	tended	to	just	spew
out	code	that	was	hopelessly	broken,	and	gradually	beat	it	into
shape.	Debugging,	I	was	taught,	was	a	kind	of	final	pass	where
you	caught	typos	and	oversights.	The	way	I	worked,	it	seemed
like	programming	consisted	of	debugging.

For	a	long	time	I	felt	bad	about	this,	just	as	I	once	felt	bad	that	I
didn't	hold	my	pencil	the	way	they	taught	me	to	in	elementary
school.	If	I	had	only	looked	over	at	the	other	makers,	the	painters
or	the	architects,	I	would	have	realized	that	there	was	a	name	for
what	I	was	doing:	sketching.	As	far	as	I	can	tell,	the	way	they
taught	me	to	program	in	college	was	all	wrong.	You	should	figure
out	programs	as	you're	writing	them,	just	as	writers	and	painters
and	architects	do.

Realizing	this	has	real	implications	for	software	design.	It	means
that	a	programming	language	should,	above	all,	be	malleable.	A
programming	language	is	for	thinking	of	programs,	not	for
expressing	programs	you've	already	thought	of.	It	should	be	a
pencil,	not	a	pen.	Static	typing	would	be	a	fine	idea	if	people
actually	did	write	programs	the	way	they	taught	me	to	in	college.
But	that's	not	how	any	of	the	hackers	I	know	write	programs.	We
need	a	language	that	lets	us	scribble	and	smudge	and	smear,	not
a	language	where	you	have	to	sit	with	a	teacup	of	types	balanced
on	your	knee	and	make	polite	conversation	with	a	strict	old	aunt
of	a	compiler.

While	we're	on	the	subject	of	static	typing,	identifying	with	the
makers	will	save	us	from	another	problem	that	afflicts	the
sciences:	math	envy.	Everyone	in	the	sciences	secretly	believes

piraha.html

that	mathematicians	are	smarter	than	they	are.	I	think
mathematicians	also	believe	this.	At	any	rate,	the	result	is	that
scientists	tend	to	make	their	work	look	as	mathematical	as
possible.	In	a	field	like	physics	this	probably	doesn't	do	much
harm,	but	the	further	you	get	from	the	natural	sciences,	the	more
of	a	problem	it	becomes.

A	page	of	formulas	just	looks	so	impressive.	(Tip:	for	extra
impressiveness,	use	Greek	variables.)	And	so	there	is	a	great
temptation	to	work	on	problems	you	can	treat	formally,	rather
than	problems	that	are,	say,	important.

If	hackers	identified	with	other	makers,	like	writers	and	painters,
they	wouldn't	feel	tempted	to	do	this.	Writers	and	painters	don't
suffer	from	math	envy.	They	feel	as	if	they're	doing	something
completely	unrelated.	So	are	hackers,	I	think.

If	universities	and	research	labs	keep	hackers	from	doing	the
kind	of	work	they	want	to	do,	perhaps	the	place	for	them	is	in
companies.	Unfortunately,	most	companies	won't	let	hackers	do
what	they	want	either.	Universities	and	research	labs	force
hackers	to	be	scientists,	and	companies	force	them	to	be
engineers.

I	only	discovered	this	myself	quite	recently.	When	Yahoo	bought
Viaweb,	they	asked	me	what	I	wanted	to	do.	I	had	never	liked	the
business	side	very	much,	and	said	that	I	just	wanted	to	hack.
When	I	got	to	Yahoo,	I	found	that	what	hacking	meant	to	them
was	implementing	software,	not	designing	it.	Programmers	were
seen	as	technicians	who	translated	the	visions	(if	that	is	the
word)	of	product	managers	into	code.

This	seems	to	be	the	default	plan	in	big	companies.	They	do	it
because	it	decreases	the	standard	deviation	of	the	outcome.	Only
a	small	percentage	of	hackers	can	actually	design	software,	and
it's	hard	for	the	people	running	a	company	to	pick	these	out.	So
instead	of	entrusting	the	future	of	the	software	to	one	brilliant
hacker,	most	companies	set	things	up	so	that	it	is	designed	by
committee,	and	the	hackers	merely	implement	the	design.

If	you	want	to	make	money	at	some	point,	remember	this,
because	this	is	one	of	the	reasons	startups	win.	Big	companies
want	to	decrease	the	standard	deviation	of	design	outcomes
because	they	want	to	avoid	disasters.	But	when	you	damp
oscillations,	you	lose	the	high	points	as	well	as	the	low.	This	is
not	a	problem	for	big	companies,	because	they	don't	win	by
making	great	products.	Big	companies	win	by	sucking	less	than
other	big	companies.

So	if	you	can	figure	out	a	way	to	get	in	a	design	war	with	a
company	big	enough	that	its	software	is	designed	by	product
managers,	they'll	never	be	able	to	keep	up	with	you.	These
opportunities	are	not	easy	to	find,	though.	It's	hard	to	engage	a
big	company	in	a	design	war,	just	as	it's	hard	to	engage	an
opponent	inside	a	castle	in	hand	to	hand	combat.	It	would	be
pretty	easy	to	write	a	better	word	processor	than	Microsoft
Word,	for	example,	but	Microsoft,	within	the	castle	of	their
operating	system	monopoly,	probably	wouldn't	even	notice	if	you
did.

The	place	to	fight	design	wars	is	in	new	markets,	where	no	one
has	yet	managed	to	establish	any	fortifications.	That's	where	you
can	win	big	by	taking	the	bold	approach	to	design,	and	having
the	same	people	both	design	and	implement	the	product.
Microsoft	themselves	did	this	at	the	start.	So	did	Apple.	And
Hewlett-Packard.	I	suspect	almost	every	successful	startup	has.

So	one	way	to	build	great	software	is	to	start	your	own	startup.
There	are	two	problems	with	this,	though.	One	is	that	in	a
startup	you	have	to	do	so	much	besides	write	software.	At
Viaweb	I	considered	myself	lucky	if	I	got	to	hack	a	quarter	of	the
time.	And	the	things	I	had	to	do	the	other	three	quarters	of	the
time	ranged	from	tedious	to	terrifying.	I	have	a	benchmark	for
this,	because	I	once	had	to	leave	a	board	meeting	to	have	some
cavities	filled.	I	remember	sitting	back	in	the	dentist's	chair,
waiting	for	the	drill,	and	feeling	like	I	was	on	vacation.

The	other	problem	with	startups	is	that	there	is	not	much	overlap

between	the	kind	of	software	that	makes	money	and	the	kind
that's	interesting	to	write.	Programming	languages	are
interesting	to	write,	and	Microsoft's	first	product	was	one,	in
fact,	but	no	one	will	pay	for	programming	languages	now.	If	you
want	to	make	money,	you	tend	to	be	forced	to	work	on	problems
that	are	too	nasty	for	anyone	to	solve	for	free.

All	makers	face	this	problem.	Prices	are	determined	by	supply
and	demand,	and	there	is	just	not	as	much	demand	for	things
that	are	fun	to	work	on	as	there	is	for	things	that	solve	the
mundane	problems	of	individual	customers.	Acting	in	off-
Broadway	plays	just	doesn't	pay	as	well	as	wearing	a	gorilla	suit
in	someone's	booth	at	a	trade	show.	Writing	novels	doesn't	pay	as
well	as	writing	ad	copy	for	garbage	disposals.	And	hacking
programming	languages	doesn't	pay	as	well	as	figuring	out	how
to	connect	some	company's	legacy	database	to	their	Web	server.

I	think	the	answer	to	this	problem,	in	the	case	of	software,	is	a
concept	known	to	nearly	all	makers:	the	day	job.	This	phrase
began	with	musicians,	who	perform	at	night.	More	generally,	it
means	that	you	have	one	kind	of	work	you	do	for	money,	and
another	for	love.

Nearly	all	makers	have	day	jobs	early	in	their	careers.	Painters
and	writers	notoriously	do.	If	you're	lucky	you	can	get	a	day	job
that's	closely	related	to	your	real	work.	Musicians	often	seem	to
work	in	record	stores.	A	hacker	working	on	some	programming
language	or	operating	system	might	likewise	be	able	to	get	a	day
job	using	it.	[1]

When	I	say	that	the	answer	is	for	hackers	to	have	day	jobs,	and
work	on	beautiful	software	on	the	side,	I'm	not	proposing	this	as
a	new	idea.	This	is	what	open-source	hacking	is	all	about.	What
I'm	saying	is	that	open-source	is	probably	the	right	model,
because	it	has	been	independently	confirmed	by	all	the	other
makers.

It	seems	surprising	to	me	that	any	employer	would	be	reluctant
to	let	hackers	work	on	open-source	projects.	At	Viaweb,	we

would	have	been	reluctant	to	hire	anyone	who	didn't.	When	we
interviewed	programmers,	the	main	thing	we	cared	about	was
what	kind	of	software	they	wrote	in	their	spare	time.	You	can't	do
anything	really	well	unless	you	love	it,	and	if	you	love	to	hack
you'll	inevitably	be	working	on	projects	of	your	own.	[2]

Because	hackers	are	makers	rather	than	scientists,	the	right
place	to	look	for	metaphors	is	not	in	the	sciences,	but	among
other	kinds	of	makers.	What	else	can	painting	teach	us	about
hacking?

One	thing	we	can	learn,	or	at	least	confirm,	from	the	example	of
painting	is	how	to	learn	to	hack.	You	learn	to	paint	mostly	by
doing	it.	Ditto	for	hacking.	Most	hackers	don't	learn	to	hack	by
taking	college	courses	in	programming.	They	learn	to	hack	by
writing	programs	of	their	own	at	age	thirteen.	Even	in	college
classes,	you	learn	to	hack	mostly	by	hacking.	[3]

Because	painters	leave	a	trail	of	work	behind	them,	you	can
watch	them	learn	by	doing.	If	you	look	at	the	work	of	a	painter	in
chronological	order,	you'll	find	that	each	painting	builds	on
things	that	have	been	learned	in	previous	ones.	When	there's
something	in	a	painting	that	works	very	well,	you	can	usually	find
version	1	of	it	in	a	smaller	form	in	some	earlier	painting.

I	think	most	makers	work	this	way.	Writers	and	architects	seem
to	as	well.	Maybe	it	would	be	good	for	hackers	to	act	more	like
painters,	and	regularly	start	over	from	scratch,	instead	of
continuing	to	work	for	years	on	one	project,	and	trying	to
incorporate	all	their	later	ideas	as	revisions.

The	fact	that	hackers	learn	to	hack	by	doing	it	is	another	sign	of
how	different	hacking	is	from	the	sciences.	Scientists	don't	learn
science	by	doing	it,	but	by	doing	labs	and	problem	sets.
Scientists	start	out	doing	work	that's	perfect,	in	the	sense	that
they're	just	trying	to	reproduce	work	someone	else	has	already
done	for	them.	Eventually,	they	get	to	the	point	where	they	can
do	original	work.	Whereas	hackers,	from	the	start,	are	doing
original	work;	it's	just	very	bad.	So	hackers	start	original,	and	get

good,	and	scientists	start	good,	and	get	original.

The	other	way	makers	learn	is	from	examples.	For	a	painter,	a
museum	is	a	reference	library	of	techniques.	For	hundreds	of
years	it	has	been	part	of	the	traditional	education	of	painters	to
copy	the	works	of	the	great	masters,	because	copying	forces	you
to	look	closely	at	the	way	a	painting	is	made.

Writers	do	this	too.	Benjamin	Franklin	learned	to	write	by
summarizing	the	points	in	the	essays	of	Addison	and	Steele	and
then	trying	to	reproduce	them.	Raymond	Chandler	did	the	same
thing	with	detective	stories.

Hackers,	likewise,	can	learn	to	program	by	looking	at	good
programs--	not	just	at	what	they	do,	but	the	source	code	too.	One
of	the	less	publicized	benefits	of	the	open-source	movement	is
that	it	has	made	it	easier	to	learn	to	program.	When	I	learned	to
program,	we	had	to	rely	mostly	on	examples	in	books.	The	one
big	chunk	of	code	available	then	was	Unix,	but	even	this	was	not
open	source.	Most	of	the	people	who	read	the	source	read	it	in
illicit	photocopies	of	John	Lions'	book,	which	though	written	in
1977	was	not	allowed	to	be	published	until	1996.

Another	example	we	can	take	from	painting	is	the	way	that
paintings	are	created	by	gradual	refinement.	Paintings	usually
begin	with	a	sketch.	Gradually	the	details	get	filled	in.	But	it	is
not	merely	a	process	of	filling	in.	Sometimes	the	original	plans
turn	out	to	be	mistaken.	Countless	paintings,	when	you	look	at
them	in	xrays,	turn	out	to	have	limbs	that	have	been	moved	or
facial	features	that	have	been	readjusted.

Here's	a	case	where	we	can	learn	from	painting.	I	think	hacking
should	work	this	way	too.	It's	unrealistic	to	expect	that	the
specifications	for	a	program	will	be	perfect.	You're	better	off	if
you	admit	this	up	front,	and	write	programs	in	a	way	that	allows
specifications	to	change	on	the	fly.

(The	structure	of	large	companies	makes	this	hard	for	them	to
do,	so	here	is	another	place	where	startups	have	an	advantage.)

Everyone	by	now	presumably	knows	about	the	danger	of
premature	optimization.	I	think	we	should	be	just	as	worried
about	premature	design--	deciding	too	early	what	a	program
should	do.

The	right	tools	can	help	us	avoid	this	danger.	A	good
programming	language	should,	like	oil	paint,	make	it	easy	to
change	your	mind.	Dynamic	typing	is	a	win	here	because	you
don't	have	to	commit	to	specific	data	representations	up	front.
But	the	key	to	flexibility,	I	think,	is	to	make	the	language	very
abstract.	The	easiest	program	to	change	is	one	that's	very	short.

This	sounds	like	a	paradox,	but	a	great	painting	has	to	be	better
than	it	has	to	be.	For	example,	when	Leonardo	painted	the
portrait	of	Ginevra	de	Benci	in	the	National	Gallery,	he	put	a
juniper	bush	behind	her	head.	In	it	he	carefully	painted	each
individual	leaf.	Many	painters	might	have	thought,	this	is	just
something	to	put	in	the	background	to	frame	her	head.	No	one
will	look	that	closely	at	it.

Not	Leonardo.	How	hard	he	worked	on	part	of	a	painting	didn't
depend	at	all	on	how	closely	he	expected	anyone	to	look	at	it.	He
was	like	Michael	Jordan.	Relentless.

Relentlessness	wins	because,	in	the	aggregate,	unseen	details
become	visible.	When	people	walk	by	the	portrait	of	Ginevra	de
Benci,	their	attention	is	often	immediately	arrested	by	it,	even
before	they	look	at	the	label	and	notice	that	it	says	Leonardo	da
Vinci.	All	those	unseen	details	combine	to	produce	something
that's	just	stunning,	like	a	thousand	barely	audible	voices	all
singing	in	tune.

Great	software,	likewise,	requires	a	fanatical	devotion	to	beauty.
If	you	look	inside	good	software,	you	find	that	parts	no	one	is
ever	supposed	to	see	are	beautiful	too.	I'm	not	claiming	I	write
great	software,	but	I	know	that	when	it	comes	to	code	I	behave	in

power.html
ginevra.html

a	way	that	would	make	me	eligible	for	prescription	drugs	if	I
approached	everyday	life	the	same	way.	It	drives	me	crazy	to	see
code	that's	badly	indented,	or	that	uses	ugly	variable	names.

If	a	hacker	were	a	mere	implementor,	turning	a	spec	into	code,
then	he	could	just	work	his	way	through	it	from	one	end	to	the
other	like	someone	digging	a	ditch.	But	if	the	hacker	is	a	creator,
we	have	to	take	inspiration	into	account.

In	hacking,	like	painting,	work	comes	in	cycles.	Sometimes	you
get	excited	about	some	new	project	and	you	want	to	work	sixteen
hours	a	day	on	it.	Other	times	nothing	seems	interesting.

To	do	good	work	you	have	to	take	these	cycles	into	account,
because	they're	affected	by	how	you	react	to	them.	When	you're
driving	a	car	with	a	manual	transmission	on	a	hill,	you	have	to
back	off	the	clutch	sometimes	to	avoid	stalling.	Backing	off	can
likewise	prevent	ambition	from	stalling.	In	both	painting	and
hacking	there	are	some	tasks	that	are	terrifyingly	ambitious,	and
others	that	are	comfortingly	routine.	It's	a	good	idea	to	save
some	easy	tasks	for	moments	when	you	would	otherwise	stall.

In	hacking,	this	can	literally	mean	saving	up	bugs.	I	like
debugging:	it's	the	one	time	that	hacking	is	as	straightforward	as
people	think	it	is.	You	have	a	totally	constrained	problem,	and	all
you	have	to	do	is	solve	it.	Your	program	is	supposed	to	do	x.
Instead	it	does	y.	Where	does	it	go	wrong?	You	know	you're	going
to	win	in	the	end.	It's	as	relaxing	as	painting	a	wall.

The	example	of	painting	can	teach	us	not	only	how	to	manage
our	own	work,	but	how	to	work	together.	A	lot	of	the	great	art	of
the	past	is	the	work	of	multiple	hands,	though	there	may	only	be
one	name	on	the	wall	next	to	it	in	the	museum.	Leonardo	was	an
apprentice	in	the	workshop	of	Verrocchio	and	painted	one	of	the
angels	in	his	Baptism	of	Christ.	This	sort	of	thing	was	the	rule,
not	the	exception.	Michelangelo	was	considered	especially
dedicated	for	insisting	on	painting	all	the	figures	on	the	ceiling	of

baptism.html

the	Sistine	Chapel	himself.

As	far	as	I	know,	when	painters	worked	together	on	a	painting,
they	never	worked	on	the	same	parts.	It	was	common	for	the
master	to	paint	the	principal	figures	and	for	assistants	to	paint
the	others	and	the	background.	But	you	never	had	one	guy
painting	over	the	work	of	another.

I	think	this	is	the	right	model	for	collaboration	in	software	too.
Don't	push	it	too	far.	When	a	piece	of	code	is	being	hacked	by
three	or	four	different	people,	no	one	of	whom	really	owns	it,	it
will	end	up	being	like	a	common-room.	It	will	tend	to	feel	bleak
and	abandoned,	and	accumulate	cruft.	The	right	way	to
collaborate,	I	think,	is	to	divide	projects	into	sharply	defined
modules,	each	with	a	definite	owner,	and	with	interfaces	between
them	that	are	as	carefully	designed	and,	if	possible,	as
articulated	as	programming	languages.

Like	painting,	most	software	is	intended	for	a	human	audience.
And	so	hackers,	like	painters,	must	have	empathy	to	do	really
great	work.	You	have	to	be	able	to	see	things	from	the	user's
point	of	view.

When	I	was	a	kid	I	was	always	being	told	to	look	at	things	from
someone	else's	point	of	view.	What	this	always	meant	in	practice
was	to	do	what	someone	else	wanted,	instead	of	what	I	wanted.
This	of	course	gave	empathy	a	bad	name,	and	I	made	a	point	of
not	cultivating	it.

Boy,	was	I	wrong.	It	turns	out	that	looking	at	things	from	other
people's	point	of	view	is	practically	the	secret	of	success.	It
doesn't	necessarily	mean	being	self-sacrificing.	Far	from	it.
Understanding	how	someone	else	sees	things	doesn't	imply	that
you'll	act	in	his	interest;	in	some	situations--	in	war,	for	example--
you	want	to	do	exactly	the	opposite.	[4]

Most	makers	make	things	for	a	human	audience.	And	to	engage
an	audience	you	have	to	understand	what	they	need.	Nearly	all
the	greatest	paintings	are	paintings	of	people,	for	example,

because	people	are	what	people	are	interested	in.

Empathy	is	probably	the	single	most	important	difference
between	a	good	hacker	and	a	great	one.	Some	hackers	are	quite
smart,	but	when	it	comes	to	empathy	are	practically	solipsists.
It's	hard	for	such	people	to	design	great	software	[5],	because
they	can't	see	things	from	the	user's	point	of	view.

One	way	to	tell	how	good	people	are	at	empathy	is	to	watch	them
explain	a	technical	question	to	someone	without	a	technical
background.	We	probably	all	know	people	who,	though	otherwise
smart,	are	just	comically	bad	at	this.	If	someone	asks	them	at	a
dinner	party	what	a	programming	language	is,	they'll	say
something	like	``Oh,	a	high-level	language	is	what	the	compiler
uses	as	input	to	generate	object	code.''	High-level	language?
Compiler?	Object	code?	Someone	who	doesn't	know	what	a
programming	language	is	obviously	doesn't	know	what	these
things	are,	either.

Part	of	what	software	has	to	do	is	explain	itself.	So	to	write	good
software	you	have	to	understand	how	little	users	understand.
They're	going	to	walk	up	to	the	software	with	no	preparation,
and	it	had	better	do	what	they	guess	it	will,	because	they're	not
going	to	read	the	manual.	The	best	system	I've	ever	seen	in	this
respect	was	the	original	Macintosh,	in	1985.	It	did	what	software
almost	never	does:	it	just	worked.	[6]

Source	code,	too,	should	explain	itself.	If	I	could	get	people	to
remember	just	one	quote	about	programming,	it	would	be	the
one	at	the	beginning	of	Structure	and	Interpretation	of	Computer
Programs.

Programs	should	be	written	for	people	to	read,	and
only	incidentally	for	machines	to	execute.

You	need	to	have	empathy	not	just	for	your	users,	but	for	your
readers.	It's	in	your	interest,	because	you'll	be	one	of	them.	Many
a	hacker	has	written	a	program	only	to	find	on	returning	to	it	six
months	later	that	he	has	no	idea	how	it	works.	I	know	several
people	who've	sworn	off	Perl	after	such	experiences.	[7]

Lack	of	empathy	is	associated	with	intelligence,	to	the	point	that
there	is	even	something	of	a	fashion	for	it	in	some	places.	But	I
don't	think	there's	any	correlation.	You	can	do	well	in	math	and
the	natural	sciences	without	having	to	learn	empathy,	and	people
in	these	fields	tend	to	be	smart,	so	the	two	qualities	have	come	to
be	associated.	But	there	are	plenty	of	dumb	people	who	are	bad
at	empathy	too.	Just	listen	to	the	people	who	call	in	with
questions	on	talk	shows.	They	ask	whatever	it	is	they're	asking	in
such	a	roundabout	way	that	the	hosts	often	have	to	rephrase	the
question	for	them.

So,	if	hacking	works	like	painting	and	writing,	is	it	as	cool?	After
all,	you	only	get	one	life.	You	might	as	well	spend	it	working	on
something	great.

Unfortunately,	the	question	is	hard	to	answer.	There	is	always	a
big	time	lag	in	prestige.	It's	like	light	from	a	distant	star.	Painting
has	prestige	now	because	of	great	work	people	did	five	hundred
years	ago.	At	the	time,	no	one	thought	these	paintings	were	as
important	as	we	do	today.	It	would	have	seemed	very	odd	to
people	at	the	time	that	Federico	da	Montefeltro,	the	Duke	of
Urbino,	would	one	day	be	known	mostly	as	the	guy	with	the
strange	nose	in	a	painting	by	Piero	della	Francesca.

So	while	I	admit	that	hacking	doesn't	seem	as	cool	as	painting
now,	we	should	remember	that	painting	itself	didn't	seem	as	cool
in	its	glory	days	as	it	does	now.

What	we	can	say	with	some	confidence	is	that	these	are	the	glory
days	of	hacking.	In	most	fields	the	great	work	is	done	early	on.
The	paintings	made	between	1430	and	1500	are	still
unsurpassed.	Shakespeare	appeared	just	as	professional	theater
was	being	born,	and	pushed	the	medium	so	far	that	every
playwright	since	has	had	to	live	in	his	shadow.	Albrecht	Durer	did
the	same	thing	with	engraving,	and	Jane	Austen	with	the	novel.

Over	and	over	we	see	the	same	pattern.	A	new	medium	appears,
and	people	are	so	excited	about	it	that	they	explore	most	of	its
possibilities	in	the	first	couple	generations.	Hacking	seems	to	be

montefeltro.html

in	this	phase	now.

Painting	was	not,	in	Leonardo's	time,	as	cool	as	his	work	helped
make	it.	How	cool	hacking	turns	out	to	be	will	depend	on	what
we	can	do	with	this	new	medium.	

Notes

[1]	The	greatest	damage	that	photography	has	done	to	painting
may	be	the	fact	that	it	killed	the	best	day	job.	Most	of	the	great
painters	in	history	supported	themselves	by	painting	portraits.	

[2]	I've	been	told	that	Microsoft	discourages	employees	from
contributing	to	open-source	projects,	even	in	their	spare	time.
But	so	many	of	the	best	hackers	work	on	open-source	projects
now	that	the	main	effect	of	this	policy	may	be	to	ensure	that	they
won't	be	able	to	hire	any	first-rate	programmers.

[3]	What	you	learn	about	programming	in	college	is	much	like
what	you	learn	about	books	or	clothes	or	dating:	what	bad	taste
you	had	in	high	school.

[4]	Here's	an	example	of	applied	empathy.	At	Viaweb,	if	we
couldn't	decide	between	two	alternatives,	we'd	ask,	what	would
our	competitors	hate	most?	At	one	point	a	competitor	added	a
feature	to	their	software	that	was	basically	useless,	but	since	it
was	one	of	few	they	had	that	we	didn't,	they	made	much	of	it	in
the	trade	press.	We	could	have	tried	to	explain	that	the	feature
was	useless,	but	we	decided	it	would	annoy	our	competitor	more
if	we	just	implemented	it	ourselves,	so	we	hacked	together	our
own	version	that	afternoon.

[5]	Except	text	editors	and	compilers.	Hackers	don't	need
empathy	to	design	these,	because	they	are	themselves	typical
users.

[6]	Well,	almost.	They	overshot	the	available	RAM	somewhat,
causing	much	inconvenient	disk	swapping,	but	this	could	be	fixed

within	a	few	months	by	buying	an	additional	disk	drive.

[7]	The	way	to	make	programs	easy	to	read	is	not	to	stuff	them
with	comments.	I	would	take	Abelson	and	Sussman's	quote	a	step
further.	Programming	languages	should	be	designed	to	express
algorithms,	and	only	incidentally	to	tell	computers	how	to
execute	them.	A	good	programming	language	ought	to	be	better
for	explaining	software	than	English.	You	should	only	need
comments	when	there	is	some	kind	of	kludge	you	need	to	warn
readers	about,	just	as	on	a	road	there	are	only	arrows	on	parts
with	unexpectedly	sharp	curves.	

Thanks	to	Trevor	Blackwell,	Robert	Morris,	Dan	Giffin,	and	Lisa
Randall	for	reading	drafts	of	this,	and	to	Henry	Leitner	and	Larry
Finkelstein	for	inviting	me	to	speak.

	

Filters	that	Fight	Back
August	2003

We	may	be	able	to	improve	the	accuracy	of	Bayesian	spam	filters
by	having	them	follow	links	to	see	what's	waiting	at	the	other
end.	Richard	Jowsey	of	death2spam	now	does	this	in	borderline
cases,	and	reports	that	it	works	well.

Why	only	do	it	in	borderline	cases?	And	why	only	do	it	once?

As	I	mentioned	in	Will	Filters	Kill	Spam?,	following	all	the	urls	in
a	spam	would	have	an	amusing	side-effect.	If	popular	email
clients	did	this	in	order	to	filter	spam,	the	spammer's	servers
would	take	a	serious	pounding.	The	more	I	think	about	this,	the
better	an	idea	it	seems.	This	isn't	just	amusing;	it	would	be	hard
to	imagine	a	more	perfectly	targeted	counterattack	on
spammers.

So	I'd	like	to	suggest	an	additional	feature	to	those	working	on
spam	filters:	a	"punish"	mode	which,	if	turned	on,	would	spider
every	url	in	a	suspected	spam	n	times,	where	n	could	be	set	by
the	user.	[1]

As	many	people	have	noted,	one	of	the	problems	with	the	current
email	system	is	that	it's	too	passive.	It	does	whatever	you	tell	it.
So	far	all	the	suggestions	for	fixing	the	problem	seem	to	involve
new	protocols.	This	one	wouldn't.

If	widely	used,	auto-retrieving	spam	filters	would	make	the	email
system	rebound.	The	huge	volume	of	the	spam,	which	has	so	far
worked	in	the	spammer's	favor,	would	now	work	against	him,	like
a	branch	snapping	back	in	his	face.	Auto-retrieving	spam	filters
would	drive	the	spammer's	costs	up,	and	his	sales	down:	his
bandwidth	usage	would	go	through	the	roof,	and	his	servers
would	grind	to	a	halt	under	the	load,	which	would	make	them
unavailable	to	the	people	who	would	have	responded	to	the

http://death2spam.com/
wfks.html
http://www.bork.ca/pics/?path=incoming&img=bill.jpg

spam.

Pump	out	a	million	emails	an	hour,	get	a	million	hits	an	hour	on
your	servers.

We	would	want	to	ensure	that	this	is	only	done	to	suspected
spams.	As	a	rule,	any	url	sent	to	millions	of	people	is	likely	to	be
a	spam	url,	so	submitting	every	http	request	in	every	email	would
work	fine	nearly	all	the	time.	But	there	are	a	few	cases	where
this	isn't	true:	the	urls	at	the	bottom	of	mails	sent	from	free	email
services	like	Yahoo	Mail	and	Hotmail,	for	example.

To	protect	such	sites,	and	to	prevent	abuse,	auto-retrieval	should
be	combined	with	blacklists	of	spamvertised	sites.	Only	sites	on	a
blacklist	would	get	crawled,	and	sites	would	be	blacklisted	only
after	being	inspected	by	humans.	The	lifetime	of	a	spam	must	be
several	hours	at	least,	so	it	should	be	easy	to	update	such	a	list	in
time	to	interfere	with	a	spam	promoting	a	new	site.	[2]

High-volume	auto-retrieval	would	only	be	practical	for	users	on
high-bandwidth	connections,	but	there	are	enough	of	those	to
cause	spammers	serious	trouble.	Indeed,	this	solution	neatly
mirrors	the	problem.	The	problem	with	spam	is	that	in	order	to
reach	a	few	gullible	people	the	spammer	sends	mail	to	everyone.
The	non-gullible	recipients	are	merely	collateral	damage.	But	the
non-gullible	majority	won't	stop	getting	spam	until	they	can	stop
(or	threaten	to	stop)	the	gullible	from	responding	to	it.	Auto-
retrieving	spam	filters	offer	them	a	way	to	do	this.

Would	that	kill	spam?	Not	quite.	The	biggest	spammers	could
probably	protect	their	servers	against	auto-retrieving	filters.
However,	the	easiest	and	cheapest	way	for	them	to	do	it	would	be
to	include	working	unsubscribe	links	in	their	mails.	And	this
would	be	a	necessity	for	smaller	fry,	and	for	"legitimate"	sites
that	hired	spammers	to	promote	them.	So	if	auto-retrieving
filters	became	widespread,	they'd	become	auto-unsubscribing
filters.

In	this	scenario,	spam	would,	like	OS	crashes,	viruses,	and
popups,	become	one	of	those	plagues	that	only	afflict	people	who
don't	bother	to	use	the	right	software.

Notes

[1]	Auto-retrieving	filters	will	have	to	follow	redirects,	and	should
in	some	cases	(e.g.	a	page	that	just	says	"click	here")	follow	more
than	one	level	of	links.	Make	sure	too	that	the	http	requests	are
indistinguishable	from	those	of	popular	Web	browsers,	including
the	order	and	referrer.

If	the	response	doesn't	come	back	within	x	amount	of	time,
default	to	some	fairly	high	spam	probability.

Instead	of	making	n	constant,	it	might	be	a	good	idea	to	make	it	a
function	of	the	number	of	spams	that	have	been	seen	mentioning
the	site.	This	would	add	a	further	level	of	protection	against
abuse	and	accidents.

[2]	The	original	version	of	this	article	used	the	term	"whitelist"
instead	of	"blacklist".	Though	they	were	to	work	like	blacklists,	I
preferred	to	call	them	whitelists	because	it	might	make	them	less
vulnerable	to	legal	attack.	This	just	seems	to	have	confused
readers,	though.

There	should	probably	be	multiple	blacklists.	A	single	point	of
failure	would	be	vulnerable	both	to	attack	and	abuse.

Thanks	to	Brian	Burton,	Bill	Yerazunis,	Dan	Giffin,	Eric	Raymond,
and	Richard	Jowsey	for	reading	drafts	of	this.

	

What	You	Can't	Say
January	2004

Have	you	ever	seen	an	old	photo	of	yourself	and	been
embarrassed	at	the	way	you	looked?	Did	we	actually	dress	like
that?	We	did.	And	we	had	no	idea	how	silly	we	looked.	It's	the
nature	of	fashion	to	be	invisible,	in	the	same	way	the	movement
of	the	earth	is	invisible	to	all	of	us	riding	on	it.

What	scares	me	is	that	there	are	moral	fashions	too.	They're	just
as	arbitrary,	and	just	as	invisible	to	most	people.	But	they're
much	more	dangerous.	Fashion	is	mistaken	for	good	design;
moral	fashion	is	mistaken	for	good.	Dressing	oddly	gets	you
laughed	at.	Violating	moral	fashions	can	get	you	fired,	ostracized,
imprisoned,	or	even	killed.

If	you	could	travel	back	in	a	time	machine,	one	thing	would	be
true	no	matter	where	you	went:	you'd	have	to	watch	what	you
said.	Opinions	we	consider	harmless	could	have	gotten	you	in	big
trouble.	I've	already	said	at	least	one	thing	that	would	have
gotten	me	in	big	trouble	in	most	of	Europe	in	the	seventeenth
century,	and	did	get	Galileo	in	big	trouble	when	he	said	it	�	that
the	earth	moves.	[1]

It	seems	to	be	a	constant	throughout	history:	In	every	period,
people	believed	things	that	were	just	ridiculous,	and	believed
them	so	strongly	that	you	would	have	gotten	in	terrible	trouble
for	saying	otherwise.

Is	our	time	any	different?	To	anyone	who	has	read	any	amount	of
history,	the	answer	is	almost	certainly	no.	It	would	be	a
remarkable	coincidence	if	ours	were	the	first	era	to	get
everything	just	right.

It's	tantalizing	to	think	we	believe	things	that	people	in	the
future	will	find	ridiculous.	What	would	someone	coming	back	to

visit	us	in	a	time	machine	have	to	be	careful	not	to	say?	That's
what	I	want	to	study	here.	But	I	want	to	do	more	than	just	shock
everyone	with	the	heresy	du	jour.	I	want	to	find	general	recipes
for	discovering	what	you	can't	say,	in	any	era.

The	Conformist	Test

Let's	start	with	a	test:	Do	you	have	any	opinions	that	you	would
be	reluctant	to	express	in	front	of	a	group	of	your	peers?

If	the	answer	is	no,	you	might	want	to	stop	and	think	about	that.
If	everything	you	believe	is	something	you're	supposed	to
believe,	could	that	possibly	be	a	coincidence?	Odds	are	it	isn't.
Odds	are	you	just	think	what	you're	told.

The	other	alternative	would	be	that	you	independently
considered	every	question	and	came	up	with	the	exact	same
answers	that	are	now	considered	acceptable.	That	seems
unlikely,	because	you'd	also	have	to	make	the	same	mistakes.
Mapmakers	deliberately	put	slight	mistakes	in	their	maps	so	they
can	tell	when	someone	copies	them.	If	another	map	has	the	same
mistake,	that's	very	convincing	evidence.

Like	every	other	era	in	history,	our	moral	map	almost	certainly
contains	a	few	mistakes.	And	anyone	who	makes	the	same
mistakes	probably	didn't	do	it	by	accident.	It	would	be	like
someone	claiming	they	had	independently	decided	in	1972	that
bell-bottom	jeans	were	a	good	idea.

If	you	believe	everything	you're	supposed	to	now,	how	can	you	be
sure	you	wouldn't	also	have	believed	everything	you	were
supposed	to	if	you	had	grown	up	among	the	plantation	owners	of
the	pre-Civil	War	South,	or	in	Germany	in	the	1930s	�	or	among
the	Mongols	in	1200,	for	that	matter?	Odds	are	you	would	have.

Back	in	the	era	of	terms	like	"well-adjusted,"	the	idea	seemed	to
be	that	there	was	something	wrong	with	you	if	you	thought
things	you	didn't	dare	say	out	loud.	This	seems	backward.	Almost
certainly,	there	is	something	wrong	with	you	if	you	don't	think
things	you	don't	dare	say	out	loud.

Trouble

What	can't	we	say?	One	way	to	find	these	ideas	is	simply	to	look
at	things	people	do	say,	and	get	in	trouble	for.	[2]

Of	course,	we're	not	just	looking	for	things	we	can't	say.	We're
looking	for	things	we	can't	say	that	are	true,	or	at	least	have
enough	chance	of	being	true	that	the	question	should	remain
open.	But	many	of	the	things	people	get	in	trouble	for	saying
probably	do	make	it	over	this	second,	lower	threshold.	No	one
gets	in	trouble	for	saying	that	2	+	2	is	5,	or	that	people	in
Pittsburgh	are	ten	feet	tall.	Such	obviously	false	statements
might	be	treated	as	jokes,	or	at	worst	as	evidence	of	insanity,	but
they	are	not	likely	to	make	anyone	mad.	The	statements	that
make	people	mad	are	the	ones	they	worry	might	be	believed.	I
suspect	the	statements	that	make	people	maddest	are	those	they
worry	might	be	true.

If	Galileo	had	said	that	people	in	Padua	were	ten	feet	tall,	he
would	have	been	regarded	as	a	harmless	eccentric.	Saying	the
earth	orbited	the	sun	was	another	matter.	The	church	knew	this
would	set	people	thinking.

Certainly,	as	we	look	back	on	the	past,	this	rule	of	thumb	works
well.	A	lot	of	the	statements	people	got	in	trouble	for	seem
harmless	now.	So	it's	likely	that	visitors	from	the	future	would
agree	with	at	least	some	of	the	statements	that	get	people	in
trouble	today.	Do	we	have	no	Galileos?	Not	likely.

To	find	them,	keep	track	of	opinions	that	get	people	in	trouble,
and	start	asking,	could	this	be	true?	Ok,	it	may	be	heretical	(or
whatever	modern	equivalent),	but	might	it	also	be	true?

Heresy

This	won't	get	us	all	the	answers,	though.	What	if	no	one
happens	to	have	gotten	in	trouble	for	a	particular	idea	yet?	What
if	some	idea	would	be	so	radioactively	controversial	that	no	one
would	dare	express	it	in	public?	How	can	we	find	these	too?

Another	approach	is	to	follow	that	word,	heresy.	In	every	period

of	history,	there	seem	to	have	been	labels	that	got	applied	to
statements	to	shoot	them	down	before	anyone	had	a	chance	to
ask	if	they	were	true	or	not.	"Blasphemy",	"sacrilege",	and
"heresy"	were	such	labels	for	a	good	part	of	western	history,	as	in
more	recent	times	"indecent",	"improper",	and	"unamerican"
have	been.	By	now	these	labels	have	lost	their	sting.	They	always
do.	By	now	they're	mostly	used	ironically.	But	in	their	time,	they
had	real	force.

The	word	"defeatist",	for	example,	has	no	particular	political
connotations	now.	But	in	Germany	in	1917	it	was	a	weapon,	used
by	Ludendorff	in	a	purge	of	those	who	favored	a	negotiated
peace.	At	the	start	of	World	War	II	it	was	used	extensively	by
Churchill	and	his	supporters	to	silence	their	opponents.	In	1940,
any	argument	against	Churchill's	aggressive	policy	was
"defeatist".	Was	it	right	or	wrong?	Ideally,	no	one	got	far	enough
to	ask	that.

We	have	such	labels	today,	of	course,	quite	a	lot	of	them,	from
the	all-purpose	"inappropriate"	to	the	dreaded	"divisive."	In	any
period,	it	should	be	easy	to	figure	out	what	such	labels	are,
simply	by	looking	at	what	people	call	ideas	they	disagree	with
besides	untrue.	When	a	politician	says	his	opponent	is	mistaken,
that's	a	straightforward	criticism,	but	when	he	attacks	a
statement	as	"divisive"	or	"racially	insensitive"	instead	of	arguing
that	it's	false,	we	should	start	paying	attention.

So	another	way	to	figure	out	which	of	our	taboos	future
generations	will	laugh	at	is	to	start	with	the	labels.	Take	a	label
�	"sexist",	for	example	�	and	try	to	think	of	some	ideas	that
would	be	called	that.	Then	for	each	ask,	might	this	be	true?

Just	start	listing	ideas	at	random?	Yes,	because	they	won't	really
be	random.	The	ideas	that	come	to	mind	first	will	be	the	most
plausible	ones.	They'll	be	things	you've	already	noticed	but	didn't
let	yourself	think.

In	1989	some	clever	researchers	tracked	the	eye	movements	of
radiologists	as	they	scanned	chest	images	for	signs	of	lung
cancer.	[3]	They	found	that	even	when	the	radiologists	missed	a
cancerous	lesion,	their	eyes	had	usually	paused	at	the	site	of	it.

Part	of	their	brain	knew	there	was	something	there;	it	just	didn't
percolate	all	the	way	up	into	conscious	knowledge.	I	think	many
interesting	heretical	thoughts	are	already	mostly	formed	in	our
minds.	If	we	turn	off	our	self-censorship	temporarily,	those	will
be	the	first	to	emerge.

Time	and	Space

If	we	could	look	into	the	future	it	would	be	obvious	which	of	our
taboos	they'd	laugh	at.	We	can't	do	that,	but	we	can	do
something	almost	as	good:	we	can	look	into	the	past.	Another
way	to	figure	out	what	we're	getting	wrong	is	to	look	at	what
used	to	be	acceptable	and	is	now	unthinkable.

Changes	between	the	past	and	the	present	sometimes	do
represent	progress.	In	a	field	like	physics,	if	we	disagree	with
past	generations	it's	because	we're	right	and	they're	wrong.	But
this	becomes	rapidly	less	true	as	you	move	away	from	the
certainty	of	the	hard	sciences.	By	the	time	you	get	to	social
questions,	many	changes	are	just	fashion.	The	age	of	consent
fluctuates	like	hemlines.

We	may	imagine	that	we	are	a	great	deal	smarter	and	more
virtuous	than	past	generations,	but	the	more	history	you	read,
the	less	likely	this	seems.	People	in	past	times	were	much	like	us.
Not	heroes,	not	barbarians.	Whatever	their	ideas	were,	they	were
ideas	reasonable	people	could	believe.

So	here	is	another	source	of	interesting	heresies.	Diff	present
ideas	against	those	of	various	past	cultures,	and	see	what	you
get.	[4]	Some	will	be	shocking	by	present	standards.	Ok,	fine;	but
which	might	also	be	true?

You	don't	have	to	look	into	the	past	to	find	big	differences.	In	our
own	time,	different	societies	have	wildly	varying	ideas	of	what's
ok	and	what	isn't.	So	you	can	try	diffing	other	cultures'	ideas
against	ours	as	well.	(The	best	way	to	do	that	is	to	visit	them.)
Any	idea	that's	considered	harmless	in	a	significant	percentage
of	times	and	places,	and	yet	is	taboo	in	ours,	is	a	candidate	for
something	we're	mistaken	about.

For	example,	at	the	high	water	mark	of	political	correctness	in
the	early	1990s,	Harvard	distributed	to	its	faculty	and	staff	a
brochure	saying,	among	other	things,	that	it	was	inappropriate	to
compliment	a	colleague	or	student's	clothes.	No	more	"nice
shirt."	I	think	this	principle	is	rare	among	the	world's	cultures,
past	or	present.	There	are	probably	more	where	it's	considered
especially	polite	to	compliment	someone's	clothing	than	where
it's	considered	improper.	Odds	are	this	is,	in	a	mild	form,	an
example	of	one	of	the	taboos	a	visitor	from	the	future	would	have
to	be	careful	to	avoid	if	he	happened	to	set	his	time	machine	for
Cambridge,	Massachusetts,	1992.	[5]

Prigs

Of	course,	if	they	have	time	machines	in	the	future	they'll
probably	have	a	separate	reference	manual	just	for	Cambridge.
This	has	always	been	a	fussy	place,	a	town	of	i	dotters	and	t
crossers,	where	you're	liable	to	get	both	your	grammar	and	your
ideas	corrected	in	the	same	conversation.	And	that	suggests
another	way	to	find	taboos.	Look	for	prigs,	and	see	what's	inside
their	heads.

Kids'	heads	are	repositories	of	all	our	taboos.	It	seems	fitting	to
us	that	kids'	ideas	should	be	bright	and	clean.	The	picture	we
give	them	of	the	world	is	not	merely	simplified,	to	suit	their
developing	minds,	but	sanitized	as	well,	to	suit	our	ideas	of	what
kids	ought	to	think.	[6]

You	can	see	this	on	a	small	scale	in	the	matter	of	dirty	words.	A
lot	of	my	friends	are	starting	to	have	children	now,	and	they're	all
trying	not	to	use	words	like	"fuck"	and	"shit"	within	baby's
hearing,	lest	baby	start	using	these	words	too.	But	these	words
are	part	of	the	language,	and	adults	use	them	all	the	time.	So
parents	are	giving	their	kids	an	inaccurate	idea	of	the	language
by	not	using	them.	Why	do	they	do	this?	Because	they	don't	think
it's	fitting	that	kids	should	use	the	whole	language.	We	like
children	to	seem	innocent.	[7]

Most	adults,	likewise,	deliberately	give	kids	a	misleading	view	of
the	world.	One	of	the	most	obvious	examples	is	Santa	Claus.	We
think	it's	cute	for	little	kids	to	believe	in	Santa	Claus.	I	myself

think	it's	cute	for	little	kids	to	believe	in	Santa	Claus.	But	one
wonders,	do	we	tell	them	this	stuff	for	their	sake,	or	for	ours?

I'm	not	arguing	for	or	against	this	idea	here.	It	is	probably
inevitable	that	parents	should	want	to	dress	up	their	kids'	minds
in	cute	little	baby	outfits.	I'll	probably	do	it	myself.	The	important
thing	for	our	purposes	is	that,	as	a	result,	a	well	brought-up
teenage	kid's	brain	is	a	more	or	less	complete	collection	of	all	our
taboos	�	and	in	mint	condition,	because	they're	untainted	by
experience.	Whatever	we	think	that	will	later	turn	out	to	be
ridiculous,	it's	almost	certainly	inside	that	head.

How	do	we	get	at	these	ideas?	By	the	following	thought
experiment.	Imagine	a	kind	of	latter-day	Conrad	character	who
has	worked	for	a	time	as	a	mercenary	in	Africa,	for	a	time	as	a
doctor	in	Nepal,	for	a	time	as	the	manager	of	a	nightclub	in
Miami.	The	specifics	don't	matter	�	just	someone	who	has	seen	a
lot.	Now	imagine	comparing	what's	inside	this	guy's	head	with
what's	inside	the	head	of	a	well-behaved	sixteen	year	old	girl
from	the	suburbs.	What	does	he	think	that	would	shock	her?	He
knows	the	world;	she	knows,	or	at	least	embodies,	present
taboos.	Subtract	one	from	the	other,	and	the	result	is	what	we
can't	say.	

Mechanism

I	can	think	of	one	more	way	to	figure	out	what	we	can't	say:	to
look	at	how	taboos	are	created.	How	do	moral	fashions	arise,	and
why	are	they	adopted?	If	we	can	understand	this	mechanism,	we
may	be	able	to	see	it	at	work	in	our	own	time.

Moral	fashions	don't	seem	to	be	created	the	way	ordinary
fashions	are.	Ordinary	fashions	seem	to	arise	by	accident	when
everyone	imitates	the	whim	of	some	influential	person.	The
fashion	for	broad-toed	shoes	in	late	fifteenth	century	Europe
began	because	Charles	VIII	of	France	had	six	toes	on	one	foot.
The	fashion	for	the	name	Gary	began	when	the	actor	Frank
Cooper	adopted	the	name	of	a	tough	mill	town	in	Indiana.	Moral
fashions	more	often	seem	to	be	created	deliberately.	When
there's	something	we	can't	say,	it's	often	because	some	group
doesn't	want	us	to.

The	prohibition	will	be	strongest	when	the	group	is	nervous.	The
irony	of	Galileo's	situation	was	that	he	got	in	trouble	for
repeating	Copernicus's	ideas.	Copernicus	himself	didn't.	In	fact,
Copernicus	was	a	canon	of	a	cathedral,	and	dedicated	his	book	to
the	pope.	But	by	Galileo's	time	the	church	was	in	the	throes	of
the	Counter-Reformation	and	was	much	more	worried	about
unorthodox	ideas.

To	launch	a	taboo,	a	group	has	to	be	poised	halfway	between
weakness	and	power.	A	confident	group	doesn't	need	taboos	to
protect	it.	It's	not	considered	improper	to	make	disparaging
remarks	about	Americans,	or	the	English.	And	yet	a	group	has	to
be	powerful	enough	to	enforce	a	taboo.	Coprophiles,	as	of	this
writing,	don't	seem	to	be	numerous	or	energetic	enough	to	have
had	their	interests	promoted	to	a	lifestyle.

I	suspect	the	biggest	source	of	moral	taboos	will	turn	out	to	be
power	struggles	in	which	one	side	only	barely	has	the	upper
hand.	That's	where	you'll	find	a	group	powerful	enough	to
enforce	taboos,	but	weak	enough	to	need	them.

Most	struggles,	whatever	they're	really	about,	will	be	cast	as
struggles	between	competing	ideas.	The	English	Reformation
was	at	bottom	a	struggle	for	wealth	and	power,	but	it	ended	up
being	cast	as	a	struggle	to	preserve	the	souls	of	Englishmen	from
the	corrupting	influence	of	Rome.	It's	easier	to	get	people	to	fight
for	an	idea.	And	whichever	side	wins,	their	ideas	will	also	be
considered	to	have	triumphed,	as	if	God	wanted	to	signal	his
agreement	by	selecting	that	side	as	the	victor.

We	often	like	to	think	of	World	War	II	as	a	triumph	of	freedom
over	totalitarianism.	We	conveniently	forget	that	the	Soviet
Union	was	also	one	of	the	winners.

I'm	not	saying	that	struggles	are	never	about	ideas,	just	that	they
will	always	be	made	to	seem	to	be	about	ideas,	whether	they	are
or	not.	And	just	as	there	is	nothing	so	unfashionable	as	the	last,
discarded	fashion,	there	is	nothing	so	wrong	as	the	principles	of
the	most	recently	defeated	opponent.	Representational	art	is	only
now	recovering	from	the	approval	of	both	Hitler	and	Stalin.	[8]

Although	moral	fashions	tend	to	arise	from	different	sources	than
fashions	in	clothing,	the	mechanism	of	their	adoption	seems
much	the	same.	The	early	adopters	will	be	driven	by	ambition:
self-consciously	cool	people	who	want	to	distinguish	themselves
from	the	common	herd.	As	the	fashion	becomes	established
they'll	be	joined	by	a	second,	much	larger	group,	driven	by	fear.
[9]	This	second	group	adopt	the	fashion	not	because	they	want	to
stand	out	but	because	they	are	afraid	of	standing	out.

So	if	you	want	to	figure	out	what	we	can't	say,	look	at	the
machinery	of	fashion	and	try	to	predict	what	it	would	make
unsayable.	What	groups	are	powerful	but	nervous,	and	what
ideas	would	they	like	to	suppress?	What	ideas	were	tarnished	by
association	when	they	ended	up	on	the	losing	side	of	a	recent
struggle?	If	a	self-consciously	cool	person	wanted	to	differentiate
himself	from	preceding	fashions	(e.g.	from	his	parents),	which	of
their	ideas	would	he	tend	to	reject?	What	are	conventional-
minded	people	afraid	of	saying?

This	technique	won't	find	us	all	the	things	we	can't	say.	I	can
think	of	some	that	aren't	the	result	of	any	recent	struggle.	Many
of	our	taboos	are	rooted	deep	in	the	past.	But	this	approach,
combined	with	the	preceding	four,	will	turn	up	a	good	number	of
unthinkable	ideas.

Why

Some	would	ask,	why	would	one	want	to	do	this?	Why
deliberately	go	poking	around	among	nasty,	disreputable	ideas?
Why	look	under	rocks?

I	do	it,	first	of	all,	for	the	same	reason	I	did	look	under	rocks	as	a
kid:	plain	curiosity.	And	I'm	especially	curious	about	anything
that's	forbidden.	Let	me	see	and	decide	for	myself.

Second,	I	do	it	because	I	don't	like	the	idea	of	being	mistaken.	If,
like	other	eras,	we	believe	things	that	will	later	seem	ridiculous,	I
want	to	know	what	they	are	so	that	I,	at	least,	can	avoid	believing
them.

Third,	I	do	it	because	it's	good	for	the	brain.	To	do	good	work	you
need	a	brain	that	can	go	anywhere.	And	you	especially	need	a
brain	that's	in	the	habit	of	going	where	it's	not	supposed	to.

Great	work	tends	to	grow	out	of	ideas	that	others	have
overlooked,	and	no	idea	is	so	overlooked	as	one	that's
unthinkable.	Natural	selection,	for	example.	It's	so	simple.	Why
didn't	anyone	think	of	it	before?	Well,	that	is	all	too	obvious.
Darwin	himself	was	careful	to	tiptoe	around	the	implications	of
his	theory.	He	wanted	to	spend	his	time	thinking	about	biology,
not	arguing	with	people	who	accused	him	of	being	an	atheist.

In	the	sciences,	especially,	it's	a	great	advantage	to	be	able	to
question	assumptions.	The	m.o.	of	scientists,	or	at	least	of	the
good	ones,	is	precisely	that:	look	for	places	where	conventional
wisdom	is	broken,	and	then	try	to	pry	apart	the	cracks	and	see
what's	underneath.	That's	where	new	theories	come	from.

A	good	scientist,	in	other	words,	does	not	merely	ignore
conventional	wisdom,	but	makes	a	special	effort	to	break	it.
Scientists	go	looking	for	trouble.	This	should	be	the	m.o.	of	any
scholar,	but	scientists	seem	much	more	willing	to	look	under
rocks.	[10]

Why?	It	could	be	that	the	scientists	are	simply	smarter;	most
physicists	could,	if	necessary,	make	it	through	a	PhD	program	in
French	literature,	but	few	professors	of	French	literature	could
make	it	through	a	PhD	program	in	physics.	Or	it	could	be
because	it's	clearer	in	the	sciences	whether	theories	are	true	or
false,	and	this	makes	scientists	bolder.	(Or	it	could	be	that,
because	it's	clearer	in	the	sciences	whether	theories	are	true	or
false,	you	have	to	be	smart	to	get	jobs	as	a	scientist,	rather	than
just	a	good	politician.)

Whatever	the	reason,	there	seems	a	clear	correlation	between
intelligence	and	willingness	to	consider	shocking	ideas.	This	isn't
just	because	smart	people	actively	work	to	find	holes	in
conventional	thinking.	I	think	conventions	also	have	less	hold
over	them	to	start	with.	You	can	see	that	in	the	way	they	dress.

It's	not	only	in	the	sciences	that	heresy	pays	off.	In	any

competitive	field,	you	can	win	big	by	seeing	things	that	others
daren't.	And	in	every	field	there	are	probably	heresies	few	dare
utter.	Within	the	US	car	industry	there	is	a	lot	of	hand-wringing
now	about	declining	market	share.	Yet	the	cause	is	so	obvious
that	any	observant	outsider	could	explain	it	in	a	second:	they
make	bad	cars.	And	they	have	for	so	long	that	by	now	the	US	car
brands	are	antibrands	�	something	you'd	buy	a	car	despite,	not
because	of.	Cadillac	stopped	being	the	Cadillac	of	cars	in	about
1970.	And	yet	I	suspect	no	one	dares	say	this.	[11]	Otherwise
these	companies	would	have	tried	to	fix	the	problem.

Training	yourself	to	think	unthinkable	thoughts	has	advantages
beyond	the	thoughts	themselves.	It's	like	stretching.	When	you
stretch	before	running,	you	put	your	body	into	positions	much
more	extreme	than	any	it	will	assume	during	the	run.	If	you	can
think	things	so	outside	the	box	that	they'd	make	people's	hair
stand	on	end,	you'll	have	no	trouble	with	the	small	trips	outside
the	box	that	people	call	innovative.

Pensieri	Stretti

When	you	find	something	you	can't	say,	what	do	you	do	with	it?
My	advice	is,	don't	say	it.	Or	at	least,	pick	your	battles.

Suppose	in	the	future	there	is	a	movement	to	ban	the	color
yellow.	Proposals	to	paint	anything	yellow	are	denounced	as
"yellowist",	as	is	anyone	suspected	of	liking	the	color.	People	who
like	orange	are	tolerated	but	viewed	with	suspicion.	Suppose	you
realize	there	is	nothing	wrong	with	yellow.	If	you	go	around
saying	this,	you'll	be	denounced	as	a	yellowist	too,	and	you'll	find
yourself	having	a	lot	of	arguments	with	anti-yellowists.	If	your
aim	in	life	is	to	rehabilitate	the	color	yellow,	that	may	be	what
you	want.	But	if	you're	mostly	interested	in	other	questions,
being	labelled	as	a	yellowist	will	just	be	a	distraction.	Argue	with
idiots,	and	you	become	an	idiot.

The	most	important	thing	is	to	be	able	to	think	what	you	want,
not	to	say	what	you	want.	And	if	you	feel	you	have	to	say
everything	you	think,	it	may	inhibit	you	from	thinking	improper
thoughts.	I	think	it's	better	to	follow	the	opposite	policy.	Draw	a
sharp	line	between	your	thoughts	and	your	speech.	Inside	your

avg.html

head,	anything	is	allowed.	Within	my	head	I	make	a	point	of
encouraging	the	most	outrageous	thoughts	I	can	imagine.	But,	as
in	a	secret	society,	nothing	that	happens	within	the	building
should	be	told	to	outsiders.	The	first	rule	of	Fight	Club	is,	you	do
not	talk	about	Fight	Club.

When	Milton	was	going	to	visit	Italy	in	the	1630s,	Sir	Henry
Wootton,	who	had	been	ambassador	to	Venice,	told	him	his	motto
should	be	"i	pensieri	stretti	&	il	viso	sciolto."	Closed	thoughts	and
an	open	face.	Smile	at	everyone,	and	don't	tell	them	what	you're
thinking.	This	was	wise	advice.	Milton	was	an	argumentative
fellow,	and	the	Inquisition	was	a	bit	restive	at	that	time.	But	I
think	the	difference	between	Milton's	situation	and	ours	is	only	a
matter	of	degree.	Every	era	has	its	heresies,	and	if	you	don't	get
imprisoned	for	them	you	will	at	least	get	in	enough	trouble	that	it
becomes	a	complete	distraction.

I	admit	it	seems	cowardly	to	keep	quiet.	When	I	read	about	the
harassment	to	which	the	Scientologists	subject	their	critics	[12],
or	that	pro-Israel	groups	are	"compiling	dossiers"	on	those	who
speak	out	against	Israeli	human	rights	abuses	[13],	or	about
people	being	sued	for	violating	the	DMCA	[14],	part	of	me	wants
to	say,	"All	right,	you	bastards,	bring	it	on."	The	problem	is,	there
are	so	many	things	you	can't	say.	If	you	said	them	all	you'd	have
no	time	left	for	your	real	work.	You'd	have	to	turn	into	Noam
Chomsky.	[15]

The	trouble	with	keeping	your	thoughts	secret,	though,	is	that
you	lose	the	advantages	of	discussion.	Talking	about	an	idea
leads	to	more	ideas.	So	the	optimal	plan,	if	you	can	manage	it,	is
to	have	a	few	trusted	friends	you	can	speak	openly	to.	This	is	not
just	a	way	to	develop	ideas;	it's	also	a	good	rule	of	thumb	for
choosing	friends.	The	people	you	can	say	heretical	things	to
without	getting	jumped	on	are	also	the	most	interesting	to	know.

Viso	Sciolto?

I	don't	think	we	need	the	viso	sciolto	so	much	as	the	pensieri
stretti.	Perhaps	the	best	policy	is	to	make	it	plain	that	you	don't
agree	with	whatever	zealotry	is	current	in	your	time,	but	not	to
be	too	specific	about	what	you	disagree	with.	Zealots	will	try	to

draw	you	out,	but	you	don't	have	to	answer	them.	If	they	try	to
force	you	to	treat	a	question	on	their	terms	by	asking	"are	you
with	us	or	against	us?"	you	can	always	just	answer	"neither".

Better	still,	answer	"I	haven't	decided."	That's	what	Larry
Summers	did	when	a	group	tried	to	put	him	in	this	position.
Explaining	himself	later,	he	said	"I	don't	do	litmus	tests."	[16]	A
lot	of	the	questions	people	get	hot	about	are	actually	quite
complicated.	There	is	no	prize	for	getting	the	answer	quickly.

If	the	anti-yellowists	seem	to	be	getting	out	of	hand	and	you	want
to	fight	back,	there	are	ways	to	do	it	without	getting	yourself
accused	of	being	a	yellowist.	Like	skirmishers	in	an	ancient	army,
you	want	to	avoid	directly	engaging	the	main	body	of	the	enemy's
troops.	Better	to	harass	them	with	arrows	from	a	distance.

One	way	to	do	this	is	to	ratchet	the	debate	up	one	level	of
abstraction.	If	you	argue	against	censorship	in	general,	you	can
avoid	being	accused	of	whatever	heresy	is	contained	in	the	book
or	film	that	someone	is	trying	to	censor.	You	can	attack	labels
with	meta-labels:	labels	that	refer	to	the	use	of	labels	to	prevent
discussion.	The	spread	of	the	term	"political	correctness"	meant
the	beginning	of	the	end	of	political	correctness,	because	it
enabled	one	to	attack	the	phenomenon	as	a	whole	without	being
accused	of	any	of	the	specific	heresies	it	sought	to	suppress.

Another	way	to	counterattack	is	with	metaphor.	Arthur	Miller
undermined	the	House	Un-American	Activities	Committee	by
writing	a	play,	"The	Crucible,"	about	the	Salem	witch	trials.	He
never	referred	directly	to	the	committee	and	so	gave	them	no
way	to	reply.	What	could	HUAC	do,	defend	the	Salem	witch
trials?	And	yet	Miller's	metaphor	stuck	so	well	that	to	this	day
the	activities	of	the	committee	are	often	described	as	a	"witch-
hunt."

Best	of	all,	probably,	is	humor.	Zealots,	whatever	their	cause,
invariably	lack	a	sense	of	humor.	They	can't	reply	in	kind	to
jokes.	They're	as	unhappy	on	the	territory	of	humor	as	a	mounted
knight	on	a	skating	rink.	Victorian	prudishness,	for	example,
seems	to	have	been	defeated	mainly	by	treating	it	as	a	joke.
Likewise	its	reincarnation	as	political	correctness.	"I	am	glad

that	I	managed	to	write	'The	Crucible,'"	Arthur	Miller	wrote,	"but
looking	back	I	have	often	wished	I'd	had	the	temperament	to	do
an	absurd	comedy,	which	is	what	the	situation	deserved."	[17]

ABQ

A	Dutch	friend	says	I	should	use	Holland	as	an	example	of	a
tolerant	society.	It's	true	they	have	a	long	tradition	of
comparative	open-mindedness.	For	centuries	the	low	countries
were	the	place	to	go	to	say	things	you	couldn't	say	anywhere
else,	and	this	helped	to	make	the	region	a	center	of	scholarship
and	industry	(which	have	been	closely	tied	for	longer	than	most
people	realize).	Descartes,	though	claimed	by	the	French,	did
much	of	his	thinking	in	Holland.

And	yet,	I	wonder.	The	Dutch	seem	to	live	their	lives	up	to	their
necks	in	rules	and	regulations.	There's	so	much	you	can't	do
there;	is	there	really	nothing	you	can't	say?

Certainly	the	fact	that	they	value	open-mindedness	is	no
guarantee.	Who	thinks	they're	not	open-minded?	Our
hypothetical	prim	miss	from	the	suburbs	thinks	she's	open-
minded.	Hasn't	she	been	taught	to	be?	Ask	anyone,	and	they'll
say	the	same	thing:	they're	pretty	open-minded,	though	they
draw	the	line	at	things	that	are	really	wrong.	(Some	tribes	may
avoid	"wrong"	as	judgemental,	and	may	instead	use	a	more
neutral	sounding	euphemism	like	"negative"	or	"destructive".)

When	people	are	bad	at	math,	they	know	it,	because	they	get	the
wrong	answers	on	tests.	But	when	people	are	bad	at	open-
mindedness	they	don't	know	it.	In	fact	they	tend	to	think	the
opposite.	Remember,	it's	the	nature	of	fashion	to	be	invisible.	It
wouldn't	work	otherwise.	Fashion	doesn't	seem	like	fashion	to
someone	in	the	grip	of	it.	It	just	seems	like	the	right	thing	to	do.
It's	only	by	looking	from	a	distance	that	we	see	oscillations	in
people's	idea	of	the	right	thing	to	do,	and	can	identify	them	as
fashions.

Time	gives	us	such	distance	for	free.	Indeed,	the	arrival	of	new
fashions	makes	old	fashions	easy	to	see,	because	they	seem	so
ridiculous	by	contrast.	From	one	end	of	a	pendulum's	swing,	the

other	end	seems	especially	far	away.

To	see	fashion	in	your	own	time,	though,	requires	a	conscious
effort.	Without	time	to	give	you	distance,	you	have	to	create
distance	yourself.	Instead	of	being	part	of	the	mob,	stand	as	far
away	from	it	as	you	can	and	watch	what	it's	doing.	And	pay
especially	close	attention	whenever	an	idea	is	being	suppressed.
Web	filters	for	children	and	employees	often	ban	sites	containing
pornography,	violence,	and	hate	speech.	What	counts	as
pornography	and	violence?	And	what,	exactly,	is	"hate	speech?"
This	sounds	like	a	phrase	out	of	1984.

Labels	like	that	are	probably	the	biggest	external	clue.	If	a
statement	is	false,	that's	the	worst	thing	you	can	say	about	it.	You
don't	need	to	say	that	it's	heretical.	And	if	it	isn't	false,	it
shouldn't	be	suppressed.	So	when	you	see	statements	being
attacked	as	x-ist	or	y-ic	(substitute	your	current	values	of	x	and
y),	whether	in	1630	or	2030,	that's	a	sure	sign	that	something	is
wrong.	When	you	hear	such	labels	being	used,	ask	why.

Especially	if	you	hear	yourself	using	them.	It's	not	just	the	mob
you	need	to	learn	to	watch	from	a	distance.	You	need	to	be	able
to	watch	your	own	thoughts	from	a	distance.	That's	not	a	radical
idea,	by	the	way;	it's	the	main	difference	between	children	and
adults.	When	a	child	gets	angry	because	he's	tired,	he	doesn't
know	what's	happening.	An	adult	can	distance	himself	enough
from	the	situation	to	say	"never	mind,	I'm	just	tired."	I	don't	see
why	one	couldn't,	by	a	similar	process,	learn	to	recognize	and
discount	the	effects	of	moral	fashions.

You	have	to	take	that	extra	step	if	you	want	to	think	clearly.	But
it's	harder,	because	now	you're	working	against	social	customs
instead	of	with	them.	Everyone	encourages	you	to	grow	up	to	the
point	where	you	can	discount	your	own	bad	moods.	Few
encourage	you	to	continue	to	the	point	where	you	can	discount
society's	bad	moods.

How	can	you	see	the	wave,	when	you're	the	water?	Always	be
questioning.	That's	the	only	defence.	What	can't	you	say?	And
why?

Notes

Thanks	to	Sarah	Harlin,	Trevor	Blackwell,	Jessica	Livingston,
Robert	Morris,	Eric	Raymond	and	Bob	van	der	Zwaan	for	reading
drafts	of	this	essay,	and	to	Lisa	Randall,	Jackie	McDonough,	Ryan
Stanley	and	Joel	Rainey	for	conversations	about	heresy.	Needless
to	say	they	bear	no	blame	for	opinions	expressed	in	it,	and
especially	for	opinions	not	expressed	in	it.

http://www.paulgraham.com/saynotes.html

	

The	Word	"Hacker"
April	2004

To	the	popular	press,	"hacker"	means	someone	who	breaks	into
computers.	Among	programmers	it	means	a	good	programmer.
But	the	two	meanings	are	connected.	To	programmers,	"hacker"
connotes	mastery	in	the	most	literal	sense:	someone	who	can
make	a	computer	do	what	he	wants—whether	the	computer
wants	to	or	not.

To	add	to	the	confusion,	the	noun	"hack"	also	has	two	senses.	It
can	be	either	a	compliment	or	an	insult.	It's	called	a	hack	when
you	do	something	in	an	ugly	way.	But	when	you	do	something	so
clever	that	you	somehow	beat	the	system,	that's	also	called	a
hack.	The	word	is	used	more	often	in	the	former	than	the	latter
sense,	probably	because	ugly	solutions	are	more	common	than
brilliant	ones.

Believe	it	or	not,	the	two	senses	of	"hack"	are	also	connected.
Ugly	and	imaginative	solutions	have	something	in	common:	they
both	break	the	rules.	And	there	is	a	gradual	continuum	between
rule	breaking	that's	merely	ugly	(using	duct	tape	to	attach
something	to	your	bike)	and	rule	breaking	that	is	brilliantly
imaginative	(discarding	Euclidean	space).

Hacking	predates	computers.	When	he	was	working	on	the
Manhattan	Project,	Richard	Feynman	used	to	amuse	himself	by
breaking	into	safes	containing	secret	documents.	This	tradition
continues	today.	When	we	were	in	grad	school,	a	hacker	friend	of
mine	who	spent	too	much	time	around	MIT	had	his	own	lock
picking	kit.	(He	now	runs	a	hedge	fund,	a	not	unrelated
enterprise.)

It	is	sometimes	hard	to	explain	to	authorities	why	one	would
want	to	do	such	things.	Another	friend	of	mine	once	got	in
trouble	with	the	government	for	breaking	into	computers.	This

had	only	recently	been	declared	a	crime,	and	the	FBI	found	that
their	usual	investigative	technique	didn't	work.	Police
investigation	apparently	begins	with	a	motive.	The	usual	motives
are	few:	drugs,	money,	sex,	revenge.	Intellectual	curiosity	was
not	one	of	the	motives	on	the	FBI's	list.	Indeed,	the	whole
concept	seemed	foreign	to	them.

Those	in	authority	tend	to	be	annoyed	by	hackers'	general
attitude	of	disobedience.	But	that	disobedience	is	a	byproduct	of
the	qualities	that	make	them	good	programmers.	They	may	laugh
at	the	CEO	when	he	talks	in	generic	corporate	newspeech,	but
they	also	laugh	at	someone	who	tells	them	a	certain	problem
can't	be	solved.	Suppress	one,	and	you	suppress	the	other.

This	attitude	is	sometimes	affected.	Sometimes	young
programmers	notice	the	eccentricities	of	eminent	hackers	and
decide	to	adopt	some	of	their	own	in	order	to	seem	smarter.	The
fake	version	is	not	merely	annoying;	the	prickly	attitude	of	these
posers	can	actually	slow	the	process	of	innovation.

But	even	factoring	in	their	annoying	eccentricities,	the
disobedient	attitude	of	hackers	is	a	net	win.	I	wish	its	advantages
were	better	understood.

For	example,	I	suspect	people	in	Hollywood	are	simply	mystified
by	hackers'	attitudes	toward	copyrights.	They	are	a	perennial
topic	of	heated	discussion	on	Slashdot.	But	why	should	people
who	program	computers	be	so	concerned	about	copyrights,	of	all
things?

Partly	because	some	companies	use	mechanisms	to	prevent
copying.	Show	any	hacker	a	lock	and	his	first	thought	is	how	to
pick	it.	But	there	is	a	deeper	reason	that	hackers	are	alarmed	by
measures	like	copyrights	and	patents.	They	see	increasingly
aggressive	measures	to	protect	"intellectual	property"	as	a	threat
to	the	intellectual	freedom	they	need	to	do	their	job.	And	they	are
right.

It	is	by	poking	about	inside	current	technology	that	hackers	get
ideas	for	the	next	generation.	No	thanks,	intellectual
homeowners	may	say,	we	don't	need	any	outside	help.	But	they're

wrong.	The	next	generation	of	computer	technology	has	often—
perhaps	more	often	than	not—been	developed	by	outsiders.

In	1977	there	was	no	doubt	some	group	within	IBM	developing
what	they	expected	to	be	the	next	generation	of	business
computer.	They	were	mistaken.	The	next	generation	of	business
computer	was	being	developed	on	entirely	different	lines	by	two
long-haired	guys	called	Steve	in	a	garage	in	Los	Altos.	At	about
the	same	time,	the	powers	that	be	were	cooperating	to	develop
the	official	next	generation	operating	system,	Multics.	But	two
guys	who	thought	Multics	excessively	complex	went	off	and
wrote	their	own.	They	gave	it	a	name	that	was	a	joking	reference
to	Multics:	Unix.

The	latest	intellectual	property	laws	impose	unprecedented
restrictions	on	the	sort	of	poking	around	that	leads	to	new	ideas.
In	the	past,	a	competitor	might	use	patents	to	prevent	you	from
selling	a	copy	of	something	they	made,	but	they	couldn't	prevent
you	from	taking	one	apart	to	see	how	it	worked.	The	latest	laws
make	this	a	crime.	How	are	we	to	develop	new	technology	if	we
can't	study	current	technology	to	figure	out	how	to	improve	it?

Ironically,	hackers	have	brought	this	on	themselves.	Computers
are	responsible	for	the	problem.	The	control	systems	inside
machines	used	to	be	physical:	gears	and	levers	and	cams.
Increasingly,	the	brains	(and	thus	the	value)	of	products	is	in
software.	And	by	this	I	mean	software	in	the	general	sense:	i.e.
data.	A	song	on	an	LP	is	physically	stamped	into	the	plastic.	A
song	on	an	iPod's	disk	is	merely	stored	on	it.

Data	is	by	definition	easy	to	copy.	And	the	Internet	makes	copies
easy	to	distribute.	So	it	is	no	wonder	companies	are	afraid.	But,
as	so	often	happens,	fear	has	clouded	their	judgement.	The
government	has	responded	with	draconian	laws	to	protect
intellectual	property.	They	probably	mean	well.	But	they	may	not
realize	that	such	laws	will	do	more	harm	than	good.

Why	are	programmers	so	violently	opposed	to	these	laws?	If	I
were	a	legislator,	I'd	be	interested	in	this	mystery—for	the	same
reason	that,	if	I	were	a	farmer	and	suddenly	heard	a	lot	of
squawking	coming	from	my	hen	house	one	night,	I'd	want	to	go

garage.html

out	and	investigate.	Hackers	are	not	stupid,	and	unanimity	is
very	rare	in	this	world.	So	if	they're	all	squawking,	perhaps	there
is	something	amiss.

Could	it	be	that	such	laws,	though	intended	to	protect	America,
will	actually	harm	it?	Think	about	it.	There	is	something	very
American	about	Feynman	breaking	into	safes	during	the
Manhattan	Project.	It's	hard	to	imagine	the	authorities	having	a
sense	of	humor	about	such	things	over	in	Germany	at	that	time.
Maybe	it's	not	a	coincidence.

Hackers	are	unruly.	That	is	the	essence	of	hacking.	And	it	is	also
the	essence	of	Americanness.	It	is	no	accident	that	Silicon	Valley
is	in	America,	and	not	France,	or	Germany,	or	England,	or	Japan.
In	those	countries,	people	color	inside	the	lines.

I	lived	for	a	while	in	Florence.	But	after	I'd	been	there	a	few
months	I	realized	that	what	I'd	been	unconsciously	hoping	to	find
there	was	back	in	the	place	I'd	just	left.	The	reason	Florence	is
famous	is	that	in	1450,	it	was	New	York.	In	1450	it	was	filled	with
the	kind	of	turbulent	and	ambitious	people	you	find	now	in
America.	(So	I	went	back	to	America.)

It	is	greatly	to	America's	advantage	that	it	is	a	congenial
atmosphere	for	the	right	sort	of	unruliness—that	it	is	a	home	not
just	for	the	smart,	but	for	smart-alecks.	And	hackers	are
invariably	smart-alecks.	If	we	had	a	national	holiday,	it	would	be
April	1st.	It	says	a	great	deal	about	our	work	that	we	use	the
same	word	for	a	brilliant	or	a	horribly	cheesy	solution.	When	we
cook	one	up	we're	not	always	100%	sure	which	kind	it	is.	But	as
long	as	it	has	the	right	sort	of	wrongness,	that's	a	promising	sign.
It's	odd	that	people	think	of	programming	as	precise	and
methodical.	Computers	are	precise	and	methodical.	Hacking	is
something	you	do	with	a	gleeful	laugh.

In	our	world	some	of	the	most	characteristic	solutions	are	not	far
removed	from	practical	jokes.	IBM	was	no	doubt	rather	surprised
by	the	consequences	of	the	licensing	deal	for	DOS,	just	as	the
hypothetical	"adversary"	must	be	when	Michael	Rabin	solves	a
problem	by	redefining	it	as	one	that's	easier	to	solve.

Smart-alecks	have	to	develop	a	keen	sense	of	how	much	they	can
get	away	with.	And	lately	hackers	have	sensed	a	change	in	the
atmosphere.	Lately	hackerliness	seems	rather	frowned	upon.

To	hackers	the	recent	contraction	in	civil	liberties	seems
especially	ominous.	That	must	also	mystify	outsiders.	Why	should
we	care	especially	about	civil	liberties?	Why	programmers,	more
than	dentists	or	salesmen	or	landscapers?

Let	me	put	the	case	in	terms	a	government	official	would
appreciate.	Civil	liberties	are	not	just	an	ornament,	or	a	quaint
American	tradition.	Civil	liberties	make	countries	rich.	If	you
made	a	graph	of	GNP	per	capita	vs.	civil	liberties,	you'd	notice	a
definite	trend.	Could	civil	liberties	really	be	a	cause,	rather	than
just	an	effect?	I	think	so.	I	think	a	society	in	which	people	can	do
and	say	what	they	want	will	also	tend	to	be	one	in	which	the	most
efficient	solutions	win,	rather	than	those	sponsored	by	the	most
influential	people.	Authoritarian	countries	become	corrupt;
corrupt	countries	become	poor;	and	poor	countries	are	weak.	It
seems	to	me	there	is	a	Laffer	curve	for	government	power,	just	as
for	tax	revenues.	At	least,	it	seems	likely	enough	that	it	would	be
stupid	to	try	the	experiment	and	find	out.	Unlike	high	tax	rates,
you	can't	repeal	totalitarianism	if	it	turns	out	to	be	a	mistake.

This	is	why	hackers	worry.	The	government	spying	on	people
doesn't	literally	make	programmers	write	worse	code.	It	just
leads	eventually	to	a	world	in	which	bad	ideas	win.	And	because
this	is	so	important	to	hackers,	they're	especially	sensitive	to	it.
They	can	sense	totalitarianism	approaching	from	a	distance,	as
animals	can	sense	an	approaching	thunderstorm.

It	would	be	ironic	if,	as	hackers	fear,	recent	measures	intended	to
protect	national	security	and	intellectual	property	turned	out	to
be	a	missile	aimed	right	at	what	makes	America	successful.	But	it
would	not	be	the	first	time	that	measures	taken	in	an	atmosphere
of	panic	had	the	opposite	of	the	intended	effect.

There	is	such	a	thing	as	Americanness.	There's	nothing	like	living
abroad	to	teach	you	that.	And	if	you	want	to	know	whether
something	will	nurture	or	squash	this	quality,	it	would	be	hard	to
find	a	better	focus	group	than	hackers,	because	they	come

say.html

closest	of	any	group	I	know	to	embodying	it.	Closer,	probably,
than	the	men	running	our	government,	who	for	all	their	talk	of
patriotism	remind	me	more	of	Richelieu	or	Mazarin	than	Thomas
Jefferson	or	George	Washington.

When	you	read	what	the	founding	fathers	had	to	say	for
themselves,	they	sound	more	like	hackers.	"The	spirit	of
resistance	to	government,"	Jefferson	wrote,	"is	so	valuable	on
certain	occasions,	that	I	wish	it	always	to	be	kept	alive."

Imagine	an	American	president	saying	that	today.	Like	the
remarks	of	an	outspoken	old	grandmother,	the	sayings	of	the
founding	fathers	have	embarrassed	generations	of	their	less
confident	successors.	They	remind	us	where	we	come	from.	They
remind	us	that	it	is	the	people	who	break	rules	that	are	the
source	of	America's	wealth	and	power.

Those	in	a	position	to	impose	rules	naturally	want	them	to	be
obeyed.	But	be	careful	what	you	ask	for.	You	might	get	it.

Thanks	to	Ken	Anderson,	Trevor	Blackwell,	Daniel	Giffin,	Sarah
Harlin,	Shiro	Kawai,	Jessica	Livingston,	Matz,	Jackie	McDonough,
Robert	Morris,	Eric	Raymond,	Guido	van	Rossum,	David
Weinberger,	and	Steven	Wolfram	for	reading	drafts	of	this	essay.	

(The	image	shows	Steves	Jobs	and	Wozniak	with	a	"blue	box."
Photo	by	Margret	Wozniak.	Reproduced	by	permission	of	Steve
Wozniak.)

bluebox.html

	

How	to	Make	Wealth
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Mind	the	Gap
May	2004

When	people	care	enough	about	something	to	do	it	well,	those
who	do	it	best	tend	to	be	far	better	than	everyone	else.	There's	a
huge	gap	between	Leonardo	and	second-rate	contemporaries	like
Borgognone.	You	see	the	same	gap	between	Raymond	Chandler
and	the	average	writer	of	detective	novels.	A	top-ranked
professional	chess	player	could	play	ten	thousand	games	against
an	ordinary	club	player	without	losing	once.

Like	chess	or	painting	or	writing	novels,	making	money	is	a	very
specialized	skill.	But	for	some	reason	we	treat	this	skill
differently.	No	one	complains	when	a	few	people	surpass	all	the
rest	at	playing	chess	or	writing	novels,	but	when	a	few	people
make	more	money	than	the	rest,	we	get	editorials	saying	this	is
wrong.

Why?	The	pattern	of	variation	seems	no	different	than	for	any
other	skill.	What	causes	people	to	react	so	strongly	when	the	skill
is	making	money?

I	think	there	are	three	reasons	we	treat	making	money	as
different:	the	misleading	model	of	wealth	we	learn	as	children;
the	disreputable	way	in	which,	till	recently,	most	fortunes	were
accumulated;	and	the	worry	that	great	variations	in	income	are
somehow	bad	for	society.	As	far	as	I	can	tell,	the	first	is	mistaken,
the	second	outdated,	and	the	third	empirically	false.	Could	it	be
that,	in	a	modern	democracy,	variation	in	income	is	actually	a
sign	of	health?

The	Daddy	Model	of	Wealth

When	I	was	five	I	thought	electricity	was	created	by	electric
sockets.	I	didn't	realize	there	were	power	plants	out	there
generating	it.	Likewise,	it	doesn't	occur	to	most	kids	that	wealth

is	something	that	has	to	be	generated.	It	seems	to	be	something
that	flows	from	parents.

Because	of	the	circumstances	in	which	they	encounter	it,
children	tend	to	misunderstand	wealth.	They	confuse	it	with
money.	They	think	that	there	is	a	fixed	amount	of	it.	And	they
think	of	it	as	something	that's	distributed	by	authorities	(and	so
should	be	distributed	equally),	rather	than	something	that	has	to
be	created	(and	might	be	created	unequally).

In	fact,	wealth	is	not	money.	Money	is	just	a	convenient	way	of
trading	one	form	of	wealth	for	another.	Wealth	is	the	underlying
stuff—the	goods	and	services	we	buy.	When	you	travel	to	a	rich
or	poor	country,	you	don't	have	to	look	at	people's	bank	accounts
to	tell	which	kind	you're	in.	You	can	see	wealth—in	buildings	and
streets,	in	the	clothes	and	the	health	of	the	people.

Where	does	wealth	come	from?	People	make	it.	This	was	easier
to	grasp	when	most	people	lived	on	farms,	and	made	many	of	the
things	they	wanted	with	their	own	hands.	Then	you	could	see	in
the	house,	the	herds,	and	the	granary	the	wealth	that	each	family
created.	It	was	obvious	then	too	that	the	wealth	of	the	world	was
not	a	fixed	quantity	that	had	to	be	shared	out,	like	slices	of	a	pie.
If	you	wanted	more	wealth,	you	could	make	it.

This	is	just	as	true	today,	though	few	of	us	create	wealth	directly
for	ourselves	(except	for	a	few	vestigial	domestic	tasks).	Mostly
we	create	wealth	for	other	people	in	exchange	for	money,	which
we	then	trade	for	the	forms	of	wealth	we	want.	[1]

Because	kids	are	unable	to	create	wealth,	whatever	they	have
has	to	be	given	to	them.	And	when	wealth	is	something	you're
given,	then	of	course	it	seems	that	it	should	be	distributed
equally.	[2]	As	in	most	families	it	is.	The	kids	see	to	that.	"Unfair,"
they	cry,	when	one	sibling	gets	more	than	another.

In	the	real	world,	you	can't	keep	living	off	your	parents.	If	you
want	something,	you	either	have	to	make	it,	or	do	something	of
equivalent	value	for	someone	else,	in	order	to	get	them	to	give
you	enough	money	to	buy	it.	In	the	real	world,	wealth	is	(except
for	a	few	specialists	like	thieves	and	speculators)	something	you

#f1n
#f2n

have	to	create,	not	something	that's	distributed	by	Daddy.	And
since	the	ability	and	desire	to	create	it	vary	from	person	to
person,	it's	not	made	equally.

You	get	paid	by	doing	or	making	something	people	want,	and
those	who	make	more	money	are	often	simply	better	at	doing
what	people	want.	Top	actors	make	a	lot	more	money	than	B-list
actors.	The	B-list	actors	might	be	almost	as	charismatic,	but
when	people	go	to	the	theater	and	look	at	the	list	of	movies
playing,	they	want	that	extra	oomph	that	the	big	stars	have.

Doing	what	people	want	is	not	the	only	way	to	get	money,	of
course.	You	could	also	rob	banks,	or	solicit	bribes,	or	establish	a
monopoly.	Such	tricks	account	for	some	variation	in	wealth,	and
indeed	for	some	of	the	biggest	individual	fortunes,	but	they	are
not	the	root	cause	of	variation	in	income.	The	root	cause	of
variation	in	income,	as	Occam's	Razor	implies,	is	the	same	as	the
root	cause	of	variation	in	every	other	human	skill.

In	the	United	States,	the	CEO	of	a	large	public	company	makes
about	100	times	as	much	as	the	average	person.	[3]	Basketball
players	make	about	128	times	as	much,	and	baseball	players	72
times	as	much.	Editorials	quote	this	kind	of	statistic	with	horror.
But	I	have	no	trouble	imagining	that	one	person	could	be	100
times	as	productive	as	another.	In	ancient	Rome	the	price	of
slaves	varied	by	a	factor	of	50	depending	on	their	skills.	[4]	And
that's	without	considering	motivation,	or	the	extra	leverage	in
productivity	that	you	can	get	from	modern	technology.

Editorials	about	athletes'	or	CEOs'	salaries	remind	me	of	early
Christian	writers,	arguing	from	first	principles	about	whether	the
Earth	was	round,	when	they	could	just	walk	outside	and	check.
[5]	How	much	someone's	work	is	worth	is	not	a	policy	question.
It's	something	the	market	already	determines.

"Are	they	really	worth	100	of	us?"	editorialists	ask.	Depends	on
what	you	mean	by	worth.	If	you	mean	worth	in	the	sense	of	what
people	will	pay	for	their	skills,	the	answer	is	yes,	apparently.

A	few	CEOs'	incomes	reflect	some	kind	of	wrongdoing.	But	are
there	not	others	whose	incomes	really	do	reflect	the	wealth	they

#f3n
#f4n
#f5n

generate?	Steve	Jobs	saved	a	company	that	was	in	a	terminal
decline.	And	not	merely	in	the	way	a	turnaround	specialist	does,
by	cutting	costs;	he	had	to	decide	what	Apple's	next	products
should	be.	Few	others	could	have	done	it.	And	regardless	of	the
case	with	CEOs,	it's	hard	to	see	how	anyone	could	argue	that	the
salaries	of	professional	basketball	players	don't	reflect	supply
and	demand.

It	may	seem	unlikely	in	principle	that	one	individual	could	really
generate	so	much	more	wealth	than	another.	The	key	to	this
mystery	is	to	revisit	that	question,	are	they	really	worth	100	of
us?	Would	a	basketball	team	trade	one	of	their	players	for	100
random	people?	What	would	Apple's	next	product	look	like	if	you
replaced	Steve	Jobs	with	a	committee	of	100	random	people?	[6]
These	things	don't	scale	linearly.	Perhaps	the	CEO	or	the
professional	athlete	has	only	ten	times	(whatever	that	means)	the
skill	and	determination	of	an	ordinary	person.	But	it	makes	all
the	difference	that	it's	concentrated	in	one	individual.

When	we	say	that	one	kind	of	work	is	overpaid	and	another
underpaid,	what	are	we	really	saying?	In	a	free	market,	prices
are	determined	by	what	buyers	want.	People	like	baseball	more
than	poetry,	so	baseball	players	make	more	than	poets.	To	say
that	a	certain	kind	of	work	is	underpaid	is	thus	identical	with
saying	that	people	want	the	wrong	things.

Well,	of	course	people	want	the	wrong	things.	It	seems	odd	to	be
surprised	by	that.	And	it	seems	even	odder	to	say	that	it's	unjust
that	certain	kinds	of	work	are	underpaid.	[7]	Then	you're	saying
that	it's	unjust	that	people	want	the	wrong	things.	It's	lamentable
that	people	prefer	reality	TV	and	corndogs	to	Shakespeare	and
steamed	vegetables,	but	unjust?	That	seems	like	saying	that	blue
is	heavy,	or	that	up	is	circular.

The	appearance	of	the	word	"unjust"	here	is	the	unmistakable
spectral	signature	of	the	Daddy	Model.	Why	else	would	this	idea
occur	in	this	odd	context?	Whereas	if	the	speaker	were	still
operating	on	the	Daddy	Model,	and	saw	wealth	as	something	that
flowed	from	a	common	source	and	had	to	be	shared	out,	rather
than	something	generated	by	doing	what	other	people	wanted,
this	is	exactly	what	you'd	get	on	noticing	that	some	people	made

#f6n
#f7n

much	more	than	others.

When	we	talk	about	"unequal	distribution	of	income,"	we	should
also	ask,	where	does	that	income	come	from?	[8]	Who	made	the
wealth	it	represents?	Because	to	the	extent	that	income	varies
simply	according	to	how	much	wealth	people	create,	the
distribution	may	be	unequal,	but	it's	hardly	unjust.

Stealing	It

The	second	reason	we	tend	to	find	great	disparities	of	wealth
alarming	is	that	for	most	of	human	history	the	usual	way	to
accumulate	a	fortune	was	to	steal	it:	in	pastoral	societies	by
cattle	raiding;	in	agricultural	societies	by	appropriating	others'
estates	in	times	of	war,	and	taxing	them	in	times	of	peace.

In	conflicts,	those	on	the	winning	side	would	receive	the	estates
confiscated	from	the	losers.	In	England	in	the	1060s,	when
William	the	Conqueror	distributed	the	estates	of	the	defeated
Anglo-Saxon	nobles	to	his	followers,	the	conflict	was	military.	By
the	1530s,	when	Henry	VIII	distributed	the	estates	of	the
monasteries	to	his	followers,	it	was	mostly	political.	[9]	But	the
principle	was	the	same.	Indeed,	the	same	principle	is	at	work
now	in	Zimbabwe.

In	more	organized	societies,	like	China,	the	ruler	and	his	officials
used	taxation	instead	of	confiscation.	But	here	too	we	see	the
same	principle:	the	way	to	get	rich	was	not	to	create	wealth,	but
to	serve	a	ruler	powerful	enough	to	appropriate	it.

This	started	to	change	in	Europe	with	the	rise	of	the	middle
class.	Now	we	think	of	the	middle	class	as	people	who	are
neither	rich	nor	poor,	but	originally	they	were	a	distinct	group.	In
a	feudal	society,	there	are	just	two	classes:	a	warrior	aristocracy,
and	the	serfs	who	work	their	estates.	The	middle	class	were	a
new,	third	group	who	lived	in	towns	and	supported	themselves	by
manufacturing	and	trade.

Starting	in	the	tenth	and	eleventh	centuries,	petty	nobles	and
former	serfs	banded	together	in	towns	that	gradually	became
powerful	enough	to	ignore	the	local	feudal	lords.	[10]	Like	serfs,

#f8n
#f9n
#f10n

the	middle	class	made	a	living	largely	by	creating	wealth.	(In
port	cities	like	Genoa	and	Pisa,	they	also	engaged	in	piracy.)	But
unlike	serfs	they	had	an	incentive	to	create	a	lot	of	it.	Any	wealth
a	serf	created	belonged	to	his	master.	There	was	not	much	point
in	making	more	than	you	could	hide.	Whereas	the	independence
of	the	townsmen	allowed	them	to	keep	whatever	wealth	they
created.

Once	it	became	possible	to	get	rich	by	creating	wealth,	society	as
a	whole	started	to	get	richer	very	rapidly.	Nearly	everything	we
have	was	created	by	the	middle	class.	Indeed,	the	other	two
classes	have	effectively	disappeared	in	industrial	societies,	and
their	names	been	given	to	either	end	of	the	middle	class.	(In	the
original	sense	of	the	word,	Bill	Gates	is	middle	class.)

But	it	was	not	till	the	Industrial	Revolution	that	wealth	creation
definitively	replaced	corruption	as	the	best	way	to	get	rich.	In
England,	at	least,	corruption	only	became	unfashionable	(and	in
fact	only	started	to	be	called	"corruption")	when	there	started	to
be	other,	faster	ways	to	get	rich.

Seventeenth-century	England	was	much	like	the	third	world
today,	in	that	government	office	was	a	recognized	route	to
wealth.	The	great	fortunes	of	that	time	still	derived	more	from
what	we	would	now	call	corruption	than	from	commerce.	[11]	By
the	nineteenth	century	that	had	changed.	There	continued	to	be
bribes,	as	there	still	are	everywhere,	but	politics	had	by	then
been	left	to	men	who	were	driven	more	by	vanity	than	greed.
Technology	had	made	it	possible	to	create	wealth	faster	than	you
could	steal	it.	The	prototypical	rich	man	of	the	nineteenth
century	was	not	a	courtier	but	an	industrialist.

With	the	rise	of	the	middle	class,	wealth	stopped	being	a	zero-
sum	game.	Jobs	and	Wozniak	didn't	have	to	make	us	poor	to
make	themselves	rich.	Quite	the	opposite:	they	created	things
that	made	our	lives	materially	richer.	They	had	to,	or	we	wouldn't
have	paid	for	them.

But	since	for	most	of	the	world's	history	the	main	route	to	wealth
was	to	steal	it,	we	tend	to	be	suspicious	of	rich	people.	Idealistic
undergraduates	find	their	unconsciously	preserved	child's	model

#f11n

of	wealth	confirmed	by	eminent	writers	of	the	past.	It	is	a	case	of
the	mistaken	meeting	the	outdated.

"Behind	every	great	fortune,	there	is	a	crime,"	Balzac	wrote.
Except	he	didn't.	What	he	actually	said	was	that	a	great	fortune
with	no	apparent	cause	was	probably	due	to	a	crime	well	enough
executed	that	it	had	been	forgotten.	If	we	were	talking	about
Europe	in	1000,	or	most	of	the	third	world	today,	the	standard
misquotation	would	be	spot	on.	But	Balzac	lived	in	nineteenth-
century	France,	where	the	Industrial	Revolution	was	well
advanced.	He	knew	you	could	make	a	fortune	without	stealing	it.
After	all,	he	did	himself,	as	a	popular	novelist.	[12]

Only	a	few	countries	(by	no	coincidence,	the	richest	ones)	have
reached	this	stage.	In	most,	corruption	still	has	the	upper	hand.
In	most,	the	fastest	way	to	get	wealth	is	by	stealing	it.	And	so
when	we	see	increasing	differences	in	income	in	a	rich	country,
there	is	a	tendency	to	worry	that	it's	sliding	back	toward
becoming	another	Venezuela.	I	think	the	opposite	is	happening.	I
think	you're	seeing	a	country	a	full	step	ahead	of	Venezuela.

The	Lever	of	Technology

Will	technology	increase	the	gap	between	rich	and	poor?	It	will
certainly	increase	the	gap	between	the	productive	and	the
unproductive.	That's	the	whole	point	of	technology.	With	a	tractor
an	energetic	farmer	could	plow	six	times	as	much	land	in	a	day
as	he	could	with	a	team	of	horses.	But	only	if	he	mastered	a	new
kind	of	farming.

I've	seen	the	lever	of	technology	grow	visibly	in	my	own	time.	In
high	school	I	made	money	by	mowing	lawns	and	scooping	ice
cream	at	Baskin-Robbins.	This	was	the	only	kind	of	work
available	at	the	time.	Now	high	school	kids	could	write	software
or	design	web	sites.	But	only	some	of	them	will;	the	rest	will	still
be	scooping	ice	cream.

I	remember	very	vividly	when	in	1985	improved	technology	made
it	possible	for	me	to	buy	a	computer	of	my	own.	Within	months	I
was	using	it	to	make	money	as	a	freelance	programmer.	A	few
years	before,	I	couldn't	have	done	this.	A	few	years	before,	there

#f12n

was	no	such	thing	as	a	freelance	programmer.	But	Apple	created
wealth,	in	the	form	of	powerful,	inexpensive	computers,	and
programmers	immediately	set	to	work	using	it	to	create	more.

As	this	example	suggests,	the	rate	at	which	technology	increases
our	productive	capacity	is	probably	exponential,	rather	than
linear.	So	we	should	expect	to	see	ever-increasing	variation	in
individual	productivity	as	time	goes	on.	Will	that	increase	the	gap
between	rich	and	the	poor?	Depends	which	gap	you	mean.

Technology	should	increase	the	gap	in	income,	but	it	seems	to
decrease	other	gaps.	A	hundred	years	ago,	the	rich	led	a
different	kind	of	life	from	ordinary	people.	They	lived	in	houses
full	of	servants,	wore	elaborately	uncomfortable	clothes,	and
travelled	about	in	carriages	drawn	by	teams	of	horses	which
themselves	required	their	own	houses	and	servants.	Now,	thanks
to	technology,	the	rich	live	more	like	the	average	person.

Cars	are	a	good	example	of	why.	It's	possible	to	buy	expensive,
handmade	cars	that	cost	hundreds	of	thousands	of	dollars.	But
there	is	not	much	point.	Companies	make	more	money	by
building	a	large	number	of	ordinary	cars	than	a	small	number	of
expensive	ones.	So	a	company	making	a	mass-produced	car	can
afford	to	spend	a	lot	more	on	its	design.	If	you	buy	a	custom-
made	car,	something	will	always	be	breaking.	The	only	point	of
buying	one	now	is	to	advertise	that	you	can.

Or	consider	watches.	Fifty	years	ago,	by	spending	a	lot	of	money
on	a	watch	you	could	get	better	performance.	When	watches	had
mechanical	movements,	expensive	watches	kept	better	time.	Not
any	more.	Since	the	invention	of	the	quartz	movement,	an
ordinary	Timex	is	more	accurate	than	a	Patek	Philippe	costing
hundreds	of	thousands	of	dollars.	[13]	Indeed,	as	with	expensive
cars,	if	you're	determined	to	spend	a	lot	of	money	on	a	watch,
you	have	to	put	up	with	some	inconvenience	to	do	it:	as	well	as
keeping	worse	time,	mechanical	watches	have	to	be	wound.

The	only	thing	technology	can't	cheapen	is	brand.	Which	is
precisely	why	we	hear	ever	more	about	it.	Brand	is	the	residue
left	as	the	substantive	differences	between	rich	and	poor
evaporate.	But	what	label	you	have	on	your	stuff	is	a	much

#f13n

smaller	matter	than	having	it	versus	not	having	it.	In	1900,	if	you
kept	a	carriage,	no	one	asked	what	year	or	brand	it	was.	If	you
had	one,	you	were	rich.	And	if	you	weren't	rich,	you	took	the
omnibus	or	walked.	Now	even	the	poorest	Americans	drive	cars,
and	it	is	only	because	we're	so	well	trained	by	advertising	that
we	can	even	recognize	the	especially	expensive	ones.	[14]

The	same	pattern	has	played	out	in	industry	after	industry.	If
there	is	enough	demand	for	something,	technology	will	make	it
cheap	enough	to	sell	in	large	volumes,	and	the	mass-produced
versions	will	be,	if	not	better,	at	least	more	convenient.	[15]	And
there	is	nothing	the	rich	like	more	than	convenience.	The	rich
people	I	know	drive	the	same	cars,	wear	the	same	clothes,	have
the	same	kind	of	furniture,	and	eat	the	same	foods	as	my	other
friends.	Their	houses	are	in	different	neighborhoods,	or	if	in	the
same	neighborhood	are	different	sizes,	but	within	them	life	is
similar.	The	houses	are	made	using	the	same	construction
techniques	and	contain	much	the	same	objects.	It's	inconvenient
to	do	something	expensive	and	custom.

The	rich	spend	their	time	more	like	everyone	else	too.	Bertie
Wooster	seems	long	gone.	Now,	most	people	who	are	rich	enough
not	to	work	do	anyway.	It's	not	just	social	pressure	that	makes
them;	idleness	is	lonely	and	demoralizing.

Nor	do	we	have	the	social	distinctions	there	were	a	hundred
years	ago.	The	novels	and	etiquette	manuals	of	that	period	read
now	like	descriptions	of	some	strange	tribal	society.	"With
respect	to	the	continuance	of	friendships..."	hints	Mrs.	Beeton's
Book	of	Household	Management	(1880),	"it	may	be	found
necessary,	in	some	cases,	for	a	mistress	to	relinquish,	on
assuming	the	responsibility	of	a	household,	many	of	those
commenced	in	the	earlier	part	of	her	life."	A	woman	who	married
a	rich	man	was	expected	to	drop	friends	who	didn't.	You'd	seem	a
barbarian	if	you	behaved	that	way	today.	You'd	also	have	a	very
boring	life.	People	still	tend	to	segregate	themselves	somewhat,
but	much	more	on	the	basis	of	education	than	wealth.	[16]

Materially	and	socially,	technology	seems	to	be	decreasing	the
gap	between	the	rich	and	the	poor,	not	increasing	it.	If	Lenin
walked	around	the	offices	of	a	company	like	Yahoo	or	Intel	or

#f14n
#f15n
#f16n

Cisco,	he'd	think	communism	had	won.	Everyone	would	be
wearing	the	same	clothes,	have	the	same	kind	of	office	(or	rather,
cubicle)	with	the	same	furnishings,	and	address	one	another	by
their	first	names	instead	of	by	honorifics.	Everything	would	seem
exactly	as	he'd	predicted,	until	he	looked	at	their	bank	accounts.
Oops.

Is	it	a	problem	if	technology	increases	that	gap?	It	doesn't	seem
to	be	so	far.	As	it	increases	the	gap	in	income,	it	seems	to
decrease	most	other	gaps.

Alternative	to	an	Axiom

One	often	hears	a	policy	criticized	on	the	grounds	that	it	would
increase	the	income	gap	between	rich	and	poor.	As	if	it	were	an
axiom	that	this	would	be	bad.	It	might	be	true	that	increased
variation	in	income	would	be	bad,	but	I	don't	see	how	we	can	say
it's	axiomatic.

Indeed,	it	may	even	be	false,	in	industrial	democracies.	In	a
society	of	serfs	and	warlords,	certainly,	variation	in	income	is	a
sign	of	an	underlying	problem.	But	serfdom	is	not	the	only	cause
of	variation	in	income.	A	747	pilot	doesn't	make	40	times	as
much	as	a	checkout	clerk	because	he	is	a	warlord	who	somehow
holds	her	in	thrall.	His	skills	are	simply	much	more	valuable.

I'd	like	to	propose	an	alternative	idea:	that	in	a	modern	society,
increasing	variation	in	income	is	a	sign	of	health.	Technology
seems	to	increase	the	variation	in	productivity	at	faster	than
linear	rates.	If	we	don't	see	corresponding	variation	in	income,
there	are	three	possible	explanations:	(a)	that	technical
innovation	has	stopped,	(b)	that	the	people	who	would	create	the
most	wealth	aren't	doing	it,	or	(c)	that	they	aren't	getting	paid	for
it.

I	think	we	can	safely	say	that	(a)	and	(b)	would	be	bad.	If	you
disagree,	try	living	for	a	year	using	only	the	resources	available
to	the	average	Frankish	nobleman	in	800,	and	report	back	to	us.
(I'll	be	generous	and	not	send	you	back	to	the	stone	age.)

The	only	option,	if	you're	going	to	have	an	increasingly

prosperous	society	without	increasing	variation	in	income,	seems
to	be	(c),	that	people	will	create	a	lot	of	wealth	without	being
paid	for	it.	That	Jobs	and	Wozniak,	for	example,	will	cheerfully
work	20-hour	days	to	produce	the	Apple	computer	for	a	society
that	allows	them,	after	taxes,	to	keep	just	enough	of	their	income
to	match	what	they	would	have	made	working	9	to	5	at	a	big
company.

Will	people	create	wealth	if	they	can't	get	paid	for	it?	Only	if	it's
fun.	People	will	write	operating	systems	for	free.	But	they	won't
install	them,	or	take	support	calls,	or	train	customers	to	use
them.	And	at	least	90%	of	the	work	that	even	the	highest	tech
companies	do	is	of	this	second,	unedifying	kind.

All	the	unfun	kinds	of	wealth	creation	slow	dramatically	in	a
society	that	confiscates	private	fortunes.	We	can	confirm	this
empirically.	Suppose	you	hear	a	strange	noise	that	you	think	may
be	due	to	a	nearby	fan.	You	turn	the	fan	off,	and	the	noise	stops.
You	turn	the	fan	back	on,	and	the	noise	starts	again.	Off,	quiet.
On,	noise.	In	the	absence	of	other	information,	it	would	seem	the
noise	is	caused	by	the	fan.

At	various	times	and	places	in	history,	whether	you	could
accumulate	a	fortune	by	creating	wealth	has	been	turned	on	and
off.	Northern	Italy	in	800,	off	(warlords	would	steal	it).	Northern
Italy	in	1100,	on.	Central	France	in	1100,	off	(still	feudal).
England	in	1800,	on.	England	in	1974,	off	(98%	tax	on
investment	income).	United	States	in	1974,	on.	We've	even	had	a
twin	study:	West	Germany,	on;	East	Germany,	off.	In	every	case,
the	creation	of	wealth	seems	to	appear	and	disappear	like	the
noise	of	a	fan	as	you	switch	on	and	off	the	prospect	of	keeping	it.

There	is	some	momentum	involved.	It	probably	takes	at	least	a
generation	to	turn	people	into	East	Germans	(luckily	for
England).	But	if	it	were	merely	a	fan	we	were	studying,	without
all	the	extra	baggage	that	comes	from	the	controversial	topic	of
wealth,	no	one	would	have	any	doubt	that	the	fan	was	causing
the	noise.

If	you	suppress	variations	in	income,	whether	by	stealing	private
fortunes,	as	feudal	rulers	used	to	do,	or	by	taxing	them	away,	as

some	modern	governments	have	done,	the	result	always	seems	to
be	the	same.	Society	as	a	whole	ends	up	poorer.

If	I	had	a	choice	of	living	in	a	society	where	I	was	materially
much	better	off	than	I	am	now,	but	was	among	the	poorest,	or	in
one	where	I	was	the	richest,	but	much	worse	off	than	I	am	now,
I'd	take	the	first	option.	If	I	had	children,	it	would	arguably	be
immoral	not	to.	It's	absolute	poverty	you	want	to	avoid,	not
relative	poverty.	If,	as	the	evidence	so	far	implies,	you	have	to
have	one	or	the	other	in	your	society,	take	relative	poverty.

You	need	rich	people	in	your	society	not	so	much	because	in
spending	their	money	they	create	jobs,	but	because	of	what	they
have	to	do	to	get	rich.	I'm	not	talking	about	the	trickle-down
effect	here.	I'm	not	saying	that	if	you	let	Henry	Ford	get	rich,
he'll	hire	you	as	a	waiter	at	his	next	party.	I'm	saying	that	he'll
make	you	a	tractor	to	replace	your	horse.

Notes

[1]	Part	of	the	reason	this	subject	is	so	contentious	is	that	some
of	those	most	vocal	on	the	subject	of	wealth—university	students,
heirs,	professors,	politicians,	and	journalists—have	the	least
experience	creating	it.	(This	phenomenon	will	be	familiar	to
anyone	who	has	overheard	conversations	about	sports	in	a	bar.)

Students	are	mostly	still	on	the	parental	dole,	and	have	not
stopped	to	think	about	where	that	money	comes	from.	Heirs	will
be	on	the	parental	dole	for	life.	Professors	and	politicians	live
within	socialist	eddies	of	the	economy,	at	one	remove	from	the
creation	of	wealth,	and	are	paid	a	flat	rate	regardless	of	how
hard	they	work.	And	journalists	as	part	of	their	professional	code
segregate	themselves	from	the	revenue-collecting	half	of	the
businesses	they	work	for	(the	ad	sales	department).	Many	of
these	people	never	come	face	to	face	with	the	fact	that	the
money	they	receive	represents	wealth—wealth	that,	except	in	the
case	of	journalists,	someone	else	created	earlier.	They	live	in	a
world	in	which	income	is	doled	out	by	a	central	authority
according	to	some	abstract	notion	of	fairness	(or	randomly,	in	the

case	of	heirs),	rather	than	given	by	other	people	in	return	for
something	they	wanted,	so	it	may	seem	to	them	unfair	that	things
don't	work	the	same	in	the	rest	of	the	economy.

(Some	professors	do	create	a	great	deal	of	wealth	for	society.	But
the	money	they're	paid	isn't	a	quid	pro	quo.	It's	more	in	the
nature	of	an	investment.)

[2]	When	one	reads	about	the	origins	of	the	Fabian	Society,	it
sounds	like	something	cooked	up	by	the	high-minded	Edwardian
child-heroes	of	Edith	Nesbit's	The	Wouldbegoods.

[3]	According	to	a	study	by	the	Corporate	Library,	the	median
total	compensation,	including	salary,	bonus,	stock	grants,	and	the
exercise	of	stock	options,	of	S&P	500	CEOs	in	2002	was	$3.65
million.	According	to	Sports	Illustrated,	the	average	NBA	player's
salary	during	the	2002-03	season	was	$4.54	million,	and	the
average	major	league	baseball	player's	salary	at	the	start	of	the
2003	season	was	$2.56	million.	According	to	the	Bureau	of	Labor
Statistics,	the	mean	annual	wage	in	the	US	in	2002	was	$35,560.

[4]	In	the	early	empire	the	price	of	an	ordinary	adult	slave	seems
to	have	been	about	2,000	sestertii	(e.g.	Horace,	Sat.	ii.7.43).	A
servant	girl	cost	600	(Martial	vi.66),	while	Columella	(iii.3.8)	says
that	a	skilled	vine-dresser	was	worth	8,000.	A	doctor,	P.	Decimus
Eros	Merula,	paid	50,000	sestertii	for	his	freedom	(Dessau,
Inscriptiones	7812).	Seneca	(Ep.	xxvii.7)	reports	that	one
Calvisius	Sabinus	paid	100,000	sestertii	apiece	for	slaves	learned
in	the	Greek	classics.	Pliny	(Hist.	Nat.	vii.39)	says	that	the
highest	price	paid	for	a	slave	up	to	his	time	was	700,000
sestertii,	for	the	linguist	(and	presumably	teacher)	Daphnis,	but
that	this	had	since	been	exceeded	by	actors	buying	their	own
freedom.

Classical	Athens	saw	a	similar	variation	in	prices.	An	ordinary
laborer	was	worth	about	125	to	150	drachmae.	Xenophon	(Mem.
ii.5)	mentions	prices	ranging	from	50	to	6,000	drachmae	(for	the
manager	of	a	silver	mine).

For	more	on	the	economics	of	ancient	slavery	see:

Jones,	A.	H.	M.,	"Slavery	in	the	Ancient	World,"	Economic	History
Review,	2:9	(1956),	185-199,	reprinted	in	Finley,	M.	I.	(ed.),
Slavery	in	Classical	Antiquity,	Heffer,	1964.

[5]	Eratosthenes	(276—195	BC)	used	shadow	lengths	in	different
cities	to	estimate	the	Earth's	circumference.	He	was	off	by	only
about	2%.

[6]	No,	and	Windows,	respectively.

[7]	One	of	the	biggest	divergences	between	the	Daddy	Model	and
reality	is	the	valuation	of	hard	work.	In	the	Daddy	Model,	hard
work	is	in	itself	deserving.	In	reality,	wealth	is	measured	by	what
one	delivers,	not	how	much	effort	it	costs.	If	I	paint	someone's
house,	the	owner	shouldn't	pay	me	extra	for	doing	it	with	a
toothbrush.

It	will	seem	to	someone	still	implicitly	operating	on	the	Daddy
Model	that	it	is	unfair	when	someone	works	hard	and	doesn't	get
paid	much.	To	help	clarify	the	matter,	get	rid	of	everyone	else
and	put	our	worker	on	a	desert	island,	hunting	and	gathering
fruit.	If	he's	bad	at	it	he'll	work	very	hard	and	not	end	up	with
much	food.	Is	this	unfair?	Who	is	being	unfair	to	him?

[8]	Part	of	the	reason	for	the	tenacity	of	the	Daddy	Model	may	be
the	dual	meaning	of	"distribution."	When	economists	talk	about
"distribution	of	income,"	they	mean	statistical	distribution.	But
when	you	use	the	phrase	frequently,	you	can't	help	associating	it
with	the	other	sense	of	the	word	(as	in	e.g.	"distribution	of
alms"),	and	thereby	subconsciously	seeing	wealth	as	something
that	flows	from	some	central	tap.	The	word	"regressive"	as
applied	to	tax	rates	has	a	similar	effect,	at	least	on	me;	how	can
anything	regressive	be	good?

[9]	"From	the	beginning	of	the	reign	Thomas	Lord	Roos	was	an
assiduous	courtier	of	the	young	Henry	VIII	and	was	soon	to	reap
the	rewards.	In	1525	he	was	made	a	Knight	of	the	Garter	and
given	the	Earldom	of	Rutland.	In	the	thirties	his	support	of	the
breach	with	Rome,	his	zeal	in	crushing	the	Pilgrimage	of	Grace,
and	his	readiness	to	vote	the	death-penalty	in	the	succession	of
spectacular	treason	trials	that	punctuated	Henry's	erratic

matrimonial	progress	made	him	an	obvious	candidate	for	grants
of	monastic	property."

Stone,	Lawrence,	Family	and	Fortune:	Studies	in	Aristocratic
Finance	in	the	Sixteenth	and	Seventeenth	Centuries,	Oxford
University	Press,	1973,	p.	166.

[10]	There	is	archaeological	evidence	for	large	settlements
earlier,	but	it's	hard	to	say	what	was	happening	in	them.

Hodges,	Richard	and	David	Whitehouse,	Mohammed,
Charlemagne	and	the	Origins	of	Europe,	Cornell	University
Press,	1983.

[11]	William	Cecil	and	his	son	Robert	were	each	in	turn	the	most
powerful	minister	of	the	crown,	and	both	used	their	position	to
amass	fortunes	among	the	largest	of	their	times.	Robert	in
particular	took	bribery	to	the	point	of	treason.	"As	Secretary	of
State	and	the	leading	advisor	to	King	James	on	foreign	policy,
[he]	was	a	special	recipient	of	favour,	being	offered	large	bribes
by	the	Dutch	not	to	make	peace	with	Spain,	and	large	bribes	by
Spain	to	make	peace."	(Stone,	op.	cit.,	p.	17.)

[12]	Though	Balzac	made	a	lot	of	money	from	writing,	he	was
notoriously	improvident	and	was	troubled	by	debts	all	his	life.

[13]	A	Timex	will	gain	or	lose	about	.5	seconds	per	day.	The	most
accurate	mechanical	watch,	the	Patek	Philippe	10	Day	Tourbillon,
is	rated	at	-1.5	to	+2	seconds.	Its	retail	price	is	about	$220,000.

[14]	If	asked	to	choose	which	was	more	expensive,	a	well-
preserved	1989	Lincoln	Town	Car	ten-passenger	limousine
($5,000)	or	a	2004	Mercedes	S600	sedan	($122,000),	the
average	Edwardian	might	well	guess	wrong.

[15]	To	say	anything	meaningful	about	income	trends,	you	have
to	talk	about	real	income,	or	income	as	measured	in	what	it	can
buy.	But	the	usual	way	of	calculating	real	income	ignores	much	of
the	growth	in	wealth	over	time,	because	it	depends	on	a
consumer	price	index	created	by	bolting	end	to	end	a	series	of
numbers	that	are	only	locally	accurate,	and	that	don't	include	the

prices	of	new	inventions	until	they	become	so	common	that	their
prices	stabilize.

So	while	we	might	think	it	was	very	much	better	to	live	in	a
world	with	antibiotics	or	air	travel	or	an	electric	power	grid	than
without,	real	income	statistics	calculated	in	the	usual	way	will
prove	to	us	that	we	are	only	slightly	richer	for	having	these
things.

Another	approach	would	be	to	ask,	if	you	were	going	back	to	the
year	x	in	a	time	machine,	how	much	would	you	have	to	spend	on
trade	goods	to	make	your	fortune?	For	example,	if	you	were
going	back	to	1970	it	would	certainly	be	less	than	$500,	because
the	processing	power	you	can	get	for	$500	today	would	have
been	worth	at	least	$150	million	in	1970.	The	function	goes
asymptotic	fairly	quickly,	because	for	times	over	a	hundred	years
or	so	you	could	get	all	you	needed	in	present-day	trash.	In	1800
an	empty	plastic	drink	bottle	with	a	screw	top	would	have
seemed	a	miracle	of	workmanship.

[16]	Some	will	say	this	amounts	to	the	same	thing,	because	the
rich	have	better	opportunities	for	education.	That's	a	valid	point.
It	is	still	possible,	to	a	degree,	to	buy	your	kids'	way	into	top
colleges	by	sending	them	to	private	schools	that	in	effect	hack
the	college	admissions	process.

According	to	a	2002	report	by	the	National	Center	for	Education
Statistics,	about	1.7%	of	American	kids	attend	private,	non-
sectarian	schools.	At	Princeton,	36%	of	the	class	of	2007	came
from	such	schools.	(Interestingly,	the	number	at	Harvard	is
significantly	lower,	about	28%.)	Obviously	this	is	a	huge	loophole.
It	does	at	least	seem	to	be	closing,	not	widening.

Perhaps	the	designers	of	admissions	processes	should	take	a
lesson	from	the	example	of	computer	security,	and	instead	of	just
assuming	that	their	system	can't	be	hacked,	measure	the	degree
to	which	it	is.

	

Great	Hackers
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	Python	Paradox
August	2004

In	a	recent	talk	I	said	something	that	upset	a	lot	of	people:	that
you	could	get	smarter	programmers	to	work	on	a	Python	project
than	you	could	to	work	on	a	Java	project.

I	didn't	mean	by	this	that	Java	programmers	are	dumb.	I	meant
that	Python	programmers	are	smart.	It's	a	lot	of	work	to	learn	a
new	programming	language.	And	people	don't	learn	Python
because	it	will	get	them	a	job;	they	learn	it	because	they
genuinely	like	to	program	and	aren't	satisfied	with	the	languages
they	already	know.

Which	makes	them	exactly	the	kind	of	programmers	companies
should	want	to	hire.	Hence	what,	for	lack	of	a	better	name,	I'll
call	the	Python	paradox:	if	a	company	chooses	to	write	its
software	in	a	comparatively	esoteric	language,	they'll	be	able	to
hire	better	programmers,	because	they'll	attract	only	those	who
cared	enough	to	learn	it.	And	for	programmers	the	paradox	is
even	more	pronounced:	the	language	to	learn,	if	you	want	to	get
a	good	job,	is	a	language	that	people	don't	learn	merely	to	get	a
job.

Only	a	few	companies	have	been	smart	enough	to	realize	this	so
far.	But	there	is	a	kind	of	selection	going	on	here	too:	they're
exactly	the	companies	programmers	would	most	like	to	work	for.
Google,	for	example.	When	they	advertise	Java	programming
jobs,	they	also	want	Python	experience.

A	friend	of	mine	who	knows	nearly	all	the	widely	used	languages
uses	Python	for	most	of	his	projects.	He	says	the	main	reason	is
that	he	likes	the	way	source	code	looks.	That	may	seem	a
frivolous	reason	to	choose	one	language	over	another.	But	it	is
not	so	frivolous	as	it	sounds:	when	you	program,	you	spend	more
time	reading	code	than	writing	it.	You	push	blobs	of	source	code

gh.html

around	the	way	a	sculptor	does	blobs	of	clay.	So	a	language	that
makes	source	code	ugly	is	maddening	to	an	exacting
programmer,	as	clay	full	of	lumps	would	be	to	a	sculptor.

At	the	mention	of	ugly	source	code,	people	will	of	course	think	of
Perl.	But	the	superficial	ugliness	of	Perl	is	not	the	sort	I	mean.
Real	ugliness	is	not	harsh-looking	syntax,	but	having	to	build
programs	out	of	the	wrong	concepts.	Perl	may	look	like	a	cartoon
character	swearing,	but	there	are	cases	where	it	surpasses
Python	conceptually.

So	far,	anyway.	Both	languages	are	of	course	moving	targets.	But
they	share,	along	with	Ruby	(and	Icon,	and	Joy,	and	J,	and	Lisp,
and	Smalltalk)	the	fact	that	they're	created	by,	and	used	by,
people	who	really	care	about	programming.	And	those	tend	to	be
the	ones	who	do	it	well.

icad.html
hundred.html

	

The	Age	of	the	Essay
September	2004

Remember	the	essays	you	had	to	write	in	high	school?	Topic
sentence,	introductory	paragraph,	supporting	paragraphs,
conclusion.	The	conclusion	being,	say,	that	Ahab	in	Moby	Dick
was	a	Christ-like	figure.

Oy.	So	I'm	going	to	try	to	give	the	other	side	of	the	story:	what	an
essay	really	is,	and	how	you	write	one.	Or	at	least,	how	I	write
one.

Mods

The	most	obvious	difference	between	real	essays	and	the	things
one	has	to	write	in	school	is	that	real	essays	are	not	exclusively
about	English	literature.	Certainly	schools	should	teach	students
how	to	write.	But	due	to	a	series	of	historical	accidents	the
teaching	of	writing	has	gotten	mixed	together	with	the	study	of
literature.	And	so	all	over	the	country	students	are	writing	not
about	how	a	baseball	team	with	a	small	budget	might	compete
with	the	Yankees,	or	the	role	of	color	in	fashion,	or	what
constitutes	a	good	dessert,	but	about	symbolism	in	Dickens.

With	the	result	that	writing	is	made	to	seem	boring	and	pointless.
Who	cares	about	symbolism	in	Dickens?	Dickens	himself	would
be	more	interested	in	an	essay	about	color	or	baseball.

How	did	things	get	this	way?	To	answer	that	we	have	to	go	back
almost	a	thousand	years.	Around	1100,	Europe	at	last	began	to
catch	its	breath	after	centuries	of	chaos,	and	once	they	had	the
luxury	of	curiosity	they	rediscovered	what	we	call	"the	classics."
The	effect	was	rather	as	if	we	were	visited	by	beings	from
another	solar	system.	These	earlier	civilizations	were	so	much
more	sophisticated	that	for	the	next	several	centuries	the	main
work	of	European	scholars,	in	almost	every	field,	was	to

assimilate	what	they	knew.

During	this	period	the	study	of	ancient	texts	acquired	great
prestige.	It	seemed	the	essence	of	what	scholars	did.	As
European	scholarship	gained	momentum	it	became	less	and	less
important;	by	1350	someone	who	wanted	to	learn	about	science
could	find	better	teachers	than	Aristotle	in	his	own	era.	[1]	But
schools	change	slower	than	scholarship.	In	the	19th	century	the
study	of	ancient	texts	was	still	the	backbone	of	the	curriculum.

The	time	was	then	ripe	for	the	question:	if	the	study	of	ancient
texts	is	a	valid	field	for	scholarship,	why	not	modern	texts?	The
answer,	of	course,	is	that	the	original	raison	d'etre	of	classical
scholarship	was	a	kind	of	intellectual	archaeology	that	does	not
need	to	be	done	in	the	case	of	contemporary	authors.	But	for
obvious	reasons	no	one	wanted	to	give	that	answer.	The
archaeological	work	being	mostly	done,	it	implied	that	those
studying	the	classics	were,	if	not	wasting	their	time,	at	least
working	on	problems	of	minor	importance.

And	so	began	the	study	of	modern	literature.	There	was	a	good
deal	of	resistance	at	first.	The	first	courses	in	English	literature
seem	to	have	been	offered	by	the	newer	colleges,	particularly
American	ones.	Dartmouth,	the	University	of	Vermont,	Amherst,
and	University	College,	London	taught	English	literature	in	the
1820s.	But	Harvard	didn't	have	a	professor	of	English	literature
until	1876,	and	Oxford	not	till	1885.	(Oxford	had	a	chair	of
Chinese	before	it	had	one	of	English.)	[2]

What	tipped	the	scales,	at	least	in	the	US,	seems	to	have	been
the	idea	that	professors	should	do	research	as	well	as	teach.	This
idea	(along	with	the	PhD,	the	department,	and	indeed	the	whole
concept	of	the	modern	university)	was	imported	from	Germany	in
the	late	19th	century.	Beginning	at	Johns	Hopkins	in	1876,	the
new	model	spread	rapidly.

Writing	was	one	of	the	casualties.	Colleges	had	long	taught
English	composition.	But	how	do	you	do	research	on
composition?	The	professors	who	taught	math	could	be	required
to	do	original	math,	the	professors	who	taught	history	could	be
required	to	write	scholarly	articles	about	history,	but	what	about

the	professors	who	taught	rhetoric	or	composition?	What	should
they	do	research	on?	The	closest	thing	seemed	to	be	English
literature.	[3]

And	so	in	the	late	19th	century	the	teaching	of	writing	was
inherited	by	English	professors.	This	had	two	drawbacks:	(a)	an
expert	on	literature	need	not	himself	be	a	good	writer,	any	more
than	an	art	historian	has	to	be	a	good	painter,	and	(b)	the	subject
of	writing	now	tends	to	be	literature,	since	that's	what	the
professor	is	interested	in.

High	schools	imitate	universities.	The	seeds	of	our	miserable
high	school	experiences	were	sown	in	1892,	when	the	National
Education	Association	"formally	recommended	that	literature	and
composition	be	unified	in	the	high	school	course."	[4]	The	'riting
component	of	the	3	Rs	then	morphed	into	English,	with	the
bizarre	consequence	that	high	school	students	now	had	to	write
about	English	literature--	to	write,	without	even	realizing	it,
imitations	of	whatever	English	professors	had	been	publishing	in
their	journals	a	few	decades	before.

It's	no	wonder	if	this	seems	to	the	student	a	pointless	exercise,
because	we're	now	three	steps	removed	from	real	work:	the
students	are	imitating	English	professors,	who	are	imitating
classical	scholars,	who	are	merely	the	inheritors	of	a	tradition
growing	out	of	what	was,	700	years	ago,	fascinating	and	urgently
needed	work.

No	Defense

The	other	big	difference	between	a	real	essay	and	the	things	they
make	you	write	in	school	is	that	a	real	essay	doesn't	take	a
position	and	then	defend	it.	That	principle,	like	the	idea	that	we
ought	to	be	writing	about	literature,	turns	out	to	be	another
intellectual	hangover	of	long	forgotten	origins.

It's	often	mistakenly	believed	that	medieval	universities	were
mostly	seminaries.	In	fact	they	were	more	law	schools.	And	at
least	in	our	tradition	lawyers	are	advocates,	trained	to	take
either	side	of	an	argument	and	make	as	good	a	case	for	it	as	they
can.	Whether	cause	or	effect,	this	spirit	pervaded	early

universities.	The	study	of	rhetoric,	the	art	of	arguing
persuasively,	was	a	third	of	the	undergraduate	curriculum.	[5]
And	after	the	lecture	the	most	common	form	of	discussion	was
the	disputation.	This	is	at	least	nominally	preserved	in	our
present-day	thesis	defense:	most	people	treat	the	words	thesis
and	dissertation	as	interchangeable,	but	originally,	at	least,	a
thesis	was	a	position	one	took	and	the	dissertation	was	the
argument	by	which	one	defended	it.

Defending	a	position	may	be	a	necessary	evil	in	a	legal	dispute,
but	it's	not	the	best	way	to	get	at	the	truth,	as	I	think	lawyers
would	be	the	first	to	admit.	It's	not	just	that	you	miss	subtleties
this	way.	The	real	problem	is	that	you	can't	change	the	question.

And	yet	this	principle	is	built	into	the	very	structure	of	the	things
they	teach	you	to	write	in	high	school.	The	topic	sentence	is	your
thesis,	chosen	in	advance,	the	supporting	paragraphs	the	blows
you	strike	in	the	conflict,	and	the	conclusion--	uh,	what	is	the
conclusion?	I	was	never	sure	about	that	in	high	school.	It	seemed
as	if	we	were	just	supposed	to	restate	what	we	said	in	the	first
paragraph,	but	in	different	enough	words	that	no	one	could	tell.
Why	bother?	But	when	you	understand	the	origins	of	this	sort	of
"essay,"	you	can	see	where	the	conclusion	comes	from.	It's	the
concluding	remarks	to	the	jury.

Good	writing	should	be	convincing,	certainly,	but	it	should	be
convincing	because	you	got	the	right	answers,	not	because	you
did	a	good	job	of	arguing.	When	I	give	a	draft	of	an	essay	to
friends,	there	are	two	things	I	want	to	know:	which	parts	bore
them,	and	which	seem	unconvincing.	The	boring	bits	can	usually
be	fixed	by	cutting.	But	I	don't	try	to	fix	the	unconvincing	bits	by
arguing	more	cleverly.	I	need	to	talk	the	matter	over.

At	the	very	least	I	must	have	explained	something	badly.	In	that
case,	in	the	course	of	the	conversation	I'll	be	forced	to	come	up	a
with	a	clearer	explanation,	which	I	can	just	incorporate	in	the
essay.	More	often	than	not	I	have	to	change	what	I	was	saying	as
well.	But	the	aim	is	never	to	be	convincing	per	se.	As	the	reader
gets	smarter,	convincing	and	true	become	identical,	so	if	I	can
convince	smart	readers	I	must	be	near	the	truth.

The	sort	of	writing	that	attempts	to	persuade	may	be	a	valid	(or
at	least	inevitable)	form,	but	it's	historically	inaccurate	to	call	it
an	essay.	An	essay	is	something	else.

Trying

To	understand	what	a	real	essay	is,	we	have	to	reach	back	into
history	again,	though	this	time	not	so	far.	To	Michel	de
Montaigne,	who	in	1580	published	a	book	of	what	he	called
"essais."	He	was	doing	something	quite	different	from	what
lawyers	do,	and	the	difference	is	embodied	in	the	name.	Essayer
is	the	French	verb	meaning	"to	try"	and	an	essai	is	an	attempt.
An	essay	is	something	you	write	to	try	to	figure	something	out.

Figure	out	what?	You	don't	know	yet.	And	so	you	can't	begin	with
a	thesis,	because	you	don't	have	one,	and	may	never	have	one.
An	essay	doesn't	begin	with	a	statement,	but	with	a	question.	In
a	real	essay,	you	don't	take	a	position	and	defend	it.	You	notice	a
door	that's	ajar,	and	you	open	it	and	walk	in	to	see	what's	inside.

If	all	you	want	to	do	is	figure	things	out,	why	do	you	need	to
write	anything,	though?	Why	not	just	sit	and	think?	Well,	there
precisely	is	Montaigne's	great	discovery.	Expressing	ideas	helps
to	form	them.	Indeed,	helps	is	far	too	weak	a	word.	Most	of	what
ends	up	in	my	essays	I	only	thought	of	when	I	sat	down	to	write
them.	That's	why	I	write	them.

In	the	things	you	write	in	school	you	are,	in	theory,	merely
explaining	yourself	to	the	reader.	In	a	real	essay	you're	writing
for	yourself.	You're	thinking	out	loud.

But	not	quite.	Just	as	inviting	people	over	forces	you	to	clean	up
your	apartment,	writing	something	that	other	people	will	read
forces	you	to	think	well.	So	it	does	matter	to	have	an	audience.
The	things	I've	written	just	for	myself	are	no	good.	They	tend	to
peter	out.	When	I	run	into	difficulties,	I	find	I	conclude	with	a	few
vague	questions	and	then	drift	off	to	get	a	cup	of	tea.

Many	published	essays	peter	out	in	the	same	way.	Particularly
the	sort	written	by	the	staff	writers	of	newsmagazines.	Outside
writers	tend	to	supply	editorials	of	the	defend-a-position	variety,

which	make	a	beeline	toward	a	rousing	(and	foreordained)
conclusion.	But	the	staff	writers	feel	obliged	to	write	something
"balanced."	Since	they're	writing	for	a	popular	magazine,	they
start	with	the	most	radioactively	controversial	questions,	from
which--	because	they're	writing	for	a	popular	magazine--	they
then	proceed	to	recoil	in	terror.	Abortion,	for	or	against?	This
group	says	one	thing.	That	group	says	another.	One	thing	is
certain:	the	question	is	a	complex	one.	(But	don't	get	mad	at	us.
We	didn't	draw	any	conclusions.)

The	River

Questions	aren't	enough.	An	essay	has	to	come	up	with	answers.
They	don't	always,	of	course.	Sometimes	you	start	with	a
promising	question	and	get	nowhere.	But	those	you	don't
publish.	Those	are	like	experiments	that	get	inconclusive	results.
An	essay	you	publish	ought	to	tell	the	reader	something	he	didn't
already	know.

But	what	you	tell	him	doesn't	matter,	so	long	as	it's	interesting.
I'm	sometimes	accused	of	meandering.	In	defend-a-position
writing	that	would	be	a	flaw.	There	you're	not	concerned	with
truth.	You	already	know	where	you're	going,	and	you	want	to	go
straight	there,	blustering	through	obstacles,	and	hand-waving
your	way	across	swampy	ground.	But	that's	not	what	you're
trying	to	do	in	an	essay.	An	essay	is	supposed	to	be	a	search	for
truth.	It	would	be	suspicious	if	it	didn't	meander.

The	Meander	(aka	Menderes)	is	a	river	in	Turkey.	As	you	might
expect,	it	winds	all	over	the	place.	But	it	doesn't	do	this	out	of
frivolity.	The	path	it	has	discovered	is	the	most	economical	route
to	the	sea.	[6]

The	river's	algorithm	is	simple.	At	each	step,	flow	down.	For	the
essayist	this	translates	to:	flow	interesting.	Of	all	the	places	to	go
next,	choose	the	most	interesting.	One	can't	have	quite	as	little
foresight	as	a	river.	I	always	know	generally	what	I	want	to	write
about.	But	not	the	specific	conclusions	I	want	to	reach;	from
paragraph	to	paragraph	I	let	the	ideas	take	their	course.

This	doesn't	always	work.	Sometimes,	like	a	river,	one	runs	up

against	a	wall.	Then	I	do	the	same	thing	the	river	does:
backtrack.	At	one	point	in	this	essay	I	found	that	after	following	a
certain	thread	I	ran	out	of	ideas.	I	had	to	go	back	seven
paragraphs	and	start	over	in	another	direction.

Fundamentally	an	essay	is	a	train	of	thought--	but	a	cleaned-up
train	of	thought,	as	dialogue	is	cleaned-up	conversation.	Real
thought,	like	real	conversation,	is	full	of	false	starts.	It	would	be
exhausting	to	read.	You	need	to	cut	and	fill	to	emphasize	the
central	thread,	like	an	illustrator	inking	over	a	pencil	drawing.
But	don't	change	so	much	that	you	lose	the	spontaneity	of	the
original.

Err	on	the	side	of	the	river.	An	essay	is	not	a	reference	work.	It's
not	something	you	read	looking	for	a	specific	answer,	and	feel
cheated	if	you	don't	find	it.	I'd	much	rather	read	an	essay	that
went	off	in	an	unexpected	but	interesting	direction	than	one	that
plodded	dutifully	along	a	prescribed	course.

Surprise

So	what's	interesting?	For	me,	interesting	means	surprise.
Interfaces,	as	Geoffrey	James	has	said,	should	follow	the
principle	of	least	astonishment.	A	button	that	looks	like	it	will
make	a	machine	stop	should	make	it	stop,	not	speed	up.	Essays
should	do	the	opposite.	Essays	should	aim	for	maximum	surprise.

I	was	afraid	of	flying	for	a	long	time	and	could	only	travel
vicariously.	When	friends	came	back	from	faraway	places,	it
wasn't	just	out	of	politeness	that	I	asked	what	they	saw.	I	really
wanted	to	know.	And	I	found	the	best	way	to	get	information	out
of	them	was	to	ask	what	surprised	them.	How	was	the	place
different	from	what	they	expected?	This	is	an	extremely	useful
question.	You	can	ask	it	of	the	most	unobservant	people,	and	it
will	extract	information	they	didn't	even	know	they	were
recording.

Surprises	are	things	that	you	not	only	didn't	know,	but	that
contradict	things	you	thought	you	knew.	And	so	they're	the	most
valuable	sort	of	fact	you	can	get.	They're	like	a	food	that's	not
merely	healthy,	but	counteracts	the	unhealthy	effects	of	things

you've	already	eaten.

How	do	you	find	surprises?	Well,	therein	lies	half	the	work	of
essay	writing.	(The	other	half	is	expressing	yourself	well.)	The
trick	is	to	use	yourself	as	a	proxy	for	the	reader.	You	should	only
write	about	things	you've	thought	about	a	lot.	And	anything	you
come	across	that	surprises	you,	who've	thought	about	the	topic	a
lot,	will	probably	surprise	most	readers.

For	example,	in	a	recent	essay	I	pointed	out	that	because	you	can
only	judge	computer	programmers	by	working	with	them,	no	one
knows	who	the	best	programmers	are	overall.	I	didn't	realize	this
when	I	began	that	essay,	and	even	now	I	find	it	kind	of	weird.
That's	what	you're	looking	for.

So	if	you	want	to	write	essays,	you	need	two	ingredients:	a	few
topics	you've	thought	about	a	lot,	and	some	ability	to	ferret	out
the	unexpected.

What	should	you	think	about?	My	guess	is	that	it	doesn't	matter--
that	anything	can	be	interesting	if	you	get	deeply	enough	into	it.
One	possible	exception	might	be	things	that	have	deliberately
had	all	the	variation	sucked	out	of	them,	like	working	in	fast
food.	In	retrospect,	was	there	anything	interesting	about	working
at	Baskin-Robbins?	Well,	it	was	interesting	how	important	color
was	to	the	customers.	Kids	a	certain	age	would	point	into	the
case	and	say	that	they	wanted	yellow.	Did	they	want	French
Vanilla	or	Lemon?	They	would	just	look	at	you	blankly.	They
wanted	yellow.	And	then	there	was	the	mystery	of	why	the
perennial	favorite	Pralines	'n'	Cream	was	so	appealing.	(I	think
now	it	was	the	salt.)	And	the	difference	in	the	way	fathers	and
mothers	bought	ice	cream	for	their	kids:	the	fathers	like
benevolent	kings	bestowing	largesse,	the	mothers	harried,	giving
in	to	pressure.	So,	yes,	there	does	seem	to	be	some	material	even
in	fast	food.

I	didn't	notice	those	things	at	the	time,	though.	At	sixteen	I	was
about	as	observant	as	a	lump	of	rock.	I	can	see	more	now	in	the
fragments	of	memory	I	preserve	of	that	age	than	I	could	see	at
the	time	from	having	it	all	happening	live,	right	in	front	of	me.

gh.html

Observation

So	the	ability	to	ferret	out	the	unexpected	must	not	merely	be	an
inborn	one.	It	must	be	something	you	can	learn.	How	do	you
learn	it?

To	some	extent	it's	like	learning	history.	When	you	first	read
history,	it's	just	a	whirl	of	names	and	dates.	Nothing	seems	to
stick.	But	the	more	you	learn,	the	more	hooks	you	have	for	new
facts	to	stick	onto--	which	means	you	accumulate	knowledge	at
an	exponential	rate.	Once	you	remember	that	Normans
conquered	England	in	1066,	it	will	catch	your	attention	when	you
hear	that	other	Normans	conquered	southern	Italy	at	about	the
same	time.	Which	will	make	you	wonder	about	Normandy,	and
take	note	when	a	third	book	mentions	that	Normans	were	not,
like	most	of	what	is	now	called	France,	tribes	that	flowed	in	as
the	Roman	empire	collapsed,	but	Vikings	(norman	=	north	man)
who	arrived	four	centuries	later	in	911.	Which	makes	it	easier	to
remember	that	Dublin	was	also	established	by	Vikings	in	the
840s.	Etc,	etc	squared.

Collecting	surprises	is	a	similar	process.	The	more	anomalies
you've	seen,	the	more	easily	you'll	notice	new	ones.	Which
means,	oddly	enough,	that	as	you	grow	older,	life	should	become
more	and	more	surprising.	When	I	was	a	kid,	I	used	to	think
adults	had	it	all	figured	out.	I	had	it	backwards.	Kids	are	the	ones
who	have	it	all	figured	out.	They're	just	mistaken.

When	it	comes	to	surprises,	the	rich	get	richer.	But	(as	with
wealth)	there	may	be	habits	of	mind	that	will	help	the	process
along.	It's	good	to	have	a	habit	of	asking	questions,	especially
questions	beginning	with	Why.	But	not	in	the	random	way	that
three	year	olds	ask	why.	There	are	an	infinite	number	of
questions.	How	do	you	find	the	fruitful	ones?

I	find	it	especially	useful	to	ask	why	about	things	that	seem
wrong.	For	example,	why	should	there	be	a	connection	between
humor	and	misfortune?	Why	do	we	find	it	funny	when	a
character,	even	one	we	like,	slips	on	a	banana	peel?	There's	a
whole	essay's	worth	of	surprises	there	for	sure.

If	you	want	to	notice	things	that	seem	wrong,	you'll	find	a	degree
of	skepticism	helpful.	I	take	it	as	an	axiom	that	we're	only
achieving	1%	of	what	we	could.	This	helps	counteract	the	rule
that	gets	beaten	into	our	heads	as	children:	that	things	are	the
way	they	are	because	that	is	how	things	have	to	be.	For	example,
everyone	I've	talked	to	while	writing	this	essay	felt	the	same
about	English	classes--	that	the	whole	process	seemed	pointless.
But	none	of	us	had	the	balls	at	the	time	to	hypothesize	that	it
was,	in	fact,	all	a	mistake.	We	all	thought	there	was	just
something	we	weren't	getting.

I	have	a	hunch	you	want	to	pay	attention	not	just	to	things	that
seem	wrong,	but	things	that	seem	wrong	in	a	humorous	way.	I'm
always	pleased	when	I	see	someone	laugh	as	they	read	a	draft	of
an	essay.	But	why	should	I	be?	I'm	aiming	for	good	ideas.	Why
should	good	ideas	be	funny?	The	connection	may	be	surprise.
Surprises	make	us	laugh,	and	surprises	are	what	one	wants	to
deliver.

I	write	down	things	that	surprise	me	in	notebooks.	I	never
actually	get	around	to	reading	them	and	using	what	I've	written,
but	I	do	tend	to	reproduce	the	same	thoughts	later.	So	the	main
value	of	notebooks	may	be	what	writing	things	down	leaves	in
your	head.

People	trying	to	be	cool	will	find	themselves	at	a	disadvantage
when	collecting	surprises.	To	be	surprised	is	to	be	mistaken.	And
the	essence	of	cool,	as	any	fourteen	year	old	could	tell	you,	is	nil
admirari.	When	you're	mistaken,	don't	dwell	on	it;	just	act	like
nothing's	wrong	and	maybe	no	one	will	notice.

One	of	the	keys	to	coolness	is	to	avoid	situations	where
inexperience	may	make	you	look	foolish.	If	you	want	to	find
surprises	you	should	do	the	opposite.	Study	lots	of	different
things,	because	some	of	the	most	interesting	surprises	are
unexpected	connections	between	different	fields.	For	example,
jam,	bacon,	pickles,	and	cheese,	which	are	among	the	most
pleasing	of	foods,	were	all	originally	intended	as	methods	of
preservation.	And	so	were	books	and	paintings.

Whatever	you	study,	include	history--	but	social	and	economic

history,	not	political	history.	History	seems	to	me	so	important
that	it's	misleading	to	treat	it	as	a	mere	field	of	study.	Another
way	to	describe	it	is	all	the	data	we	have	so	far.

Among	other	things,	studying	history	gives	one	confidence	that
there	are	good	ideas	waiting	to	be	discovered	right	under	our
noses.	Swords	evolved	during	the	Bronze	Age	out	of	daggers,
which	(like	their	flint	predecessors)	had	a	hilt	separate	from	the
blade.	Because	swords	are	longer	the	hilts	kept	breaking	off.	But
it	took	five	hundred	years	before	someone	thought	of	casting	hilt
and	blade	as	one	piece.

Disobedience

Above	all,	make	a	habit	of	paying	attention	to	things	you're	not
supposed	to,	either	because	they're	"inappropriate,"	or	not
important,	or	not	what	you're	supposed	to	be	working	on.	If
you're	curious	about	something,	trust	your	instincts.	Follow	the
threads	that	attract	your	attention.	If	there's	something	you're
really	interested	in,	you'll	find	they	have	an	uncanny	way	of
leading	back	to	it	anyway,	just	as	the	conversation	of	people	who
are	especially	proud	of	something	always	tends	to	lead	back	to	it.

For	example,	I've	always	been	fascinated	by	comb-overs,
especially	the	extreme	sort	that	make	a	man	look	as	if	he's
wearing	a	beret	made	of	his	own	hair.	Surely	this	is	a	lowly	sort
of	thing	to	be	interested	in--	the	sort	of	superficial	quizzing	best
left	to	teenage	girls.	And	yet	there	is	something	underneath.	The
key	question,	I	realized,	is	how	does	the	comber-over	not	see	how
odd	he	looks?	And	the	answer	is	that	he	got	to	look	that	way
incrementally.	What	began	as	combing	his	hair	a	little	carefully
over	a	thin	patch	has	gradually,	over	20	years,	grown	into	a
monstrosity.	Gradualness	is	very	powerful.	And	that	power	can	be
used	for	constructive	purposes	too:	just	as	you	can	trick	yourself
into	looking	like	a	freak,	you	can	trick	yourself	into	creating
something	so	grand	that	you	would	never	have	dared	to	plan
such	a	thing.	Indeed,	this	is	just	how	most	good	software	gets
created.	You	start	by	writing	a	stripped-down	kernel	(how	hard
can	it	be?)	and	gradually	it	grows	into	a	complete	operating
system.	Hence	the	next	leap:	could	you	do	the	same	thing	in
painting,	or	in	a	novel?

say.html

See	what	you	can	extract	from	a	frivolous	question?	If	there's	one
piece	of	advice	I	would	give	about	writing	essays,	it	would	be:
don't	do	as	you're	told.	Don't	believe	what	you're	supposed	to.
Don't	write	the	essay	readers	expect;	one	learns	nothing	from
what	one	expects.	And	don't	write	the	way	they	taught	you	to	in
school.

The	most	important	sort	of	disobedience	is	to	write	essays	at	all.
Fortunately,	this	sort	of	disobedience	shows	signs	of	becoming
rampant.	It	used	to	be	that	only	a	tiny	number	of	officially
approved	writers	were	allowed	to	write	essays.	Magazines
published	few	of	them,	and	judged	them	less	by	what	they	said
than	who	wrote	them;	a	magazine	might	publish	a	story	by	an
unknown	writer	if	it	was	good	enough,	but	if	they	published	an
essay	on	x	it	had	to	be	by	someone	who	was	at	least	forty	and
whose	job	title	had	x	in	it.	Which	is	a	problem,	because	there	are
a	lot	of	things	insiders	can't	say	precisely	because	they're
insiders.

The	Internet	is	changing	that.	Anyone	can	publish	an	essay	on
the	Web,	and	it	gets	judged,	as	any	writing	should,	by	what	it
says,	not	who	wrote	it.	Who	are	you	to	write	about	x?	You	are
whatever	you	wrote.

Popular	magazines	made	the	period	between	the	spread	of
literacy	and	the	arrival	of	TV	the	golden	age	of	the	short	story.
The	Web	may	well	make	this	the	golden	age	of	the	essay.	And
that's	certainly	not	something	I	realized	when	I	started	writing
this.

Notes

[1]	I'm	thinking	of	Oresme	(c.	1323-82).	But	it's	hard	to	pick	a
date,	because	there	was	a	sudden	drop-off	in	scholarship	just	as
Europeans	finished	assimilating	classical	science.	The	cause	may
have	been	the	plague	of	1347;	the	trend	in	scientific	progress
matches	the	population	curve.

http://www.ojr.org/ojr/glaser/1056050270.php

[2]	Parker,	William	R.	"Where	Do	College	English	Departments
Come	From?"	College	English	28	(1966-67),	pp.	339-351.
Reprinted	in	Gray,	Donald	J.	(ed).	The	Department	of	English	at
Indiana	University	Bloomington	1868-1970.	Indiana	University
Publications.

Daniels,	Robert	V.	The	University	of	Vermont:	The	First	Two
Hundred	Years.	University	of	Vermont,	1991.

Mueller,	Friedrich	M.	Letter	to	the	Pall	Mall	Gazette.	1886/87.
Reprinted	in	Bacon,	Alan	(ed).	The	Nineteenth-Century	History	of
English	Studies.	Ashgate,	1998.

[3]	I'm	compressing	the	story	a	bit.	At	first	literature	took	a	back
seat	to	philology,	which	(a)	seemed	more	serious	and	(b)	was
popular	in	Germany,	where	many	of	the	leading	scholars	of	that
generation	had	been	trained.

In	some	cases	the	writing	teachers	were	transformed	in	situ	into
English	professors.	Francis	James	Child,	who	had	been	Boylston
Professor	of	Rhetoric	at	Harvard	since	1851,	became	in	1876	the
university's	first	professor	of	English.

[4]	Parker,	op.	cit.,	p.	25.

[5]	The	undergraduate	curriculum	or	trivium	(whence	"trivial")
consisted	of	Latin	grammar,	rhetoric,	and	logic.	Candidates	for
masters'	degrees	went	on	to	study	the	quadrivium	of	arithmetic,
geometry,	music,	and	astronomy.	Together	these	were	the	seven
liberal	arts.

The	study	of	rhetoric	was	inherited	directly	from	Rome,	where	it
was	considered	the	most	important	subject.	It	would	not	be	far
from	the	truth	to	say	that	education	in	the	classical	world	meant
training	landowners'	sons	to	speak	well	enough	to	defend	their
interests	in	political	and	legal	disputes.

[6]	Trevor	Blackwell	points	out	that	this	isn't	strictly	true,
because	the	outside	edges	of	curves	erode	faster.

Thanks	to	Ken	Anderson,	Trevor	Blackwell,	Sarah	Harlin,	Jessica

Livingston,	Jackie	McDonough,	and	Robert	Morris	for	reading
drafts	of	this.

	

What	the	Bubble	Got	Right
September	2004

(This	essay	is	derived	from	an	invited	talk	at	ICFP	2004.)

I	had	a	front	row	seat	for	the	Internet	Bubble,	because	I	worked
at	Yahoo	during	1998	and	1999.	One	day,	when	the	stock	was
trading	around	$200,	I	sat	down	and	calculated	what	I	thought
the	price	should	be.	The	answer	I	got	was	$12.	I	went	to	the	next
cubicle	and	told	my	friend	Trevor.	"Twelve!"	he	said.	He	tried	to
sound	indignant,	but	he	didn't	quite	manage	it.	He	knew	as	well
as	I	did	that	our	valuation	was	crazy.

Yahoo	was	a	special	case.	It	was	not	just	our	price	to	earnings
ratio	that	was	bogus.	Half	our	earnings	were	too.	Not	in	the
Enron	way,	of	course.	The	finance	guys	seemed	scrupulous	about
reporting	earnings.	What	made	our	earnings	bogus	was	that
Yahoo	was,	in	effect,	the	center	of	a	Ponzi	scheme.	Investors
looked	at	Yahoo's	earnings	and	said	to	themselves,	here	is	proof
that	Internet	companies	can	make	money.	So	they	invested	in
new	startups	that	promised	to	be	the	next	Yahoo.	And	as	soon	as
these	startups	got	the	money,	what	did	they	do	with	it?	Buy
millions	of	dollars	worth	of	advertising	on	Yahoo	to	promote	their
brand.	Result:	a	capital	investment	in	a	startup	this	quarter
shows	up	as	Yahoo	earnings	next	quarter—stimulating	another
round	of	investments	in	startups.

As	in	a	Ponzi	scheme,	what	seemed	to	be	the	returns	of	this
system	were	simply	the	latest	round	of	investments	in	it.	What
made	it	not	a	Ponzi	scheme	was	that	it	was	unintentional.	At
least,	I	think	it	was.	The	venture	capital	business	is	pretty
incestuous,	and	there	were	presumably	people	in	a	position,	if
not	to	create	this	situation,	to	realize	what	was	happening	and	to
milk	it.

A	year	later	the	game	was	up.	Starting	in	January	2000,	Yahoo's

stock	price	began	to	crash,	ultimately	losing	95%	of	its	value.

Notice,	though,	that	even	with	all	the	fat	trimmed	off	its	market
cap,	Yahoo	was	still	worth	a	lot.	Even	at	the	morning-after
valuations	of	March	and	April	2001,	the	people	at	Yahoo	had
managed	to	create	a	company	worth	about	$8	billion	in	just	six
years.

The	fact	is,	despite	all	the	nonsense	we	heard	during	the	Bubble
about	the	"new	economy,"	there	was	a	core	of	truth.	You	need
that	to	get	a	really	big	bubble:	you	need	to	have	something	solid
at	the	center,	so	that	even	smart	people	are	sucked	in.	(Isaac
Newton	and	Jonathan	Swift	both	lost	money	in	the	South	Sea
Bubble	of	1720.)

Now	the	pendulum	has	swung	the	other	way.	Now	anything	that
became	fashionable	during	the	Bubble	is	ipso	facto
unfashionable.	But	that's	a	mistake—an	even	bigger	mistake	than
believing	what	everyone	was	saying	in	1999.	Over	the	long	term,
what	the	Bubble	got	right	will	be	more	important	than	what	it	got
wrong.

1.	Retail	VC

After	the	excesses	of	the	Bubble,	it's	now	considered	dubious	to
take	companies	public	before	they	have	earnings.	But	there	is
nothing	intrinsically	wrong	with	that	idea.	Taking	a	company
public	at	an	early	stage	is	simply	retail	VC:	instead	of	going	to
venture	capital	firms	for	the	last	round	of	funding,	you	go	to	the
public	markets.

By	the	end	of	the	Bubble,	companies	going	public	with	no
earnings	were	being	derided	as	"concept	stocks,"	as	if	it	were
inherently	stupid	to	invest	in	them.	But	investing	in	concepts	isn't
stupid;	it's	what	VCs	do,	and	the	best	of	them	are	far	from	stupid.

The	stock	of	a	company	that	doesn't	yet	have	earnings	is	worth
something.	It	may	take	a	while	for	the	market	to	learn	how	to
value	such	companies,	just	as	it	had	to	learn	to	value	common
stocks	in	the	early	20th	century.	But	markets	are	good	at	solving
that	kind	of	problem.	I	wouldn't	be	surprised	if	the	market

ultimately	did	a	better	job	than	VCs	do	now.

Going	public	early	will	not	be	the	right	plan	for	every	company.
And	it	can	of	course	be	disruptive—by	distracting	the
management,	or	by	making	the	early	employees	suddenly	rich.
But	just	as	the	market	will	learn	how	to	value	startups,	startups
will	learn	how	to	minimize	the	damage	of	going	public.

2.	The	Internet

The	Internet	genuinely	is	a	big	deal.	That	was	one	reason	even
smart	people	were	fooled	by	the	Bubble.	Obviously	it	was	going
to	have	a	huge	effect.	Enough	of	an	effect	to	triple	the	value	of
Nasdaq	companies	in	two	years?	No,	as	it	turned	out.	But	it	was
hard	to	say	for	certain	at	the	time.	[1]

The	same	thing	happened	during	the	Mississippi	and	South	Sea
Bubbles.	What	drove	them	was	the	invention	of	organized	public
finance	(the	South	Sea	Company,	despite	its	name,	was	really	a
competitor	of	the	Bank	of	England).	And	that	did	turn	out	to	be	a
big	deal,	in	the	long	run.

Recognizing	an	important	trend	turns	out	to	be	easier	than
figuring	out	how	to	profit	from	it.	The	mistake	investors	always
seem	to	make	is	to	take	the	trend	too	literally.	Since	the	Internet
was	the	big	new	thing,	investors	supposed	that	the	more
Internettish	the	company,	the	better.	Hence	such	parodies	as
Pets.Com.

In	fact	most	of	the	money	to	be	made	from	big	trends	is	made
indirectly.	It	was	not	the	railroads	themselves	that	made	the	most
money	during	the	railroad	boom,	but	the	companies	on	either
side,	like	Carnegie's	steelworks,	which	made	the	rails,	and
Standard	Oil,	which	used	railroads	to	get	oil	to	the	East	Coast,
where	it	could	be	shipped	to	Europe.

I	think	the	Internet	will	have	great	effects,	and	that	what	we've
seen	so	far	is	nothing	compared	to	what's	coming.	But	most	of
the	winners	will	only	indirectly	be	Internet	companies;	for	every
Google	there	will	be	ten	JetBlues.

3.	Choices

Why	will	the	Internet	have	great	effects?	The	general	argument
is	that	new	forms	of	communication	always	do.	They	happen
rarely	(till	industrial	times	there	were	just	speech,	writing,	and
printing),	but	when	they	do,	they	always	cause	a	big	splash.

The	specific	argument,	or	one	of	them,	is	the	Internet	gives	us
more	choices.	In	the	"old"	economy,	the	high	cost	of	presenting
information	to	people	meant	they	had	only	a	narrow	range	of
options	to	choose	from.	The	tiny,	expensive	pipeline	to	consumers
was	tellingly	named	"the	channel."	Control	the	channel	and	you
could	feed	them	what	you	wanted,	on	your	terms.	And	it	was	not
just	big	corporations	that	depended	on	this	principle.	So,	in	their
way,	did	labor	unions,	the	traditional	news	media,	and	the	art	and
literary	establishments.	Winning	depended	not	on	doing	good
work,	but	on	gaining	control	of	some	bottleneck.

There	are	signs	that	this	is	changing.	Google	has	over	82	million
unique	users	a	month	and	annual	revenues	of	about	three	billion
dollars.	[2]	And	yet	have	you	ever	seen	a	Google	ad?	Something
is	going	on	here.

Admittedly,	Google	is	an	extreme	case.	It's	very	easy	for	people	to
switch	to	a	new	search	engine.	It	costs	little	effort	and	no	money
to	try	a	new	one,	and	it's	easy	to	see	if	the	results	are	better.	And
so	Google	doesn't	have	to	advertise.	In	a	business	like	theirs,
being	the	best	is	enough.

The	exciting	thing	about	the	Internet	is	that	it's	shifting
everything	in	that	direction.	The	hard	part,	if	you	want	to	win	by
making	the	best	stuff,	is	the	beginning.	Eventually	everyone	will
learn	by	word	of	mouth	that	you're	the	best,	but	how	do	you
survive	to	that	point?	And	it	is	in	this	crucial	stage	that	the
Internet	has	the	most	effect.	First,	the	Internet	lets	anyone	find
you	at	almost	zero	cost.	Second,	it	dramatically	speeds	up	the
rate	at	which	reputation	spreads	by	word	of	mouth.	Together
these	mean	that	in	many	fields	the	rule	will	be:	Build	it,	and	they
will	come.	Make	something	great	and	put	it	online.	That	is	a	big
change	from	the	recipe	for	winning	in	the	past	century.

4.	Youth

The	aspect	of	the	Internet	Bubble	that	the	press	seemed	most
taken	with	was	the	youth	of	some	of	the	startup	founders.	This
too	is	a	trend	that	will	last.	There	is	a	huge	standard	deviation
among	26	year	olds.	Some	are	fit	only	for	entry	level	jobs,	but
others	are	ready	to	rule	the	world	if	they	can	find	someone	to
handle	the	paperwork	for	them.

A	26	year	old	may	not	be	very	good	at	managing	people	or
dealing	with	the	SEC.	Those	require	experience.	But	those	are
also	commodities,	which	can	be	handed	off	to	some	lieutenant.
The	most	important	quality	in	a	CEO	is	his	vision	for	the
company's	future.	What	will	they	build	next?	And	in	that
department,	there	are	26	year	olds	who	can	compete	with
anyone.

In	1970	a	company	president	meant	someone	in	his	fifties,	at
least.	If	he	had	technologists	working	for	him,	they	were	treated
like	a	racing	stable:	prized,	but	not	powerful.	But	as	technology
has	grown	more	important,	the	power	of	nerds	has	grown	to
reflect	it.	Now	it's	not	enough	for	a	CEO	to	have	someone	smart
he	can	ask	about	technical	matters.	Increasingly,	he	has	to	be
that	person	himself.

As	always,	business	has	clung	to	old	forms.	VCs	still	seem	to
want	to	install	a	legitimate-looking	talking	head	as	the	CEO.	But
increasingly	the	founders	of	the	company	are	the	real	powers,
and	the	grey-headed	man	installed	by	the	VCs	more	like	a	music
group's	manager	than	a	general.

5.	Informality

In	New	York,	the	Bubble	had	dramatic	consequences:	suits	went
out	of	fashion.	They	made	one	seem	old.	So	in	1998	powerful
New	York	types	were	suddenly	wearing	open-necked	shirts	and
khakis	and	oval	wire-rimmed	glasses,	just	like	guys	in	Santa
Clara.

The	pendulum	has	swung	back	a	bit,	driven	in	part	by	a	panicked
reaction	by	the	clothing	industry.	But	I'm	betting	on	the	open-

necked	shirts.	And	this	is	not	as	frivolous	a	question	as	it	might
seem.	Clothes	are	important,	as	all	nerds	can	sense,	though	they
may	not	realize	it	consciously.

If	you're	a	nerd,	you	can	understand	how	important	clothes	are
by	asking	yourself	how	you'd	feel	about	a	company	that	made	you
wear	a	suit	and	tie	to	work.	The	idea	sounds	horrible,	doesn't	it?
In	fact,	horrible	far	out	of	proportion	to	the	mere	discomfort	of
wearing	such	clothes.	A	company	that	made	programmers	wear
suits	would	have	something	deeply	wrong	with	it.

And	what	would	be	wrong	would	be	that	how	one	presented
oneself	counted	more	than	the	quality	of	one's	ideas.	That's	the
problem	with	formality.	Dressing	up	is	not	so	much	bad	in	itself.
The	problem	is	the	receptor	it	binds	to:	dressing	up	is	inevitably
a	substitute	for	good	ideas.	It	is	no	coincidence	that	technically
inept	business	types	are	known	as	"suits."

Nerds	don't	just	happen	to	dress	informally.	They	do	it	too
consistently.	Consciously	or	not,	they	dress	informally	as	a
prophylactic	measure	against	stupidity.

6.	Nerds

Clothing	is	only	the	most	visible	battleground	in	the	war	against
formality.	Nerds	tend	to	eschew	formality	of	any	sort.	They're	not
impressed	by	one's	job	title,	for	example,	or	any	of	the	other
appurtenances	of	authority.

Indeed,	that's	practically	the	definition	of	a	nerd.	I	found	myself
talking	recently	to	someone	from	Hollywood	who	was	planning	a
show	about	nerds.	I	thought	it	would	be	useful	if	I	explained	what
a	nerd	was.	What	I	came	up	with	was:	someone	who	doesn't
expend	any	effort	on	marketing	himself.

A	nerd,	in	other	words,	is	someone	who	concentrates	on
substance.	So	what's	the	connection	between	nerds	and
technology?	Roughly	that	you	can't	fool	mother	nature.	In
technical	matters,	you	have	to	get	the	right	answers.	If	your
software	miscalculates	the	path	of	a	space	probe,	you	can't
finesse	your	way	out	of	trouble	by	saying	that	your	code	is

patriotic,	or	avant-garde,	or	any	of	the	other	dodges	people	use
in	nontechnical	fields.

And	as	technology	becomes	increasingly	important	in	the
economy,	nerd	culture	is	rising	with	it.	Nerds	are	already	a	lot
cooler	than	they	were	when	I	was	a	kid.	When	I	was	in	college	in
the	mid-1980s,	"nerd"	was	still	an	insult.	People	who	majored	in
computer	science	generally	tried	to	conceal	it.	Now	women	ask
me	where	they	can	meet	nerds.	(The	answer	that	springs	to	mind
is	"Usenix,"	but	that	would	be	like	drinking	from	a	firehose.)

I	have	no	illusions	about	why	nerd	culture	is	becoming	more
accepted.	It's	not	because	people	are	realizing	that	substance	is
more	important	than	marketing.	It's	because	the	nerds	are
getting	rich.	But	that	is	not	going	to	change.

7.	Options

What	makes	the	nerds	rich,	usually,	is	stock	options.	Now	there
are	moves	afoot	to	make	it	harder	for	companies	to	grant
options.	To	the	extent	there's	some	genuine	accounting	abuse
going	on,	by	all	means	correct	it.	But	don't	kill	the	golden	goose.
Equity	is	the	fuel	that	drives	technical	innovation.

Options	are	a	good	idea	because	(a)	they're	fair,	and	(b)	they
work.	Someone	who	goes	to	work	for	a	company	is	(one	hopes)
adding	to	its	value,	and	it's	only	fair	to	give	them	a	share	of	it.
And	as	a	purely	practical	measure,	people	work	a	lot	harder
when	they	have	options.	I've	seen	that	first	hand.

The	fact	that	a	few	crooks	during	the	Bubble	robbed	their
companies	by	granting	themselves	options	doesn't	mean	options
are	a	bad	idea.	During	the	railroad	boom,	some	executives
enriched	themselves	by	selling	watered	stock—by	issuing	more
shares	than	they	said	were	outstanding.	But	that	doesn't	make
common	stock	a	bad	idea.	Crooks	just	use	whatever	means	are
available.

If	there	is	a	problem	with	options,	it's	that	they	reward	slightly
the	wrong	thing.	Not	surprisingly,	people	do	what	you	pay	them
to.	If	you	pay	them	by	the	hour,	they'll	work	a	lot	of	hours.	If	you

nerdad.html

pay	them	by	the	volume	of	work	done,	they'll	get	a	lot	of	work
done	(but	only	as	you	defined	work).	And	if	you	pay	them	to	raise
the	stock	price,	which	is	what	options	amount	to,	they'll	raise	the
stock	price.

But	that's	not	quite	what	you	want.	What	you	want	is	to	increase
the	actual	value	of	the	company,	not	its	market	cap.	Over	time
the	two	inevitably	meet,	but	not	always	as	quickly	as	options
vest.	Which	means	options	tempt	employees,	if	only
unconsciously,	to	"pump	and	dump"—to	do	things	that	will	make
the	company	seem	valuable.	I	found	that	when	I	was	at	Yahoo,	I
couldn't	help	thinking,	"how	will	this	sound	to	investors?"	when	I
should	have	been	thinking	"is	this	a	good	idea?"

So	maybe	the	standard	option	deal	needs	to	be	tweaked	slightly.
Maybe	options	should	be	replaced	with	something	tied	more
directly	to	earnings.	It's	still	early	days.

8.	Startups

What	made	the	options	valuable,	for	the	most	part,	is	that	they
were	options	on	the	stock	of	startups.	Startups	were	not	of
course	a	creation	of	the	Bubble,	but	they	were	more	visible
during	the	Bubble	than	ever	before.

One	thing	most	people	did	learn	about	for	the	first	time	during
the	Bubble	was	the	startup	created	with	the	intention	of	selling
it.	Originally	a	startup	meant	a	small	company	that	hoped	to
grow	into	a	big	one.	But	increasingly	startups	are	evolving	into	a
vehicle	for	developing	technology	on	spec.

As	I	wrote	in	Hackers	&	Painters,	employees	seem	to	be	most
productive	when	they're	paid	in	proportion	to	the	wealth	they
generate.	And	the	advantage	of	a	startup—indeed,	almost	its
raison	d'etre—is	that	it	offers	something	otherwise	impossible	to
obtain:	a	way	of	measuring	that.

In	many	businesses,	it	just	makes	more	sense	for	companies	to
get	technology	by	buying	startups	rather	than	developing	it	in
house.	You	pay	more,	but	there	is	less	risk,	and	risk	is	what	big
companies	don't	want.	It	makes	the	guys	developing	the

start.html
hackpaint.html

technology	more	accountable,	because	they	only	get	paid	if	they
build	the	winner.	And	you	end	up	with	better	technology,	created
faster,	because	things	are	made	in	the	innovative	atmosphere	of
startups	instead	of	the	bureaucratic	atmosphere	of	big
companies.

Our	startup,	Viaweb,	was	built	to	be	sold.	We	were	open	with
investors	about	that	from	the	start.	And	we	were	careful	to
create	something	that	could	slot	easily	into	a	larger	company.
That	is	the	pattern	for	the	future.

9.	California

The	Bubble	was	a	California	phenomenon.	When	I	showed	up	in
Silicon	Valley	in	1998,	I	felt	like	an	immigrant	from	Eastern
Europe	arriving	in	America	in	1900.	Everyone	was	so	cheerful
and	healthy	and	rich.	It	seemed	a	new	and	improved	world.

The	press,	ever	eager	to	exaggerate	small	trends,	now	gives	one
the	impression	that	Silicon	Valley	is	a	ghost	town.	Not	at	all.
When	I	drive	down	101	from	the	airport,	I	still	feel	a	buzz	of
energy,	as	if	there	were	a	giant	transformer	nearby.	Real	estate	is
still	more	expensive	than	just	about	anywhere	else	in	the	country.
The	people	still	look	healthy,	and	the	weather	is	still	fabulous.
The	future	is	there.	(I	say	"there"	because	I	moved	back	to	the
East	Coast	after	Yahoo.	I	still	wonder	if	this	was	a	smart	idea.)

What	makes	the	Bay	Area	superior	is	the	attitude	of	the	people.	I
notice	that	when	I	come	home	to	Boston.	The	first	thing	I	see
when	I	walk	out	of	the	airline	terminal	is	the	fat,	grumpy	guy	in
charge	of	the	taxi	line.	I	brace	myself	for	rudeness:	remember,
you're	back	on	the	East	Coast	now.

The	atmosphere	varies	from	city	to	city,	and	fragile	organisms
like	startups	are	exceedingly	sensitive	to	such	variation.	If	it
hadn't	already	been	hijacked	as	a	new	euphemism	for	liberal,	the
word	to	describe	the	atmosphere	in	the	Bay	Area	would	be
"progressive."	People	there	are	trying	to	build	the	future.	Boston
has	MIT	and	Harvard,	but	it	also	has	a	lot	of	truculent,	unionized
employees	like	the	police	who	recently	held	the	Democratic
National	Convention	for	ransom,	and	a	lot	of	people	trying	to	be

http://www.usatoday.com/news/politicselections/nation/president/2004-04-30-boston-police-convention_x.htm

Thurston	Howell.	Two	sides	of	an	obsolete	coin.

Silicon	Valley	may	not	be	the	next	Paris	or	London,	but	it	is	at
least	the	next	Chicago.	For	the	next	fifty	years,	that's	where	new
wealth	will	come	from.

10.	Productivity

During	the	Bubble,	optimistic	analysts	used	to	justify	high	price
to	earnings	ratios	by	saying	that	technology	was	going	to
increase	productivity	dramatically.	They	were	wrong	about	the
specific	companies,	but	not	so	wrong	about	the	underlying
principle.	I	think	one	of	the	big	trends	we'll	see	in	the	coming
century	is	a	huge	increase	in	productivity.

Or	more	precisely,	a	huge	increase	in	variation	in	productivity.
Technology	is	a	lever.	It	doesn't	add;	it	multiplies.	If	the	present
range	of	productivity	is	0	to	100,	introducing	a	multiple	of	10
increases	the	range	from	0	to	1000.

One	upshot	of	which	is	that	the	companies	of	the	future	may	be
surprisingly	small.	I	sometimes	daydream	about	how	big	you
could	grow	a	company	(in	revenues)	without	ever	having	more
than	ten	people.	What	would	happen	if	you	outsourced
everything	except	product	development?	If	you	tried	this
experiment,	I	think	you'd	be	surprised	at	how	far	you	could	get.
As	Fred	Brooks	pointed	out,	small	groups	are	intrinsically	more
productive,	because	the	internal	friction	in	a	group	grows	as	the
square	of	its	size.

Till	quite	recently,	running	a	major	company	meant	managing	an
army	of	workers.	Our	standards	about	how	many	employees	a
company	should	have	are	still	influenced	by	old	patterns.
Startups	are	perforce	small,	because	they	can't	afford	to	hire	a
lot	of	people.	But	I	think	it's	a	big	mistake	for	companies	to
loosen	their	belts	as	revenues	increase.	The	question	is	not
whether	you	can	afford	the	extra	salaries.	Can	you	afford	the	loss
in	productivity	that	comes	from	making	the	company	bigger?

The	prospect	of	technological	leverage	will	of	course	raise	the
specter	of	unemployment.	I'm	surprised	people	still	worry	about

gh.html

this.	After	centuries	of	supposedly	job-killing	innovations,	the
number	of	jobs	is	within	ten	percent	of	the	number	of	people	who
want	them.	This	can't	be	a	coincidence.	There	must	be	some	kind
of	balancing	mechanism.

What's	New

When	one	looks	over	these	trends,	is	there	any	overall	theme?
There	does	seem	to	be:	that	in	the	coming	century,	good	ideas
will	count	for	more.	That	26	year	olds	with	good	ideas	will
increasingly	have	an	edge	over	50	year	olds	with	powerful
connections.	That	doing	good	work	will	matter	more	than
dressing	up—or	advertising,	which	is	the	same	thing	for
companies.	That	people	will	be	rewarded	a	bit	more	in	proportion
to	the	value	of	what	they	create.

If	so,	this	is	good	news	indeed.	Good	ideas	always	tend	to	win
eventually.	The	problem	is,	it	can	take	a	very	long	time.	It	took
decades	for	relativity	to	be	accepted,	and	the	greater	part	of	a
century	to	establish	that	central	planning	didn't	work.	So	even	a
small	increase	in	the	rate	at	which	good	ideas	win	would	be	a
momentous	change—big	enough,	probably,	to	justify	a	name	like
the	"new	economy."

Notes

[1]	Actually	it's	hard	to	say	now.	As	Jeremy	Siegel	points	out,	if
the	value	of	a	stock	is	its	future	earnings,	you	can't	tell	if	it	was
overvalued	till	you	see	what	the	earnings	turn	out	to	be.	While
certain	famous	Internet	stocks	were	almost	certainly	overvalued
in	1999,	it	is	still	hard	to	say	for	sure	whether,	e.g.,	the	Nasdaq
index	was.

Siegel,	Jeremy	J.	"What	Is	an	Asset	Price	Bubble?	An	Operational
Definition."	European	Financial	Management,	9:1,	2003.

[2]	The	number	of	users	comes	from	a	6/03	Nielsen	study	quoted

on	Google's	site.	(You'd	think	they'd	have	something	more
recent.)	The	revenue	estimate	is	based	on	revenues	of	$1.35
billion	for	the	first	half	of	2004,	as	reported	in	their	IPO	filing.

Thanks	to	Chris	Anderson,	Trevor	Blackwell,	Sarah	Harlin,
Jessica	Livingston,	and	Robert	Morris	for	reading	drafts	of	this.

	

A	Version	1.0
October	2004

As	E.	B.	White	said,	"good	writing	is	rewriting."	I	didn't	realize
this	when	I	was	in	school.	In	writing,	as	in	math	and	science,	they
only	show	you	the	finished	product.	You	don't	see	all	the	false
starts.	This	gives	students	a	misleading	view	of	how	things	get
made.

Part	of	the	reason	it	happens	is	that	writers	don't	want	people	to
see	their	mistakes.	But	I'm	willing	to	let	people	see	an	early	draft
if	it	will	show	how	much	you	have	to	rewrite	to	beat	an	essay	into
shape.

Below	is	the	oldest	version	I	can	find	of	The	Age	of	the	Essay
(probably	the	second	or	third	day),	with	text	that	ultimately
survived	in	red	and	text	that	later	got	deleted	in	gray.	There
seem	to	be	several	categories	of	cuts:	things	I	got	wrong,	things
that	seem	like	bragging,	flames,	digressions,	stretches	of
awkward	prose,	and	unnecessary	words.

I	discarded	more	from	the	beginning.	That's	not	surprising;	it
takes	a	while	to	hit	your	stride.	There	are	more	digressions	at	the
start,	because	I'm	not	sure	where	I'm	heading.

The	amount	of	cutting	is	about	average.	I	probably	write	three	to
four	words	for	every	one	that	appears	in	the	final	version	of	an
essay.

(Before	anyone	gets	mad	at	me	for	opinions	expressed	here,
remember	that	anything	you	see	here	that's	not	in	the	final
version	is	obviously	something	I	chose	not	to	publish,	often
because	I	disagree	with	it.)

essay.html

Recently	a	friend	said	that	what	he	liked	about	my	essays	was
that	they	weren't	written	the	way	we'd	been	taught	to	write
essays	in	school.	You	remember:	topic	sentence,	introductory
paragraph,	supporting	paragraphs,	conclusion.	It	hadn't	occurred
to	me	till	then	that	those	horrible	things	we	had	to	write	in
school	were	even	connected	to	what	I	was	doing	now.	But	sure
enough,	I	thought,	they	did	call	them	"essays,"	didn't	they?

Well,	they're	not.	Those	things	you	have	to	write	in	school	are	not
only	not	essays,	they're	one	of	the	most	pointless	of	all	the
pointless	hoops	you	have	to	jump	through	in	school.	And	I	worry
that	they	not	only	teach	students	the	wrong	things	about	writing,
but	put	them	off	writing	entirely.

So	I'm	going	to	give	the	other	side	of	the	story:	what	an	essay
really	is,	and	how	you	write	one.	Or	at	least,	how	I	write	one.
Students	be	forewarned:	if	you	actually	write	the	kind	of	essay	I
describe,	you'll	probably	get	bad	grades.	But	knowing	how	it's
really	done	should	at	least	help	you	to	understand	the	feeling	of
futility	you	have	when	you're	writing	the	things	they	tell	you	to.

The	most	obvious	difference	between	real	essays	and	the	things
one	has	to	write	in	school	is	that	real	essays	are	not	exclusively
about	English	literature.	It's	a	fine	thing	for	schools	to	teach
students	how	to	write.	But	for	some	bizarre	reason	(actually,	a
very	specific	bizarre	reason	that	I'll	explain	in	a	moment),	the
teaching	of	writing	has	gotten	mixed	together	with	the	study	of
literature.	And	so	all	over	the	country,	students	are	writing	not
about	how	a	baseball	team	with	a	small	budget	might	compete
with	the	Yankees,	or	the	role	of	color	in	fashion,	or	what
constitutes	a	good	dessert,	but	about	symbolism	in	Dickens.

With	obvious	results.	Only	a	few	people	really	care	about
symbolism	in	Dickens.	The	teacher	doesn't.	The	students	don't.
Most	of	the	people	who've	had	to	write	PhD	disserations	about
Dickens	don't.	And	certainly	Dickens	himself	would	be	more
interested	in	an	essay	about	color	or	baseball.

How	did	things	get	this	way?	To	answer	that	we	have	to	go	back
almost	a	thousand	years.	Between	about	500	and	1000,	life	was
not	very	good	in	Europe.	The	term	"dark	ages"	is	presently	out	of

fashion	as	too	judgemental	(the	period	wasn't	dark;	it	was	just
different),	but	if	this	label	didn't	already	exist,	it	would	seem	an
inspired	metaphor.	What	little	original	thought	there	was	took
place	in	lulls	between	constant	wars	and	had	something	of	the
character	of	the	thoughts	of	parents	with	a	new	baby.	The	most
amusing	thing	written	during	this	period,	Liudprand	of
Cremona's	Embassy	to	Constantinople,	is,	I	suspect,	mostly
inadvertantly	so.

Around	1000	Europe	began	to	catch	its	breath.	And	once	they
had	the	luxury	of	curiosity,	one	of	the	first	things	they	discovered
was	what	we	call	"the	classics."	Imagine	if	we	were	visited	by
aliens.	If	they	could	even	get	here	they'd	presumably	know	a	few
things	we	don't.	Immediately	Alien	Studies	would	become	the
most	dynamic	field	of	scholarship:	instead	of	painstakingly
discovering	things	for	ourselves,	we	could	simply	suck	up
everything	they'd	discovered.	So	it	was	in	Europe	in	1200.	When
classical	texts	began	to	circulate	in	Europe,	they	contained	not
just	new	answers,	but	new	questions.	(If	anyone	proved	a
theorem	in	christian	Europe	before	1200,	for	example,	there	is
no	record	of	it.)

For	a	couple	centuries,	some	of	the	most	important	work	being
done	was	intellectual	archaelogy.	Those	were	also	the	centuries
during	which	schools	were	first	established.	And	since	reading
ancient	texts	was	the	essence	of	what	scholars	did	then,	it
became	the	basis	of	the	curriculum.

By	1700,	someone	who	wanted	to	learn	about	physics	didn't	need
to	start	by	mastering	Greek	in	order	to	read	Aristotle.	But
schools	change	slower	than	scholarship:	the	study	of	ancient
texts	had	such	prestige	that	it	remained	the	backbone	of
education	until	the	late	19th	century.	By	then	it	was	merely	a
tradition.	It	did	serve	some	purposes:	reading	a	foreign	language
was	difficult,	and	thus	taught	discipline,	or	at	least,	kept	students
busy;	it	introduced	students	to	cultures	quite	different	from	their
own;	and	its	very	uselessness	made	it	function	(like	white	gloves)
as	a	social	bulwark.	But	it	certainly	wasn't	true,	and	hadn't	been
true	for	centuries,	that	students	were	serving	apprenticeships	in
the	hottest	area	of	scholarship.

Classical	scholarship	had	also	changed.	In	the	early	era,
philology	actually	mattered.	The	texts	that	filtered	into	Europe
were	all	corrupted	to	some	degree	by	the	errors	of	translators
and	copyists.	Scholars	had	to	figure	out	what	Aristotle	said
before	they	could	figure	out	what	he	meant.	But	by	the	modern
era	such	questions	were	answered	as	well	as	they	were	ever
going	to	be.	And	so	the	study	of	ancient	texts	became	less	about
ancientness	and	more	about	texts.

The	time	was	then	ripe	for	the	question:	if	the	study	of	ancient
texts	is	a	valid	field	for	scholarship,	why	not	modern	texts?	The
answer,	of	course,	is	that	the	raison	d'etre	of	classical	scholarship
was	a	kind	of	intellectual	archaelogy	that	does	not	need	to	be
done	in	the	case	of	contemporary	authors.	But	for	obvious
reasons	no	one	wanted	to	give	that	answer.	The	archaeological
work	being	mostly	done,	it	implied	that	the	people	studying	the
classics	were,	if	not	wasting	their	time,	at	least	working	on
problems	of	minor	importance.

And	so	began	the	study	of	modern	literature.	There	was	some
initial	resistance,	but	it	didn't	last	long.	The	limiting	reagent	in
the	growth	of	university	departments	is	what	parents	will	let
undergraduates	study.	If	parents	will	let	their	children	major	in	x,
the	rest	follows	straightforwardly.	There	will	be	jobs	teaching	x,
and	professors	to	fill	them.	The	professors	will	establish	scholarly
journals	and	publish	one	another's	papers.	Universities	with	x
departments	will	subscribe	to	the	journals.	Graduate	students
who	want	jobs	as	professors	of	x	will	write	dissertations	about	it.
It	may	take	a	good	long	while	for	the	more	prestigious
universities	to	cave	in	and	establish	departments	in	cheesier	xes,
but	at	the	other	end	of	the	scale	there	are	so	many	universities
competing	to	attract	students	that	the	mere	establishment	of	a
discipline	requires	little	more	than	the	desire	to	do	it.

High	schools	imitate	universities.	And	so	once	university	English
departments	were	established	in	the	late	nineteenth	century,	the
'riting	component	of	the	3	Rs	was	morphed	into	English.	With	the
bizarre	consequence	that	high	school	students	now	had	to	write
about	English	literature--	to	write,	without	even	realizing	it,
imitations	of	whatever	English	professors	had	been	publishing	in
their	journals	a	few	decades	before.	It's	no	wonder	if	this	seems

to	the	student	a	pointless	exercise,	because	we're	now	three
steps	removed	from	real	work:	the	students	are	imitating	English
professors,	who	are	imitating	classical	scholars,	who	are	merely
the	inheritors	of	a	tradition	growing	out	of	what	was,	700	years
ago,	fascinating	and	urgently	needed	work.

Perhaps	high	schools	should	drop	English	and	just	teach	writing.
The	valuable	part	of	English	classes	is	learning	to	write,	and	that
could	be	taught	better	by	itself.	Students	learn	better	when
they're	interested	in	what	they're	doing,	and	it's	hard	to	imagine
a	topic	less	interesting	than	symbolism	in	Dickens.	Most	of	the
people	who	write	about	that	sort	of	thing	professionally	are	not
really	interested	in	it.	(Though	indeed,	it's	been	a	while	since
they	were	writing	about	symbolism;	now	they're	writing	about
gender.)

I	have	no	illusions	about	how	eagerly	this	suggestion	will	be
adopted.	Public	schools	probably	couldn't	stop	teaching	English
even	if	they	wanted	to;	they're	probably	required	to	by	law.	But
here's	a	related	suggestion	that	goes	with	the	grain	instead	of
against	it:	that	universities	establish	a	writing	major.	Many	of	the
students	who	now	major	in	English	would	major	in	writing	if	they
could,	and	most	would	be	better	off.

It	will	be	argued	that	it	is	a	good	thing	for	students	to	be	exposed
to	their	literary	heritage.	Certainly.	But	is	that	more	important
than	that	they	learn	to	write	well?	And	are	English	classes	even
the	place	to	do	it?	After	all,	the	average	public	high	school
student	gets	zero	exposure	to	his	artistic	heritage.	No	disaster
results.	The	people	who	are	interested	in	art	learn	about	it	for
themselves,	and	those	who	aren't	don't.	I	find	that	American
adults	are	no	better	or	worse	informed	about	literature	than	art,
despite	the	fact	that	they	spent	years	studying	literature	in	high
school	and	no	time	at	all	studying	art.	Which	presumably	means
that	what	they're	taught	in	school	is	rounding	error	compared	to
what	they	pick	up	on	their	own.

Indeed,	English	classes	may	even	be	harmful.	In	my	case	they
were	effectively	aversion	therapy.	Want	to	make	someone	dislike
a	book?	Force	him	to	read	it	and	write	an	essay	about	it.	And
make	the	topic	so	intellectually	bogus	that	you	could	not,	if

asked,	explain	why	one	ought	to	write	about	it.	I	love	to	read
more	than	anything,	but	by	the	end	of	high	school	I	never	read
the	books	we	were	assigned.	I	was	so	disgusted	with	what	we
were	doing	that	it	became	a	point	of	honor	with	me	to	write
nonsense	at	least	as	good	at	the	other	students'	without	having
more	than	glanced	over	the	book	to	learn	the	names	of	the
characters	and	a	few	random	events	in	it.

I	hoped	this	might	be	fixed	in	college,	but	I	found	the	same
problem	there.	It	was	not	the	teachers.	It	was	English.	We	were
supposed	to	read	novels	and	write	essays	about	them.	About
what,	and	why?	That	no	one	seemed	to	be	able	to	explain.
Eventually	by	trial	and	error	I	found	that	what	the	teacher
wanted	us	to	do	was	pretend	that	the	story	had	really	taken
place,	and	to	analyze	based	on	what	the	characters	said	and	did
(the	subtler	clues,	the	better)	what	their	motives	must	have	been.
One	got	extra	credit	for	motives	having	to	do	with	class,	as	I
suspect	one	must	now	for	those	involving	gender	and	sexuality.	I
learned	how	to	churn	out	such	stuff	well	enough	to	get	an	A,	but
I	never	took	another	English	class.

And	the	books	we	did	these	disgusting	things	to,	like	those	we
mishandled	in	high	school,	I	find	still	have	black	marks	against
them	in	my	mind.	The	one	saving	grace	was	that	English	courses
tend	to	favor	pompous,	dull	writers	like	Henry	James,	who
deserve	black	marks	against	their	names	anyway.	One	of	the
principles	the	IRS	uses	in	deciding	whether	to	allow	deductions
is	that,	if	something	is	fun,	it	isn't	work.	Fields	that	are
intellectually	unsure	of	themselves	rely	on	a	similar	principle.
Reading	P.G.	Wodehouse	or	Evelyn	Waugh	or	Raymond	Chandler
is	too	obviously	pleasing	to	seem	like	serious	work,	as	reading
Shakespeare	would	have	been	before	English	evolved	enough	to
make	it	an	effort	to	understand	him.	[sh]	And	so	good	writers
(just	you	wait	and	see	who's	still	in	print	in	300	years)	are	less
likely	to	have	readers	turned	against	them	by	clumsy,	self-
appointed	tour	guides.

The	other	big	difference	between	a	real	essay	and	the	things	they
make	you	write	in	school	is	that	a	real	essay	doesn't	take	a
position	and	then	defend	it.	That	principle,	like	the	idea	that	we
ought	to	be	writing	about	literature,	turns	out	to	be	another

intellectual	hangover	of	long	forgotten	origins.	It's	often
mistakenly	believed	that	medieval	universities	were	mostly
seminaries.	In	fact	they	were	more	law	schools.	And	at	least	in
our	tradition	lawyers	are	advocates:	they	are	trained	to	be	able
to	take	either	side	of	an	argument	and	make	as	good	a	case	for	it
as	they	can.	

Whether	or	not	this	is	a	good	idea	(in	the	case	of	prosecutors,	it
probably	isn't),	it	tended	to	pervade	the	atmosphere	of	early
universities.	After	the	lecture	the	most	common	form	of
discussion	was	the	disputation.	This	idea	is	at	least	nominally
preserved	in	our	present-day	thesis	defense--	indeed,	in	the	very
word	thesis.	Most	people	treat	the	words	thesis	and	dissertation
as	interchangeable,	but	originally,	at	least,	a	thesis	was	a	position
one	took	and	the	dissertation	was	the	argument	by	which	one
defended	it.

I'm	not	complaining	that	we	blur	these	two	words	together.	As	far
as	I'm	concerned,	the	sooner	we	lose	the	original	sense	of	the
word	thesis,	the	better.	For	many,	perhaps	most,	graduate
students,	it	is	stuffing	a	square	peg	into	a	round	hole	to	try	to
recast	one's	work	as	a	single	thesis.	And	as	for	the	disputation,
that	seems	clearly	a	net	lose.	Arguing	two	sides	of	a	case	may	be
a	necessary	evil	in	a	legal	dispute,	but	it's	not	the	best	way	to	get
at	the	truth,	as	I	think	lawyers	would	be	the	first	to	admit.

And	yet	this	principle	is	built	into	the	very	structure	of	the	essays
they	teach	you	to	write	in	high	school.	The	topic	sentence	is	your
thesis,	chosen	in	advance,	the	supporting	paragraphs	the	blows
you	strike	in	the	conflict,	and	the	conclusion---	uh,	what	it	the
conclusion?	I	was	never	sure	about	that	in	high	school.	If	your
thesis	was	well	expressed,	what	need	was	there	to	restate	it?	In
theory	it	seemed	that	the	conclusion	of	a	really	good	essay	ought
not	to	need	to	say	any	more	than	QED.	But	when	you	understand
the	origins	of	this	sort	of	"essay",	you	can	see	where	the
conclusion	comes	from.	It's	the	concluding	remarks	to	the	jury.

What	other	alternative	is	there?	To	answer	that	we	have	to	reach
back	into	history	again,	though	this	time	not	so	far.	To	Michel	de
Montaigne,	inventor	of	the	essay.	He	was	doing	something	quite
different	from	what	a	lawyer	does,	and	the	difference	is

embodied	in	the	name.	Essayer	is	the	French	verb	meaning	"to
try"	(the	cousin	of	our	word	assay),	and	an	"essai"	is	an	effort.	An
essay	is	something	you	write	in	order	to	figure	something	out.

Figure	out	what?	You	don't	know	yet.	And	so	you	can't	begin	with
a	thesis,	because	you	don't	have	one,	and	may	never	have	one.
An	essay	doesn't	begin	with	a	statement,	but	with	a	question.	In
a	real	essay,	you	don't	take	a	position	and	defend	it.	You	see	a
door	that's	ajar,	and	you	open	it	and	walk	in	to	see	what's	inside.

If	all	you	want	to	do	is	figure	things	out,	why	do	you	need	to
write	anything,	though?	Why	not	just	sit	and	think?	Well,	there
precisely	is	Montaigne's	great	discovery.	Expressing	ideas	helps
to	form	them.	Indeed,	helps	is	far	too	weak	a	word.	90%	of	what
ends	up	in	my	essays	was	stuff	I	only	thought	of	when	I	sat	down
to	write	them.	That's	why	I	write	them.

So	there's	another	difference	between	essays	and	the	things	you
have	to	write	in	school.	In	school	you	are,	in	theory,	explaining
yourself	to	someone	else.	In	the	best	case---if	you're	really
organized---you're	just	writing	it	down.	In	a	real	essay	you're
writing	for	yourself.	You're	thinking	out	loud.

But	not	quite.	Just	as	inviting	people	over	forces	you	to	clean	up
your	apartment,	writing	something	that	you	know	other	people
will	read	forces	you	to	think	well.	So	it	does	matter	to	have	an
audience.	The	things	I've	written	just	for	myself	are	no	good.
Indeed,	they're	bad	in	a	particular	way:	they	tend	to	peter	out.
When	I	run	into	difficulties,	I	notice	that	I	tend	to	conclude	with	a
few	vague	questions	and	then	drift	off	to	get	a	cup	of	tea.

This	seems	a	common	problem.	It's	practically	the	standard
ending	in	blog	entries---	with	the	addition	of	a	"heh"	or	an
emoticon,	prompted	by	the	all	too	accurate	sense	that	something
is	missing.

And	indeed,	a	lot	of	published	essays	peter	out	in	this	same	way.
Particularly	the	sort	written	by	the	staff	writers	of
newsmagazines.	Outside	writers	tend	to	supply	editorials	of	the
defend-a-position	variety,	which	make	a	beeline	toward	a	rousing
(and	foreordained)	conclusion.	But	the	staff	writers	feel	obliged

to	write	something	more	balanced,	which	in	practice	ends	up
meaning	blurry.	Since	they're	writing	for	a	popular	magazine,
they	start	with	the	most	radioactively	controversial	questions,
from	which	(because	they're	writing	for	a	popular	magazine)	they
then	proceed	to	recoil	from	in	terror.	Gay	marriage,	for	or
against?	This	group	says	one	thing.	That	group	says	another.	One
thing	is	certain:	the	question	is	a	complex	one.	(But	don't	get
mad	at	us.	We	didn't	draw	any	conclusions.)

Questions	aren't	enough.	An	essay	has	to	come	up	with	answers.
They	don't	always,	of	course.	Sometimes	you	start	with	a
promising	question	and	get	nowhere.	But	those	you	don't
publish.	Those	are	like	experiments	that	get	inconclusive	results.
Something	you	publish	ought	to	tell	the	reader	something	he
didn't	already	know.

But	what	you	tell	him	doesn't	matter,	so	long	as	it's	interesting.
I'm	sometimes	accused	of	meandering.	In	defend-a-position
writing	that	would	be	a	flaw.	There	you're	not	concerned	with
truth.	You	already	know	where	you're	going,	and	you	want	to	go
straight	there,	blustering	through	obstacles,	and	hand-waving
your	way	across	swampy	ground.	But	that's	not	what	you're
trying	to	do	in	an	essay.	An	essay	is	supposed	to	be	a	search	for
truth.	It	would	be	suspicious	if	it	didn't	meander.

The	Meander	is	a	river	in	Asia	Minor	(aka	Turkey).	As	you	might
expect,	it	winds	all	over	the	place.	But	does	it	do	this	out	of
frivolity?	Quite	the	opposite.	Like	all	rivers,	it's	rigorously
following	the	laws	of	physics.	The	path	it	has	discovered,	winding
as	it	is,	represents	the	most	economical	route	to	the	sea.

The	river's	algorithm	is	simple.	At	each	step,	flow	down.	For	the
essayist	this	translates	to:	flow	interesting.	Of	all	the	places	to	go
next,	choose	whichever	seems	most	interesting.

I'm	pushing	this	metaphor	a	bit.	An	essayist	can't	have	quite	as
little	foresight	as	a	river.	In	fact	what	you	do	(or	what	I	do)	is
somewhere	between	a	river	and	a	roman	road-builder.	I	have	a
general	idea	of	the	direction	I	want	to	go	in,	and	I	choose	the
next	topic	with	that	in	mind.	This	essay	is	about	writing,	so	I	do
occasionally	yank	it	back	in	that	direction,	but	it	is	not	all	the

sort	of	essay	I	thought	I	was	going	to	write	about	writing.

Note	too	that	hill-climbing	(which	is	what	this	algorithm	is	called)
can	get	you	in	trouble.	Sometimes,	just	like	a	river,	you	run	up
against	a	blank	wall.	What	I	do	then	is	just	what	the	river	does:
backtrack.	At	one	point	in	this	essay	I	found	that	after	following	a
certain	thread	I	ran	out	of	ideas.	I	had	to	go	back	n	paragraphs
and	start	over	in	another	direction.	For	illustrative	purposes	I've
left	the	abandoned	branch	as	a	footnote.

Err	on	the	side	of	the	river.	An	essay	is	not	a	reference	work.	It's
not	something	you	read	looking	for	a	specific	answer,	and	feel
cheated	if	you	don't	find	it.	I'd	much	rather	read	an	essay	that
went	off	in	an	unexpected	but	interesting	direction	than	one	that
plodded	dutifully	along	a	prescribed	course.

So	what's	interesting?	For	me,	interesting	means	surprise.
Design,	as	Matz	has	said,	should	follow	the	principle	of	least
surprise.	A	button	that	looks	like	it	will	make	a	machine	stop
should	make	it	stop,	not	speed	up.	Essays	should	do	the	opposite.
Essays	should	aim	for	maximum	surprise.

I	was	afraid	of	flying	for	a	long	time	and	could	only	travel
vicariously.	When	friends	came	back	from	faraway	places,	it
wasn't	just	out	of	politeness	that	I	asked	them	about	their	trip.	I
really	wanted	to	know.	And	I	found	that	the	best	way	to	get
information	out	of	them	was	to	ask	what	surprised	them.	How
was	the	place	different	from	what	they	expected?	This	is	an
extremely	useful	question.	You	can	ask	it	of	even	the	most
unobservant	people,	and	it	will	extract	information	they	didn't
even	know	they	were	recording.	

Indeed,	you	can	ask	it	in	real	time.	Now	when	I	go	somewhere
new,	I	make	a	note	of	what	surprises	me	about	it.	Sometimes	I
even	make	a	conscious	effort	to	visualize	the	place	beforehand,
so	I'll	have	a	detailed	image	to	diff	with	reality.

Surprises	are	facts	you	didn't	already	know.	But	they're	more
than	that.	They're	facts	that	contradict	things	you	thought	you
knew.	And	so	they're	the	most	valuable	sort	of	fact	you	can	get.
They're	like	a	food	that's	not	merely	healthy,	but	counteracts	the

unhealthy	effects	of	things	you've	already	eaten.

How	do	you	find	surprises?	Well,	therein	lies	half	the	work	of
essay	writing.	(The	other	half	is	expressing	yourself	well.)	You
can	at	least	use	yourself	as	a	proxy	for	the	reader.	You	should
only	write	about	things	you've	thought	about	a	lot.	And	anything
you	come	across	that	surprises	you,	who've	thought	about	the
topic	a	lot,	will	probably	surprise	most	readers.

For	example,	in	a	recent	essay	I	pointed	out	that	because	you	can
only	judge	computer	programmers	by	working	with	them,	no	one
knows	in	programming	who	the	heroes	should	be.	I	certainly
didn't	realize	this	when	I	started	writing	the	essay,	and	even	now
I	find	it	kind	of	weird.	That's	what	you're	looking	for.

So	if	you	want	to	write	essays,	you	need	two	ingredients:	you
need	a	few	topics	that	you	think	about	a	lot,	and	you	need	some
ability	to	ferret	out	the	unexpected.

What	should	you	think	about?	My	guess	is	that	it	doesn't	matter.
Almost	everything	is	interesting	if	you	get	deeply	enough	into	it.
The	one	possible	exception	are	things	like	working	in	fast	food,
which	have	deliberately	had	all	the	variation	sucked	out	of	them.
In	retrospect,	was	there	anything	interesting	about	working	in
Baskin-Robbins?	Well,	it	was	interesting	to	notice	how	important
color	was	to	the	customers.	Kids	a	certain	age	would	point	into
the	case	and	say	that	they	wanted	yellow.	Did	they	want	French
Vanilla	or	Lemon?	They	would	just	look	at	you	blankly.	They
wanted	yellow.	And	then	there	was	the	mystery	of	why	the
perennial	favorite	Pralines	n'	Cream	was	so	appealing.	I'm
inclined	now	to	think	it	was	the	salt.	And	the	mystery	of	why
Passion	Fruit	tasted	so	disgusting.	People	would	order	it	because
of	the	name,	and	were	always	disappointed.	It	should	have	been
called	In-sink-erator	Fruit.	And	there	was	the	difference	in	the
way	fathers	and	mothers	bought	ice	cream	for	their	kids.	Fathers
tended	to	adopt	the	attitude	of	benevolent	kings	bestowing
largesse,	and	mothers	that	of	harried	bureaucrats,	giving	in	to
pressure	against	their	better	judgement.	So,	yes,	there	does
seem	to	be	material,	even	in	fast	food.

What	about	the	other	half,	ferreting	out	the	unexpected?	That

may	require	some	natural	ability.	I've	noticed	for	a	long	time	that
I'm	pathologically	observant.

[That	was	as	far	as	I'd	gotten	at	the	time.]

Notes

[sh]	In	Shakespeare's	own	time,	serious	writing	meant
theological	discourses,	not	the	bawdy	plays	acted	over	on	the
other	side	of	the	river	among	the	bear	gardens	and	whorehouses.

The	other	extreme,	the	work	that	seems	formidable	from	the
moment	it's	created	(indeed,	is	deliberately	intended	to	be)	is
represented	by	Milton.	Like	the	Aeneid,	Paradise	Lost	is	a	rock
imitating	a	butterfly	that	happened	to	get	fossilized.	Even	Samuel
Johnson	seems	to	have	balked	at	this,	on	the	one	hand	paying
Milton	the	compliment	of	an	extensive	biography,	and	on	the
other	writing	of	Paradise	Lost	that	"none	who	read	it	ever	wished
it	longer."

	

Bradley's	Ghost
November	2004

A	lot	of	people	are	writing	now	about	why	Kerry	lost.	Here	I	want
to	examine	a	more	specific	question:	why	were	the	exit	polls	so
wrong?

In	Ohio,	which	Kerry	ultimately	lost	49-51,	exit	polls	gave	him	a
52-48	victory.	And	this	wasn't	just	random	error.	In	every	swing
state	they	overestimated	the	Kerry	vote.	In	Florida,	which	Bush
ultimately	won	52-47,	exit	polls	predicted	a	dead	heat.

(These	are	not	early	numbers.	They're	from	about	midnight
eastern	time,	long	after	polls	closed	in	Ohio	and	Florida.	And	yet
by	the	next	afternoon	the	exit	poll	numbers	online	corresponded
to	the	returns.	The	only	way	I	can	imagine	this	happening	is	if
those	in	charge	of	the	exit	polls	cooked	the	books	after	seeing	the
actual	returns.	But	that's	another	issue.)

What	happened?	The	source	of	the	problem	may	be	a	variant	of
the	Bradley	Effect.	This	term	was	invented	after	Tom	Bradley,	the
black	mayor	of	Los	Angeles,	lost	an	election	for	governor	of
California	despite	a	comfortable	lead	in	the	polls.	Apparently
voters	were	afraid	to	say	they	planned	to	vote	against	him,	lest
their	motives	be	(perhaps	correctly)	suspected.

It	seems	likely	that	something	similar	happened	in	exit	polls	this
year.	In	theory,	exit	polls	ought	to	be	very	accurate.	You're	not
asking	people	what	they	would	do.	You're	asking	what	they	just
did.

How	can	you	get	errors	asking	that?	Because	some	people	don't
respond.	To	get	a	truly	random	sample,	pollsters	ask,	say,	every
20th	person	leaving	the	polling	place	who	they	voted	for.	But	not
everyone	wants	to	answer.	And	the	pollsters	can't	simply	ignore
those	who	won't,	or	their	sample	isn't	random	anymore.	So	what

they	do,	apparently,	is	note	down	the	age	and	race	and	sex	of	the
person,	and	guess	from	that	who	they	voted	for.

This	works	so	long	as	there	is	no	correlation	between	who	people
vote	for	and	whether	they're	willing	to	talk	about	it.	But	this	year
there	may	have	been.	It	may	be	that	a	significant	number	of
those	who	voted	for	Bush	didn't	want	to	say	so.

Why	not?	Because	people	in	the	US	are	more	conservative	than
they're	willing	to	admit.	The	values	of	the	elite	in	this	country,	at
least	at	the	moment,	are	NPR	values.	The	average	person,	as	I
think	both	Republicans	and	Democrats	would	agree,	is	more
socially	conservative.	But	while	some	openly	flaunt	the	fact	that
they	don't	share	the	opinions	of	the	elite,	others	feel	a	little
nervous	about	it,	as	if	they	had	bad	table	manners.

For	example,	according	to	current	NPR	values,	you	can't	say
anything	that	might	be	perceived	as	disparaging	towards
homosexuals.	To	do	so	is	"homophobic."	And	yet	a	large	number
of	Americans	are	deeply	religious,	and	the	Bible	is	quite	explicit
on	the	subject	of	homosexuality.	What	are	they	to	do?	I	think
what	many	do	is	keep	their	opinions,	but	keep	them	to
themselves.

They	know	what	they	believe,	but	they	also	know	what	they're
supposed	to	believe.	And	so	when	a	stranger	(for	example,	a
pollster)	asks	them	their	opinion	about	something	like	gay
marriage,	they	will	not	always	say	what	they	really	think.

When	the	values	of	the	elite	are	liberal,	polls	will	tend	to
underestimate	the	conservativeness	of	ordinary	voters.	This
seems	to	me	the	leading	theory	to	explain	why	the	exit	polls	were
so	far	off	this	year.	NPR	values	said	one	ought	to	vote	for	Kerry.
So	all	the	people	who	voted	for	Kerry	felt	virtuous	for	doing	so,
and	were	eager	to	tell	pollsters	they	had.	No	one	who	voted	for
Kerry	did	it	as	an	act	of	quiet	defiance.

say.html

	

It's	Charisma,	Stupid
November	2004,	corrected	June	2006

Occam's	razor	says	we	should	prefer	the	simpler	of	two
explanations.	I	begin	by	reminding	readers	of	this	principle
because	I'm	about	to	propose	a	theory	that	will	offend	both
liberals	and	conservatives.	But	Occam's	razor	means,	in	effect,
that	if	you	want	to	disagree	with	it,	you	have	a	hell	of	a
coincidence	to	explain.

Theory:	In	US	presidential	elections,	the	more	charismatic
candidate	wins.

People	who	write	about	politics,	whether	on	the	left	or	the	right,
have	a	consistent	bias:	they	take	politics	seriously.	When	one
candidate	beats	another	they	look	for	political	explanations.	The
country	is	shifting	to	the	left,	or	the	right.	And	that	sort	of	shift
can	certainly	be	the	result	of	a	presidential	election,	which
makes	it	easy	to	believe	it	was	the	cause.

But	when	I	think	about	why	I	voted	for	Clinton	over	the	first
George	Bush,	it	wasn't	because	I	was	shifting	to	the	left.	Clinton
just	seemed	more	dynamic.	He	seemed	to	want	the	job	more.
Bush	seemed	old	and	tired.	I	suspect	it	was	the	same	for	a	lot	of
voters.

Clinton	didn't	represent	any	national	shift	leftward.	[1]	He	was
just	more	charismatic	than	George	Bush	or	(God	help	us)	Bob
Dole.	In	2000	we	practically	got	a	controlled	experiment	to	prove
it:	Gore	had	Clinton's	policies,	but	not	his	charisma,	and	he
suffered	proportionally.	[2]	Same	story	in	2004.	Kerry	was
smarter	and	more	articulate	than	Bush,	but	rather	a	stiff.	And
Kerry	lost.

As	I	looked	further	back,	I	kept	finding	the	same	pattern.	Pundits
said	Carter	beat	Ford	because	the	country	distrusted	the

#f1n
#f2n

Republicans	after	Watergate.	And	yet	it	also	happened	that
Carter	was	famous	for	his	big	grin	and	folksy	ways,	and	Ford	for
being	a	boring	klutz.	Four	years	later,	pundits	said	the	country
had	lurched	to	the	right.	But	Reagan,	a	former	actor,	also
happened	to	be	even	more	charismatic	than	Carter	(whose	grin
was	somewhat	less	cheery	after	four	stressful	years	in	office).	In
1984	the	charisma	gap	between	Reagan	and	Mondale	was	like
that	between	Clinton	and	Dole,	with	similar	results.	The	first
George	Bush	managed	to	win	in	1988,	though	he	would	later	be
vanquished	by	one	of	the	most	charismatic	presidents	ever,
because	in	1988	he	was	up	against	the	notoriously	uncharismatic
Michael	Dukakis.

These	are	the	elections	I	remember	personally,	but	apparently
the	same	pattern	played	out	in	1964	and	1972.	The	most	recent
counterexample	appears	to	be	1968,	when	Nixon	beat	the	more
charismatic	Hubert	Humphrey.	But	when	you	examine	that
election,	it	tends	to	support	the	charisma	theory	more	than
contradict	it.	As	Joe	McGinnis	recounts	in	his	famous	book	The
Selling	of	the	President	1968,	Nixon	knew	he	had	less	charisma
than	Humphrey,	and	thus	simply	refused	to	debate	him	on	TV.	He
knew	he	couldn't	afford	to	let	the	two	of	them	be	seen	side	by
side.

Now	a	candidate	probably	couldn't	get	away	with	refusing	to
debate.	But	in	1968	the	custom	of	televised	debates	was	still
evolving.	In	effect,	Nixon	won	in	1968	because	voters	were	never
allowed	to	see	the	real	Nixon.	All	they	saw	were	carefully
scripted	campaign	spots.

Oddly	enough,	the	most	recent	true	counterexample	is	probably
1960.	Though	this	election	is	usually	given	as	an	example	of	the
power	of	TV,	Kennedy	apparently	would	not	have	won	without
fraud	by	party	machines	in	Illinois	and	Texas.	But	TV	was	still
young	in	1960;	only	87%	of	households	had	it.	[3]	Undoubtedly
TV	helped	Kennedy,	so	historians	are	correct	in	regarding	this
election	as	a	watershed.	TV	required	a	new	kind	of	candidate.
There	would	be	no	more	Calvin	Coolidges.

The	charisma	theory	may	also	explain	why	Democrats	tend	to
lose	presidential	elections.	The	core	of	the	Democrats'	ideology

#f3n

seems	to	be	a	belief	in	government.	Perhaps	this	tends	to	attract
people	who	are	earnest,	but	dull.	Dukakis,	Gore,	and	Kerry	were
so	similar	in	that	respect	that	they	might	have	been	brothers.
Good	thing	for	the	Democrats	that	their	screen	lets	through	an
occasional	Clinton,	even	if	some	scandal	results.	[4]

One	would	like	to	believe	elections	are	won	and	lost	on	issues,	if
only	fake	ones	like	Willie	Horton.	And	yet,	if	they	are,	we	have	a
remarkable	coincidence	to	explain.	In	every	presidential	election
since	TV	became	widespread,	the	apparently	more	charismatic
candidate	has	won.	Surprising,	isn't	it,	that	voters'	opinions	on
the	issues	have	lined	up	with	charisma	for	11	elections	in	a	row?

The	political	commentators	who	come	up	with	shifts	to	the	left	or
right	in	their	morning-after	analyses	are	like	the	financial
reporters	stuck	writing	stories	day	after	day	about	the	random
fluctuations	of	the	stock	market.	Day	ends,	market	closes	up	or
down,	reporter	looks	for	good	or	bad	news	respectively,	and
writes	that	the	market	was	up	on	news	of	Intel's	earnings,	or
down	on	fears	of	instability	in	the	Middle	East.	Suppose	we	could
somehow	feed	these	reporters	false	information	about	market
closes,	but	give	them	all	the	other	news	intact.	Does	anyone
believe	they	would	notice	the	anomaly,	and	not	simply	write	that
stocks	were	up	(or	down)	on	whatever	good	(or	bad)	news	there
was	that	day?	That	they	would	say,	hey,	wait	a	minute,	how	can
stocks	be	up	with	all	this	unrest	in	the	Middle	East?

I'm	not	saying	that	issues	don't	matter	to	voters.	Of	course	they
do.	But	the	major	parties	know	so	well	which	issues	matter	how
much	to	how	many	voters,	and	adjust	their	message	so	precisely
in	response,	that	they	tend	to	split	the	difference	on	the	issues,
leaving	the	election	to	be	decided	by	the	one	factor	they	can't
control:	charisma.

If	the	Democrats	had	been	running	a	candidate	as	charismatic	as
Clinton	in	the	2004	election,	he'd	have	won.	And	we'd	be	reading
that	the	election	was	a	referendum	on	the	war	in	Iraq,	instead	of
that	the	Democrats	are	out	of	touch	with	evangelical	Christians
in	middle	America.

During	the	1992	election,	the	Clinton	campaign	staff	had	a	big

#f4n

sign	in	their	office	saying	"It's	the	economy,	stupid."	Perhaps	it
was	even	simpler	than	they	thought.

Postscript

Opinions	seem	to	be	divided	about	the	charisma	theory.	Some	say
it's	impossible,	others	say	it's	obvious.	This	seems	a	good	sign.
Perhaps	it's	in	the	sweet	spot	midway	between.

As	for	it	being	impossible,	I	reply:	here's	the	data;	here's	the
theory;	theory	explains	data	100%.	To	a	scientist,	at	least,	that
means	it	deserves	attention,	however	implausible	it	seems.

You	can't	believe	voters	are	so	superficial	that	they	just	choose
the	most	charismatic	guy?	My	theory	doesn't	require	that.	I'm
not	proposing	that	charisma	is	the	only	factor,	just	that	it's	the
only	one	left	after	the	efforts	of	the	two	parties	cancel	one
another	out.

As	for	the	theory	being	obvious,	as	far	as	I	know,	no	one	has
proposed	it	before.	Election	forecasters	are	proud	when	they	can
achieve	the	same	results	with	much	more	complicated	models.

Finally,	to	the	people	who	say	that	the	theory	is	probably	true,
but	rather	depressing:	it's	not	so	bad	as	it	seems.	The
phenomenon	is	like	a	pricing	anomaly;	once	people	realize	it's
there,	it	will	disappear.	Once	both	parties	realize	it's	a	waste	of
time	to	nominate	uncharismatic	candidates,	they'll	tend	to
nominate	only	the	most	charismatic	ones.	And	if	the	candidates
are	equally	charismatic,	charisma	will	cancel	out,	and	elections
will	be	decided	on	issues,	as	political	commentators	like	to	think
they	are	now.

Notes

[1]	As	Clinton	himself	discovered	to	his	surprise	when,	in	one	of
his	first	acts	as	president,	he	tried	to	shift	the	military	leftward.
After	a	bruising	fight	he	escaped	with	a	face-saving	compromise.

[2]	True,	Gore	won	the	popular	vote.	But	politicians	know	the
electoral	vote	decides	the	election,	so	that's	what	they	campaign
for.	If	Bush	had	been	campaigning	for	the	popular	vote	he	would
presumably	have	got	more	of	it.	(Thanks	to	judgmentalist	for	this
point.)

[3]	Source:	Nielsen	Media	Research.	Of	the	remaining	13%,	11
didn't	have	TV	because	they	couldn't	afford	it.	I'd	argue	that	the
missing	11%	were	probably	also	the	11%	most	susceptible	to
charisma.

[4]	One	implication	of	this	theory	is	that	parties	shouldn't	be	too
quick	to	reject	candidates	with	skeletons	in	their	closets.
Charismatic	candidates	will	tend	to	have	more	skeletons	than
squeaky	clean	dullards,	but	in	practice	that	doesn't	seem	to	lose
elections.	The	current	Bush,	for	example,	probably	did	more
drugs	in	his	twenties	than	any	preceding	president,	and	yet
managed	to	get	elected	with	a	base	of	evangelical	Christians.	All
you	have	to	do	is	say	you've	reformed,	and	stonewall	about	the
details.

Thanks	to	Trevor	Blackwell,	Maria	Daniels,	Jessica	Livingston,
Jackie	McDonough,	and	Robert	Morris	for	reading	drafts	of	this,
and	to	Eric	Raymond	for	pointing	out	that	I	was	wrong	about
1968.

	Comment	on	this	essay.

http://reddit.com/
http://reddit.com/info/8zp7/comments

	

Made	in	USA
November	2004

(This	is	a	new	essay	for	the	Japanese	edition	of	Hackers	&
Painters.	It	tries	to	explain	why	Americans	make	some	things
well	and	others	badly.)

A	few	years	ago	an	Italian	friend	of	mine	travelled	by	train	from
Boston	to	Providence.	She	had	only	been	in	America	for	a	couple
weeks	and	hadn't	seen	much	of	the	country	yet.	She	arrived
looking	astonished.	"It's	so	ugly!"

People	from	other	rich	countries	can	scarcely	imagine	the
squalor	of	the	man-made	bits	of	America.	In	travel	books	they
show	you	mostly	natural	environments:	the	Grand	Canyon,
whitewater	rafting,	horses	in	a	field.	If	you	see	pictures	with
man-made	things	in	them,	it	will	be	either	a	view	of	the	New	York
skyline	shot	from	a	discreet	distance,	or	a	carefully	cropped
image	of	a	seacoast	town	in	Maine.

How	can	it	be,	visitors	must	wonder.	How	can	the	richest	country
in	the	world	look	like	this?

Oddly	enough,	it	may	not	be	a	coincidence.	Americans	are	good
at	some	things	and	bad	at	others.	We're	good	at	making	movies
and	software,	and	bad	at	making	cars	and	cities.	And	I	think	we
may	be	good	at	what	we're	good	at	for	the	same	reason	we're
bad	at	what	we're	bad	at.	We're	impatient.	In	America,	if	you
want	to	do	something,	you	don't	worry	that	it	might	come	out
badly,	or	upset	delicate	social	balances,	or	that	people	might
think	you're	getting	above	yourself.	If	you	want	to	do	something,
as	Nike	says,	just	do	it.

This	works	well	in	some	fields	and	badly	in	others.	I	suspect	it

http://www.amazon.com/exec/obidos/tg/detail/-/0596006624

works	in	movies	and	software	because	they're	both	messy
processes.	"Systematic"	is	the	last	word	I'd	use	to	describe	the
way	good	programmers	write	software.	Code	is	not	something
they	assemble	painstakingly	after	careful	planning,	like	the
pyramids.	It's	something	they	plunge	into,	working	fast	and
constantly	changing	their	minds,	like	a	charcoal	sketch.

In	software,	paradoxical	as	it	sounds,	good	craftsmanship	means
working	fast.	If	you	work	slowly	and	meticulously,	you	merely	end
up	with	a	very	fine	implementation	of	your	initial,	mistaken	idea.
Working	slowly	and	meticulously	is	premature	optimization.
Better	to	get	a	prototype	done	fast,	and	see	what	new	ideas	it
gives	you.

It	sounds	like	making	movies	works	a	lot	like	making	software.
Every	movie	is	a	Frankenstein,	full	of	imperfections	and	usually
quite	different	from	what	was	originally	envisioned.	But
interesting,	and	finished	fairly	quickly.	

I	think	we	get	away	with	this	in	movies	and	software	because
they're	both	malleable	mediums.	Boldness	pays.	And	if	at	the	last
minute	two	parts	don't	quite	fit,	you	can	figure	out	some	hack
that	will	at	least	conceal	the	problem.

Not	so	with	cars,	or	cities.	They	are	all	too	physical.	If	the	car
business	worked	like	software	or	movies,	you'd	surpass	your
competitors	by	making	a	car	that	weighed	only	fifty	pounds,	or
folded	up	to	the	size	of	a	motorcycle	when	you	wanted	to	park	it.
But	with	physical	products	there	are	more	constraints.	You	don't
win	by	dramatic	innovations	so	much	as	by	good	taste	and
attention	to	detail.

The	trouble	is,	the	very	word	"taste"	sounds	slightly	ridiculous	to
American	ears.	It	seems	pretentious,	or	frivolous,	or	even
effeminate.	Blue	staters	think	it's	"subjective,"	and	red	staters
think	it's	for	sissies.	So	anyone	in	America	who	really	cares	about
design	will	be	sailing	upwind.

Twenty	years	ago	we	used	to	hear	that	the	problem	with	the	US

gh.html

car	industry	was	the	workers.	We	don't	hear	that	any	more	now
that	Japanese	companies	are	building	cars	in	the	US.	The
problem	with	American	cars	is	bad	design.	You	can	see	that	just
by	looking	at	them.

All	that	extra	sheet	metal	on	the	AMC	Matador	wasn't	added	by
the	workers.	The	problem	with	this	car,	as	with	American	cars
today,	is	that	it	was	designed	by	marketing	people	instead	of
designers.

Why	do	the	Japanese	make	better	cars	than	us?	Some	say	it's
because	their	culture	encourages	cooperation.	That	may	come
into	it.	But	in	this	case	it	seems	more	to	the	point	that	their
culture	prizes	design	and	craftsmanship.

For	centuries	the	Japanese	have	made	finer	things	than	we	have
in	the	West.	When	you	look	at	swords	they	made	in	1200,	you	just
can't	believe	the	date	on	the	label	is	right.	Presumably	their	cars
fit	together	more	precisely	than	ours	for	the	same	reason	their
joinery	always	has.	They're	obsessed	with	making	things	well.

Not	us.	When	we	make	something	in	America,	our	aim	is	just	to
get	the	job	done.	Once	we	reach	that	point,	we	take	one	of	two
routes.	We	can	stop	there,	and	have	something	crude	but
serviceable,	like	a	Vise-grip.	Or	we	can	improve	it,	which	usually
means	encrusting	it	with	gratuitous	ornament.	When	we	want	to
make	a	car	"better,"	we	stick	tail	fins	on	it,	or	make	it	longer,	or
make	the	windows	smaller,	depending	on	the	current	fashion.

Ditto	for	houses.	In	America	you	can	have	either	a	flimsy	box
banged	together	out	of	two	by	fours	and	drywall,	or	a
McMansion--	a	flimsy	box	banged	together	out	of	two	by	fours
and	drywall,	but	larger,	more	dramatic-looking,	and	full	of
expensive	fittings.	Rich	people	don't	get	better	design	or
craftsmanship;	they	just	get	a	larger,	more	conspicuous	version
of	the	standard	house.

We	don't	especially	prize	design	or	craftsmanship	here.	What	we
like	is	speed,	and	we're	willing	to	do	something	in	an	ugly	way	to
get	it	done	fast.	In	some	fields,	like	software	or	movies,	this	is	a
net	win.	

matador.html
59eldorado.html
75eldorado.html
04magnum.html

But	it's	not	just	that	software	and	movies	are	malleable	mediums.
In	those	businesses,	the	designers	(though	they're	not	generally
called	that)	have	more	power.	Software	companies,	at	least
successful	ones,	tend	to	be	run	by	programmers.	And	in	the	film
industry,	though	producers	may	second-guess	directors,	the
director	controls	most	of	what	appears	on	the	screen.	And	so
American	software	and	movies,	and	Japanese	cars,	all	have	this
in	common:	the	people	in	charge	care	about	design--	the	former
because	the	designers	are	in	charge,	and	the	latter	because	the
whole	culture	cares	about	design.

I	think	most	Japanese	executives	would	be	horrified	at	the	idea	of
making	a	bad	car.	Whereas	American	executives,	in	their	hearts,
still	believe	the	most	important	thing	about	a	car	is	the	image	it
projects.	Make	a	good	car?	What's	"good?"	It's	so	subjective.	If
you	want	to	know	how	to	design	a	car,	ask	a	focus	group.

Instead	of	relying	on	their	own	internal	design	compass	(like
Henry	Ford	did),	American	car	companies	try	to	make	what
marketing	people	think	consumers	want.	But	it	isn't	working.
American	cars	continue	to	lose	market	share.	And	the	reason	is
that	the	customer	doesn't	want	what	he	thinks	he	wants.

Letting	focus	groups	design	your	cars	for	you	only	wins	in	the
short	term.	In	the	long	term,	it	pays	to	bet	on	good	design.	The
focus	group	may	say	they	want	the	meretricious	feature	du	jour,
but	what	they	want	even	more	is	to	imitate	sophisticated	buyers,
and	they,	though	a	small	minority,	really	do	care	about	good
design.	Eventually	the	pimps	and	drug	dealers	notice	that	the
doctors	and	lawyers	have	switched	from	Cadillac	to	Lexus,	and
do	the	same.

Apple	is	an	interesting	counterexample	to	the	general	American
trend.	If	you	want	to	buy	a	nice	CD	player,	you'll	probably	buy	a
Japanese	one.	But	if	you	want	to	buy	an	MP3	player,	you'll
probably	buy	an	iPod.	What	happened?	Why	doesn't	Sony
dominate	MP3	players?	Because	Apple	is	in	the	consumer
electronics	business	now,	and	unlike	other	American	companies,
they're	obsessed	with	good	design.	Or	more	precisely,	their	CEO
is.

I	just	got	an	iPod,	and	it's	not	just	nice.	It's	surprisingly	nice.	For
it	to	surprise	me,	it	must	be	satisfying	expectations	I	didn't	know
I	had.	No	focus	group	is	going	to	discover	those.	Only	a	great
designer	can.

Cars	aren't	the	worst	thing	we	make	in	America.	Where	the	just-
do-it	model	fails	most	dramatically	is	in	our	cities--	or	rather,
exurbs.	If	real	estate	developers	operated	on	a	large	enough
scale,	if	they	built	whole	towns,	market	forces	would	compel
them	to	build	towns	that	didn't	suck.	But	they	only	build	a	couple
office	buildings	or	suburban	streets	at	a	time,	and	the	result	is	so
depressing	that	the	inhabitants	consider	it	a	great	treat	to	fly	to
Europe	and	spend	a	couple	weeks	living	what	is,	for	people
there,	just	everyday	life.	[1]

But	the	just-do-it	model	does	have	advantages.	It	seems	the	clear
winner	for	generating	wealth	and	technical	innovations	(which
are	practically	the	same	thing).	I	think	speed	is	the	reason.	It's
hard	to	create	wealth	by	making	a	commodity.	The	real	value	is
in	things	that	are	new,	and	if	you	want	to	be	the	first	to	make
something,	it	helps	to	work	fast.	For	better	or	worse,	the	just-do-
it	model	is	fast,	whether	you're	Dan	Bricklin	writing	the
prototype	of	VisiCalc	in	a	weekend,	or	a	real	estate	developer
building	a	block	of	shoddy	condos	in	a	month.

If	I	had	to	choose	between	the	just-do-it	model	and	the	careful
model,	I'd	probably	choose	just-do-it.	But	do	we	have	to	choose?
Could	we	have	it	both	ways?	Could	Americans	have	nice	places	to
live	without	undermining	the	impatient,	individualistic	spirit	that
makes	us	good	at	software?	Could	other	countries	introduce
more	individualism	into	their	technology	companies	and	research
labs	without	having	it	metastasize	as	strip	malls?	I'm	optimistic.
It's	harder	to	say	about	other	countries,	but	in	the	US,	at	least,	I
think	we	can	have	both.

Apple	is	an	encouraging	example.	They've	managed	to	preserve
enough	of	the	impatient,	hackerly	spirit	you	need	to	write
software.	And	yet	when	you	pick	up	a	new	Apple	laptop,	well,	it

denver.html

doesn't	seem	American.	It's	too	perfect.	It	seems	as	if	it	must
have	been	made	by	a	Swedish	or	a	Japanese	company.

In	many	technologies,	version	2	has	higher	resolution.	Why	not	in
design	generally?	I	think	we'll	gradually	see	national	characters
superseded	by	occupational	characters:	hackers	in	Japan	will	be
allowed	to	behave	with	a	willfulness	that	would	now	seem
unJapanese,	and	products	in	America	will	be	designed	with	an
insistence	on	taste	that	would	now	seem	unAmerican.	Perhaps
the	most	successful	countries,	in	the	future,	will	be	those	most
willing	to	ignore	what	are	now	considered	national	characters,
and	do	each	kind	of	work	in	the	way	that	works	best.	Race	you.

Notes

[1]	Japanese	cities	are	ugly	too,	but	for	different	reasons.	Japan	is
prone	to	earthquakes,	so	buildings	are	traditionally	seen	as
temporary;	there	is	no	grand	tradition	of	city	planning	like	the
one	Europeans	inherited	from	Rome.	The	other	cause	is	the
notoriously	corrupt	relationship	between	the	government	and
construction	companies.

Thanks	to	Trevor	Blackwell,	Barry	Eisler,	Sarah	Harlin,	Shiro
Kawai,	Jessica	Livingston,	Jackie	McDonough,	Robert	Morris,	and
Eric	Raymond	for	reading	drafts	of	this.

gba.html
taste.html

	

What	You'll	Wish	You'd	Known
January	2005

(I	wrote	this	talk	for	a	high	school.	I	never	actually	gave	it,
because	the	school	authorities	vetoed	the	plan	to	invite	me.)

When	I	said	I	was	speaking	at	a	high	school,	my	friends	were
curious.	What	will	you	say	to	high	school	students?	So	I	asked
them,	what	do	you	wish	someone	had	told	you	in	high	school?
Their	answers	were	remarkably	similar.	So	I'm	going	to	tell	you
what	we	all	wish	someone	had	told	us.

I'll	start	by	telling	you	something	you	don't	have	to	know	in	high
school:	what	you	want	to	do	with	your	life.	People	are	always
asking	you	this,	so	you	think	you're	supposed	to	have	an	answer.
But	adults	ask	this	mainly	as	a	conversation	starter.	They	want	to
know	what	sort	of	person	you	are,	and	this	question	is	just	to	get
you	talking.	They	ask	it	the	way	you	might	poke	a	hermit	crab	in
a	tide	pool,	to	see	what	it	does.

If	I	were	back	in	high	school	and	someone	asked	about	my	plans,
I'd	say	that	my	first	priority	was	to	learn	what	the	options	were.
You	don't	need	to	be	in	a	rush	to	choose	your	life's	work.	What
you	need	to	do	is	discover	what	you	like.	You	have	to	work	on
stuff	you	like	if	you	want	to	be	good	at	what	you	do.

It	might	seem	that	nothing	would	be	easier	than	deciding	what
you	like,	but	it	turns	out	to	be	hard,	partly	because	it's	hard	to
get	an	accurate	picture	of	most	jobs.	Being	a	doctor	is	not	the
way	it's	portrayed	on	TV.	Fortunately	you	can	also	watch	real
doctors,	by	volunteering	in	hospitals.	[1]

But	there	are	other	jobs	you	can't	learn	about,	because	no	one	is
doing	them	yet.	Most	of	the	work	I've	done	in	the	last	ten	years
didn't	exist	when	I	was	in	high	school.	The	world	changes	fast,
and	the	rate	at	which	it	changes	is	itself	speeding	up.	In	such	a

world	it's	not	a	good	idea	to	have	fixed	plans.

And	yet	every	May,	speakers	all	over	the	country	fire	up	the
Standard	Graduation	Speech,	the	theme	of	which	is:	don't	give
up	on	your	dreams.	I	know	what	they	mean,	but	this	is	a	bad	way
to	put	it,	because	it	implies	you're	supposed	to	be	bound	by	some
plan	you	made	early	on.	The	computer	world	has	a	name	for	this:
premature	optimization.	And	it	is	synonymous	with	disaster.
These	speakers	would	do	better	to	say	simply,	don't	give	up.

What	they	really	mean	is,	don't	get	demoralized.	Don't	think	that
you	can't	do	what	other	people	can.	And	I	agree	you	shouldn't
underestimate	your	potential.	People	who've	done	great	things
tend	to	seem	as	if	they	were	a	race	apart.	And	most	biographies
only	exaggerate	this	illusion,	partly	due	to	the	worshipful	attitude
biographers	inevitably	sink	into,	and	partly	because,	knowing
how	the	story	ends,	they	can't	help	streamlining	the	plot	till	it
seems	like	the	subject's	life	was	a	matter	of	destiny,	the	mere
unfolding	of	some	innate	genius.	In	fact	I	suspect	if	you	had	the
sixteen	year	old	Shakespeare	or	Einstein	in	school	with	you,
they'd	seem	impressive,	but	not	totally	unlike	your	other	friends.

Which	is	an	uncomfortable	thought.	If	they	were	just	like	us,	then
they	had	to	work	very	hard	to	do	what	they	did.	And	that's	one
reason	we	like	to	believe	in	genius.	It	gives	us	an	excuse	for
being	lazy.	If	these	guys	were	able	to	do	what	they	did	only
because	of	some	magic	Shakespeareness	or	Einsteinness,	then
it's	not	our	fault	if	we	can't	do	something	as	good.

I'm	not	saying	there's	no	such	thing	as	genius.	But	if	you're
trying	to	choose	between	two	theories	and	one	gives	you	an
excuse	for	being	lazy,	the	other	one	is	probably	right.

So	far	we've	cut	the	Standard	Graduation	Speech	down	from
"don't	give	up	on	your	dreams"	to	"what	someone	else	can	do,
you	can	do."	But	it	needs	to	be	cut	still	further.	There	is	some
variation	in	natural	ability.	Most	people	overestimate	its	role,	but
it	does	exist.	If	I	were	talking	to	a	guy	four	feet	tall	whose
ambition	was	to	play	in	the	NBA,	I'd	feel	pretty	stupid	saying,	you
can	do	anything	if	you	really	try.	[2]

We	need	to	cut	the	Standard	Graduation	Speech	down	to,	"what
someone	else	with	your	abilities	can	do,	you	can	do;	and	don't
underestimate	your	abilities."	But	as	so	often	happens,	the	closer
you	get	to	the	truth,	the	messier	your	sentence	gets.	We've	taken
a	nice,	neat	(but	wrong)	slogan,	and	churned	it	up	like	a	mud
puddle.	It	doesn't	make	a	very	good	speech	anymore.	But	worse
still,	it	doesn't	tell	you	what	to	do	anymore.	Someone	with	your
abilities?	What	are	your	abilities?

Upwind

I	think	the	solution	is	to	work	in	the	other	direction.	Instead	of
working	back	from	a	goal,	work	forward	from	promising
situations.	This	is	what	most	successful	people	actually	do
anyway.

In	the	graduation-speech	approach,	you	decide	where	you	want
to	be	in	twenty	years,	and	then	ask:	what	should	I	do	now	to	get
there?	I	propose	instead	that	you	don't	commit	to	anything	in	the
future,	but	just	look	at	the	options	available	now,	and	choose
those	that	will	give	you	the	most	promising	range	of	options
afterward.

It's	not	so	important	what	you	work	on,	so	long	as	you're	not
wasting	your	time.	Work	on	things	that	interest	you	and	increase
your	options,	and	worry	later	about	which	you'll	take.

Suppose	you're	a	college	freshman	deciding	whether	to	major	in
math	or	economics.	Well,	math	will	give	you	more	options:	you
can	go	into	almost	any	field	from	math.	If	you	major	in	math	it
will	be	easy	to	get	into	grad	school	in	economics,	but	if	you	major
in	economics	it	will	be	hard	to	get	into	grad	school	in	math.

Flying	a	glider	is	a	good	metaphor	here.	Because	a	glider	doesn't
have	an	engine,	you	can't	fly	into	the	wind	without	losing	a	lot	of
altitude.	If	you	let	yourself	get	far	downwind	of	good	places	to
land,	your	options	narrow	uncomfortably.	As	a	rule	you	want	to
stay	upwind.	So	I	propose	that	as	a	replacement	for	"don't	give
up	on	your	dreams."	Stay	upwind.

How	do	you	do	that,	though?	Even	if	math	is	upwind	of

economics,	how	are	you	supposed	to	know	that	as	a	high	school
student?

Well,	you	don't,	and	that's	what	you	need	to	find	out.	Look	for
smart	people	and	hard	problems.	Smart	people	tend	to	clump
together,	and	if	you	can	find	such	a	clump,	it's	probably
worthwhile	to	join	it.	But	it's	not	straightforward	to	find	these,
because	there	is	a	lot	of	faking	going	on.

To	a	newly	arrived	undergraduate,	all	university	departments
look	much	the	same.	The	professors	all	seem	forbiddingly
intellectual	and	publish	papers	unintelligible	to	outsiders.	But
while	in	some	fields	the	papers	are	unintelligible	because	they're
full	of	hard	ideas,	in	others	they're	deliberately	written	in	an
obscure	way	to	seem	as	if	they're	saying	something	important.
This	may	seem	a	scandalous	proposition,	but	it	has	been
experimentally	verified,	in	the	famous	Social	Text	affair.
Suspecting	that	the	papers	published	by	literary	theorists	were
often	just	intellectual-sounding	nonsense,	a	physicist	deliberately
wrote	a	paper	full	of	intellectual-sounding	nonsense,	and
submitted	it	to	a	literary	theory	journal,	which	published	it.

The	best	protection	is	always	to	be	working	on	hard	problems.
Writing	novels	is	hard.	Reading	novels	isn't.	Hard	means	worry:	if
you're	not	worrying	that	something	you're	making	will	come	out
badly,	or	that	you	won't	be	able	to	understand	something	you're
studying,	then	it	isn't	hard	enough.	There	has	to	be	suspense.

Well,	this	seems	a	grim	view	of	the	world,	you	may	think.	What
I'm	telling	you	is	that	you	should	worry?	Yes,	but	it's	not	as	bad
as	it	sounds.	It's	exhilarating	to	overcome	worries.	You	don't	see
faces	much	happier	than	people	winning	gold	medals.	And	you
know	why	they're	so	happy?	Relief.

I'm	not	saying	this	is	the	only	way	to	be	happy.	Just	that	some
kinds	of	worry	are	not	as	bad	as	they	sound.

Ambition

In	practice,	"stay	upwind"	reduces	to	"work	on	hard	problems."
And	you	can	start	today.	I	wish	I'd	grasped	that	in	high	school.

Most	people	like	to	be	good	at	what	they	do.	In	the	so-called	real
world	this	need	is	a	powerful	force.	But	high	school	students
rarely	benefit	from	it,	because	they're	given	a	fake	thing	to	do.
When	I	was	in	high	school,	I	let	myself	believe	that	my	job	was	to
be	a	high	school	student.	And	so	I	let	my	need	to	be	good	at	what
I	did	be	satisfied	by	merely	doing	well	in	school.

If	you'd	asked	me	in	high	school	what	the	difference	was
between	high	school	kids	and	adults,	I'd	have	said	it	was	that
adults	had	to	earn	a	living.	Wrong.	It's	that	adults	take
responsibility	for	themselves.	Making	a	living	is	only	a	small	part
of	it.	Far	more	important	is	to	take	intellectual	responsibility	for
oneself.

If	I	had	to	go	through	high	school	again,	I'd	treat	it	like	a	day	job.
I	don't	mean	that	I'd	slack	in	school.	Working	at	something	as	a
day	job	doesn't	mean	doing	it	badly.	It	means	not	being	defined
by	it.	I	mean	I	wouldn't	think	of	myself	as	a	high	school	student,
just	as	a	musician	with	a	day	job	as	a	waiter	doesn't	think	of
himself	as	a	waiter.	[3]	And	when	I	wasn't	working	at	my	day	job
I'd	start	trying	to	do	real	work.

When	I	ask	people	what	they	regret	most	about	high	school,	they
nearly	all	say	the	same	thing:	that	they	wasted	so	much	time.	If
you're	wondering	what	you're	doing	now	that	you'll	regret	most
later,	that's	probably	it.	[4]

Some	people	say	this	is	inevitable	—	that	high	school	students
aren't	capable	of	getting	anything	done	yet.	But	I	don't	think	this
is	true.	And	the	proof	is	that	you're	bored.	You	probably	weren't
bored	when	you	were	eight.	When	you're	eight	it's	called
"playing"	instead	of	"hanging	out,"	but	it's	the	same	thing.	And
when	I	was	eight,	I	was	rarely	bored.	Give	me	a	back	yard	and	a
few	other	kids	and	I	could	play	all	day.

The	reason	this	got	stale	in	middle	school	and	high	school,	I	now
realize,	is	that	I	was	ready	for	something	else.	Childhood	was
getting	old.

I'm	not	saying	you	shouldn't	hang	out	with	your	friends	—	that

you	should	all	become	humorless	little	robots	who	do	nothing	but
work.	Hanging	out	with	friends	is	like	chocolate	cake.	You	enjoy
it	more	if	you	eat	it	occasionally	than	if	you	eat	nothing	but
chocolate	cake	for	every	meal.	No	matter	how	much	you	like
chocolate	cake,	you'll	be	pretty	queasy	after	the	third	meal	of	it.
And	that's	what	the	malaise	one	feels	in	high	school	is:	mental
queasiness.	[5]

You	may	be	thinking,	we	have	to	do	more	than	get	good	grades.
We	have	to	have	extracurricular	activities.	But	you	know
perfectly	well	how	bogus	most	of	these	are.	Collecting	donations
for	a	charity	is	an	admirable	thing	to	do,	but	it's	not	hard.	It's	not
getting	something	done.	What	I	mean	by	getting	something	done
is	learning	how	to	write	well,	or	how	to	program	computers,	or
what	life	was	really	like	in	preindustrial	societies,	or	how	to	draw
the	human	face	from	life.	This	sort	of	thing	rarely	translates	into
a	line	item	on	a	college	application.

Corruption

It's	dangerous	to	design	your	life	around	getting	into	college,
because	the	people	you	have	to	impress	to	get	into	college	are
not	a	very	discerning	audience.	At	most	colleges,	it's	not	the
professors	who	decide	whether	you	get	in,	but	admissions
officers,	and	they	are	nowhere	near	as	smart.	They're	the	NCOs
of	the	intellectual	world.	They	can't	tell	how	smart	you	are.	The
mere	existence	of	prep	schools	is	proof	of	that.

Few	parents	would	pay	so	much	for	their	kids	to	go	to	a	school
that	didn't	improve	their	admissions	prospects.	Prep	schools
openly	say	this	is	one	of	their	aims.	But	what	that	means,	if	you
stop	to	think	about	it,	is	that	they	can	hack	the	admissions
process:	that	they	can	take	the	very	same	kid	and	make	him
seem	a	more	appealing	candidate	than	he	would	if	he	went	to	the
local	public	school.	[6]

Right	now	most	of	you	feel	your	job	in	life	is	to	be	a	promising
college	applicant.	But	that	means	you're	designing	your	life	to
satisfy	a	process	so	mindless	that	there's	a	whole	industry
devoted	to	subverting	it.	No	wonder	you	become	cynical.	The
malaise	you	feel	is	the	same	that	a	producer	of	reality	TV	shows

or	a	tobacco	industry	executive	feels.	And	you	don't	even	get	paid
a	lot.

So	what	do	you	do?	What	you	should	not	do	is	rebel.	That's	what
I	did,	and	it	was	a	mistake.	I	didn't	realize	exactly	what	was
happening	to	us,	but	I	smelled	a	major	rat.	And	so	I	just	gave	up.
Obviously	the	world	sucked,	so	why	bother?

When	I	discovered	that	one	of	our	teachers	was	herself	using
Cliff's	Notes,	it	seemed	par	for	the	course.	Surely	it	meant
nothing	to	get	a	good	grade	in	such	a	class.

In	retrospect	this	was	stupid.	It	was	like	someone	getting	fouled
in	a	soccer	game	and	saying,	hey,	you	fouled	me,	that's	against
the	rules,	and	walking	off	the	field	in	indignation.	Fouls	happen.
The	thing	to	do	when	you	get	fouled	is	not	to	lose	your	cool.	Just
keep	playing.	

By	putting	you	in	this	situation,	society	has	fouled	you.	Yes,	as
you	suspect,	a	lot	of	the	stuff	you	learn	in	your	classes	is	crap.
And	yes,	as	you	suspect,	the	college	admissions	process	is	largely
a	charade.	But	like	many	fouls,	this	one	was	unintentional.	[7]	So
just	keep	playing.

Rebellion	is	almost	as	stupid	as	obedience.	In	either	case	you	let
yourself	be	defined	by	what	they	tell	you	to	do.	The	best	plan,	I
think,	is	to	step	onto	an	orthogonal	vector.	Don't	just	do	what
they	tell	you,	and	don't	just	refuse	to.	Instead	treat	school	as	a
day	job.	As	day	jobs	go,	it's	pretty	sweet.	You're	done	at	3	o'clock,
and	you	can	even	work	on	your	own	stuff	while	you're	there.

Curiosity

And	what's	your	real	job	supposed	to	be?	Unless	you're	Mozart,
your	first	task	is	to	figure	that	out.	What	are	the	great	things	to
work	on?	Where	are	the	imaginative	people?	And	most
importantly,	what	are	you	interested	in?	The	word	"aptitude"	is
misleading,	because	it	implies	something	innate.	The	most
powerful	sort	of	aptitude	is	a	consuming	interest	in	some
question,	and	such	interests	are	often	acquired	tastes.

A	distorted	version	of	this	idea	has	filtered	into	popular	culture
under	the	name	"passion."	I	recently	saw	an	ad	for	waiters	saying
they	wanted	people	with	a	"passion	for	service."	The	real	thing	is
not	something	one	could	have	for	waiting	on	tables.	And	passion
is	a	bad	word	for	it.	A	better	name	would	be	curiosity.

Kids	are	curious,	but	the	curiosity	I	mean	has	a	different	shape
from	kid	curiosity.	Kid	curiosity	is	broad	and	shallow;	they	ask
why	at	random	about	everything.	In	most	adults	this	curiosity
dries	up	entirely.	It	has	to:	you	can't	get	anything	done	if	you're
always	asking	why	about	everything.	But	in	ambitious	adults,
instead	of	drying	up,	curiosity	becomes	narrow	and	deep.	The
mud	flat	morphs	into	a	well.

Curiosity	turns	work	into	play.	For	Einstein,	relativity	wasn't	a
book	full	of	hard	stuff	he	had	to	learn	for	an	exam.	It	was	a
mystery	he	was	trying	to	solve.	So	it	probably	felt	like	less	work
to	him	to	invent	it	than	it	would	seem	to	someone	now	to	learn	it
in	a	class.

One	of	the	most	dangerous	illusions	you	get	from	school	is	the
idea	that	doing	great	things	requires	a	lot	of	discipline.	Most
subjects	are	taught	in	such	a	boring	way	that	it's	only	by
discipline	that	you	can	flog	yourself	through	them.	So	I	was
surprised	when,	early	in	college,	I	read	a	quote	by	Wittgenstein
saying	that	he	had	no	self-discipline	and	had	never	been	able	to
deny	himself	anything,	not	even	a	cup	of	coffee.

Now	I	know	a	number	of	people	who	do	great	work,	and	it's	the
same	with	all	of	them.	They	have	little	discipline.	They're	all
terrible	procrastinators	and	find	it	almost	impossible	to	make
themselves	do	anything	they're	not	interested	in.	One	still	hasn't
sent	out	his	half	of	the	thank-you	notes	from	his	wedding,	four
years	ago.	Another	has	26,000	emails	in	her	inbox.

I'm	not	saying	you	can	get	away	with	zero	self-discipline.	You
probably	need	about	the	amount	you	need	to	go	running.	I'm
often	reluctant	to	go	running,	but	once	I	do,	I	enjoy	it.	And	if	I
don't	run	for	several	days,	I	feel	ill.	It's	the	same	with	people	who
do	great	things.	They	know	they'll	feel	bad	if	they	don't	work,	and
they	have	enough	discipline	to	get	themselves	to	their	desks	to

start	working.	But	once	they	get	started,	interest	takes	over,	and
discipline	is	no	longer	necessary.

Do	you	think	Shakespeare	was	gritting	his	teeth	and	diligently
trying	to	write	Great	Literature?	Of	course	not.	He	was	having
fun.	That's	why	he's	so	good.

If	you	want	to	do	good	work,	what	you	need	is	a	great	curiosity
about	a	promising	question.	The	critical	moment	for	Einstein	was
when	he	looked	at	Maxwell's	equations	and	said,	what	the	hell	is
going	on	here?

It	can	take	years	to	zero	in	on	a	productive	question,	because	it
can	take	years	to	figure	out	what	a	subject	is	really	about.	To
take	an	extreme	example,	consider	math.	Most	people	think	they
hate	math,	but	the	boring	stuff	you	do	in	school	under	the	name
"mathematics"	is	not	at	all	like	what	mathematicians	do.

The	great	mathematician	G.	H.	Hardy	said	he	didn't	like	math	in
high	school	either.	He	only	took	it	up	because	he	was	better	at	it
than	the	other	students.	Only	later	did	he	realize	math	was
interesting	—	only	later	did	he	start	to	ask	questions	instead	of
merely	answering	them	correctly.

When	a	friend	of	mine	used	to	grumble	because	he	had	to	write	a
paper	for	school,	his	mother	would	tell	him:	find	a	way	to	make	it
interesting.	That's	what	you	need	to	do:	find	a	question	that
makes	the	world	interesting.	People	who	do	great	things	look	at
the	same	world	everyone	else	does,	but	notice	some	odd	detail
that's	compellingly	mysterious.

And	not	only	in	intellectual	matters.	Henry	Ford's	great	question
was,	why	do	cars	have	to	be	a	luxury	item?	What	would	happen	if
you	treated	them	as	a	commodity?	Franz	Beckenbauer's	was,	in
effect,	why	does	everyone	have	to	stay	in	his	position?	Why	can't
defenders	score	goals	too?

Now

If	it	takes	years	to	articulate	great	questions,	what	do	you	do
now,	at	sixteen?	Work	toward	finding	one.	Great	questions	don't

appear	suddenly.	They	gradually	congeal	in	your	head.	And	what
makes	them	congeal	is	experience.	So	the	way	to	find	great
questions	is	not	to	search	for	them	—	not	to	wander	about
thinking,	what	great	discovery	shall	I	make?	You	can't	answer
that;	if	you	could,	you'd	have	made	it.

The	way	to	get	a	big	idea	to	appear	in	your	head	is	not	to	hunt
for	big	ideas,	but	to	put	in	a	lot	of	time	on	work	that	interests
you,	and	in	the	process	keep	your	mind	open	enough	that	a	big
idea	can	take	roost.	Einstein,	Ford,	and	Beckenbauer	all	used	this
recipe.	They	all	knew	their	work	like	a	piano	player	knows	the
keys.	So	when	something	seemed	amiss	to	them,	they	had	the
confidence	to	notice	it.

Put	in	time	how	and	on	what?	Just	pick	a	project	that	seems
interesting:	to	master	some	chunk	of	material,	or	to	make
something,	or	to	answer	some	question.	Choose	a	project	that
will	take	less	than	a	month,	and	make	it	something	you	have	the
means	to	finish.	Do	something	hard	enough	to	stretch	you,	but
only	just,	especially	at	first.	If	you're	deciding	between	two
projects,	choose	whichever	seems	most	fun.	If	one	blows	up	in
your	face,	start	another.	Repeat	till,	like	an	internal	combustion
engine,	the	process	becomes	self-sustaining,	and	each	project
generates	the	next	one.	(This	could	take	years.)

It	may	be	just	as	well	not	to	do	a	project	"for	school,"	if	that	will
restrict	you	or	make	it	seem	like	work.	Involve	your	friends	if	you
want,	but	not	too	many,	and	only	if	they're	not	flakes.	Friends
offer	moral	support	(few	startups	are	started	by	one	person),	but
secrecy	also	has	its	advantages.	There's	something	pleasing
about	a	secret	project.	And	you	can	take	more	risks,	because	no
one	will	know	if	you	fail.

Don't	worry	if	a	project	doesn't	seem	to	be	on	the	path	to	some
goal	you're	supposed	to	have.	Paths	can	bend	a	lot	more	than	you
think.	So	let	the	path	grow	out	the	project.	The	most	important
thing	is	to	be	excited	about	it,	because	it's	by	doing	that	you
learn.

Don't	disregard	unseemly	motivations.	One	of	the	most	powerful
is	the	desire	to	be	better	than	other	people	at	something.	Hardy

said	that's	what	got	him	started,	and	I	think	the	only	unusual
thing	about	him	is	that	he	admitted	it.	Another	powerful
motivator	is	the	desire	to	do,	or	know,	things	you're	not	supposed
to.	Closely	related	is	the	desire	to	do	something	audacious.
Sixteen	year	olds	aren't	supposed	to	write	novels.	So	if	you	try,
anything	you	achieve	is	on	the	plus	side	of	the	ledger;	if	you	fail
utterly,	you're	doing	no	worse	than	expectations.	[8]

Beware	of	bad	models.	Especially	when	they	excuse	laziness.
When	I	was	in	high	school	I	used	to	write	"existentialist"	short
stories	like	ones	I'd	seen	by	famous	writers.	My	stories	didn't
have	a	lot	of	plot,	but	they	were	very	deep.	And	they	were	less
work	to	write	than	entertaining	ones	would	have	been.	I	should
have	known	that	was	a	danger	sign.	And	in	fact	I	found	my
stories	pretty	boring;	what	excited	me	was	the	idea	of	writing
serious,	intellectual	stuff	like	the	famous	writers.

Now	I	have	enough	experience	to	realize	that	those	famous
writers	actually	sucked.	Plenty	of	famous	people	do;	in	the	short
term,	the	quality	of	one's	work	is	only	a	small	component	of	fame.
I	should	have	been	less	worried	about	doing	something	that
seemed	cool,	and	just	done	something	I	liked.	That's	the	actual
road	to	coolness	anyway.

A	key	ingredient	in	many	projects,	almost	a	project	on	its	own,	is
to	find	good	books.	Most	books	are	bad.	Nearly	all	textbooks	are
bad.	[9]	So	don't	assume	a	subject	is	to	be	learned	from	whatever
book	on	it	happens	to	be	closest.	You	have	to	search	actively	for
the	tiny	number	of	good	books.

The	important	thing	is	to	get	out	there	and	do	stuff.	Instead	of
waiting	to	be	taught,	go	out	and	learn.

Your	life	doesn't	have	to	be	shaped	by	admissions	officers.	It
could	be	shaped	by	your	own	curiosity.	It	is	for	all	ambitious
adults.	And	you	don't	have	to	wait	to	start.	In	fact,	you	don't	have
to	wait	to	be	an	adult.	There's	no	switch	inside	you	that	magically
flips	when	you	turn	a	certain	age	or	graduate	from	some
institution.	You	start	being	an	adult	when	you	decide	to	take
responsibility	for	your	life.	You	can	do	that	at	any	age.	[10]

This	may	sound	like	bullshit.	I'm	just	a	minor,	you	may	think,	I
have	no	money,	I	have	to	live	at	home,	I	have	to	do	what	adults
tell	me	all	day	long.	Well,	most	adults	labor	under	restrictions
just	as	cumbersome,	and	they	manage	to	get	things	done.	If	you
think	it's	restrictive	being	a	kid,	imagine	having	kids.

The	only	real	difference	between	adults	and	high	school	kids	is
that	adults	realize	they	need	to	get	things	done,	and	high	school
kids	don't.	That	realization	hits	most	people	around	23.	But	I'm
letting	you	in	on	the	secret	early.	So	get	to	work.	Maybe	you	can
be	the	first	generation	whose	greatest	regret	from	high	school
isn't	how	much	time	you	wasted.

Notes

[1]	A	doctor	friend	warns	that	even	this	can	give	an	inaccurate
picture.	"Who	knew	how	much	time	it	would	take	up,	how	little
autonomy	one	would	have	for	endless	years	of	training,	and	how
unbelievably	annoying	it	is	to	carry	a	beeper?"

[2]	His	best	bet	would	probably	be	to	become	dictator	and
intimidate	the	NBA	into	letting	him	play.	So	far	the	closest
anyone	has	come	is	Secretary	of	Labor.

[3]	A	day	job	is	one	you	take	to	pay	the	bills	so	you	can	do	what
you	really	want,	like	play	in	a	band,	or	invent	relativity.

Treating	high	school	as	a	day	job	might	actually	make	it	easier
for	some	students	to	get	good	grades.	If	you	treat	your	classes	as
a	game,	you	won't	be	demoralized	if	they	seem	pointless.

However	bad	your	classes,	you	need	to	get	good	grades	in	them
to	get	into	a	decent	college.	And	that	is	worth	doing,	because
universities	are	where	a	lot	of	the	clumps	of	smart	people	are
these	days.

[4]	The	second	biggest	regret	was	caring	so	much	about

unimportant	things.	And	especially	about	what	other	people
thought	of	them.

I	think	what	they	really	mean,	in	the	latter	case,	is	caring	what
random	people	thought	of	them.	Adults	care	just	as	much	what
other	people	think,	but	they	get	to	be	more	selective	about	the
other	people.

I	have	about	thirty	friends	whose	opinions	I	care	about,	and	the
opinion	of	the	rest	of	the	world	barely	affects	me.	The	problem	in
high	school	is	that	your	peers	are	chosen	for	you	by	accidents	of
age	and	geography,	rather	than	by	you	based	on	respect	for	their
judgement.

[5]	The	key	to	wasting	time	is	distraction.	Without	distractions
it's	too	obvious	to	your	brain	that	you're	not	doing	anything	with
it,	and	you	start	to	feel	uncomfortable.	If	you	want	to	measure
how	dependent	you've	become	on	distractions,	try	this
experiment:	set	aside	a	chunk	of	time	on	a	weekend	and	sit	alone
and	think.	You	can	have	a	notebook	to	write	your	thoughts	down
in,	but	nothing	else:	no	friends,	TV,	music,	phone,	IM,	email,	Web,
games,	books,	newspapers,	or	magazines.	Within	an	hour	most
people	will	feel	a	strong	craving	for	distraction.

[6]	I	don't	mean	to	imply	that	the	only	function	of	prep	schools	is
to	trick	admissions	officers.	They	also	generally	provide	a	better
education.	But	try	this	thought	experiment:	suppose	prep	schools
supplied	the	same	superior	education	but	had	a	tiny	(.001)
negative	effect	on	college	admissions.	How	many	parents	would
still	send	their	kids	to	them?

It	might	also	be	argued	that	kids	who	went	to	prep	schools,
because	they've	learned	more,	are	better	college	candidates.	But
this	seems	empirically	false.	What	you	learn	in	even	the	best	high
school	is	rounding	error	compared	to	what	you	learn	in	college.
Public	school	kids	arrive	at	college	with	a	slight	disadvantage,
but	they	start	to	pull	ahead	in	the	sophomore	year.

(I'm	not	saying	public	school	kids	are	smarter	than	preppies,	just
that	they	are	within	any	given	college.	That	follows	necessarily	if
you	agree	prep	schools	improve	kids'	admissions	prospects.)

[7]	Why	does	society	foul	you?	Indifference,	mainly.	There	are
simply	no	outside	forces	pushing	high	school	to	be	good.	The	air
traffic	control	system	works	because	planes	would	crash
otherwise.	Businesses	have	to	deliver	because	otherwise
competitors	would	take	their	customers.	But	no	planes	crash	if
your	school	sucks,	and	it	has	no	competitors.	High	school	isn't
evil;	it's	random;	but	random	is	pretty	bad.

[8]	And	then	of	course	there	is	money.	It's	not	a	big	factor	in	high
school,	because	you	can't	do	much	that	anyone	wants.	But	a	lot
of	great	things	were	created	mainly	to	make	money.	Samuel
Johnson	said	"no	man	but	a	blockhead	ever	wrote	except	for
money."	(Many	hope	he	was	exaggerating.)

[9]	Even	college	textbooks	are	bad.	When	you	get	to	college,
you'll	find	that	(with	a	few	stellar	exceptions)	the	textbooks	are
not	written	by	the	leading	scholars	in	the	field	they	describe.
Writing	college	textbooks	is	unpleasant	work,	done	mostly	by
people	who	need	the	money.	It's	unpleasant	because	the
publishers	exert	so	much	control,	and	there	are	few	things	worse
than	close	supervision	by	someone	who	doesn't	understand	what
you're	doing.	This	phenomenon	is	apparently	even	worse	in	the
production	of	high	school	textbooks.

[10]	Your	teachers	are	always	telling	you	to	behave	like	adults.	I
wonder	if	they'd	like	it	if	you	did.	You	may	be	loud	and
disorganized,	but	you're	very	docile	compared	to	adults.	If	you
actually	started	acting	like	adults,	it	would	be	just	as	if	a	bunch
of	adults	had	been	transposed	into	your	bodies.	Imagine	the
reaction	of	an	FBI	agent	or	taxi	driver	or	reporter	to	being	told
they	had	to	ask	permission	to	go	the	bathroom,	and	only	one
person	could	go	at	a	time.	To	say	nothing	of	the	things	you're
taught.	If	a	bunch	of	actual	adults	suddenly	found	themselves
trapped	in	high	school,	the	first	thing	they'd	do	is	form	a	union
and	renegotiate	all	the	rules	with	the	administration.

Thanks	to	Ingrid	Bassett,	Trevor	Blackwell,	Rich	Draves,	Dan
Giffin,	Sarah	Harlin,	Jessica	Livingston,	Jackie	McDonough,
Robert	Morris,	Mark	Nitzberg,	Lisa	Randall,	and	Aaron	Swartz
for	reading	drafts	of	this,	and	to	many	others	for	talking	to	me

http://www.edutopia.org/muddle-machine

about	high	school.

	

How	to	Start	a	Startup
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

A	Unified	Theory	of	VC
Suckage
March	2005

A	couple	months	ago	I	got	an	email	from	a	recruiter	asking	if	I
was	interested	in	being	a	"technologist	in	residence"	at	a	new
venture	capital	fund.	I	think	the	idea	was	to	play	Karl	Rove	to	the
VCs'	George	Bush.

I	considered	it	for	about	four	seconds.	Work	for	a	VC	fund?	Ick.

One	of	my	most	vivid	memories	from	our	startup	is	going	to	visit
Greylock,	the	famous	Boston	VCs.	They	were	the	most	arrogant
people	I've	met	in	my	life.	And	I've	met	a	lot	of	arrogant	people.
[1]

I'm	not	alone	in	feeling	this	way,	of	course.	Even	a	VC	friend	of
mine	dislikes	VCs.	"Assholes,"	he	says.

But	lately	I've	been	learning	more	about	how	the	VC	world
works,	and	a	few	days	ago	it	hit	me	that	there's	a	reason	VCs	are
the	way	they	are.	It's	not	so	much	that	the	business	attracts
jerks,	or	even	that	the	power	they	wield	corrupts	them.	The	real
problem	is	the	way	they're	paid.

The	problem	with	VC	funds	is	that	they're	funds.	Like	the
managers	of	mutual	funds	or	hedge	funds,	VCs	get	paid	a
percentage	of	the	money	they	manage:	about	2%	a	year	in
management	fees,	plus	a	percentage	of	the	gains.	So	they	want
the	fund	to	be	huge--	hundreds	of	millions	of	dollars,	if	possible.
But	that	means	each	partner	ends	up	being	responsible	for
investing	a	lot	of	money.	And	since	one	person	can	only	manage
so	many	deals,	each	deal	has	to	be	for	multiple	millions	of
dollars.

This	turns	out	to	explain	nearly	all	the	characteristics	of	VCs	that
founders	hate.

It	explains	why	VCs	take	so	agonizingly	long	to	make	up	their
minds,	and	why	their	due	diligence	feels	like	a	body	cavity
search.	[2]	With	so	much	at	stake,	they	have	to	be	paranoid.

It	explains	why	they	steal	your	ideas.	Every	founder	knows	that
VCs	will	tell	your	secrets	to	your	competitors	if	they	end	up
investing	in	them.	It's	not	unheard	of	for	VCs	to	meet	you	when
they	have	no	intention	of	funding	you,	just	to	pick	your	brain	for
a	competitor.	This	prospect	makes	naive	founders	clumsily
secretive.	Experienced	founders	treat	it	as	a	cost	of	doing
business.	Either	way	it	sucks.	But	again,	the	only	reason	VCs	are
so	sneaky	is	the	giant	deals	they	do.	With	so	much	at	stake,	they
have	to	be	devious.

It	explains	why	VCs	tend	to	interfere	in	the	companies	they
invest	in.	They	want	to	be	on	your	board	not	just	so	that	they	can
advise	you,	but	so	that	they	can	watch	you.	Often	they	even
install	a	new	CEO.	Yes,	he	may	have	extensive	business
experience.	But	he's	also	their	man:	these	newly	installed	CEOs
always	play	something	of	the	role	of	a	political	commissar	in	a
Red	Army	unit.	With	so	much	at	stake,	VCs	can't	resist
micromanaging	you.

The	huge	investments	themselves	are	something	founders	would
dislike,	if	they	realized	how	damaging	they	can	be.	VCs	don't
invest	$x	million	because	that's	the	amount	you	need,	but
because	that's	the	amount	the	structure	of	their	business
requires	them	to	invest.	Like	steroids,	these	sudden	huge
investments	can	do	more	harm	than	good.	Google	survived
enormous	VC	funding	because	it	could	legitimately	absorb	large
amounts	of	money.	They	had	to	buy	a	lot	of	servers	and	a	lot	of
bandwidth	to	crawl	the	whole	Web.	Less	fortunate	startups	just
end	up	hiring	armies	of	people	to	sit	around	having	meetings.

In	principle	you	could	take	a	huge	VC	investment,	put	it	in
treasury	bills,	and	continue	to	operate	frugally.	You	just	try	it.

And	of	course	giant	investments	mean	giant	valuations.	They

have	to,	or	there's	not	enough	stock	left	to	keep	the	founders
interested.	You	might	think	a	high	valuation	is	a	great	thing.
Many	founders	do.	But	you	can't	eat	paper.	You	can't	benefit	from
a	high	valuation	unless	you	can	somehow	achieve	what	those	in
the	business	call	a	"liquidity	event,"	and	the	higher	your
valuation,	the	narrower	your	options	for	doing	that.	Many	a
founder	would	be	happy	to	sell	his	company	for	$15	million,	but
VCs	who've	just	invested	at	a	pre-money	valuation	of	$8	million
won't	hear	of	that.	You're	rolling	the	dice	again,	whether	you	like
it	or	not.

Back	in	1997,	one	of	our	competitors	raised	$20	million	in	a
single	round	of	VC	funding.	This	was	at	the	time	more	than	the
valuation	of	our	entire	company.	Was	I	worried?	Not	at	all:	I	was
delighted.	It	was	like	watching	a	car	you're	chasing	turn	down	a
street	that	you	know	has	no	outlet.

Their	smartest	move	at	that	point	would	have	been	to	take	every
penny	of	the	$20	million	and	use	it	to	buy	us.	We	would	have
sold.	Their	investors	would	have	been	furious	of	course.	But	I
think	the	main	reason	they	never	considered	this	was	that	they
never	imagined	we	could	be	had	so	cheap.	They	probably
assumed	we	were	on	the	same	VC	gravy	train	they	were.

In	fact	we	only	spent	about	$2	million	in	our	entire	existence.
And	that	gave	us	flexibility.	We	could	sell	ourselves	to	Yahoo	for
$50	million,	and	everyone	was	delighted.	If	our	competitor	had
done	that,	the	last	round	of	investors	would	presumably	have	lost
money.	I	assume	they	could	have	vetoed	such	a	deal.	But	no	one
those	days	was	paying	a	lot	more	than	Yahoo.	So	unless	their
founders	could	pull	off	an	IPO	(which	would	be	difficult	with
Yahoo	as	a	competitor),	they	had	no	choice	but	to	ride	the	thing
down.

The	puffed-up	companies	that	went	public	during	the	Bubble
didn't	do	it	just	because	they	were	pulled	into	it	by	unscrupulous
investment	bankers.	Most	were	pushed	just	as	hard	from	the
other	side	by	VCs	who'd	invested	at	high	valuations,	leaving	an
IPO	as	the	only	way	out.	The	only	people	dumber	were	retail
investors.	So	it	was	literally	IPO	or	bust.	Or	rather,	IPO	then
bust,	or	just	bust.

Add	up	all	the	evidence	of	VCs'	behavior,	and	the	resulting
personality	is	not	attractive.	In	fact,	it's	the	classic	villain:
alternately	cowardly,	greedy,	sneaky,	and	overbearing.

I	used	to	take	it	for	granted	that	VCs	were	like	this.	Complaining
that	VCs	were	jerks	used	to	seem	as	naive	to	me	as	complaining
that	users	didn't	read	the	reference	manual.	Of	course	VCs	were
jerks.	How	could	it	be	otherwise?

But	I	realize	now	that	they're	not	intrinsically	jerks.	VCs	are	like
car	salesmen	or	bureaucrats:	the	nature	of	their	work	turns	them
into	jerks.

I've	met	a	few	VCs	I	like.	Mike	Moritz	seems	a	good	guy.	He	even
has	a	sense	of	humor,	which	is	almost	unheard	of	among	VCs.
From	what	I've	read	about	John	Doerr,	he	sounds	like	a	good	guy
too,	almost	a	hacker.	But	they	work	for	the	very	best	VC	funds.
And	my	theory	explains	why	they'd	tend	to	be	different:	just	as
the	very	most	popular	kids	don't	have	to	persecute	nerds,	the
very	best	VCs	don't	have	to	act	like	VCs.	They	get	the	pick	of	all
the	best	deals.	So	they	don't	have	to	be	so	paranoid	and	sneaky,
and	they	can	choose	those	rare	companies,	like	Google,	that	will
actually	benefit	from	the	giant	sums	they're	compelled	to	invest.

VCs	often	complain	that	in	their	business	there's	too	much	money
chasing	too	few	deals.	Few	realize	that	this	also	describes	a	flaw
in	the	way	funding	works	at	the	level	of	individual	firms.

Perhaps	this	was	the	sort	of	strategic	insight	I	was	supposed	to
come	up	with	as	a	"technologist	in	residence."	If	so,	the	good
news	is	that	they're	getting	it	for	free.	The	bad	news	is	it	means
that	if	you're	not	one	of	the	very	top	funds,	you're	condemned	to
be	the	bad	guys.

Notes

[1]	After	Greylock	booted	founder	Philip	Greenspun	out	of
ArsDigita,	he	wrote	a	hilarious	but	also	very	informative	essay

nerds.html
http://www.waxy.org/random/arsdigita/

about	it.	

[2]	Since	most	VCs	aren't	tech	guys,	the	technology	side	of	their
due	diligence	tends	to	be	like	a	body	cavity	search	by	someone
with	a	faulty	knowledge	of	human	anatomy.	After	a	while	we
were	quite	sore	from	VCs	attempting	to	probe	our	nonexistent
database	orifice.

No,	we	don't	use	Oracle.	We	just	store	the	data	in	files.	Our
secret	is	to	use	an	OS	that	doesn't	lose	our	data.	Which	OS?
FreeBSD.	Why	do	you	use	that	instead	of	Windows	NT?	Because
it's	better	and	it	doesn't	cost	anything.	What,	you're	using	a
freeware	OS?

How	many	times	that	conversation	was	repeated.	Then	when	we
got	to	Yahoo,	we	found	they	used	FreeBSD	and	stored	their	data
in	files	too.

	

Undergraduation
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Writing,	Briefly
March	2005

(In	the	process	of	answering	an	email,	I	accidentally	wrote	a	tiny
essay	about	writing.	I	usually	spend	weeks	on	an	essay.	This	one
took	67	minutes—23	of	writing,	and	44	of	rewriting.)

I	think	it's	far	more	important	to	write	well	than	most	people
realize.	Writing	doesn't	just	communicate	ideas;	it	generates
them.	If	you're	bad	at	writing	and	don't	like	to	do	it,	you'll	miss
out	on	most	of	the	ideas	writing	would	have	generated.

As	for	how	to	write	well,	here's	the	short	version:	Write	a	bad
version	1	as	fast	as	you	can;	rewrite	it	over	and	over;	cut	out
everything	unnecessary;	write	in	a	conversational	tone;	develop	a
nose	for	bad	writing,	so	you	can	see	and	fix	it	in	yours;	imitate
writers	you	like;	if	you	can't	get	started,	tell	someone	what	you
plan	to	write	about,	then	write	down	what	you	said;	expect	80%
of	the	ideas	in	an	essay	to	happen	after	you	start	writing	it,	and
50%	of	those	you	start	with	to	be	wrong;	be	confident	enough	to
cut;	have	friends	you	trust	read	your	stuff	and	tell	you	which	bits
are	confusing	or	drag;	don't	(always)	make	detailed	outlines;	mull
ideas	over	for	a	few	days	before	writing;	carry	a	small	notebook
or	scrap	paper	with	you;	start	writing	when	you	think	of	the	first
sentence;	if	a	deadline	forces	you	to	start	before	that,	just	say	the
most	important	sentence	first;	write	about	stuff	you	like;	don't	try
to	sound	impressive;	don't	hesitate	to	change	the	topic	on	the	fly;
use	footnotes	to	contain	digressions;	use	anaphora	to	knit
sentences	together;	read	your	essays	out	loud	to	see	(a)	where
you	stumble	over	awkward	phrases	and	(b)	which	bits	are	boring
(the	paragraphs	you	dread	reading);	try	to	tell	the	reader
something	new	and	useful;	work	in	fairly	big	quanta	of	time;
when	you	restart,	begin	by	rereading	what	you	have	so	far;	when
you	finish,	leave	yourself	something	easy	to	start	with;
accumulate	notes	for	topics	you	plan	to	cover	at	the	bottom	of
the	file;	don't	feel	obliged	to	cover	any	of	them;	write	for	a	reader

who	won't	read	the	essay	as	carefully	as	you	do,	just	as	pop
songs	are	designed	to	sound	ok	on	crappy	car	radios;	if	you	say
anything	mistaken,	fix	it	immediately;	ask	friends	which	sentence
you'll	regret	most;	go	back	and	tone	down	harsh	remarks;
publish	stuff	online,	because	an	audience	makes	you	write	more,
and	thus	generate	more	ideas;	print	out	drafts	instead	of	just
looking	at	them	on	the	screen;	use	simple,	germanic	words;	learn
to	distinguish	surprises	from	digressions;	learn	to	recognize	the
approach	of	an	ending,	and	when	one	appears,	grab	it.

	

Return	of	the	Mac
March	2005

All	the	best	hackers	I	know	are	gradually	switching	to	Macs.	My
friend	Robert	said	his	whole	research	group	at	MIT	recently
bought	themselves	Powerbooks.	These	guys	are	not	the	graphic
designers	and	grandmas	who	were	buying	Macs	at	Apple's	low
point	in	the	mid	1990s.	They're	about	as	hardcore	OS	hackers	as
you	can	get.

The	reason,	of	course,	is	OS	X.	Powerbooks	are	beautifully
designed	and	run	FreeBSD.	What	more	do	you	need	to	know?

I	got	a	Powerbook	at	the	end	of	last	year.	When	my	IBM
Thinkpad's	hard	disk	died	soon	after,	it	became	my	only	laptop.
And	when	my	friend	Trevor	showed	up	at	my	house	recently,	he
was	carrying	a	Powerbook	identical	to	mine.

For	most	of	us,	it's	not	a	switch	to	Apple,	but	a	return.	Hard	as
this	was	to	believe	in	the	mid	90s,	the	Mac	was	in	its	time	the
canonical	hacker's	computer.

In	the	fall	of	1983,	the	professor	in	one	of	my	college	CS	classes
got	up	and	announced,	like	a	prophet,	that	there	would	soon	be	a
computer	with	half	a	MIPS	of	processing	power	that	would	fit
under	an	airline	seat	and	cost	so	little	that	we	could	save	enough
to	buy	one	from	a	summer	job.	The	whole	room	gasped.	And
when	the	Mac	appeared,	it	was	even	better	than	we'd	hoped.	It
was	small	and	powerful	and	cheap,	as	promised.	But	it	was	also
something	we'd	never	considered	a	computer	could	be:
fabulously	well	designed.

I	had	to	have	one.	And	I	wasn't	alone.	In	the	mid	to	late	1980s,	all
the	hackers	I	knew	were	either	writing	software	for	the	Mac,	or
wanted	to.	Every	futon	sofa	in	Cambridge	seemed	to	have	the
same	fat	white	book	lying	open	on	it.	If	you	turned	it	over,	it	said

gba.html
tlbmac.html
taste.html

"Inside	Macintosh."	

Then	came	Linux	and	FreeBSD,	and	hackers,	who	follow	the	most
powerful	OS	wherever	it	leads,	found	themselves	switching	to
Intel	boxes.	If	you	cared	about	design,	you	could	buy	a	Thinkpad,
which	was	at	least	not	actively	repellent,	if	you	could	get	the
Intel	and	Microsoft	stickers	off	the	front.	[1]

With	OS	X,	the	hackers	are	back.	When	I	walked	into	the	Apple
store	in	Cambridge,	it	was	like	coming	home.	Much	was	changed,
but	there	was	still	that	Apple	coolness	in	the	air,	that	feeling	that
the	show	was	being	run	by	someone	who	really	cared,	instead	of
random	corporate	deal-makers.

So	what,	the	business	world	may	say.	Who	cares	if	hackers	like
Apple	again?	How	big	is	the	hacker	market,	after	all?

Quite	small,	but	important	out	of	proportion	to	its	size.	When	it
comes	to	computers,	what	hackers	are	doing	now,	everyone	will
be	doing	in	ten	years.	Almost	all	technology,	from	Unix	to
bitmapped	displays	to	the	Web,	became	popular	first	within	CS
departments	and	research	labs,	and	gradually	spread	to	the	rest
of	the	world.

I	remember	telling	my	father	back	in	1986	that	there	was	a	new
kind	of	computer	called	a	Sun	that	was	a	serious	Unix	machine,
but	so	small	and	cheap	that	you	could	have	one	of	your	own	to	sit
in	front	of,	instead	of	sitting	in	front	of	a	VT100	connected	to	a
single	central	Vax.	Maybe,	I	suggested,	he	should	buy	some	stock
in	this	company.	I	think	he	really	wishes	he'd	listened.

In	1994	my	friend	Koling	wanted	to	talk	to	his	girlfriend	in
Taiwan,	and	to	save	long-distance	bills	he	wrote	some	software
that	would	convert	sound	to	data	packets	that	could	be	sent	over
the	Internet.	We	weren't	sure	at	the	time	whether	this	was	a
proper	use	of	the	Internet,	which	was	still	then	a	quasi-
government	entity.	What	he	was	doing	is	now	called	VoIP,	and	it
is	a	huge	and	rapidly	growing	business.

If	you	want	to	know	what	ordinary	people	will	be	doing	with
computers	in	ten	years,	just	walk	around	the	CS	department	at	a

designedforwindows.html

good	university.	Whatever	they're	doing,	you'll	be	doing.

In	the	matter	of	"platforms"	this	tendency	is	even	more
pronounced,	because	novel	software	originates	with	great
hackers,	and	they	tend	to	write	it	first	for	whatever	computer
they	personally	use.	And	software	sells	hardware.	Many	if	not
most	of	the	initial	sales	of	the	Apple	II	came	from	people	who
bought	one	to	run	VisiCalc.	And	why	did	Bricklin	and	Frankston
write	VisiCalc	for	the	Apple	II?	Because	they	personally	liked	it.
They	could	have	chosen	any	machine	to	make	into	a	star.

If	you	want	to	attract	hackers	to	write	software	that	will	sell	your
hardware,	you	have	to	make	it	something	that	they	themselves
use.	It's	not	enough	to	make	it	"open."	It	has	to	be	open	and
good.

And	open	and	good	is	what	Macs	are	again,	finally.	The
intervening	years	have	created	a	situation	that	is,	as	far	as	I
know,	without	precedent:	Apple	is	popular	at	the	low	end	and	the
high	end,	but	not	in	the	middle.	My	seventy	year	old	mother	has
a	Mac	laptop.	My	friends	with	PhDs	in	computer	science	have
Mac	laptops.	[2]	And	yet	Apple's	overall	market	share	is	still
small.

Though	unprecedented,	I	predict	this	situation	is	also	temporary.

So	Dad,	there's	this	company	called	Apple.	They	make	a	new	kind
of	computer	that's	as	well	designed	as	a	Bang	&	Olufsen	stereo
system,	and	underneath	is	the	best	Unix	machine	you	can	buy.
Yes,	the	price	to	earnings	ratio	is	kind	of	high,	but	I	think	a	lot	of
people	are	going	to	want	these.

Notes

[1]	These	horrible	stickers	are	much	like	the	intrusive	ads
popular	on	pre-Google	search	engines.	They	say	to	the	customer:
you	are	unimportant.	We	care	about	Intel	and	Microsoft,	not	you.

[2]	Y	Combinator	is	(we	hope)	visited	mostly	by	hackers.	The

gh.html
http://ycombinator.com/

proportions	of	OSes	are:	Windows	66.4%,	Macintosh	18.8%,
Linux	11.4%,	and	FreeBSD	1.5%.	The	Mac	number	is	a	big
change	from	what	it	would	have	been	five	years	ago.

	

Why	Smart	People	Have	Bad
Ideas
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

April	2005

This	summer,	as	an	experiment,	some	friends	and	I	are	giving
seed	funding	to	a	bunch	of	new	startups.	It's	an	experiment
because	we're	prepared	to	fund	younger	founders	than	most
investors	would.	That's	why	we're	doing	it	during	the	summer—
so	even	college	students	can	participate.

We	know	from	Google	and	Yahoo	that	grad	students	can	start
successful	startups.	And	we	know	from	experience	that	some
undergrads	are	as	capable	as	most	grad	students.	The	accepted
age	for	startup	founders	has	been	creeping	downward.	We're
trying	to	find	the	lower	bound.

The	deadline	has	now	passed,	and	we're	sifting	through	227
applications.	We	expected	to	divide	them	into	two	categories,
promising	and	unpromising.	But	we	soon	saw	we	needed	a	third:
promising	people	with	unpromising	ideas.	[1]

The	Artix	Phase

We	should	have	expected	this.	It's	very	common	for	a	group	of
founders	to	go	through	one	lame	idea	before	realizing	that	a
startup	has	to	make	something	people	will	pay	for.	In	fact,	we
ourselves	did.

Viaweb	wasn't	the	first	startup	Robert	Morris	and	I	started.	In
January	1995,	we	and	a	couple	friends	started	a	company	called
Artix.	The	plan	was	to	put	art	galleries	on	the	Web.	In	retrospect,
I	wonder	how	we	could	have	wasted	our	time	on	anything	so
stupid.	Galleries	are	not	especially	excited	about	being	on	the

http://ycombinator.com/apply.html
http://ycombinator.com/
#f1n
http://www.knoedlergallery.com/

Web	even	now,	ten	years	later.	They	don't	want	to	have	their
stock	visible	to	any	random	visitor,	like	an	antique	store.	[2]

Besides	which,	art	dealers	are	the	most	technophobic	people	on
earth.	They	didn't	become	art	dealers	after	a	difficult	choice
between	that	and	a	career	in	the	hard	sciences.	Most	of	them	had
never	seen	the	Web	before	we	came	to	tell	them	why	they	should
be	on	it.	Some	didn't	even	have	computers.	It	doesn't	do	justice
to	the	situation	to	describe	it	as	a	hard	sell;	we	soon	sank	to
building	sites	for	free,	and	it	was	hard	to	convince	galleries	even
to	do	that.

Gradually	it	dawned	on	us	that	instead	of	trying	to	make	Web
sites	for	people	who	didn't	want	them,	we	could	make	sites	for
people	who	did.	In	fact,	software	that	would	let	people	who
wanted	sites	make	their	own.	So	we	ditched	Artix	and	started	a
new	company,	Viaweb,	to	make	software	for	building	online
stores.	That	one	succeeded.

We're	in	good	company	here.	Microsoft	was	not	the	first	company
Paul	Allen	and	Bill	Gates	started	either.	The	first	was	called	Traf-
o-data.	It	does	not	seem	to	have	done	as	well	as	Micro-soft.	

In	Robert's	defense,	he	was	skeptical	about	Artix.	I	dragged	him
into	it.	[3]	But	there	were	moments	when	he	was	optimistic.	And
if	we,	who	were	29	and	30	at	the	time,	could	get	excited	about
such	a	thoroughly	boneheaded	idea,	we	should	not	be	surprised
that	hackers	aged	21	or	22	are	pitching	us	ideas	with	little	hope
of	making	money.

The	Still	Life	Effect

Why	does	this	happen?	Why	do	good	hackers	have	bad	business
ideas?

Let's	look	at	our	case.	One	reason	we	had	such	a	lame	idea	was
that	it	was	the	first	thing	we	thought	of.	I	was	in	New	York	trying
to	be	a	starving	artist	at	the	time	(the	starving	part	is	actually
quite	easy),	so	I	was	haunting	galleries	anyway.	When	I	learned
about	the	Web,	it	seemed	natural	to	mix	the	two.	Make	Web	sites
for	galleries—that's	the	ticket!

#f2n
#f3n

If	you're	going	to	spend	years	working	on	something,	you'd	think
it	might	be	wise	to	spend	at	least	a	couple	days	considering
different	ideas,	instead	of	going	with	the	first	that	comes	into
your	head.	You'd	think.	But	people	don't.	In	fact,	this	is	a
constant	problem	when	you're	painting	still	lifes.	You	plonk	down
a	bunch	of	stuff	on	a	table,	and	maybe	spend	five	or	ten	minutes
rearranging	it	to	look	interesting.	But	you're	so	impatient	to	get
started	painting	that	ten	minutes	of	rearranging	feels	very	long.
So	you	start	painting.	Three	days	later,	having	spent	twenty
hours	staring	at	it,	you're	kicking	yourself	for	having	set	up	such
an	awkward	and	boring	composition,	but	by	then	it's	too	late.

Part	of	the	problem	is	that	big	projects	tend	to	grow	out	of	small
ones.	You	set	up	a	still	life	to	make	a	quick	sketch	when	you	have
a	spare	hour,	and	days	later	you're	still	working	on	it.	I	once
spent	a	month	painting	three	versions	of	a	still	life	I	set	up	in
about	four	minutes.	At	each	point	(a	day,	a	week,	a	month)	I
thought	I'd	already	put	in	so	much	time	that	it	was	too	late	to
change.

So	the	biggest	cause	of	bad	ideas	is	the	still	life	effect:	you	come
up	with	a	random	idea,	plunge	into	it,	and	then	at	each	point	(a
day,	a	week,	a	month)	feel	you've	put	so	much	time	into	it	that
this	must	be	the	idea.

How	do	we	fix	that?	I	don't	think	we	should	discard	plunging.
Plunging	into	an	idea	is	a	good	thing.	The	solution	is	at	the	other
end:	to	realize	that	having	invested	time	in	something	doesn't
make	it	good.

This	is	clearest	in	the	case	of	names.	Viaweb	was	originally	called
Webgen,	but	we	discovered	someone	else	had	a	product	called
that.	We	were	so	attached	to	our	name	that	we	offered	him	5%	of
the	company	if	he'd	let	us	have	it.	But	he	wouldn't,	so	we	had	to
think	of	another.	[4]	The	best	we	could	do	was	Viaweb,	which	we
disliked	at	first.	It	was	like	having	a	new	mother.	But	within	three
days	we	loved	it,	and	Webgen	sounded	lame	and	old-fashioned.

If	it's	hard	to	change	something	so	simple	as	a	name,	imagine
how	hard	it	is	to	garbage-collect	an	idea.	A	name	only	has	one

#f4n

point	of	attachment	into	your	head.	An	idea	for	a	company	gets
woven	into	your	thoughts.	So	you	must	consciously	discount	for
that.	Plunge	in,	by	all	means,	but	remember	later	to	look	at	your
idea	in	the	harsh	light	of	morning	and	ask:	is	this	something
people	will	pay	for?	Is	this,	of	all	the	things	we	could	make,	the
thing	people	will	pay	most	for?

Muck

The	second	mistake	we	made	with	Artix	is	also	very	common.
Putting	galleries	on	the	Web	seemed	cool.

One	of	the	most	valuable	things	my	father	taught	me	is	an	old
Yorkshire	saying:	where	there's	muck,	there's	brass.	Meaning
that	unpleasant	work	pays.	And	more	to	the	point	here,	vice
versa.	Work	people	like	doesn't	pay	well,	for	reasons	of	supply
and	demand.	The	most	extreme	case	is	developing	programming
languages,	which	doesn't	pay	at	all,	because	people	like	it	so
much	they	do	it	for	free.

When	we	started	Artix,	I	was	still	ambivalent	about	business.	I
wanted	to	keep	one	foot	in	the	art	world.	Big,	big,	mistake.	Going
into	business	is	like	a	hang-glider	launch:	you'd	better	do	it
wholeheartedly,	or	not	at	all.	The	purpose	of	a	company,	and	a
startup	especially,	is	to	make	money.	You	can't	have	divided
loyalties.

Which	is	not	to	say	that	you	have	to	do	the	most	disgusting	sort
of	work,	like	spamming,	or	starting	a	company	whose	only
purpose	is	patent	litigation.	What	I	mean	is,	if	you're	starting	a
company	that	will	do	something	cool,	the	aim	had	better	be	to
make	money	and	maybe	be	cool,	not	to	be	cool	and	maybe	make
money.

It's	hard	enough	to	make	money	that	you	can't	do	it	by	accident.
Unless	it's	your	first	priority,	it's	unlikely	to	happen	at	all.

Hyenas

When	I	probe	our	motives	with	Artix,	I	see	a	third	mistake:
timidity.	If	you'd	proposed	at	the	time	that	we	go	into	the	e-

commerce	business,	we'd	have	found	the	idea	terrifying.	Surely	a
field	like	that	would	be	dominated	by	fearsome	startups	with	five
million	dollars	of	VC	money	each.	Whereas	we	felt	pretty	sure
that	we	could	hold	our	own	in	the	slightly	less	competitive
business	of	generating	Web	sites	for	art	galleries.

We	erred	ridiculously	far	on	the	side	of	safety.	As	it	turns	out,	VC-
backed	startups	are	not	that	fearsome.	They're	too	busy	trying	to
spend	all	that	money	to	get	software	written.	In	1995,	the	e-
commerce	business	was	very	competitive	as	measured	in	press
releases,	but	not	as	measured	in	software.	And	really	it	never
was.	The	big	fish	like	Open	Market	(rest	their	souls)	were	just
consulting	companies	pretending	to	be	product	companies	[5],
and	the	offerings	at	our	end	of	the	market	were	a	couple	hundred
lines	of	Perl	scripts.	Or	could	have	been	implemented	as	a	couple
hundred	lines	of	Perl;	in	fact	they	were	probably	tens	of
thousands	of	lines	of	C++	or	Java.	Once	we	actually	took	the
plunge	into	e-commerce,	it	turned	out	to	be	surprisingly	easy	to
compete.

So	why	were	we	afraid?	We	felt	we	were	good	at	programming,
but	we	lacked	confidence	in	our	ability	to	do	a	mysterious,
undifferentiated	thing	we	called	"business."	In	fact	there	is	no
such	thing	as	"business."	There's	selling,	promotion,	figuring	out
what	people	want,	deciding	how	much	to	charge,	customer
support,	paying	your	bills,	getting	customers	to	pay	you,	getting
incorporated,	raising	money,	and	so	on.	And	the	combination	is
not	as	hard	as	it	seems,	because	some	tasks	(like	raising	money
and	getting	incorporated)	are	an	O(1)	pain	in	the	ass,	whether
you're	big	or	small,	and	others	(like	selling	and	promotion)
depend	more	on	energy	and	imagination	than	any	kind	of	special
training.

Artix	was	like	a	hyena,	content	to	survive	on	carrion	because	we
were	afraid	of	the	lions.	Except	the	lions	turned	out	not	to	have
any	teeth,	and	the	business	of	putting	galleries	online	barely
qualified	as	carrion.

A	Familiar	Problem

Sum	up	all	these	sources	of	error,	and	it's	no	wonder	we	had

venturecapital.html
#f5n

such	a	bad	idea	for	a	company.	We	did	the	first	thing	we	thought
of;	we	were	ambivalent	about	being	in	business	at	all;	and	we
deliberately	chose	an	impoverished	market	to	avoid	competition.

Looking	at	the	applications	for	the	Summer	Founders	Program,	I
see	signs	of	all	three.	But	the	first	is	by	far	the	biggest	problem.
Most	of	the	groups	applying	have	not	stopped	to	ask:	of	all	the
things	we	could	do,	is	this	the	one	with	the	best	chance	of
making	money?

If	they'd	already	been	through	their	Artix	phase,	they'd	have
learned	to	ask	that.	After	the	reception	we	got	from	art	dealers,
we	were	ready	to.	This	time,	we	thought,	let's	make	something
people	want.

Reading	the	Wall	Street	Journal	for	a	week	should	give	anyone
ideas	for	two	or	three	new	startups.	The	articles	are	full	of
descriptions	of	problems	that	need	to	be	solved.	But	most	of	the
applicants	don't	seem	to	have	looked	far	for	ideas.

We	expected	the	most	common	proposal	to	be	for	multiplayer
games.	We	were	not	far	off:	this	was	the	second	most	common.
The	most	common	was	some	combination	of	a	blog,	a	calendar,	a
dating	site,	and	Friendster.	Maybe	there	is	some	new	killer	app
to	be	discovered	here,	but	it	seems	perverse	to	go	poking	around
in	this	fog	when	there	are	valuable,	unsolved	problems	lying
about	in	the	open	for	anyone	to	see.	Why	did	no	one	propose	a
new	scheme	for	micropayments?	An	ambitious	project,	perhaps,
but	I	can't	believe	we've	considered	every	alternative.	And
newspapers	and	magazines	are	(literally)	dying	for	a	solution.

Why	did	so	few	applicants	really	think	about	what	customers
want?	I	think	the	problem	with	many,	as	with	people	in	their
early	twenties	generally,	is	that	they've	been	trained	their	whole
lives	to	jump	through	predefined	hoops.	They've	spent	15-20
years	solving	problems	other	people	have	set	for	them.	And	how
much	time	deciding	what	problems	would	be	good	to	solve?	Two
or	three	course	projects?	They're	good	at	solving	problems,	but
bad	at	choosing	them.

But	that,	I'm	convinced,	is	just	the	effect	of	training.	Or	more

precisely,	the	effect	of	grading.	To	make	grading	efficient,
everyone	has	to	solve	the	same	problem,	and	that	means	it	has	to
be	decided	in	advance.	It	would	be	great	if	schools	taught
students	how	to	choose	problems	as	well	as	how	to	solve	them,
but	I	don't	know	how	you'd	run	such	a	class	in	practice.

Copper	and	Tin

The	good	news	is,	choosing	problems	is	something	that	can	be
learned.	I	know	that	from	experience.	Hackers	can	learn	to	make
things	customers	want.	[6]

This	is	a	controversial	view.	One	expert	on	"entrepreneurship"
told	me	that	any	startup	had	to	include	business	people,	because
only	they	could	focus	on	what	customers	wanted.	I'll	probably
alienate	this	guy	forever	by	quoting	him,	but	I	have	to	risk	it,
because	his	email	was	such	a	perfect	example	of	this	view:

80%	of	MIT	spinoffs	succeed	provided	they	have	at
least	one	management	person	in	the	team	at	the
start.	The	business	person	represents	the	"voice	of
the	customer"	and	that's	what	keeps	the	engineers
and	product	development	on	track.

This	is,	in	my	opinion,	a	crock.	Hackers	are	perfectly	capable	of
hearing	the	voice	of	the	customer	without	a	business	person	to
amplify	the	signal	for	them.	Larry	Page	and	Sergey	Brin	were
grad	students	in	computer	science,	which	presumably	makes
them	"engineers."	Do	you	suppose	Google	is	only	good	because
they	had	some	business	guy	whispering	in	their	ears	what
customers	wanted?	It	seems	to	me	the	business	guys	who	did	the
most	for	Google	were	the	ones	who	obligingly	flew	Altavista	into
a	hillside	just	as	Google	was	getting	started.

The	hard	part	about	figuring	out	what	customers	want	is	figuring
out	that	you	need	to	figure	it	out.	But	that's	something	you	can
learn	quickly.	It's	like	seeing	the	other	interpretation	of	an
ambiguous	picture.	As	soon	as	someone	tells	you	there's	a	rabbit
as	well	as	a	duck,	it's	hard	not	to	see	it.

And	compared	to	the	sort	of	problems	hackers	are	used	to

#f6n

solving,	giving	customers	what	they	want	is	easy.	Anyone	who
can	write	an	optimizing	compiler	can	design	a	UI	that	doesn't
confuse	users,	once	they	choose	to	focus	on	that	problem.	And
once	you	apply	that	kind	of	brain	power	to	petty	but	profitable
questions,	you	can	create	wealth	very	rapidly.

That's	the	essence	of	a	startup:	having	brilliant	people	do	work
that's	beneath	them.	Big	companies	try	to	hire	the	right	person
for	the	job.	Startups	win	because	they	don't—because	they	take
people	so	smart	that	they	would	in	a	big	company	be	doing
"research,"	and	set	them	to	work	instead	on	problems	of	the	most
immediate	and	mundane	sort.	Think	Einstein	designing
refrigerators.	[7]

If	you	want	to	learn	what	people	want,	read	Dale	Carnegie's	How
to	Win	Friends	and	Influence	People.	[8]	When	a	friend
recommended	this	book,	I	couldn't	believe	he	was	serious.	But	he
insisted	it	was	good,	so	I	read	it,	and	he	was	right.	It	deals	with
the	most	difficult	problem	in	human	experience:	how	to	see
things	from	other	people's	point	of	view,	instead	of	thinking	only
of	yourself.

Most	smart	people	don't	do	that	very	well.	But	adding	this	ability
to	raw	brainpower	is	like	adding	tin	to	copper.	The	result	is
bronze,	which	is	so	much	harder	that	it	seems	a	different	metal.

A	hacker	who	has	learned	what	to	make,	and	not	just	how	to
make,	is	extraordinarily	powerful.	And	not	just	at	making	money:
look	what	a	small	group	of	volunteers	has	achieved	with	Firefox.

Doing	an	Artix	teaches	you	to	make	something	people	want	in	the
same	way	that	not	drinking	anything	would	teach	you	how	much
you	depend	on	water.	But	it	would	be	more	convenient	for	all
involved	if	the	Summer	Founders	didn't	learn	this	on	our	dime—if
they	could	skip	the	Artix	phase	and	go	right	on	to	make
something	customers	wanted.	That,	I	think,	is	going	to	be	the
real	experiment	this	summer.	How	long	will	it	take	them	to	grasp
this?

We	decided	we	ought	to	have	T-Shirts	for	the	SFP,	and	we'd	been
thinking	about	what	to	print	on	the	back.	Till	now	we'd	been

#f7n
#f8n

planning	to	use

If	you	can	read	this,	I	should	be	working.

but	now	we've	decided	it's	going	to	be

Make	something	people	want.

Notes

[1]	SFP	applicants:	please	don't	assume	that	not	being	accepted
means	we	think	your	idea	is	bad.	Because	we	want	to	keep	the
number	of	startups	small	this	first	summer,	we're	going	to	have
to	turn	down	some	good	proposals	too.

[2]	Dealers	try	to	give	each	customer	the	impression	that	the
stuff	they're	showing	him	is	something	special	that	only	a	few
people	have	seen,	when	in	fact	it	may	have	been	sitting	in	their
racks	for	years	while	they	tried	to	unload	it	on	buyer	after	buyer.

[3]	On	the	other	hand,	he	was	skeptical	about	Viaweb	too.	I	have
a	precise	measure	of	that,	because	at	one	point	in	the	first	couple
months	we	made	a	bet:	if	he	ever	made	a	million	dollars	out	of
Viaweb,	he'd	get	his	ear	pierced.	We	didn't	let	him	off,	either.

[4]	I	wrote	a	program	to	generate	all	the	combinations	of	"Web"
plus	a	three	letter	word.	I	learned	from	this	that	most	three	letter
words	are	bad:	Webpig,	Webdog,	Webfat,	Webzit,	Webfug.	But
one	of	them	was	Webvia;	I	swapped	them	to	make	Viaweb.

[5]	It's	much	easier	to	sell	services	than	a	product,	just	as	it's
easier	to	make	a	living	playing	at	weddings	than	by	selling
recordings.	But	the	margins	are	greater	on	products.	So	during
the	Bubble	a	lot	of	companies	used	consulting	to	generate
revenues	they	could	attribute	to	the	sale	of	products,	because	it
made	a	better	story	for	an	IPO.

pierced.html

[6]	Trevor	Blackwell	presents	the	following	recipe	for	a	startup:
"Watch	people	who	have	money	to	spend,	see	what	they're
wasting	their	time	on,	cook	up	a	solution,	and	try	selling	it	to
them.	It's	surprising	how	small	a	problem	can	be	and	still	provide
a	profitable	market	for	a	solution."

[7]	You	need	to	offer	especially	large	rewards	to	get	great	people
to	do	tedious	work.	That's	why	startups	always	pay	equity	rather
than	just	salary.

[8]	Buy	an	old	copy	from	the	1940s	or	50s	instead	of	the	current
edition,	which	has	been	rewritten	to	suit	present	fashions.	The
original	edition	contained	a	few	unPC	ideas,	but	it's	always	better
to	read	an	original	book,	bearing	in	mind	that	it's	a	book	from	a
past	era,	than	to	read	a	new	version	sanitized	for	your	protection.

Thanks	to	Bill	Birch,	Trevor	Blackwell,	Jessica	Livingston,	and
Robert	Morris	for	reading	drafts	of	this.

http://dogbert.abebooks.com/servlet/SearchResults?bx=on&sts=t&ds=30&bi=0&an=carnegie&kn=1938+OR+1939+OR+1940+OR+1941+OR+1942+OR+1943+OR+1944+OR+1945+OR+1946+OR+1947+OR+1948&tn=influence+friends&sortby=2

	

The	Submarine
April	2005

"Suits	make	a	corporate	comeback,"	says	the	New	York	Times.
Why	does	this	sound	familiar?	Maybe	because	the	suit	was	also
back	in	February,	September	2004,	June	2004,	March	2004,
September	2003,	November	2002,	April	2002,	and	February
2002.	

Why	do	the	media	keep	running	stories	saying	suits	are	back?
Because	PR	firms	tell	them	to.	One	of	the	most	surprising	things	I
discovered	during	my	brief	business	career	was	the	existence	of
the	PR	industry,	lurking	like	a	huge,	quiet	submarine	beneath	the
news.	Of	the	stories	you	read	in	traditional	media	that	aren't
about	politics,	crimes,	or	disasters,	more	than	half	probably	come
from	PR	firms.

I	know	because	I	spent	years	hunting	such	"press	hits."	Our
startup	spent	its	entire	marketing	budget	on	PR:	at	a	time	when
we	were	assembling	our	own	computers	to	save	money,	we	were
paying	a	PR	firm	$16,000	a	month.	And	they	were	worth	it.	PR	is
the	news	equivalent	of	search	engine	optimization;	instead	of
buying	ads,	which	readers	ignore,	you	get	yourself	inserted
directly	into	the	stories.	[1]

Our	PR	firm	was	one	of	the	best	in	the	business.	In	18	months,
they	got	press	hits	in	over	60	different	publications.	And	we
weren't	the	only	ones	they	did	great	things	for.	In	1997	I	got	a
call	from	another	startup	founder	considering	hiring	them	to
promote	his	company.	I	told	him	they	were	PR	gods,	worth	every
penny	of	their	outrageous	fees.	But	I	remember	thinking	his
company's	name	was	odd.	Why	call	an	auction	site	"eBay"?

Symbiosis

PR	is	not	dishonest.	Not	quite.	In	fact,	the	reason	the	best	PR

http://www.nytimes.com/2005/04/14/fashion/thursdaystyles/14peacock.html?ex=1271131200&en=e96f2670387e3636&ei=5090&partner=rssuserland
http://www.cvbizlink.com/articles/2005/04/07/news/news/doc42406f05edf53293947237.prt
http://www.usatoday.com/money/industries/retail/2004-09-01-suits_x.htm
http://www.cnn.com/2004/BUSINESS/06/23/go.fashion.jones/
http://www.post-gazette.com/pg/04062/279616.stm
http://www.southcoasttoday.com/daily/09-03/09-21-03/c01li238.htm
http://www.businessweek.com/magazine/content/02_46/b3808122.htm
http://www.pittsburghlive.com/x/s_65540.html
http://news.bbc.co.uk/1/hi/business/1836010.stm
http://www.maximumexposurepr.com/middleMAA.html
#f1n
http://schwartz-pr.com/client_coverage.php

firms	are	so	effective	is	precisely	that	they	aren't	dishonest.	They
give	reporters	genuinely	valuable	information.	A	good	PR	firm
won't	bug	reporters	just	because	the	client	tells	them	to;	they've
worked	hard	to	build	their	credibility	with	reporters,	and	they
don't	want	to	destroy	it	by	feeding	them	mere	propaganda.

If	anyone	is	dishonest,	it's	the	reporters.	The	main	reason	PR
firms	exist	is	that	reporters	are	lazy.	Or,	to	put	it	more	nicely,
overworked.	Really	they	ought	to	be	out	there	digging	up	stories
for	themselves.	But	it's	so	tempting	to	sit	in	their	offices	and	let
PR	firms	bring	the	stories	to	them.	After	all,	they	know	good	PR
firms	won't	lie	to	them.

A	good	flatterer	doesn't	lie,	but	tells	his	victim	selective	truths
(what	a	nice	color	your	eyes	are).	Good	PR	firms	use	the	same
strategy:	they	give	reporters	stories	that	are	true,	but	whose
truth	favors	their	clients.

For	example,	our	PR	firm	often	pitched	stories	about	how	the
Web	let	small	merchants	compete	with	big	ones.	This	was
perfectly	true.	But	the	reason	reporters	ended	up	writing	stories
about	this	particular	truth,	rather	than	some	other	one,	was	that
small	merchants	were	our	target	market,	and	we	were	paying	the
piper.

Different	publications	vary	greatly	in	their	reliance	on	PR	firms.
At	the	bottom	of	the	heap	are	the	trade	press,	who	make	most	of
their	money	from	advertising	and	would	give	the	magazines	away
for	free	if	advertisers	would	let	them.	[2]	The	average	trade
publication	is	a	bunch	of	ads,	glued	together	by	just	enough
articles	to	make	it	look	like	a	magazine.	They're	so	desperate	for
"content"	that	some	will	print	your	press	releases	almost
verbatim,	if	you	take	the	trouble	to	write	them	to	read	like
articles.

At	the	other	extreme	are	publications	like	the	New	York	Times
and	the	Wall	Street	Journal.	Their	reporters	do	go	out	and	find
their	own	stories,	at	least	some	of	the	time.	They'll	listen	to	PR
firms,	but	briefly	and	skeptically.	We	managed	to	get	press	hits	in
almost	every	publication	we	wanted,	but	we	never	managed	to
crack	the	print	edition	of	the	Times.	[3]

#f2n
#f3n

The	weak	point	of	the	top	reporters	is	not	laziness,	but	vanity.
You	don't	pitch	stories	to	them.	You	have	to	approach	them	as	if
you	were	a	specimen	under	their	all-seeing	microscope,	and
make	it	seem	as	if	the	story	you	want	them	to	run	is	something
they	thought	of	themselves.

Our	greatest	PR	coup	was	a	two-part	one.	We	estimated,	based
on	some	fairly	informal	math,	that	there	were	about	5000	stores
on	the	Web.	We	got	one	paper	to	print	this	number,	which
seemed	neutral	enough.	But	once	this	"fact"	was	out	there	in
print,	we	could	quote	it	to	other	publications,	and	claim	that	with
1000	users	we	had	20%	of	the	online	store	market.

This	was	roughly	true.	We	really	did	have	the	biggest	share	of	the
online	store	market,	and	5000	was	our	best	guess	at	its	size.	But
the	way	the	story	appeared	in	the	press	sounded	a	lot	more
definite.

Reporters	like	definitive	statements.	For	example,	many	of	the
stories	about	Jeremy	Jaynes's	conviction	say	that	he	was	one	of
the	10	worst	spammers.	This	"fact"	originated	in	Spamhaus's
ROKSO	list,	which	I	think	even	Spamhaus	would	admit	is	a	rough
guess	at	the	top	spammers.	The	first	stories	about	Jaynes	cited
this	source,	but	now	it's	simply	repeated	as	if	it	were	part	of	the
indictment.	[4]

All	you	can	say	with	certainty	about	Jaynes	is	that	he	was	a	fairly
big	spammer.	But	reporters	don't	want	to	print	vague	stuff	like
"fairly	big."	They	want	statements	with	punch,	like	"top	ten."	And
PR	firms	give	them	what	they	want.	Wearing	suits,	we're	told,
will	make	us	3.6	percent	more	productive.

Buzz

Where	the	work	of	PR	firms	really	does	get	deliberately
misleading	is	in	the	generation	of	"buzz."	They	usually	feed	the
same	story	to	several	different	publications	at	once.	And	when
readers	see	similar	stories	in	multiple	places,	they	think	there	is
some	important	trend	afoot.	Which	is	exactly	what	they're
supposed	to	think.

#f4n
http://sanfrancisco.bizjournals.com/sanfrancisco/stories/2002/02/25/story5.html?t=printable

When	Windows	95	was	launched,	people	waited	outside	stores	at
midnight	to	buy	the	first	copies.	None	of	them	would	have	been
there	without	PR	firms,	who	generated	such	a	buzz	in	the	news
media	that	it	became	self-reinforcing,	like	a	nuclear	chain
reaction.

I	doubt	PR	firms	realize	it	yet,	but	the	Web	makes	it	possible	to
track	them	at	work.	If	you	search	for	the	obvious	phrases,	you
turn	up	several	efforts	over	the	years	to	place	stories	about	the
return	of	the	suit.	For	example,	the	Reuters	article	that	got
picked	up	by	USA	Today	in	September	2004.	"The	suit	is	back,"	it
begins.

Trend	articles	like	this	are	almost	always	the	work	of	PR	firms.
Once	you	know	how	to	read	them,	it's	straightforward	to	figure
out	who	the	client	is.	With	trend	stories,	PR	firms	usually	line	up
one	or	more	"experts"	to	talk	about	the	industry	generally.	In	this
case	we	get	three:	the	NPD	Group,	the	creative	director	of	GQ,
and	a	research	director	at	Smith	Barney.	[5]	When	you	get	to	the
end	of	the	experts,	look	for	the	client.	And	bingo,	there	it	is:	The
Men's	Wearhouse.

Not	surprising,	considering	The	Men's	Wearhouse	was	at	that
moment	running	ads	saying	"The	Suit	is	Back."	Talk	about	a
successful	press	hit--	a	wire	service	article	whose	first	sentence
is	your	own	ad	copy.

The	secret	to	finding	other	press	hits	from	a	given	pitch	is	to
realize	that	they	all	started	from	the	same	document	back	at	the
PR	firm.	Search	for	a	few	key	phrases	and	the	names	of	the
clients	and	the	experts,	and	you'll	turn	up	other	variants	of	this
story.

Casual	fridays	are	out	and	dress	codes	are	in	writes	Diane	E.
Lewis	in	The	Boston	Globe.	In	a	remarkable	coincidence,	Ms.
Lewis's	industry	contacts	also	include	the	creative	director	of	GQ.

Ripped	jeans	and	T-shirts	are	out,	writes	Mary	Kathleen	Flynn	in
US	News	&	World	Report.	And	she	too	knows	the	creative
director	of	GQ.

http://www.usatoday.com/money/industries/retail/2004-09-01-suits_x.htm
#f5n
http://bostonworks.boston.com/globe/articles/091904_suit.html
http://www.usnews.com/usnews/biztech/articles/041108/8eedress.htm

Men's	suits	are	back	writes	Nicole	Ford	in	Sexbuzz.Com	("the
ultimate	men's	entertainment	magazine").

Dressing	down	loses	appeal	as	men	suit	up	at	the	office	writes
Tenisha	Mercer	of	The	Detroit	News.

Now	that	so	many	news	articles	are	online,	I	suspect	you	could
find	a	similar	pattern	for	most	trend	stories	placed	by	PR	firms.	I
propose	we	call	this	new	sport	"PR	diving,"	and	I'm	sure	there
are	far	more	striking	examples	out	there	than	this	clump	of	five
stories.

Online

After	spending	years	chasing	them,	it's	now	second	nature	to	me
to	recognize	press	hits	for	what	they	are.	But	before	we	hired	a
PR	firm	I	had	no	idea	where	articles	in	the	mainstream	media
came	from.	I	could	tell	a	lot	of	them	were	crap,	but	I	didn't
realize	why.

Remember	the	exercises	in	critical	reading	you	did	in	school,
where	you	had	to	look	at	a	piece	of	writing	and	step	back	and	ask
whether	the	author	was	telling	the	whole	truth?	If	you	really
want	to	be	a	critical	reader,	it	turns	out	you	have	to	step	back
one	step	further,	and	ask	not	just	whether	the	author	is	telling
the	truth,	but	why	he's	writing	about	this	subject	at	all.

Online,	the	answer	tends	to	be	a	lot	simpler.	Most	people	who
publish	online	write	what	they	write	for	the	simple	reason	that
they	want	to.	You	can't	see	the	fingerprints	of	PR	firms	all	over
the	articles,	as	you	can	in	so	many	print	publications--	which	is
one	of	the	reasons,	though	they	may	not	consciously	realize	it,
that	readers	trust	bloggers	more	than	Business	Week.

I	was	talking	recently	to	a	friend	who	works	for	a	big	newspaper.
He	thought	the	print	media	were	in	serious	trouble,	and	that	they
were	still	mostly	in	denial	about	it.	"They	think	the	decline	is
cyclic,"	he	said.	"Actually	it's	structural."

In	other	words,	the	readers	are	leaving,	and	they're	not	coming

http://www.sexbuzz.com/style/9,0004,00.shtml
http://www.detnews.com/2004/careers/0405/28/b01-149207.htm

back.

Why?	I	think	the	main	reason	is	that	the	writing	online	is	more
honest.	Imagine	how	incongruous	the	New	York	Times	article
about	suits	would	sound	if	you	read	it	in	a	blog:

The	urge	to	look	corporate--	sleek,	commanding,
prudent,	yet	with	just	a	touch	of	hubris	on	your	well-
cut	sleeve--	is	an	unexpected	development	in	a	time
of	business	disgrace.

The	problem	with	this	article	is	not	just	that	it	originated	in	a	PR
firm.	The	whole	tone	is	bogus.	This	is	the	tone	of	someone
writing	down	to	their	audience.

Whatever	its	flaws,	the	writing	you	find	online	is	authentic.	It's
not	mystery	meat	cooked	up	out	of	scraps	of	pitch	letters	and
press	releases,	and	pressed	into	molds	of	zippy	journalese.	It's
people	writing	what	they	think.

I	didn't	realize,	till	there	was	an	alternative,	just	how	artificial
most	of	the	writing	in	the	mainstream	media	was.	I'm	not	saying
I	used	to	believe	what	I	read	in	Time	and	Newsweek.	Since	high
school,	at	least,	I've	thought	of	magazines	like	that	more	as
guides	to	what	ordinary	people	were	being	told	to	think	than	as
sources	of	information.	But	I	didn't	realize	till	the	last	few	years
that	writing	for	publication	didn't	have	to	mean	writing	that	way.
I	didn't	realize	you	could	write	as	candidly	and	informally	as	you
would	if	you	were	writing	to	a	friend.

Readers	aren't	the	only	ones	who've	noticed	the	change.	The	PR
industry	has	too.	A	hilarious	article	on	the	site	of	the	PR	Society
of	America	gets	to	the	heart	of	the	matter:

Bloggers	are	sensitive	about	becoming	mouthpieces
for	other	organizations	and	companies,	which	is	the
reason	they	began	blogging	in	the	first	place.

PR	people	fear	bloggers	for	the	same	reason	readers	like	them.
And	that	means	there	may	be	a	struggle	ahead.	As	this	new	kind
of	writing	draws	readers	away	from	traditional	media,	we	should

say.html
http://www.prsa.org/_Publications/magazines/0802news1.asp

be	prepared	for	whatever	PR	mutates	into	to	compensate.	When	I
think	how	hard	PR	firms	work	to	score	press	hits	in	the
traditional	media,	I	can't	imagine	they'll	work	any	less	hard	to
feed	stories	to	bloggers,	if	they	can	figure	out	how.

Notes

[1]	PR	has	at	least	one	beneficial	feature:	it	favors	small
companies.	If	PR	didn't	work,	the	only	alternative	would	be	to
advertise,	and	only	big	companies	can	afford	that.

[2]	Advertisers	pay	less	for	ads	in	free	publications,	because	they
assume	readers	ignore	something	they	get	for	free.	This	is	why
so	many	trade	publications	nominally	have	a	cover	price	and	yet
give	away	free	subscriptions	with	such	abandon.

[3]	Different	sections	of	the	Times	vary	so	much	in	their
standards	that	they're	practically	different	papers.	Whoever	fed
the	style	section	reporter	this	story	about	suits	coming	back
would	have	been	sent	packing	by	the	regular	news	reporters.

[4]	The	most	striking	example	I	know	of	this	type	is	the	"fact"
that	the	Internet	worm	of	1988	infected	6000	computers.	I	was
there	when	it	was	cooked	up,	and	this	was	the	recipe:	someone
guessed	that	there	were	about	60,000	computers	attached	to	the
Internet,	and	that	the	worm	might	have	infected	ten	percent	of
them.

Actually	no	one	knows	how	many	computers	the	worm	infected,
because	the	remedy	was	to	reboot	them,	and	this	destroyed	all
traces.	But	people	like	numbers.	And	so	this	one	is	now
replicated	all	over	the	Internet,	like	a	little	worm	of	its	own.

[5]	Not	all	were	necessarily	supplied	by	the	PR	firm.	Reporters
sometimes	call	a	few	additional	sources	on	their	own,	like
someone	adding	a	few	fresh	vegetables	to	a	can	of	soup.

Thanks	to	Ingrid	Basset,	Trevor	Blackwell,	Sarah	Harlin,	Jessica
Livingston,	Jackie	McDonough,	Robert	Morris,	and	Aaron	Swartz

http://www.google.com/search?q=internet+worm+1988+6000

(who	also	found	the	PRSA	article)	for	reading	drafts	of	this.

Correction:	Earlier	versions	used	a	recent	Business	Week	article
mentioning	del.icio.us	as	an	example	of	a	press	hit,	but	Joshua
Schachter	tells	me	it	was	spontaneous.

	

Hiring	is	Obsolete
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

May	2005

(This	essay	is	derived	from	a	talk	at	the	Berkeley	CSUA.)

The	three	big	powers	on	the	Internet	now	are	Yahoo,	Google,	and
Microsoft.	Average	age	of	their	founders:	24.	So	it	is	pretty	well
established	now	that	grad	students	can	start	successful
companies.	And	if	grad	students	can	do	it,	why	not	undergrads?

Like	everything	else	in	technology,	the	cost	of	starting	a	startup
has	decreased	dramatically.	Now	it's	so	low	that	it	has
disappeared	into	the	noise.	The	main	cost	of	starting	a	Web-
based	startup	is	food	and	rent.	Which	means	it	doesn't	cost	much
more	to	start	a	company	than	to	be	a	total	slacker.	You	can
probably	start	a	startup	on	ten	thousand	dollars	of	seed	funding,
if	you're	prepared	to	live	on	ramen.

The	less	it	costs	to	start	a	company,	the	less	you	need	the
permission	of	investors	to	do	it.	So	a	lot	of	people	will	be	able	to
start	companies	now	who	never	could	have	before.

The	most	interesting	subset	may	be	those	in	their	early	twenties.
I'm	not	so	excited	about	founders	who	have	everything	investors
want	except	intelligence,	or	everything	except	energy.	The	most
promising	group	to	be	liberated	by	the	new,	lower	threshold	are
those	who	have	everything	investors	want	except	experience.

Market	Rate

I	once	claimed	that	nerds	were	unpopular	in	secondary	school
mainly	because	they	had	better	things	to	do	than	work	full-time
at	being	popular.	Some	said	I	was	just	telling	people	what	they
wanted	to	hear.	Well,	I'm	now	about	to	do	that	in	a	spectacular

http://ycombinator.com/apply.html
nerds.html

way:	I	think	undergraduates	are	undervalued.

Or	more	precisely,	I	think	few	realize	the	huge	spread	in	the
value	of	20	year	olds.	Some,	it's	true,	are	not	very	capable.	But
others	are	more	capable	than	all	but	a	handful	of	30	year	olds.
[1]

Till	now	the	problem	has	always	been	that	it's	difficult	to	pick
them	out.	Every	VC	in	the	world,	if	they	could	go	back	in	time,
would	try	to	invest	in	Microsoft.	But	which	would	have	then?
How	many	would	have	understood	that	this	particular	19	year
old	was	Bill	Gates?

It's	hard	to	judge	the	young	because	(a)	they	change	rapidly,	(b)
there	is	great	variation	between	them,	and	(c)	they're
individually	inconsistent.	That	last	one	is	a	big	problem.	When
you're	young,	you	occasionally	say	and	do	stupid	things	even
when	you're	smart.	So	if	the	algorithm	is	to	filter	out	people	who
say	stupid	things,	as	many	investors	and	employers
unconsciously	do,	you're	going	to	get	a	lot	of	false	positives.

Most	organizations	who	hire	people	right	out	of	college	are	only
aware	of	the	average	value	of	22	year	olds,	which	is	not	that
high.	And	so	the	idea	for	most	of	the	twentieth	century	was	that
everyone	had	to	begin	as	a	trainee	in	some	entry-level	job.
Organizations	realized	there	was	a	lot	of	variation	in	the
incoming	stream,	but	instead	of	pursuing	this	thought	they
tended	to	suppress	it,	in	the	belief	that	it	was	good	for	even	the
most	promising	kids	to	start	at	the	bottom,	so	they	didn't	get
swelled	heads.

The	most	productive	young	people	will	always	be	undervalued	by
large	organizations,	because	the	young	have	no	performance	to
measure	yet,	and	any	error	in	guessing	their	ability	will	tend
toward	the	mean.

What's	an	especially	productive	22	year	old	to	do?	One	thing	you
can	do	is	go	over	the	heads	of	organizations,	directly	to	the
users.	Any	company	that	hires	you	is,	economically,	acting	as	a
proxy	for	the	customer.	The	rate	at	which	they	value	you	(though
they	may	not	consciously	realize	it)	is	an	attempt	to	guess	your

#f1n
http://slashdot.org/comments.pl?sid=158756&cid=13299057

value	to	the	user.	But	there's	a	way	to	appeal	their	judgement.	If
you	want,	you	can	opt	to	be	valued	directly	by	users,	by	starting
your	own	company.

The	market	is	a	lot	more	discerning	than	any	employer.	And	it	is
completely	non-discriminatory.	On	the	Internet,	nobody	knows
you're	a	dog.	And	more	to	the	point,	nobody	knows	you're	22.	All
users	care	about	is	whether	your	site	or	software	gives	them
what	they	want.	They	don't	care	if	the	person	behind	it	is	a	high
school	kid.

If	you're	really	productive,	why	not	make	employers	pay	market
rate	for	you?	Why	go	work	as	an	ordinary	employee	for	a	big
company,	when	you	could	start	a	startup	and	make	them	buy	it	to
get	you?

When	most	people	hear	the	word	"startup,"	they	think	of	the
famous	ones	that	have	gone	public.	But	most	startups	that
succeed	do	it	by	getting	bought.	And	usually	the	acquirer	doesn't
just	want	the	technology,	but	the	people	who	created	it	as	well.

Often	big	companies	buy	startups	before	they're	profitable.
Obviously	in	such	cases	they're	not	after	revenues.	What	they
want	is	the	development	team	and	the	software	they've	built	so
far.	When	a	startup	gets	bought	for	2	or	3	million	six	months	in,
it's	really	more	of	a	hiring	bonus	than	an	acquisition.

I	think	this	sort	of	thing	will	happen	more	and	more,	and	that	it
will	be	better	for	everyone.	It's	obviously	better	for	the	people
who	start	the	startup,	because	they	get	a	big	chunk	of	money	up
front.	But	I	think	it	will	be	better	for	the	acquirers	too.	The
central	problem	in	big	companies,	and	the	main	reason	they're	so
much	less	productive	than	small	companies,	is	the	difficulty	of
valuing	each	person's	work.	Buying	larval	startups	solves	that
problem	for	them:	the	acquirer	doesn't	pay	till	the	developers
have	proven	themselves.	Acquirers	are	protected	on	the
downside,	but	still	get	most	of	the	upside.

Product	Development

Buying	startups	also	solves	another	problem	afflicting	big

companies:	they	can't	do	product	development.	Big	companies
are	good	at	extracting	the	value	from	existing	products,	but	bad
at	creating	new	ones.

Why?	It's	worth	studying	this	phenomenon	in	detail,	because	this
is	the	raison	d'etre	of	startups.

To	start	with,	most	big	companies	have	some	kind	of	turf	to
protect,	and	this	tends	to	warp	their	development	decisions.	For
example,	Web-based	applications	are	hot	now,	but	within
Microsoft	there	must	be	a	lot	of	ambivalence	about	them,
because	the	very	idea	of	Web-based	software	threatens	the
desktop.	So	any	Web-based	application	that	Microsoft	ends	up
with,	will	probably,	like	Hotmail,	be	something	developed	outside
the	company.

Another	reason	big	companies	are	bad	at	developing	new
products	is	that	the	kind	of	people	who	do	that	tend	not	to	have
much	power	in	big	companies	(unless	they	happen	to	be	the
CEO).	Disruptive	technologies	are	developed	by	disruptive
people.	And	they	either	don't	work	for	the	big	company,	or	have
been	outmaneuvered	by	yes-men	and	have	comparatively	little
influence.

Big	companies	also	lose	because	they	usually	only	build	one	of
each	thing.	When	you	only	have	one	Web	browser,	you	can't	do
anything	really	risky	with	it.	If	ten	different	startups	design	ten
different	Web	browsers	and	you	take	the	best,	you'll	probably	get
something	better.

The	more	general	version	of	this	problem	is	that	there	are	too
many	new	ideas	for	companies	to	explore	them	all.	There	might
be	500	startups	right	now	who	think	they're	making	something
Microsoft	might	buy.	Even	Microsoft	probably	couldn't	manage
500	development	projects	in-house.

Big	companies	also	don't	pay	people	the	right	way.	People
developing	a	new	product	at	a	big	company	get	paid	roughly	the
same	whether	it	succeeds	or	fails.	People	at	a	startup	expect	to
get	rich	if	the	product	succeeds,	and	get	nothing	if	it	fails.	[2]	So
naturally	the	people	at	the	startup	work	a	lot	harder.

road.html
#f2n

The	mere	bigness	of	big	companies	is	an	obstacle.	In	startups,
developers	are	often	forced	to	talk	directly	to	users,	whether
they	want	to	or	not,	because	there	is	no	one	else	to	do	sales	and
support.	It's	painful	doing	sales,	but	you	learn	much	more	from
trying	to	sell	people	something	than	reading	what	they	said	in
focus	groups.

And	then	of	course,	big	companies	are	bad	at	product
development	because	they're	bad	at	everything.	Everything
happens	slower	in	big	companies	than	small	ones,	and	product
development	is	something	that	has	to	happen	fast,	because	you
have	to	go	through	a	lot	of	iterations	to	get	something	good.

Trend

I	think	the	trend	of	big	companies	buying	startups	will	only
accelerate.	One	of	the	biggest	remaining	obstacles	is	pride.	Most
companies,	at	least	unconsciously,	feel	they	ought	to	be	able	to
develop	stuff	in	house,	and	that	buying	startups	is	to	some
degree	an	admission	of	failure.	And	so,	as	people	generally	do
with	admissions	of	failure,	they	put	it	off	for	as	long	as	possible.
That	makes	the	acquisition	very	expensive	when	it	finally
happens.

What	companies	should	do	is	go	out	and	discover	startups	when
they're	young,	before	VCs	have	puffed	them	up	into	something
that	costs	hundreds	of	millions	to	acquire.	Much	of	what	VCs
add,	the	acquirer	doesn't	need	anyway.

Why	don't	acquirers	try	to	predict	the	companies	they're	going	to
have	to	buy	for	hundreds	of	millions,	and	grab	them	early	for	a
tenth	or	a	twentieth	of	that?	Because	they	can't	predict	the
winners	in	advance?	If	they're	only	paying	a	twentieth	as	much,
they	only	have	to	predict	a	twentieth	as	well.	Surely	they	can
manage	that.

I	think	companies	that	acquire	technology	will	gradually	learn	to
go	after	earlier	stage	startups.	They	won't	necessarily	buy	them
outright.	The	solution	may	be	some	hybrid	of	investment	and
acquisition:	for	example,	to	buy	a	chunk	of	the	company	and	get

an	option	to	buy	the	rest	later.

When	companies	buy	startups,	they're	effectively	fusing
recruiting	and	product	development.	And	I	think	that's	more
efficient	than	doing	the	two	separately,	because	you	always	get
people	who	are	really	committed	to	what	they're	working	on.

Plus	this	method	yields	teams	of	developers	who	already	work
well	together.	Any	conflicts	between	them	have	been	ironed	out
under	the	very	hot	iron	of	running	a	startup.	By	the	time	the
acquirer	gets	them,	they're	finishing	one	another's	sentences.
That's	valuable	in	software,	because	so	many	bugs	occur	at	the
boundaries	between	different	people's	code.

Investors

The	increasing	cheapness	of	starting	a	company	doesn't	just	give
hackers	more	power	relative	to	employers.	It	also	gives	them
more	power	relative	to	investors.

The	conventional	wisdom	among	VCs	is	that	hackers	shouldn't	be
allowed	to	run	their	own	companies.	The	founders	are	supposed
to	accept	MBAs	as	their	bosses,	and	themselves	take	on	some
title	like	Chief	Technical	Officer.	There	may	be	cases	where	this
is	a	good	idea.	But	I	think	founders	will	increasingly	be	able	to
push	back	in	the	matter	of	control,	because	they	just	don't	need
the	investors'	money	as	much	as	they	used	to.

Startups	are	a	comparatively	new	phenomenon.	Fairchild
Semiconductor	is	considered	the	first	VC-backed	startup,	and
they	were	founded	in	1959,	less	than	fifty	years	ago.	Measured
on	the	time	scale	of	social	change,	what	we	have	now	is	pre-beta.
So	we	shouldn't	assume	the	way	startups	work	now	is	the	way
they	have	to	work.

Fairchild	needed	a	lot	of	money	to	get	started.	They	had	to	build
actual	factories.	What	does	the	first	round	of	venture	funding	for
a	Web-based	startup	get	spent	on	today?	More	money	can't	get
software	written	faster;	it	isn't	needed	for	facilities,	because
those	can	now	be	quite	cheap;	all	money	can	really	buy	you	is
sales	and	marketing.	A	sales	force	is	worth	something,	I'll	admit.

But	marketing	is	increasingly	irrelevant.	On	the	Internet,
anything	genuinely	good	will	spread	by	word	of	mouth.

Investors'	power	comes	from	money.	When	startups	need	less
money,	investors	have	less	power	over	them.	So	future	founders
may	not	have	to	accept	new	CEOs	if	they	don't	want	them.	The
VCs	will	have	to	be	dragged	kicking	and	screaming	down	this
road,	but	like	many	things	people	have	to	be	dragged	kicking	and
screaming	toward,	it	may	actually	be	good	for	them.

Google	is	a	sign	of	the	way	things	are	going.	As	a	condition	of
funding,	their	investors	insisted	they	hire	someone	old	and
experienced	as	CEO.	But	from	what	I've	heard	the	founders
didn't	just	give	in	and	take	whoever	the	VCs	wanted.	They
delayed	for	an	entire	year,	and	when	they	did	finally	take	a	CEO,
they	chose	a	guy	with	a	PhD	in	computer	science.

It	sounds	to	me	as	if	the	founders	are	still	the	most	powerful
people	in	the	company,	and	judging	by	Google's	performance,
their	youth	and	inexperience	doesn't	seem	to	have	hurt	them.
Indeed,	I	suspect	Google	has	done	better	than	they	would	have	if
the	founders	had	given	the	VCs	what	they	wanted,	when	they
wanted	it,	and	let	some	MBA	take	over	as	soon	as	they	got	their
first	round	of	funding.

I'm	not	claiming	the	business	guys	installed	by	VCs	have	no
value.	Certainly	they	have.	But	they	don't	need	to	become	the
founders'	bosses,	which	is	what	that	title	CEO	means.	I	predict
that	in	the	future	the	executives	installed	by	VCs	will	increasingly
be	COOs	rather	than	CEOs.	The	founders	will	run	engineering
directly,	and	the	rest	of	the	company	through	the	COO.

The	Open	Cage

With	both	employers	and	investors,	the	balance	of	power	is
slowly	shifting	towards	the	young.	And	yet	they	seem	the	last	to
realize	it.	Only	the	most	ambitious	undergrads	even	consider
starting	their	own	company	when	they	graduate.	Most	just	want
to	get	a	job.

Maybe	this	is	as	it	should	be.	Maybe	if	the	idea	of	starting	a

startup	is	intimidating,	you	filter	out	the	uncommitted.	But	I
suspect	the	filter	is	set	a	little	too	high.	I	think	there	are	people
who	could,	if	they	tried,	start	successful	startups,	and	who
instead	let	themselves	be	swept	into	the	intake	ducts	of	big
companies.

Have	you	ever	noticed	that	when	animals	are	let	out	of	cages,
they	don't	always	realize	at	first	that	the	door's	open?	Often	they
have	to	be	poked	with	a	stick	to	get	them	out.	Something	similar
happened	with	blogs.	People	could	have	been	publishing	online
in	1995,	and	yet	blogging	has	only	really	taken	off	in	the	last
couple	years.	In	1995	we	thought	only	professional	writers	were
entitled	to	publish	their	ideas,	and	that	anyone	else	who	did	was
a	crank.	Now	publishing	online	is	becoming	so	popular	that
everyone	wants	to	do	it,	even	print	journalists.	But	blogging	has
not	taken	off	recently	because	of	any	technical	innovation;	it	just
took	eight	years	for	everyone	to	realize	the	cage	was	open.

I	think	most	undergrads	don't	realize	yet	that	the	economic	cage
is	open.	A	lot	have	been	told	by	their	parents	that	the	route	to
success	is	to	get	a	good	job.	This	was	true	when	their	parents
were	in	college,	but	it's	less	true	now.	The	route	to	success	is	to
build	something	valuable,	and	you	don't	have	to	be	working	for
an	existing	company	to	do	that.	Indeed,	you	can	often	do	it	better
if	you're	not.

When	I	talk	to	undergrads,	what	surprises	me	most	about	them	is
how	conservative	they	are.	Not	politically,	of	course.	I	mean	they
don't	seem	to	want	to	take	risks.	This	is	a	mistake,	because	the
younger	you	are,	the	more	risk	you	can	take.

Risk

Risk	and	reward	are	always	proportionate.	For	example,	stocks
are	riskier	than	bonds,	and	over	time	always	have	greater
returns.	So	why	does	anyone	invest	in	bonds?	The	catch	is	that
phrase	"over	time."	Stocks	will	generate	greater	returns	over
thirty	years,	but	they	might	lose	value	from	year	to	year.	So	what
you	should	invest	in	depends	on	how	soon	you	need	the	money.	If
you're	young,	you	should	take	the	riskiest	investments	you	can
find.

All	this	talk	about	investing	may	seem	very	theoretical.	Most
undergrads	probably	have	more	debts	than	assets.	They	may	feel
they	have	nothing	to	invest.	But	that's	not	true:	they	have	their
time	to	invest,	and	the	same	rule	about	risk	applies	there.	Your
early	twenties	are	exactly	the	time	to	take	insane	career	risks.

The	reason	risk	is	always	proportionate	to	reward	is	that	market
forces	make	it	so.	People	will	pay	extra	for	stability.	So	if	you
choose	stability--	by	buying	bonds,	or	by	going	to	work	for	a	big
company--	it's	going	to	cost	you.

Riskier	career	moves	pay	better	on	average,	because	there	is	less
demand	for	them.	Extreme	choices	like	starting	a	startup	are	so
frightening	that	most	people	won't	even	try.	So	you	don't	end	up
having	as	much	competition	as	you	might	expect,	considering	the
prizes	at	stake.

The	math	is	brutal.	While	perhaps	9	out	of	10	startups	fail,	the
one	that	succeeds	will	pay	the	founders	more	than	10	times	what
they	would	have	made	in	an	ordinary	job.	[3]	That's	the	sense	in
which	startups	pay	better	"on	average."

Remember	that.	If	you	start	a	startup,	you'll	probably	fail.	Most
startups	fail.	It's	the	nature	of	the	business.	But	it's	not
necessarily	a	mistake	to	try	something	that	has	a	90%	chance	of
failing,	if	you	can	afford	the	risk.	Failing	at	40,	when	you	have	a
family	to	support,	could	be	serious.	But	if	you	fail	at	22,	so	what?
If	you	try	to	start	a	startup	right	out	of	college	and	it	tanks,	you'll
end	up	at	23	broke	and	a	lot	smarter.	Which,	if	you	think	about	it,
is	roughly	what	you	hope	to	get	from	a	graduate	program.

Even	if	your	startup	does	tank,	you	won't	harm	your	prospects
with	employers.	To	make	sure	I	asked	some	friends	who	work	for
big	companies.	I	asked	managers	at	Yahoo,	Google,	Amazon,
Cisco	and	Microsoft	how	they'd	feel	about	two	candidates,	both
24,	with	equal	ability,	one	who'd	tried	to	start	a	startup	that
tanked,	and	another	who'd	spent	the	two	years	since	college
working	as	a	developer	at	a	big	company.	Every	one	responded
that	they'd	prefer	the	guy	who'd	tried	to	start	his	own	company.
Zod	Nazem,	who's	in	charge	of	engineering	at	Yahoo,	said:

#f3n

I	actually	put	more	value	on	the	guy	with	the	failed
startup.	And	you	can	quote	me!

So	there	you	have	it.	Want	to	get	hired	by	Yahoo?	Start	your	own
company.

The	Man	is	the	Customer

If	even	big	employers	think	highly	of	young	hackers	who	start
companies,	why	don't	more	do	it?	Why	are	undergrads	so
conservative?	I	think	it's	because	they've	spent	so	much	time	in
institutions.

The	first	twenty	years	of	everyone's	life	consists	of	being	piped
from	one	institution	to	another.	You	probably	didn't	have	much
choice	about	the	secondary	schools	you	went	to.	And	after	high
school	it	was	probably	understood	that	you	were	supposed	to	go
to	college.	You	may	have	had	a	few	different	colleges	to	choose
between,	but	they	were	probably	pretty	similar.	So	by	this	point
you've	been	riding	on	a	subway	line	for	twenty	years,	and	the
next	stop	seems	to	be	a	job.

Actually	college	is	where	the	line	ends.	Superficially,	going	to
work	for	a	company	may	feel	like	just	the	next	in	a	series	of
institutions,	but	underneath,	everything	is	different.	The	end	of
school	is	the	fulcrum	of	your	life,	the	point	where	you	go	from	net
consumer	to	net	producer.

The	other	big	change	is	that	now,	you're	steering.	You	can	go
anywhere	you	want.	So	it	may	be	worth	standing	back	and
understanding	what's	going	on,	instead	of	just	doing	the	default
thing.

All	through	college,	and	probably	long	before	that,	most
undergrads	have	been	thinking	about	what	employers	want.	But
what	really	matters	is	what	customers	want,	because	they're	the
ones	who	give	employers	the	money	to	pay	you.

So	instead	of	thinking	about	what	employers	want,	you're
probably	better	off	thinking	directly	about	what	users	want.	To
the	extent	there's	any	difference	between	the	two,	you	can	even

use	that	to	your	advantage	if	you	start	a	company	of	your	own.
For	example,	big	companies	like	docile	conformists.	But	this	is
merely	an	artifact	of	their	bigness,	not	something	customers
need.

Grad	School

I	didn't	consciously	realize	all	this	when	I	was	graduating	from
college--	partly	because	I	went	straight	to	grad	school.	Grad
school	can	be	a	pretty	good	deal,	even	if	you	think	of	one	day
starting	a	startup.	You	can	start	one	when	you're	done,	or	even
pull	the	ripcord	part	way	through,	like	the	founders	of	Yahoo	and
Google.

Grad	school	makes	a	good	launch	pad	for	startups,	because
you're	collected	together	with	a	lot	of	smart	people,	and	you	have
bigger	chunks	of	time	to	work	on	your	own	projects	than	an
undergrad	or	corporate	employee	would.	As	long	as	you	have	a
fairly	tolerant	advisor,	you	can	take	your	time	developing	an	idea
before	turning	it	into	a	company.	David	Filo	and	Jerry	Yang
started	the	Yahoo	directory	in	February	1994	and	were	getting	a
million	hits	a	day	by	the	fall,	but	they	didn't	actually	drop	out	of
grad	school	and	start	a	company	till	March	1995.

You	could	also	try	the	startup	first,	and	if	it	doesn't	work,	then	go
to	grad	school.	When	startups	tank	they	usually	do	it	fairly
quickly.	Within	a	year	you'll	know	if	you're	wasting	your	time.

If	it	fails,	that	is.	If	it	succeeds,	you	may	have	to	delay	grad
school	a	little	longer.	But	you'll	have	a	much	more	enjoyable	life
once	there	than	you	would	on	a	regular	grad	student	stipend.

Experience

Another	reason	people	in	their	early	twenties	don't	start	startups
is	that	they	feel	they	don't	have	enough	experience.	Most
investors	feel	the	same.

I	remember	hearing	a	lot	of	that	word	"experience"	when	I	was	in
college.	What	do	people	really	mean	by	it?	Obviously	it's	not	the
experience	itself	that's	valuable,	but	something	it	changes	in

your	brain.	What's	different	about	your	brain	after	you	have
"experience,"	and	can	you	make	that	change	happen	faster?

I	now	have	some	data	on	this,	and	I	can	tell	you	what	tends	to	be
missing	when	people	lack	experience.	I've	said	that	every	startup
needs	three	things:	to	start	with	good	people,	to	make	something
users	want,	and	not	to	spend	too	much	money.	It's	the	middle	one
you	get	wrong	when	you're	inexperienced.	There	are	plenty	of
undergrads	with	enough	technical	skill	to	write	good	software,
and	undergrads	are	not	especially	prone	to	waste	money.	If	they
get	something	wrong,	it's	usually	not	realizing	they	have	to	make
something	people	want.

This	is	not	exclusively	a	failing	of	the	young.	It's	common	for
startup	founders	of	all	ages	to	build	things	no	one	wants.

Fortunately,	this	flaw	should	be	easy	to	fix.	If	undergrads	were	all
bad	programmers,	the	problem	would	be	a	lot	harder.	It	can	take
years	to	learn	how	to	program.	But	I	don't	think	it	takes	years	to
learn	how	to	make	things	people	want.	My	hypothesis	is	that	all
you	have	to	do	is	smack	hackers	on	the	side	of	the	head	and	tell
them:	Wake	up.	Don't	sit	here	making	up	a	priori	theories	about
what	users	need.	Go	find	some	users	and	see	what	they	need.

Most	successful	startups	not	only	do	something	very	specific,	but
solve	a	problem	people	already	know	they	have.

The	big	change	that	"experience"	causes	in	your	brain	is	learning
that	you	need	to	solve	people's	problems.	Once	you	grasp	that,
you	advance	quickly	to	the	next	step,	which	is	figuring	out	what
those	problems	are.	And	that	takes	some	effort,	because	the	way
software	actually	gets	used,	especially	by	the	people	who	pay	the
most	for	it,	is	not	at	all	what	you	might	expect.	For	example,	the
stated	purpose	of	Powerpoint	is	to	present	ideas.	Its	real	role	is
to	overcome	people's	fear	of	public	speaking.	It	allows	you	to
give	an	impressive-looking	talk	about	nothing,	and	it	causes	the
audience	to	sit	in	a	dark	room	looking	at	slides,	instead	of	a
bright	one	looking	at	you.

This	kind	of	thing	is	out	there	for	anyone	to	see.	The	key	is	to
know	to	look	for	it--	to	realize	that	having	an	idea	for	a	startup	is

start.html
bronze.html

not	like	having	an	idea	for	a	class	project.	The	goal	in	a	startup	is
not	to	write	a	cool	piece	of	software.	It's	to	make	something
people	want.	And	to	do	that	you	have	to	look	at	users--	forget
about	hacking,	and	just	look	at	users.	This	can	be	quite	a	mental
adjustment,	because	little	if	any	of	the	software	you	write	in
school	even	has	users.	

A	few	steps	before	a	Rubik's	Cube	is	solved,	it	still	looks	like	a
mess.	I	think	there	are	a	lot	of	undergrads	whose	brains	are	in	a
similar	position:	they're	only	a	few	steps	away	from	being	able	to
start	successful	startups,	if	they	wanted	to,	but	they	don't	realize
it.	They	have	more	than	enough	technical	skill.	They	just	haven't
realized	yet	that	the	way	to	create	wealth	is	to	make	what	users
want,	and	that	employers	are	just	proxies	for	users	in	which	risk
is	pooled.

If	you're	young	and	smart,	you	don't	need	either	of	those.	You
don't	need	someone	else	to	tell	you	what	users	want,	because	you
can	figure	it	out	yourself.	And	you	don't	want	to	pool	risk,
because	the	younger	you	are,	the	more	risk	you	should	take.

A	Public	Service	Message

I'd	like	to	conclude	with	a	joint	message	from	me	and	your
parents.	Don't	drop	out	of	college	to	start	a	startup.	There's	no
rush.	There	will	be	plenty	of	time	to	start	companies	after	you
graduate.	In	fact,	it	may	be	just	as	well	to	go	work	for	an	existing
company	for	a	couple	years	after	you	graduate,	to	learn	how
companies	work.

And	yet,	when	I	think	about	it,	I	can't	imagine	telling	Bill	Gates	at
19	that	he	should	wait	till	he	graduated	to	start	a	company.	He'd
have	told	me	to	get	lost.	And	could	I	have	honestly	claimed	that
he	was	harming	his	future--	that	he	was	learning	less	by	working
at	ground	zero	of	the	microcomputer	revolution	than	he	would
have	if	he'd	been	taking	classes	back	at	Harvard?	No,	probably
not.

And	yes,	while	it	is	probably	true	that	you'll	learn	some	valuable
things	by	going	to	work	for	an	existing	company	for	a	couple
years	before	starting	your	own,	you'd	learn	a	thing	or	two

running	your	own	company	during	that	time	too.

The	advice	about	going	to	work	for	someone	else	would	get	an
even	colder	reception	from	the	19	year	old	Bill	Gates.	So	I'm
supposed	to	finish	college,	then	go	work	for	another	company	for
two	years,	and	then	I	can	start	my	own?	I	have	to	wait	till	I'm	23?
That's	four	years.	That's	more	than	twenty	percent	of	my	life	so
far.	Plus	in	four	years	it	will	be	way	too	late	to	make	money
writing	a	Basic	interpreter	for	the	Altair.

And	he'd	be	right.	The	Apple	II	was	launched	just	two	years	later.
In	fact,	if	Bill	had	finished	college	and	gone	to	work	for	another
company	as	we're	suggesting,	he	might	well	have	gone	to	work
for	Apple.	And	while	that	would	probably	have	been	better	for	all
of	us,	it	wouldn't	have	been	better	for	him.

So	while	I	stand	by	our	responsible	advice	to	finish	college	and
then	go	work	for	a	while	before	starting	a	startup,	I	have	to
admit	it's	one	of	those	things	the	old	tell	the	young,	but	don't
expect	them	to	listen	to.	We	say	this	sort	of	thing	mainly	so	we
can	claim	we	warned	you.	So	don't	say	I	didn't	warn	you.

Notes

[1]	The	average	B-17	pilot	in	World	War	II	was	in	his	early
twenties.	(Thanks	to	Tad	Marko	for	pointing	this	out.)

[2]	If	a	company	tried	to	pay	employees	this	way,	they'd	be	called
unfair.	And	yet	when	they	buy	some	startups	and	not	others,	no
one	thinks	of	calling	that	unfair.	

[3]	The	1/10	success	rate	for	startups	is	a	bit	of	an	urban	legend.
It's	suspiciously	neat.	My	guess	is	the	odds	are	slightly	worse.

Thanks	to	Jessica	Livingston	for	reading	drafts	of	this,	to	the
friends	I	promised	anonymity	to	for	their	opinions	about	hiring,
and	to	Karen	Nguyen	and	the	Berkeley	CSUA	for	organizing	this
talk.

	

What	Business	Can	Learn
from	Open	Source
August	2005

(This	essay	is	derived	from	a	talk	at	Oscon	2005.)

Lately	companies	have	been	paying	more	attention	to	open
source.	Ten	years	ago	there	seemed	a	real	danger	Microsoft
would	extend	its	monopoly	to	servers.	It	seems	safe	to	say	now
that	open	source	has	prevented	that.	A	recent	survey	found	52%
of	companies	are	replacing	Windows	servers	with	Linux	servers.
[1]

More	significant,	I	think,	is	which	52%	they	are.	At	this	point,
anyone	proposing	to	run	Windows	on	servers	should	be	prepared
to	explain	what	they	know	about	servers	that	Google,	Yahoo,	and
Amazon	don't.

But	the	biggest	thing	business	has	to	learn	from	open	source	is
not	about	Linux	or	Firefox,	but	about	the	forces	that	produced
them.	Ultimately	these	will	affect	a	lot	more	than	what	software
you	use.

We	may	be	able	to	get	a	fix	on	these	underlying	forces	by
triangulating	from	open	source	and	blogging.	As	you've	probably
noticed,	they	have	a	lot	in	common.

Like	open	source,	blogging	is	something	people	do	themselves,
for	free,	because	they	enjoy	it.	Like	open	source	hackers,
bloggers	compete	with	people	working	for	money,	and	often	win.
The	method	of	ensuring	quality	is	also	the	same:	Darwinian.
Companies	ensure	quality	through	rules	to	prevent	employees
from	screwing	up.	But	you	don't	need	that	when	the	audience
can	communicate	with	one	another.	People	just	produce
whatever	they	want;	the	good	stuff	spreads,	and	the	bad	gets

#f1n

ignored.	And	in	both	cases,	feedback	from	the	audience	improves
the	best	work.

Another	thing	blogging	and	open	source	have	in	common	is	the
Web.	People	have	always	been	willing	to	do	great	work	for	free,
but	before	the	Web	it	was	harder	to	reach	an	audience	or
collaborate	on	projects.

Amateurs

I	think	the	most	important	of	the	new	principles	business	has	to
learn	is	that	people	work	a	lot	harder	on	stuff	they	like.	Well,
that's	news	to	no	one.	So	how	can	I	claim	business	has	to	learn
it?	When	I	say	business	doesn't	know	this,	I	mean	the	structure	of
business	doesn't	reflect	it.

Business	still	reflects	an	older	model,	exemplified	by	the	French
word	for	working:	travailler.	It	has	an	English	cousin,	travail,	and
what	it	means	is	torture.	[2]

This	turns	out	not	to	be	the	last	word	on	work,	however.	As
societies	get	richer,	they	learn	something	about	work	that's	a	lot
like	what	they	learn	about	diet.	We	know	now	that	the	healthiest
diet	is	the	one	our	peasant	ancestors	were	forced	to	eat	because
they	were	poor.	Like	rich	food,	idleness	only	seems	desirable
when	you	don't	get	enough	of	it.	I	think	we	were	designed	to
work,	just	as	we	were	designed	to	eat	a	certain	amount	of	fiber,
and	we	feel	bad	if	we	don't.

There's	a	name	for	people	who	work	for	the	love	of	it:	amateurs.
The	word	now	has	such	bad	connotations	that	we	forget	its
etymology,	though	it's	staring	us	in	the	face.	"Amateur"	was
originally	rather	a	complimentary	word.	But	the	thing	to	be	in
the	twentieth	century	was	professional,	which	amateurs,	by
definition,	are	not.

That's	why	the	business	world	was	so	surprised	by	one	lesson
from	open	source:	that	people	working	for	love	often	surpass
those	working	for	money.	Users	don't	switch	from	Explorer	to
Firefox	because	they	want	to	hack	the	source.	They	switch
because	it's	a	better	browser.

#f2n

It's	not	that	Microsoft	isn't	trying.	They	know	controlling	the
browser	is	one	of	the	keys	to	retaining	their	monopoly.	The
problem	is	the	same	they	face	in	operating	systems:	they	can't
pay	people	enough	to	build	something	better	than	a	group	of
inspired	hackers	will	build	for	free.

I	suspect	professionalism	was	always	overrated--	not	just	in	the
literal	sense	of	working	for	money,	but	also	connotations	like
formality	and	detachment.	Inconceivable	as	it	would	have
seemed	in,	say,	1970,	I	think	professionalism	was	largely	a
fashion,	driven	by	conditions	that	happened	to	exist	in	the
twentieth	century.

One	of	the	most	powerful	of	those	was	the	existence	of
"channels."	Revealingly,	the	same	term	was	used	for	both
products	and	information:	there	were	distribution	channels,	and
TV	and	radio	channels.

It	was	the	narrowness	of	such	channels	that	made	professionals
seem	so	superior	to	amateurs.	There	were	only	a	few	jobs	as
professional	journalists,	for	example,	so	competition	ensured	the
average	journalist	was	fairly	good.	Whereas	anyone	can	express
opinions	about	current	events	in	a	bar.	And	so	the	average
person	expressing	his	opinions	in	a	bar	sounds	like	an	idiot
compared	to	a	journalist	writing	about	the	subject.

On	the	Web,	the	barrier	for	publishing	your	ideas	is	even	lower.
You	don't	have	to	buy	a	drink,	and	they	even	let	kids	in.	Millions
of	people	are	publishing	online,	and	the	average	level	of	what
they're	writing,	as	you	might	expect,	is	not	very	good.	This	has
led	some	in	the	media	to	conclude	that	blogs	don't	present	much
of	a	threat--	that	blogs	are	just	a	fad.

Actually,	the	fad	is	the	word	"blog,"	at	least	the	way	the	print
media	now	use	it.	What	they	mean	by	"blogger"	is	not	someone
who	publishes	in	a	weblog	format,	but	anyone	who	publishes
online.	That's	going	to	become	a	problem	as	the	Web	becomes
the	default	medium	for	publication.	So	I'd	like	to	suggest	an
alternative	word	for	someone	who	publishes	online.	How	about
"writer?"

Those	in	the	print	media	who	dismiss	the	writing	online	because
of	its	low	average	quality	are	missing	an	important	point:	no	one
reads	the	average	blog.	In	the	old	world	of	channels,	it	meant
something	to	talk	about	average	quality,	because	that's	what	you
were	getting	whether	you	liked	it	or	not.	But	now	you	can	read
any	writer	you	want.	So	the	average	quality	of	writing	online	isn't
what	the	print	media	are	competing	against.	They're	competing
against	the	best	writing	online.	And,	like	Microsoft,	they're
losing.

I	know	that	from	my	own	experience	as	a	reader.	Though	most
print	publications	are	online,	I	probably	read	two	or	three
articles	on	individual	people's	sites	for	every	one	I	read	on	the
site	of	a	newspaper	or	magazine.

And	when	I	read,	say,	New	York	Times	stories,	I	never	reach
them	through	the	Times	front	page.	Most	I	find	through
aggregators	like	Google	News	or	Slashdot	or	Delicious.
Aggregators	show	how	much	better	you	can	do	than	the	channel.
The	New	York	Times	front	page	is	a	list	of	articles	written	by
people	who	work	for	the	New	York	Times.	Delicious	is	a	list	of
articles	that	are	interesting.	And	it's	only	now	that	you	can	see
the	two	side	by	side	that	you	notice	how	little	overlap	there	is.

Most	articles	in	the	print	media	are	boring.	For	example,	the
president	notices	that	a	majority	of	voters	now	think	invading
Iraq	was	a	mistake,	so	he	makes	an	address	to	the	nation	to	drum
up	support.	Where	is	the	man	bites	dog	in	that?	I	didn't	hear	the
speech,	but	I	could	probably	tell	you	exactly	what	he	said.	A
speech	like	that	is,	in	the	most	literal	sense,	not	news:	there	is
nothing	new	in	it.	[3]

Nor	is	there	anything	new,	except	the	names	and	places,	in	most
"news"	about	things	going	wrong.	A	child	is	abducted;	there's	a
tornado;	a	ferry	sinks;	someone	gets	bitten	by	a	shark;	a	small
plane	crashes.	And	what	do	you	learn	about	the	world	from	these
stories?	Absolutely	nothing.	They're	outlying	data	points;	what
makes	them	gripping	also	makes	them	irrelevant.

As	in	software,	when	professionals	produce	such	crap,	it's	not

http://reddit.com/
#f3n

surprising	if	amateurs	can	do	better.	Live	by	the	channel,	die	by
the	channel:	if	you	depend	on	an	oligopoly,	you	sink	into	bad
habits	that	are	hard	to	overcome	when	you	suddenly	get
competition.	[4]

Workplaces

Another	thing	blogs	and	open	source	software	have	in	common	is
that	they're	often	made	by	people	working	at	home.	That	may	not
seem	surprising.	But	it	should	be.	It's	the	architectural
equivalent	of	a	home-made	aircraft	shooting	down	an	F-18.
Companies	spend	millions	to	build	office	buildings	for	a	single
purpose:	to	be	a	place	to	work.	And	yet	people	working	in	their
own	homes,	which	aren't	even	designed	to	be	workplaces,	end	up
being	more	productive.

This	proves	something	a	lot	of	us	have	suspected.	The	average
office	is	a	miserable	place	to	get	work	done.	And	a	lot	of	what
makes	offices	bad	are	the	very	qualities	we	associate	with
professionalism.	The	sterility	of	offices	is	supposed	to	suggest
efficiency.	But	suggesting	efficiency	is	a	different	thing	from
actually	being	efficient.

The	atmosphere	of	the	average	workplace	is	to	productivity	what
flames	painted	on	the	side	of	a	car	are	to	speed.	And	it's	not	just
the	way	offices	look	that's	bleak.	The	way	people	act	is	just	as
bad.

Things	are	different	in	a	startup.	Often	as	not	a	startup	begins	in
an	apartment.	Instead	of	matching	beige	cubicles	they	have	an
assortment	of	furniture	they	bought	used.	They	work	odd	hours,
wearing	the	most	casual	of	clothing.	They	look	at	whatever	they
want	online	without	worrying	whether	it's	"work	safe."	The
cheery,	bland	language	of	the	office	is	replaced	by	wicked	humor.
And	you	know	what?	The	company	at	this	stage	is	probably	the
most	productive	it's	ever	going	to	be.

Maybe	it's	not	a	coincidence.	Maybe	some	aspects	of
professionalism	are	actually	a	net	lose.

To	me	the	most	demoralizing	aspect	of	the	traditional	office	is

#f4n

that	you're	supposed	to	be	there	at	certain	times.	There	are
usually	a	few	people	in	a	company	who	really	have	to,	but	the
reason	most	employees	work	fixed	hours	is	that	the	company
can't	measure	their	productivity.

The	basic	idea	behind	office	hours	is	that	if	you	can't	make
people	work,	you	can	at	least	prevent	them	from	having	fun.	If
employees	have	to	be	in	the	building	a	certain	number	of	hours	a
day,	and	are	forbidden	to	do	non-work	things	while	there,	then
they	must	be	working.	In	theory.	In	practice	they	spend	a	lot	of
their	time	in	a	no-man's	land,	where	they're	neither	working	nor
having	fun.

If	you	could	measure	how	much	work	people	did,	many
companies	wouldn't	need	any	fixed	workday.	You	could	just	say:
this	is	what	you	have	to	do.	Do	it	whenever	you	like,	wherever
you	like.	If	your	work	requires	you	to	talk	to	other	people	in	the
company,	then	you	may	need	to	be	here	a	certain	amount.
Otherwise	we	don't	care.

That	may	seem	utopian,	but	it's	what	we	told	people	who	came	to
work	for	our	company.	There	were	no	fixed	office	hours.	I	never
showed	up	before	11	in	the	morning.	But	we	weren't	saying	this
to	be	benevolent.	We	were	saying:	if	you	work	here	we	expect
you	to	get	a	lot	done.	Don't	try	to	fool	us	just	by	being	here	a	lot.

The	problem	with	the	facetime	model	is	not	just	that	it's
demoralizing,	but	that	the	people	pretending	to	work	interrupt
the	ones	actually	working.	I'm	convinced	the	facetime	model	is
the	main	reason	large	organizations	have	so	many	meetings.	Per
capita,	large	organizations	accomplish	very	little.	And	yet	all
those	people	have	to	be	on	site	at	least	eight	hours	a	day.	When
so	much	time	goes	in	one	end	and	so	little	achievement	comes
out	the	other,	something	has	to	give.	And	meetings	are	the	main
mechanism	for	taking	up	the	slack.

For	one	year	I	worked	at	a	regular	nine	to	five	job,	and	I
remember	well	the	strange,	cozy	feeling	that	comes	over	one
during	meetings.	I	was	very	aware,	because	of	the	novelty,	that	I
was	being	paid	for	programming.	It	seemed	just	amazing,	as	if
there	was	a	machine	on	my	desk	that	spat	out	a	dollar	bill	every

two	minutes	no	matter	what	I	did.	Even	while	I	was	in	the
bathroom!	But	because	the	imaginary	machine	was	always
running,	I	felt	I	always	ought	to	be	working.	And	so	meetings	felt
wonderfully	relaxing.	They	counted	as	work,	just	like
programming,	but	they	were	so	much	easier.	All	you	had	to	do
was	sit	and	look	attentive.

Meetings	are	like	an	opiate	with	a	network	effect.	So	is	email,	on
a	smaller	scale.	And	in	addition	to	the	direct	cost	in	time,	there's
the	cost	in	fragmentation--	breaking	people's	day	up	into	bits	too
small	to	be	useful.

You	can	see	how	dependent	you've	become	on	something	by
removing	it	suddenly.	So	for	big	companies	I	propose	the
following	experiment.	Set	aside	one	day	where	meetings	are
forbidden--	where	everyone	has	to	sit	at	their	desk	all	day	and
work	without	interruption	on	things	they	can	do	without	talking
to	anyone	else.	Some	amount	of	communication	is	necessary	in
most	jobs,	but	I'm	sure	many	employees	could	find	eight	hours
worth	of	stuff	they	could	do	by	themselves.	You	could	call	it
"Work	Day."

The	other	problem	with	pretend	work	is	that	it	often	looks	better
than	real	work.	When	I'm	writing	or	hacking	I	spend	as	much
time	just	thinking	as	I	do	actually	typing.	Half	the	time	I'm	sitting
drinking	a	cup	of	tea,	or	walking	around	the	neighborhood.	This
is	a	critical	phase--	this	is	where	ideas	come	from--	and	yet	I'd
feel	guilty	doing	this	in	most	offices,	with	everyone	else	looking
busy.

It's	hard	to	see	how	bad	some	practice	is	till	you	have	something
to	compare	it	to.	And	that's	one	reason	open	source,	and	even
blogging	in	some	cases,	are	so	important.	They	show	us	what
real	work	looks	like.

We're	funding	eight	new	startups	at	the	moment.	A	friend	asked
what	they	were	doing	for	office	space,	and	seemed	surprised
when	I	said	we	expected	them	to	work	out	of	whatever
apartments	they	found	to	live	in.	But	we	didn't	propose	that	to
save	money.	We	did	it	because	we	want	their	software	to	be	good.
Working	in	crappy	informal	spaces	is	one	of	the	things	startups

do	right	without	realizing	it.	As	soon	as	you	get	into	an	office,
work	and	life	start	to	drift	apart.

That	is	one	of	the	key	tenets	of	professionalism.	Work	and	life	are
supposed	to	be	separate.	But	that	part,	I'm	convinced,	is	a
mistake.

Bottom-Up

The	third	big	lesson	we	can	learn	from	open	source	and	blogging
is	that	ideas	can	bubble	up	from	the	bottom,	instead	of	flowing
down	from	the	top.	Open	source	and	blogging	both	work	bottom-
up:	people	make	what	they	want,	and	the	best	stuff	prevails.

Does	this	sound	familiar?	It's	the	principle	of	a	market	economy.
Ironically,	though	open	source	and	blogs	are	done	for	free,	those
worlds	resemble	market	economies,	while	most	companies,	for
all	their	talk	about	the	value	of	free	markets,	are	run	internally
like	communist	states.

There	are	two	forces	that	together	steer	design:	ideas	about	what
to	do	next,	and	the	enforcement	of	quality.	In	the	channel	era,
both	flowed	down	from	the	top.	For	example,	newspaper	editors
assigned	stories	to	reporters,	then	edited	what	they	wrote.

Open	source	and	blogging	show	us	things	don't	have	to	work	that
way.	Ideas	and	even	the	enforcement	of	quality	can	flow	bottom-
up.	And	in	both	cases	the	results	are	not	merely	acceptable,	but
better.	For	example,	open	source	software	is	more	reliable
precisely	because	it's	open	source;	anyone	can	find	mistakes.

The	same	happens	with	writing.	As	we	got	close	to	publication,	I
found	I	was	very	worried	about	the	essays	in	Hackers	&	Painters
that	hadn't	been	online.	Once	an	essay	has	had	a	couple
thousand	page	views	I	feel	reasonably	confident	about	it.	But
these	had	had	literally	orders	of	magnitude	less	scrutiny.	It	felt
like	releasing	software	without	testing	it.

That's	what	all	publishing	used	to	be	like.	If	you	got	ten	people	to
read	a	manuscript,	you	were	lucky.	But	I'd	become	so	used	to
publishing	online	that	the	old	method	now	seemed	alarmingly

http://www.amazon.com/exec/obidos/tg/detail/-/0596006624

unreliable,	like	navigating	by	dead	reckoning	once	you'd	gotten
used	to	a	GPS.

The	other	thing	I	like	about	publishing	online	is	that	you	can
write	what	you	want	and	publish	when	you	want.	Earlier	this
year	I	wrote	something	that	seemed	suitable	for	a	magazine,	so	I
sent	it	to	an	editor	I	know.	As	I	was	waiting	to	hear	back,	I	found
to	my	surprise	that	I	was	hoping	they'd	reject	it.	Then	I	could	put
it	online	right	away.	If	they	accepted	it,	it	wouldn't	be	read	by
anyone	for	months,	and	in	the	meantime	I'd	have	to	fight	word-
by-word	to	save	it	from	being	mangled	by	some	twenty	five	year
old	copy	editor.	[5]

Many	employees	would	like	to	build	great	things	for	the
companies	they	work	for,	but	more	often	than	not	management
won't	let	them.	How	many	of	us	have	heard	stories	of	employees
going	to	management	and	saying,	please	let	us	build	this	thing	to
make	money	for	you--	and	the	company	saying	no?	The	most
famous	example	is	probably	Steve	Wozniak,	who	originally
wanted	to	build	microcomputers	for	his	then-employer,	HP.	And
they	turned	him	down.	On	the	blunderometer,	this	episode	ranks
with	IBM	accepting	a	non-exclusive	license	for	DOS.	But	I	think
this	happens	all	the	time.	We	just	don't	hear	about	it	usually,
because	to	prove	yourself	right	you	have	to	quit	and	start	your
own	company,	like	Wozniak	did.

Startups

So	these,	I	think,	are	the	three	big	lessons	open	source	and
blogging	have	to	teach	business:	(1)	that	people	work	harder	on
stuff	they	like,	(2)	that	the	standard	office	environment	is	very
unproductive,	and	(3)	that	bottom-up	often	works	better	than
top-down.

I	can	imagine	managers	at	this	point	saying:	what	is	this	guy
talking	about?	What	good	does	it	do	me	to	know	that	my
programmers	would	be	more	productive	working	at	home	on
their	own	projects?	I	need	their	asses	in	here	working	on	version
3.2	of	our	software,	or	we're	never	going	to	make	the	release
date.

inequality.html
#f5n

And	it's	true,	the	benefit	that	specific	manager	could	derive	from
the	forces	I've	described	is	near	zero.	When	I	say	business	can
learn	from	open	source,	I	don't	mean	any	specific	business	can.	I
mean	business	can	learn	about	new	conditions	the	same	way	a
gene	pool	does.	I'm	not	claiming	companies	can	get	smarter,	just
that	dumb	ones	will	die.

So	what	will	business	look	like	when	it	has	assimilated	the
lessons	of	open	source	and	blogging?	I	think	the	big	obstacle
preventing	us	from	seeing	the	future	of	business	is	the
assumption	that	people	working	for	you	have	to	be	employees.
But	think	about	what's	going	on	underneath:	the	company	has
some	money,	and	they	pay	it	to	the	employee	in	the	hope	that
he'll	make	something	worth	more	than	they	paid	him.	Well,	there
are	other	ways	to	arrange	that	relationship.	Instead	of	paying	the
guy	money	as	a	salary,	why	not	give	it	to	him	as	investment?
Then	instead	of	coming	to	your	office	to	work	on	your	projects,
he	can	work	wherever	he	wants	on	projects	of	his	own.

Because	few	of	us	know	any	alternative,	we	have	no	idea	how
much	better	we	could	do	than	the	traditional	employer-employee
relationship.	Such	customs	evolve	with	glacial	slowness.	Our
employer-employee	relationship	still	retains	a	big	chunk	of
master-servant	DNA.	[6]

I	dislike	being	on	either	end	of	it.	I'll	work	my	ass	off	for	a
customer,	but	I	resent	being	told	what	to	do	by	a	boss.	And	being
a	boss	is	also	horribly	frustrating;	half	the	time	it's	easier	just	to
do	stuff	yourself	than	to	get	someone	else	to	do	it	for	you.	I'd
rather	do	almost	anything	than	give	or	receive	a	performance
review.

On	top	of	its	unpromising	origins,	employment	has	accumulated
a	lot	of	cruft	over	the	years.	The	list	of	what	you	can't	ask	in	job
interviews	is	now	so	long	that	for	convenience	I	assume	it's
infinite.	Within	the	office	you	now	have	to	walk	on	eggshells	lest
anyone	say	or	do	something	that	makes	the	company	prey	to	a
lawsuit.	And	God	help	you	if	you	fire	anyone.

Nothing	shows	more	clearly	that	employment	is	not	an	ordinary
economic	relationship	than	companies	being	sued	for	firing

#f6n
say.html

people.	In	any	purely	economic	relationship	you're	free	to	do
what	you	want.	If	you	want	to	stop	buying	steel	pipe	from	one
supplier	and	start	buying	it	from	another,	you	don't	have	to
explain	why.	No	one	can	accuse	you	of	unjustly	switching	pipe
suppliers.	Justice	implies	some	kind	of	paternal	obligation	that
isn't	there	in	transactions	between	equals.

Most	of	the	legal	restrictions	on	employers	are	intended	to
protect	employees.	But	you	can't	have	action	without	an	equal
and	opposite	reaction.	You	can't	expect	employers	to	have	some
kind	of	paternal	responsibility	toward	employees	without	putting
employees	in	the	position	of	children.	And	that	seems	a	bad	road
to	go	down.

Next	time	you're	in	a	moderately	large	city,	drop	by	the	main	post
office	and	watch	the	body	language	of	the	people	working	there.
They	have	the	same	sullen	resentment	as	children	made	to	do
something	they	don't	want	to.	Their	union	has	exacted	pay
increases	and	work	restrictions	that	would	have	been	the	envy	of
previous	generations	of	postal	workers,	and	yet	they	don't	seem
any	happier	for	it.	It's	demoralizing	to	be	on	the	receiving	end	of
a	paternalistic	relationship,	no	matter	how	cozy	the	terms.	Just
ask	any	teenager.

I	see	the	disadvantages	of	the	employer-employee	relationship
because	I've	been	on	both	sides	of	a	better	one:	the	investor-
founder	relationship.	I	wouldn't	claim	it's	painless.	When	I	was
running	a	startup,	the	thought	of	our	investors	used	to	keep	me
up	at	night.	And	now	that	I'm	an	investor,	the	thought	of	our
startups	keeps	me	up	at	night.	All	the	pain	of	whatever	problem
you're	trying	to	solve	is	still	there.	But	the	pain	hurts	less	when	it
isn't	mixed	with	resentment.

I	had	the	misfortune	to	participate	in	what	amounted	to	a
controlled	experiment	to	prove	that.	After	Yahoo	bought	our
startup	I	went	to	work	for	them.	I	was	doing	exactly	the	same
work,	except	with	bosses.	And	to	my	horror	I	started	acting	like	a
child.	The	situation	pushed	buttons	I'd	forgotten	I	had.

The	big	advantage	of	investment	over	employment,	as	the
examples	of	open	source	and	blogging	suggest,	is	that	people

http://ycombinator.com/

working	on	projects	of	their	own	are	enormously	more
productive.	And	a	startup	is	a	project	of	one's	own	in	two	senses,
both	of	them	important:	it's	creatively	one's	own,	and	also
economically	ones's	own.

Google	is	a	rare	example	of	a	big	company	in	tune	with	the	forces
I've	described.	They've	tried	hard	to	make	their	offices	less
sterile	than	the	usual	cube	farm.	They	give	employees	who	do
great	work	large	grants	of	stock	to	simulate	the	rewards	of	a
startup.	They	even	let	hackers	spend	20%	of	their	time	on	their
own	projects.

Why	not	let	people	spend	100%	of	their	time	on	their	own
projects,	and	instead	of	trying	to	approximate	the	value	of	what
they	create,	give	them	the	actual	market	value?	Impossible?	That
is	in	fact	what	venture	capitalists	do.

So	am	I	claiming	that	no	one	is	going	to	be	an	employee
anymore--	that	everyone	should	go	and	start	a	startup?	Of	course
not.	But	more	people	could	do	it	than	do	it	now.	At	the	moment,
even	the	smartest	students	leave	school	thinking	they	have	to	get
a	job.	Actually	what	they	need	to	do	is	make	something	valuable.
A	job	is	one	way	to	do	that,	but	the	more	ambitious	ones	will
ordinarily	be	better	off	taking	money	from	an	investor	than	an
employer.

Hackers	tend	to	think	business	is	for	MBAs.	But	business
administration	is	not	what	you're	doing	in	a	startup.	What	you're
doing	is	business	creation.	And	the	first	phase	of	that	is	mostly
product	creation--	that	is,	hacking.	That's	the	hard	part.	It's	a	lot
harder	to	create	something	people	love	than	to	take	something
people	love	and	figure	out	how	to	make	money	from	it.

Another	thing	that	keeps	people	away	from	starting	startups	is
the	risk.	Someone	with	kids	and	a	mortgage	should	think	twice
before	doing	it.	But	most	young	hackers	have	neither.

And	as	the	example	of	open	source	and	blogging	suggests,	you'll
enjoy	it	more,	even	if	you	fail.	You'll	be	working	on	your	own
thing,	instead	of	going	to	some	office	and	doing	what	you're	told.
There	may	be	more	pain	in	your	own	company,	but	it	won't	hurt

start.html
hiring.html

as	much.

That	may	be	the	greatest	effect,	in	the	long	run,	of	the	forces
underlying	open	source	and	blogging:	finally	ditching	the	old
paternalistic	employer-employee	relationship,	and	replacing	it
with	a	purely	economic	one,	between	equals.

Notes

[1]	Survey	by	Forrester	Research	reported	in	the	cover	story	of
Business	Week,	31	Jan	2005.	Apparently	someone	believed	you
have	to	replace	the	actual	server	in	order	to	switch	the	operating
system.

[2]	It	derives	from	the	late	Latin	tripalium,	a	torture	device	so
called	because	it	consisted	of	three	stakes.	I	don't	know	how	the
stakes	were	used.	"Travel"	has	the	same	root.

[3]	It	would	be	much	bigger	news,	in	that	sense,	if	the	president
faced	unscripted	questions	by	giving	a	press	conference.

[4]	One	measure	of	the	incompetence	of	newspapers	is	that	so
many	still	make	you	register	to	read	stories.	I	have	yet	to	find	a
blog	that	tried	that.

[5]	They	accepted	the	article,	but	I	took	so	long	to	send	them	the
final	version	that	by	the	time	I	did	the	section	of	the	magazine
they'd	accepted	it	for	had	disappeared	in	a	reorganization.

[6]	The	word	"boss"	is	derived	from	the	Dutch	baas,	meaning
"master."

Thanks	to	Sarah	Harlin,	Jessica	Livingston,	and	Robert	Morris	for
reading	drafts	of	this.

	

After	the	Ladder
August	2005

Thirty	years	ago,	one	was	supposed	to	work	one's	way	up	the
corporate	ladder.	That's	less	the	rule	now.	Our	generation	wants
to	get	paid	up	front.	Instead	of	developing	a	product	for	some	big
company	in	the	expectation	of	getting	job	security	in	return,	we
develop	the	product	ourselves,	in	a	startup,	and	sell	it	to	the	big
company.	At	the	very	least	we	want	options.

Among	other	things,	this	shift	has	created	the	appearance	of	a
rapid	increase	in	economic	inequality.	But	really	the	two	cases
are	not	as	different	as	they	look	in	economic	statistics.

Economic	statistics	are	misleading	because	they	ignore	the	value
of	safe	jobs.	An	easy	job	from	which	one	can't	be	fired	is	worth
money;	exchanging	the	two	is	one	of	the	commonest	forms	of
corruption.	A	sinecure	is,	in	effect,	an	annuity.	Except	sinecures
don't	appear	in	economic	statistics.	If	they	did,	it	would	be	clear
that	in	practice	socialist	countries	have	nontrivial	disparities	of
wealth,	because	they	usually	have	a	class	of	powerful
bureaucrats	who	are	paid	mostly	by	seniority	and	can	never	be
fired.

While	not	a	sinecure,	a	position	on	the	corporate	ladder	was
genuinely	valuable,	because	big	companies	tried	not	to	fire
people,	and	promoted	from	within	based	largely	on	seniority.	A
position	on	the	corporate	ladder	had	a	value	analogous	to	the
"goodwill"	that	is	a	very	real	element	in	the	valuation	of
companies.	It	meant	one	could	expect	future	high	paying	jobs.

One	of	main	causes	of	the	decay	of	the	corporate	ladder	is	the
trend	for	takeovers	that	began	in	the	1980s.	Why	waste	your
time	climbing	a	ladder	that	might	disappear	before	you	reach	the
top?

And,	by	no	coincidence,	the	corporate	ladder	was	one	of	the
reasons	the	early	corporate	raiders	were	so	successful.	It's	not
only	economic	statistics	that	ignore	the	value	of	safe	jobs.
Corporate	balance	sheets	do	too.	One	reason	it	was	profitable	to
carve	up	1980s	companies	and	sell	them	for	parts	was	that	they
hadn't	formally	acknowledged	their	implicit	debt	to	employees
who	had	done	good	work	and	expected	to	be	rewarded	with	high-
paying	executive	jobs	when	their	time	came.

In	the	movie	Wall	Street,	Gordon	Gekko	ridicules	a	company
overloaded	with	vice	presidents.	But	the	company	may	not	be	as
corrupt	as	it	seems;	those	VPs'	cushy	jobs	were	probably
payment	for	work	done	earlier.

I	like	the	new	model	better.	For	one	thing,	it	seems	a	bad	plan	to
treat	jobs	as	rewards.	Plenty	of	good	engineers	got	made	into
bad	managers	that	way.	And	the	old	system	meant	people	had	to
deal	with	a	lot	more	corporate	politics,	in	order	to	protect	the
work	they'd	invested	in	a	position	on	the	ladder.

The	big	disadvantage	of	the	new	system	is	that	it	involves	more
risk.	If	you	develop	ideas	in	a	startup	instead	of	within	a	big
company,	any	number	of	random	factors	could	sink	you	before
you	can	finish.	But	maybe	the	older	generation	would	laugh	at
me	for	saying	that	the	way	we	do	things	is	riskier.	After	all,
projects	within	big	companies	were	always	getting	cancelled	as	a
result	of	arbitrary	decisions	from	higher	up.	My	father's	entire
industry	(breeder	reactors)	disappeared	that	way.

For	better	or	worse,	the	idea	of	the	corporate	ladder	is	probably
gone	for	good.	The	new	model	seems	more	liquid,	and	more
efficient.	But	it	is	less	of	a	change,	financially,	than	one	might
think.	Our	fathers	weren't	that	stupid.

inequality.html

	

Inequality	and	Risk
August	2005

(This	essay	is	derived	from	a	talk	at	Defcon	2005.)

Suppose	you	wanted	to	get	rid	of	economic	inequality.	There	are
two	ways	to	do	it:	give	money	to	the	poor,	or	take	it	away	from
the	rich.	But	they	amount	to	the	same	thing,	because	if	you	want
to	give	money	to	the	poor,	you	have	to	get	it	from	somewhere.
You	can't	get	it	from	the	poor,	or	they	just	end	up	where	they
started.	You	have	to	get	it	from	the	rich.

There	is	of	course	a	way	to	make	the	poor	richer	without	simply
shifting	money	from	the	rich.	You	could	help	the	poor	become
more	productive	—	for	example,	by	improving	access	to
education.	Instead	of	taking	money	from	engineers	and	giving	it
to	checkout	clerks,	you	could	enable	people	who	would	have
become	checkout	clerks	to	become	engineers.

This	is	an	excellent	strategy	for	making	the	poor	richer.	But	the
evidence	of	the	last	200	years	shows	that	it	doesn't	reduce
economic	inequality,	because	it	makes	the	rich	richer	too.	If	there
are	more	engineers,	then	there	are	more	opportunities	to	hire
them	and	to	sell	them	things.	Henry	Ford	couldn't	have	made	a
fortune	building	cars	in	a	society	in	which	most	people	were	still
subsistence	farmers;	he	would	have	had	neither	workers	nor
customers.

If	you	want	to	reduce	economic	inequality	instead	of	just
improving	the	overall	standard	of	living,	it's	not	enough	just	to
raise	up	the	poor.	What	if	one	of	your	newly	minted	engineers
gets	ambitious	and	goes	on	to	become	another	Bill	Gates?
Economic	inequality	will	be	as	bad	as	ever.	If	you	actually	want	to
compress	the	gap	between	rich	and	poor,	you	have	to	push	down
on	the	top	as	well	as	pushing	up	on	the	bottom.

How	do	you	push	down	on	the	top?	You	could	try	to	decrease	the
productivity	of	the	people	who	make	the	most	money:	make	the
best	surgeons	operate	with	their	left	hands,	force	popular	actors
to	overeat,	and	so	on.	But	this	approach	is	hard	to	implement.
The	only	practical	solution	is	to	let	people	do	the	best	work	they
can,	and	then	(either	by	taxation	or	by	limiting	what	they	can
charge)	to	confiscate	whatever	you	deem	to	be	surplus.

So	let's	be	clear	what	reducing	economic	inequality	means.	It	is
identical	with	taking	money	from	the	rich.

When	you	transform	a	mathematical	expression	into	another
form,	you	often	notice	new	things.	So	it	is	in	this	case.	Taking
money	from	the	rich	turns	out	to	have	consequences	one	might
not	foresee	when	one	phrases	the	same	idea	in	terms	of
"reducing	inequality."

The	problem	is,	risk	and	reward	have	to	be	proportionate.	A	bet
with	only	a	10%	chance	of	winning	has	to	pay	more	than	one	with
a	50%	chance	of	winning,	or	no	one	will	take	it.	So	if	you	lop	off
the	top	of	the	possible	rewards,	you	thereby	decrease	people's
willingness	to	take	risks.

Transposing	into	our	original	expression,	we	get:	decreasing
economic	inequality	means	decreasing	the	risk	people	are	willing
to	take.

There	are	whole	classes	of	risks	that	are	no	longer	worth	taking
if	the	maximum	return	is	decreased.	One	reason	high	tax	rates
are	disastrous	is	that	this	class	of	risks	includes	starting	new
companies.

Investors

Startups	are	intrinsically	risky.	A	startup	is	like	a	small	boat	in
the	open	sea.	One	big	wave	and	you're	sunk.	A	competing
product,	a	downturn	in	the	economy,	a	delay	in	getting	funding	or
regulatory	approval,	a	patent	suit,	changing	technical	standards,
the	departure	of	a	key	employee,	the	loss	of	a	big	account	—	any
one	of	these	can	destroy	you	overnight.	It	seems	only	about	1	in
10	startups	succeeds.	[1]

#f1n

Our	startup	paid	its	first	round	of	outside	investors	36x.	Which
meant,	with	current	US	tax	rates,	that	it	made	sense	to	invest	in
us	if	we	had	better	than	a	1	in	24	chance	of	succeeding.	That
sounds	about	right.	That's	probably	roughly	how	we	looked	when
we	were	a	couple	of	nerds	with	no	business	experience	operating
out	of	an	apartment.

If	that	kind	of	risk	doesn't	pay,	venture	investing,	as	we	know	it,
doesn't	happen.

That	might	be	ok	if	there	were	other	sources	of	capital	for	new
companies.	Why	not	just	have	the	government,	or	some	large
almost-government	organization	like	Fannie	Mae,	do	the	venture
investing	instead	of	private	funds?

I'll	tell	you	why	that	wouldn't	work.	Because	then	you're	asking
government	or	almost-government	employees	to	do	the	one	thing
they	are	least	able	to	do:	take	risks.

As	anyone	who	has	worked	for	the	government	knows,	the
important	thing	is	not	to	make	the	right	choices,	but	to	make
choices	that	can	be	justified	later	if	they	fail.	If	there	is	a	safe
option,	that's	the	one	a	bureaucrat	will	choose.	But	that	is	exactly
the	wrong	way	to	do	venture	investing.	The	nature	of	the
business	means	that	you	want	to	make	terribly	risky	choices,	if
the	upside	looks	good	enough.

VCs	are	currently	paid	in	a	way	that	makes	them	focus	on	the
upside:	they	get	a	percentage	of	the	fund's	gains.	And	that	helps
overcome	their	understandable	fear	of	investing	in	a	company
run	by	nerds	who	look	like	(and	perhaps	are)	college	students.

If	VCs	weren't	allowed	to	get	rich,	they'd	behave	like
bureaucrats.	Without	hope	of	gain,	they'd	have	only	fear	of	loss.
And	so	they'd	make	the	wrong	choices.	They'd	turn	down	the
nerds	in	favor	of	the	smooth-talking	MBA	in	a	suit,	because	that
investment	would	be	easier	to	justify	later	if	it	failed.

Founders

venturecapital.html

But	even	if	you	could	somehow	redesign	venture	funding	to	work
without	allowing	VCs	to	become	rich,	there's	another	kind	of
investor	you	simply	cannot	replace:	the	startups'	founders	and
early	employees.

What	they	invest	is	their	time	and	ideas.	But	these	are	equivalent
to	money;	the	proof	is	that	investors	are	willing	(if	forced)	to
treat	them	as	interchangeable,	granting	the	same	status	to
"sweat	equity"	and	the	equity	they've	purchased	with	cash.

The	fact	that	you're	investing	time	doesn't	change	the
relationship	between	risk	and	reward.	If	you're	going	to	invest
your	time	in	something	with	a	small	chance	of	succeeding,	you'll
only	do	it	if	there	is	a	proportionately	large	payoff.	[2]	If	large
payoffs	aren't	allowed,	you	may	as	well	play	it	safe.

Like	many	startup	founders,	I	did	it	to	get	rich.	But	not	because	I
wanted	to	buy	expensive	things.	What	I	wanted	was	security.	I
wanted	to	make	enough	money	that	I	didn't	have	to	worry	about
money.	If	I'd	been	forbidden	to	make	enough	from	a	startup	to	do
this,	I	would	have	sought	security	by	some	other	means:	for
example,	by	going	to	work	for	a	big,	stable	organization	from
which	it	would	be	hard	to	get	fired.	Instead	of	busting	my	ass	in	a
startup,	I	would	have	tried	to	get	a	nice,	low-stress	job	at	a	big
research	lab,	or	tenure	at	a	university.

That's	what	everyone	does	in	societies	where	risk	isn't	rewarded.
If	you	can't	ensure	your	own	security,	the	next	best	thing	is	to
make	a	nest	for	yourself	in	some	large	organization	where	your
status	depends	mostly	on	seniority.	[3]

Even	if	we	could	somehow	replace	investors,	I	don't	see	how	we
could	replace	founders.	Investors	mainly	contribute	money,
which	in	principle	is	the	same	no	matter	what	the	source.	But	the
founders	contribute	ideas.	You	can't	replace	those.

Let's	rehearse	the	chain	of	argument	so	far.	I'm	heading	for	a
conclusion	to	which	many	readers	will	have	to	be	dragged
kicking	and	screaming,	so	I've	tried	to	make	each	link
unbreakable.	Decreasing	economic	inequality	means	taking
money	from	the	rich.	Since	risk	and	reward	are	equivalent,

#f2n
ladder.html
#f3n

decreasing	potential	rewards	automatically	decreases	people's
appetite	for	risk.	Startups	are	intrinsically	risky.	Without	the
prospect	of	rewards	proportionate	to	the	risk,	founders	will	not
invest	their	time	in	a	startup.	Founders	are	irreplaceable.	So
eliminating	economic	inequality	means	eliminating	startups.

Economic	inequality	is	not	just	a	consequence	of	startups.	It's	the
engine	that	drives	them,	in	the	same	way	a	fall	of	water	drives	a
water	mill.	People	start	startups	in	the	hope	of	becoming	much
richer	than	they	were	before.	And	if	your	society	tries	to	prevent
anyone	from	being	much	richer	than	anyone	else,	it	will	also
prevent	one	person	from	being	much	richer	at	t2	than	t1.

Growth

This	argument	applies	proportionately.	It's	not	just	that	if	you
eliminate	economic	inequality,	you	get	no	startups.	To	the	extent
you	reduce	economic	inequality,	you	decrease	the	number	of
startups.	[4]	Increase	taxes,	and	willingness	to	take	risks
decreases	in	proportion.

And	that	seems	bad	for	everyone.	New	technology	and	new	jobs
both	come	disproportionately	from	new	companies.	Indeed,	if	you
don't	have	startups,	pretty	soon	you	won't	have	established
companies	either,	just	as,	if	you	stop	having	kids,	pretty	soon	you
won't	have	any	adults.

It	sounds	benevolent	to	say	we	ought	to	reduce	economic
inequality.	When	you	phrase	it	that	way,	who	can	argue	with	you?
Inequality	has	to	be	bad,	right?	It	sounds	a	good	deal	less
benevolent	to	say	we	ought	to	reduce	the	rate	at	which	new
companies	are	founded.	And	yet	the	one	implies	the	other.

Indeed,	it	may	be	that	reducing	investors'	appetite	for	risk
doesn't	merely	kill	off	larval	startups,	but	kills	off	the	most
promising	ones	especially.	Startups	yield	faster	growth	at	greater
risk	than	established	companies.	Does	this	trend	also	hold	among
startups?	That	is,	are	the	riskiest	startups	the	ones	that	generate
most	growth	if	they	succeed?	I	suspect	the	answer	is	yes.	And
that's	a	chilling	thought,	because	it	means	that	if	you	cut
investors'	appetite	for	risk,	the	most	beneficial	startups	are	the

#f4n

first	to	go.

Not	all	rich	people	got	that	way	from	startups,	of	course.	What	if
we	let	people	get	rich	by	starting	startups,	but	taxed	away	all
other	surplus	wealth?	Wouldn't	that	at	least	decrease	inequality?

Less	than	you	might	think.	If	you	made	it	so	that	people	could
only	get	rich	by	starting	startups,	people	who	wanted	to	get	rich
would	all	start	startups.	And	that	might	be	a	great	thing.	But	I
don't	think	it	would	have	much	effect	on	the	distribution	of
wealth.	People	who	want	to	get	rich	will	do	whatever	they	have
to.	If	startups	are	the	only	way	to	do	it,	you'll	just	get	far	more
people	starting	startups.	(If	you	write	the	laws	very	carefully,	that
is.	More	likely,	you'll	just	get	a	lot	of	people	doing	things	that	can
be	made	to	look	on	paper	like	startups.)

If	we're	determined	to	eliminate	economic	inequality,	there	is	still
one	way	out:	we	could	say	that	we're	willing	to	go	ahead	and	do
without	startups.	What	would	happen	if	we	did?

At	a	minimum,	we'd	have	to	accept	lower	rates	of	technological
growth.	If	you	believe	that	large,	established	companies	could
somehow	be	made	to	develop	new	technology	as	fast	as	startups,
the	ball	is	in	your	court	to	explain	how.	(If	you	can	come	up	with
a	remotely	plausible	story,	you	can	make	a	fortune	writing
business	books	and	consulting	for	large	companies.)	[5]

Ok,	so	we	get	slower	growth.	Is	that	so	bad?	Well,	one	reason	it's
bad	in	practice	is	that	other	countries	might	not	agree	to	slow
down	with	us.	If	you're	content	to	develop	new	technologies	at	a
slower	rate	than	the	rest	of	the	world,	what	happens	is	that	you
don't	invent	anything	at	all.	Anything	you	might	discover	has
already	been	invented	elsewhere.	And	the	only	thing	you	can
offer	in	return	is	raw	materials	and	cheap	labor.	Once	you	sink
that	low,	other	countries	can	do	whatever	they	like	with	you:
install	puppet	governments,	siphon	off	your	best	workers,	use
your	women	as	prostitutes,	dump	their	toxic	waste	on	your
territory	—	all	the	things	we	do	to	poor	countries	now.	The	only
defense	is	to	isolate	yourself,	as	communist	countries	did	in	the
twentieth	century.	But	the	problem	then	is,	you	have	to	become	a
police	state	to	enforce	it.	

#f5n

Wealth	and	Power

I	realize	startups	are	not	the	main	target	of	those	who	want	to
eliminate	economic	inequality.	What	they	really	dislike	is	the	sort
of	wealth	that	becomes	self-perpetuating	through	an	alliance
with	power.	For	example,	construction	firms	that	fund	politicians'
campaigns	in	return	for	government	contracts,	or	rich	parents
who	get	their	children	into	good	colleges	by	sending	them	to
expensive	schools	designed	for	that	purpose.	But	if	you	try	to
attack	this	type	of	wealth	through	economic	policy,	it's	hard	to	hit
without	destroying	startups	as	collateral	damage.

The	problem	here	is	not	wealth,	but	corruption.	So	why	not	go
after	corruption?

We	don't	need	to	prevent	people	from	being	rich	if	we	can
prevent	wealth	from	translating	into	power.	And	there	has	been
progress	on	that	front.	Before	he	died	of	drink	in	1925,
Commodore	Vanderbilt's	wastrel	grandson	Reggie	ran	down
pedestrians	on	five	separate	occasions,	killing	two	of	them.	By
1969,	when	Ted	Kennedy	drove	off	the	bridge	at	Chappaquiddick,
the	limit	seemed	to	be	down	to	one.	Today	it	may	well	be	zero.
But	what's	changed	is	not	variation	in	wealth.	What's	changed	is
the	ability	to	translate	wealth	into	power.

How	do	you	break	the	connection	between	wealth	and	power?
Demand	transparency.	Watch	closely	how	power	is	exercised,	and
demand	an	account	of	how	decisions	are	made.	Why	aren't	all
police	interrogations	videotaped?	Why	did	36%	of	Princeton's
class	of	2007	come	from	prep	schools,	when	only	1.7%	of
American	kids	attend	them?	Why	did	the	US	really	invade	Iraq?
Why	don't	government	officials	disclose	more	about	their
finances,	and	why	only	during	their	term	of	office?

A	friend	of	mine	who	knows	a	lot	about	computer	security	says
the	single	most	important	step	is	to	log	everything.	Back	when	he
was	a	kid	trying	to	break	into	computers,	what	worried	him	most
was	the	idea	of	leaving	a	trail.	He	was	more	inconvenienced	by
the	need	to	avoid	that	than	by	any	obstacle	deliberately	put	in	his
path.

Like	all	illicit	connections,	the	connection	between	wealth	and
power	flourishes	in	secret.	Expose	all	transactions,	and	you	will
greatly	reduce	it.	Log	everything.	That's	a	strategy	that	already
seems	to	be	working,	and	it	doesn't	have	the	side	effect	of
making	your	whole	country	poor.

I	don't	think	many	people	realize	there	is	a	connection	between
economic	inequality	and	risk.	I	didn't	fully	grasp	it	till	recently.
I'd	known	for	years	of	course	that	if	one	didn't	score	in	a	startup,
the	other	alternative	was	to	get	a	cozy,	tenured	research	job.	But
I	didn't	understand	the	equation	governing	my	behavior.
Likewise,	it's	obvious	empirically	that	a	country	that	doesn't	let
people	get	rich	is	headed	for	disaster,	whether	it's	Diocletian's
Rome	or	Harold	Wilson's	Britain.	But	I	did	not	till	recently
understand	the	role	risk	played.

If	you	try	to	attack	wealth,	you	end	up	nailing	risk	as	well,	and
with	it	growth.	If	we	want	a	fairer	world,	I	think	we're	better	off
attacking	one	step	downstream,	where	wealth	turns	into	power.

Notes

[1]	Success	here	is	defined	from	the	initial	investors'	point	of
view:	either	an	IPO,	or	an	acquisition	for	more	than	the	valuation
at	the	last	round	of	funding.	The	conventional	1	in	10	success
rate	is	suspiciously	neat,	but	conversations	with	VCs	suggest	it's
roughly	correct	for	startups	overall.	Top	VC	firms	expect	to	do
better.

[2]	I'm	not	claiming	founders	sit	down	and	calculate	the	expected
after-tax	return	from	a	startup.	They're	motivated	by	examples	of
other	people	who	did	it.	And	those	examples	do	reflect	after-tax
returns.

[3]	Conjecture:	The	variation	in	wealth	in	a	(non-corrupt)	country
or	organization	will	be	inversely	proportional	to	the	prevalence	of
systems	of	seniority.	So	if	you	suppress	variation	in	wealth,
seniority	will	become	correspondingly	more	important.	So	far,	I

know	of	no	counterexamples,	though	in	very	corrupt	countries
you	may	get	both	simultaneously.	(Thanks	to	Daniel	Sobral	for
pointing	this	out.)

[4]	In	a	country	with	a	truly	feudal	economy,	you	might	be	able	to
redistribute	wealth	successfully,	because	there	are	no	startups	to
kill.

[5]	The	speed	at	which	startups	develop	new	techology	is	the
other	reason	they	pay	so	well.	As	I	explained	in	"How	to	Make
Wealth",	what	you	do	in	a	startup	is	compress	a	lifetime's	worth
of	work	into	a	few	years.	It	seems	as	dumb	to	discourage	that	as
to	discourage	risk-taking.

Thanks	to	Chris	Anderson,	Trevor	Blackwell,	Dan	Giffin,	Jessica
Livingston,	and	Evan	Williams	for	reading	drafts	of	this	essay,
and	to	Langley	Steinert,	Sangam	Pant,	and	Mike	Moritz	for
information	about	venture	investing.

wealth.html

	

What	I	Did	this	Summer
October	2005

The	first	Summer	Founders	Program	has	just	finished.	We	were
surprised	how	well	it	went.	Overall	only	about	10%	of	startups
succeed,	but	if	I	had	to	guess	now,	I'd	predict	three	or	four	of	the
eight	startups	we	funded	will	make	it.

Of	the	startups	that	needed	further	funding,	I	believe	all	have
either	closed	a	round	or	are	likely	to	soon.	Two	have	already
turned	down	(lowball)	acquisition	offers.

We	would	have	been	happy	if	just	one	of	the	eight	seemed
promising	by	the	end	of	the	summer.	What's	going	on?	Did	some
kind	of	anomaly	make	this	summer's	applicants	especially	good?
We	worry	about	that,	but	we	can't	think	of	one.	We'll	find	out	this
winter.

The	whole	summer	was	full	of	surprises.	The	best	was	that	the
hypothesis	we	were	testing	seems	to	be	correct.	Young	hackers
can	start	viable	companies.	This	is	good	news	for	two	reasons:	(a)
it's	an	encouraging	thought,	and	(b)	it	means	that	Y	Combinator,
which	is	predicated	on	the	idea,	is	not	hosed.

Age

More	precisely,	the	hypothesis	was	that	success	in	a	startup
depends	mainly	on	how	smart	and	energetic	you	are,	and	much
less	on	how	old	you	are	or	how	much	business	experience	you
have.	The	results	so	far	bear	this	out.	The	2005	summer	founders
ranged	in	age	from	18	to	28	(average	23),	and	there	is	no
correlation	between	their	ages	and	how	well	they're	doing.

This	should	not	really	be	surprising.	Bill	Gates	and	Michael	Dell
were	both	19	when	they	started	the	companies	that	made	them
famous.	Young	founders	are	not	a	new	phenomenon:	the	trend

hiring.html

began	as	soon	as	computers	got	cheap	enough	for	college	kids	to
afford	them.

Another	of	our	hypotheses	was	that	you	can	start	a	startup	on
less	money	than	most	people	think.	Other	investors	were
surprised	to	hear	the	most	we	gave	any	group	was	$20,000.	But
we	knew	it	was	possible	to	start	on	that	little	because	we	started
Viaweb	on	$10,000.

And	so	it	proved	this	summer.	Three	months'	funding	is	enough
to	get	into	second	gear.	We	had	a	demo	day	for	potential
investors	ten	weeks	in,	and	seven	of	the	eight	groups	had	a
prototype	ready	by	that	time.	One,	Reddit,	had	already	launched,
and	were	able	to	give	a	demo	of	their	live	site.

A	researcher	who	studied	the	SFP	startups	said	the	one	thing
they	had	in	common	was	that	they	all	worked	ridiculously	hard.
People	this	age	are	commonly	seen	as	lazy.	I	think	in	some	cases
it's	not	so	much	that	they	lack	the	appetite	for	work,	but	that	the
work	they're	offered	is	unappetizing.

The	experience	of	the	SFP	suggests	that	if	you	let	motivated
people	do	real	work,	they	work	hard,	whatever	their	age.	As	one
of	the	founders	said	"I'd	read	that	starting	a	startup	consumed
your	life,	but	I	had	no	idea	what	that	meant	until	I	did	it."

I'd	feel	guilty	if	I	were	a	boss	making	people	work	this	hard.	But
we're	not	these	people's	bosses.	They're	working	on	their	own
projects.	And	what	makes	them	work	is	not	us	but	their
competitors.	Like	good	athletes,	they	don't	work	hard	because
the	coach	yells	at	them,	but	because	they	want	to	win.

We	have	less	power	than	bosses,	and	yet	the	founders	work
harder	than	employees.	It	seems	like	a	win	for	everyone.	The
only	catch	is	that	we	get	on	average	only	about	5-7%	of	the
upside,	while	an	employer	gets	nearly	all	of	it.	(We're	counting	on
it	being	5-7%	of	a	much	larger	number.)

As	well	as	working	hard,	the	groups	all	turned	out	to	be
extraordinarily	responsible.	I	can't	think	of	a	time	when	one
failed	to	do	something	they'd	promised	to,	even	by	being	late	for

http://reddit.com/

an	appointment.	This	is	another	lesson	the	world	has	yet	to	learn.
One	of	the	founders	discovered	that	the	hardest	part	of	arranging
a	meeting	with	executives	at	a	big	cell	phone	carrier	was	getting
a	rental	company	to	rent	him	a	car,	because	he	was	too	young.

I	think	the	problem	here	is	much	the	same	as	with	the	apparent
laziness	of	people	this	age.	They	seem	lazy	because	the	work
they're	given	is	pointless,	and	they	act	irresponsible	because
they're	not	given	any	power.	Some	of	them,	anyway.	We	only	have
a	sample	size	of	about	twenty,	but	it	seems	so	far	that	if	you	let
people	in	their	early	twenties	be	their	own	bosses,	they	rise	to
the	occasion.

Morale

The	summer	founders	were	as	a	rule	very	idealistic.	They	also
wanted	very	much	to	get	rich.	These	qualities	might	seem
incompatible,	but	they're	not.	These	guys	want	to	get	rich,	but
they	want	to	do	it	by	changing	the	world.	They	wouldn't	(well,
seven	of	the	eight	groups	wouldn't)	be	interested	in	making
money	by	speculating	in	stocks.	They	want	to	make	something
people	use.

I	think	this	makes	them	more	effective	as	founders.	As	hard	as
people	will	work	for	money,	they'll	work	harder	for	a	cause.	And
since	success	in	a	startup	depends	so	much	on	motivation,	the
paradoxical	result	is	that	the	people	likely	to	make	the	most
money	are	those	who	aren't	in	it	just	for	the	money.

The	founders	of	Kiko,	for	example,	are	working	on	an	Ajax
calendar.	They	want	to	get	rich,	but	they	pay	more	attention	to
design	than	they	would	if	that	were	their	only	motivation.	You
can	tell	just	by	looking	at	it.

I	never	considered	it	till	this	summer,	but	this	might	be	another
reason	startups	run	by	hackers	tend	to	do	better	than	those	run
by	MBAs.	Perhaps	it's	not	just	that	hackers	understand
technology	better,	but	that	they're	driven	by	more	powerful
motivations.	Microsoft,	as	I've	said	before,	is	a	dangerously
misleading	example.	Their	mean	corporate	culture	only	works	for
monopolies.	Google	is	a	better	model.

http://kiko.com/

Considering	that	the	summer	founders	are	the	sharks	in	this
ocean,	we	were	surprised	how	frightened	most	of	them	were	of
competitors.	But	now	that	I	think	of	it,	we	were	just	as	frightened
when	we	started	Viaweb.	For	the	first	year,	our	initial	reaction	to
news	of	a	competitor	was	always:	we're	doomed.	Just	as	a
hypochondriac	magnifies	his	symptoms	till	he's	convinced	he	has
some	terrible	disease,	when	you're	not	used	to	competitors	you
magnify	them	into	monsters.

Here's	a	handy	rule	for	startups:	competitors	are	rarely	as
dangerous	as	they	seem.	Most	will	self-destruct	before	you	can
destroy	them.	And	it	certainly	doesn't	matter	how	many	of	them
there	are,	any	more	than	it	matters	to	the	winner	of	a	marathon
how	many	runners	are	behind	him.

"It's	a	crowded	market,"	I	remember	one	founder	saying
worriedly.

"Are	you	the	current	leader?"	I	asked.

"Yes."

"Is	anyone	able	to	develop	software	faster	than	you?"

"Probably	not."

"Well,	if	you're	ahead	now,	and	you're	the	fastest,	then	you'll	stay
ahead.	What	difference	does	it	make	how	many	others	there
are?"

Another	group	was	worried	when	they	realized	they	had	to
rewrite	their	software	from	scratch.	I	told	them	it	would	be	a	bad
sign	if	they	didn't.	The	main	function	of	your	initial	version	is	to
be	rewritten.

That's	why	we	advise	groups	to	ignore	issues	like	scalability,
internationalization,	and	heavy-duty	security	at	first.	[1]	I	can
imagine	an	advocate	of	"best	practices"	saying	these	ought	to	be
considered	from	the	start.	And	he'd	be	right,	except	that	they
interfere	with	the	primary	function	of	software	in	a	startup:	to	be

a	vehicle	for	experimenting	with	its	own	design.	Having	to
retrofit	internationalization	or	scalability	is	a	pain,	certainly.	The
only	bigger	pain	is	not	needing	to,	because	your	initial	version
was	too	big	and	rigid	to	evolve	into	something	users	wanted.

I	suspect	this	is	another	reason	startups	beat	big	companies.
Startups	can	be	irresponsible	and	release	version	1s	that	are
light	enough	to	evolve.	In	big	companies,	all	the	pressure	is	in
the	direction	of	over-engineering.

What	Got	Learned

One	thing	we	were	curious	about	this	summer	was	where	these
groups	would	need	help.	That	turned	out	to	vary	a	lot.	Some	we
helped	with	technical	advice--	for	example,	about	how	to	set	up
an	application	to	run	on	multiple	servers.	Most	we	helped	with
strategy	questions,	like	what	to	patent,	and	what	to	charge	for
and	what	to	give	away.	Nearly	all	wanted	advice	about	dealing
with	future	investors:	how	much	money	should	they	take	and
what	kind	of	terms	should	they	expect?

However,	all	the	groups	quickly	learned	how	to	deal	with	stuff
like	patents	and	investors.	These	problems	aren't	intrinsically
difficult,	just	unfamiliar.

It	was	surprising--	slightly	frightening	even--	how	fast	they
learned.	The	weekend	before	the	demo	day	for	investors,	we	had
a	practice	session	where	all	the	groups	gave	their	presentations.
They	were	all	terrible.	We	tried	to	explain	how	to	make	them
better,	but	we	didn't	have	much	hope.	So	on	demo	day	I	told	the
assembled	angels	and	VCs	that	these	guys	were	hackers,	not
MBAs,	and	so	while	their	software	was	good,	we	should	not
expect	slick	presentations	from	them.

The	groups	then	proceeded	to	give	fabulously	slick	presentations.
Gone	were	the	mumbling	recitations	of	lists	of	features.	It	was	as
if	they'd	spent	the	past	week	at	acting	school.	I	still	don't	know
how	they	did	it.

Perhaps	watching	each	others'	presentations	helped	them	see
what	they'd	been	doing	wrong.	Just	as	happens	in	college,	the

summer	founders	learned	a	lot	from	one	another--	maybe	more
than	they	learned	from	us.	A	lot	of	the	problems	they	face	are	the
same,	from	dealing	with	investors	to	hacking	Javascript.

I	don't	want	to	give	the	impression	there	were	no	problems	this
summer.	A	lot	went	wrong,	as	usually	happens	with	startups.	One
group	got	an	"exploding	term-sheet"	from	some	VCs.	Pretty	much
all	the	groups	who	had	dealings	with	big	companies	found	that
big	companies	do	everything	infinitely	slowly.	(This	is	to	be
expected.	If	big	companies	weren't	incapable,	there	would	be	no
room	for	startups	to	exist.)	And	of	course	there	were	the	usual
nightmares	associated	with	servers.	

In	short,	the	disasters	this	summer	were	just	the	usual	childhood
diseases.	Some	of	this	summer's	eight	startups	will	probably	die
eventually;	it	would	be	extraordinary	if	all	eight	succeeded.	But
what	kills	them	will	not	be	dramatic,	external	threats,	but	a
mundane,	internal	one:	not	getting	enough	done.

So	far,	though,	the	news	is	all	good.	In	fact,	we	were	surprised
how	much	fun	the	summer	was	for	us.	The	main	reason	was	how
much	we	liked	the	founders.	They're	so	earnest	and	hard-
working.	They	seem	to	like	us	too.	And	this	illustrates	another
advantage	of	investing	over	hiring:	our	relationship	with	them	is
way	better	than	it	would	be	between	a	boss	and	an	employee.	Y
Combinator	ends	up	being	more	like	an	older	brother	than	a
parent.

I	was	surprised	how	much	time	I	spent	making	introductions.
Fortunately	I	discovered	that	when	a	startup	needed	to	talk	to
someone,	I	could	usually	get	to	the	right	person	by	at	most	one
hop.	I	remember	wondering,	how	did	my	friends	get	to	be	so
eminent?	and	a	second	later	realizing:	shit,	I'm	forty.

Another	surprise	was	that	the	three-month	batch	format,	which
we	were	forced	into	by	the	constraints	of	the	summer,	turned	out
to	be	an	advantage.	When	we	started	Y	Combinator,	we	planned
to	invest	the	way	other	venture	firms	do:	as	proposals	came	in,
we'd	evaluate	them	and	decide	yes	or	no.	The	SFP	was	just	an
experiment	to	get	things	started.	But	it	worked	so	well	that	we
plan	to	do	all	our	investing	this	way,	one	cycle	in	the	summer	and

http://www.ventureblog.com/articles/indiv/2003/000024.html
http://ycombinator.com/funding.html

one	in	winter.	It's	more	efficient	for	us,	and	better	for	the
startups	too.

Several	groups	said	our	weekly	dinners	saved	them	from	a
common	problem	afflicting	startups:	working	so	hard	that	one
has	no	social	life.	(I	remember	that	part	all	too	well.)	This	way,
they	were	guaranteed	a	social	event	at	least	once	a	week.

Independence

I've	heard	Y	Combinator	described	as	an	"incubator."	Actually
we're	the	opposite:	incubators	exert	more	control	than	ordinary
VCs,	and	we	make	a	point	of	exerting	less.	Among	other	things,
incubators	usually	make	you	work	in	their	office--	that's	where
the	word	"incubator"	comes	from.	That	seems	the	wrong	model.
If	investors	get	too	involved,	they	smother	one	of	the	most
powerful	forces	in	a	startup:	the	feeling	that	it's	your	own
company.

Incubators	were	conspicuous	failures	during	the	Bubble.	There's
still	debate	about	whether	this	was	because	of	the	Bubble,	or
because	they're	a	bad	idea.	My	vote	is	they're	a	bad	idea.	I	think
they	fail	because	they	select	for	the	wrong	people.	When	we
were	starting	a	startup,	we	would	never	have	taken	funding	from
an	"incubator."	We	can	find	office	space,	thanks;	just	give	us	the
money.	And	people	with	that	attitude	are	the	ones	likely	to
succeed	in	startups.

Indeed,	one	quality	all	the	founders	shared	this	summer	was	a
spirit	of	independence.	I've	been	wondering	about	that.	Are	some
people	just	a	lot	more	independent	than	others,	or	would
everyone	be	this	way	if	they	were	allowed	to?

As	with	most	nature/nurture	questions,	the	answer	is	probably:
some	of	each.	But	my	main	conclusion	from	the	summer	is	that
there's	more	environment	in	the	mix	than	most	people	realize.	I
could	see	that	from	how	the	founders'	attitudes	changed	during
the	summer.	Most	were	emerging	from	twenty	or	so	years	of
being	told	what	to	do.	They	seemed	a	little	surprised	at	having
total	freedom.	But	they	grew	into	it	really	quickly;	some	of	these
guys	now	seem	about	four	inches	taller	(metaphorically)	than

they	did	at	the	beginning	of	the	summer.

When	we	asked	the	summer	founders	what	surprised	them	most
about	starting	a	company,	one	said	"the	most	shocking	thing	is
that	it	worked."

It	will	take	more	experience	to	know	for	sure,	but	my	guess	is
that	a	lot	of	hackers	could	do	this--	that	if	you	put	people	in	a
position	of	independence,	they	develop	the	qualities	they	need.
Throw	them	off	a	cliff,	and	most	will	find	on	the	way	down	that
they	have	wings.

The	reason	this	is	news	to	anyone	is	that	the	same	forces	work	in
the	other	direction	too.	Most	hackers	are	employees,	and	this
molds	you	into	someone	to	whom	starting	a	startup	seems
impossible	as	surely	as	starting	a	startup	molds	you	into	someone
who	can	handle	it.

If	I'm	right,	"hacker"	will	mean	something	different	in	twenty
years	than	it	does	now.	Increasingly	it	will	mean	the	people	who
run	the	company.	Y	Combinator	is	just	accelerating	a	process
that	would	have	happened	anyway.	Power	is	shifting	from	the
people	who	deal	with	money	to	the	people	who	create	technology,
and	if	our	experience	this	summer	is	any	guide,	this	will	be	a
good	thing.

Notes

[1]	By	heavy-duty	security	I	mean	efforts	to	protect	against	truly
determined	attackers.

The	image	shows	us,	the	2005	summer	founders,	and	Smartleaf
co-founders	Mark	Nitzberg	and	Olin	Shivers	at	the	30-foot	table
Kate	Courteau	designed	for	us.	Photo	by	Alex	Lewin.

Thanks	to	Sarah	Harlin,	Steve	Huffman,	Jessica	Livingston,	Zak
Stone,	and	Aaron	Swartz	for	reading	drafts	of	this.	

http://software.ericsink.com/entries/No_Great_Hackers.html
https://sep.turbifycdn.com/ty/cdn/paulgraham/sfptable.jpg?t=1688221954&

	

Ideas	for	Startups
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	Venture	Capital	Squeeze
November	2005

In	the	next	few	years,	venture	capital	funds	will	find	themselves
squeezed	from	four	directions.	They're	already	stuck	with	a
seller's	market,	because	of	the	huge	amounts	they	raised	at	the
end	of	the	Bubble	and	still	haven't	invested.	This	by	itself	is	not
the	end	of	the	world.	In	fact,	it's	just	a	more	extreme	version	of
the	norm	in	the	VC	business:	too	much	money	chasing	too	few
deals.

Unfortunately,	those	few	deals	now	want	less	and	less	money,
because	it's	getting	so	cheap	to	start	a	startup.	The	four	causes:
open	source,	which	makes	software	free;	Moore's	law,	which
makes	hardware	geometrically	closer	to	free;	the	Web,	which
makes	promotion	free	if	you're	good;	and	better	languages,
which	make	development	a	lot	cheaper.

When	we	started	our	startup	in	1995,	the	first	three	were	our
biggest	expenses.	We	had	to	pay	$5000	for	the	Netscape
Commerce	Server,	the	only	software	that	then	supported	secure
http	connections.	We	paid	$3000	for	a	server	with	a	90	MHz
processor	and	32	meg	of	memory.	And	we	paid	a	PR	firm	about
$30,000	to	promote	our	launch.

Now	you	could	get	all	three	for	nothing.	You	can	get	the	software
for	free;	people	throw	away	computers	more	powerful	than	our
first	server;	and	if	you	make	something	good	you	can	generate
ten	times	as	much	traffic	by	word	of	mouth	online	than	our	first
PR	firm	got	through	the	print	media.

And	of	course	another	big	change	for	the	average	startup	is	that
programming	languages	have	improved--	or	rather,	the	median
language	has.	At	most	startups	ten	years	ago,	software
development	meant	ten	programmers	writing	code	in	C++.	Now
the	same	work	might	be	done	by	one	or	two	using	Python	or

http://www.archub.org/dilbertvc.gif
avg.html

Ruby.

During	the	Bubble,	a	lot	of	people	predicted	that	startups	would
outsource	their	development	to	India.	I	think	a	better	model	for
the	future	is	David	Heinemeier	Hansson,	who	outsourced	his
development	to	a	more	powerful	language	instead.	A	lot	of	well-
known	applications	are	now,	like	BaseCamp,	written	by	just	one
programmer.	And	one	guy	is	more	than	10x	cheaper	than	ten,
because	(a)	he	won't	waste	any	time	in	meetings,	and	(b)	since
he's	probably	a	founder,	he	can	pay	himself	nothing.

Because	starting	a	startup	is	so	cheap,	venture	capitalists	now
often	want	to	give	startups	more	money	than	the	startups	want	to
take.	VCs	like	to	invest	several	million	at	a	time.	But	as	one	VC
told	me	after	a	startup	he	funded	would	only	take	about	half	a
million,	"I	don't	know	what	we're	going	to	do.	Maybe	we'll	just
have	to	give	some	of	it	back."	Meaning	give	some	of	the	fund
back	to	the	institutional	investors	who	supplied	it,	because	it
wasn't	going	to	be	possible	to	invest	it	all.

Into	this	already	bad	situation	comes	the	third	problem:
Sarbanes-Oxley.	Sarbanes-Oxley	is	a	law,	passed	after	the	Bubble,
that	drastically	increases	the	regulatory	burden	on	public
companies.	And	in	addition	to	the	cost	of	compliance,	which	is	at
least	two	million	dollars	a	year,	the	law	introduces	frightening
legal	exposure	for	corporate	officers.	An	experienced	CFO	I	know
said	flatly:	"I	would	not	want	to	be	CFO	of	a	public	company
now."

You	might	think	that	responsible	corporate	governance	is	an	area
where	you	can't	go	too	far.	But	you	can	go	too	far	in	any	law,	and
this	remark	convinced	me	that	Sarbanes-Oxley	must	have.	This
CFO	is	both	the	smartest	and	the	most	upstanding	money	guy	I
know.	If	Sarbanes-Oxley	deters	people	like	him	from	being	CFOs
of	public	companies,	that's	proof	enough	that	it's	broken.

Largely	because	of	Sarbanes-Oxley,	few	startups	go	public	now.
For	all	practical	purposes,	succeeding	now	equals	getting
bought.	Which	means	VCs	are	now	in	the	business	of	finding
promising	little	2-3	man	startups	and	pumping	them	up	into
companies	that	cost	$100	million	to	acquire.	They	didn't	mean	to

be	in	this	business;	it's	just	what	their	business	has	evolved	into.

Hence	the	fourth	problem:	the	acquirers	have	begun	to	realize
they	can	buy	wholesale.	Why	should	they	wait	for	VCs	to	make
the	startups	they	want	more	expensive?	Most	of	what	the	VCs
add,	acquirers	don't	want	anyway.	The	acquirers	already	have
brand	recognition	and	HR	departments.	What	they	really	want	is
the	software	and	the	developers,	and	that's	what	the	startup	is	in
the	early	phase:	concentrated	software	and	developers.

Google,	typically,	seems	to	have	been	the	first	to	figure	this	out.
"Bring	us	your	startups	early,"	said	Google's	speaker	at	the
Startup	School.	They're	quite	explicit	about	it:	they	like	to
acquire	startups	at	just	the	point	where	they	would	do	a	Series	A
round.	(The	Series	A	round	is	the	first	round	of	real	VC	funding;
it	usually	happens	in	the	first	year.)	It	is	a	brilliant	strategy,	and
one	that	other	big	technology	companies	will	no	doubt	try	to
duplicate.	Unless	they	want	to	have	still	more	of	their	lunch
eaten	by	Google.

Of	course,	Google	has	an	advantage	in	buying	startups:	a	lot	of
the	people	there	are	rich,	or	expect	to	be	when	their	options	vest.
Ordinary	employees	find	it	very	hard	to	recommend	an
acquisition;	it's	just	too	annoying	to	see	a	bunch	of	twenty	year
olds	get	rich	when	you're	still	working	for	salary.	Even	if	it's	the
right	thing	for	your	company	to	do.

The	Solution(s)

Bad	as	things	look	now,	there	is	a	way	for	VCs	to	save
themselves.	They	need	to	do	two	things,	one	of	which	won't
surprise	them,	and	another	that	will	seem	an	anathema.

Let's	start	with	the	obvious	one:	lobby	to	get	Sarbanes-Oxley
loosened.	This	law	was	created	to	prevent	future	Enrons,	not	to
destroy	the	IPO	market.	Since	the	IPO	market	was	practically
dead	when	it	passed,	few	saw	what	bad	effects	it	would	have.	But
now	that	technology	has	recovered	from	the	last	bust,	we	can	see
clearly	what	a	bottleneck	Sarbanes-Oxley	has	become.

Startups	are	fragile	plants—seedlings,	in	fact.	These	seedlings

http://startupschool.org/

are	worth	protecting,	because	they	grow	into	the	trees	of	the
economy.	Much	of	the	economy's	growth	is	their	growth.	I	think
most	politicians	realize	that.	But	they	don't	realize	just	how
fragile	startups	are,	and	how	easily	they	can	become	collateral
damage	of	laws	meant	to	fix	some	other	problem.

Still	more	dangerously,	when	you	destroy	startups,	they	make
very	little	noise.	If	you	step	on	the	toes	of	the	coal	industry,	you'll
hear	about	it.	But	if	you	inadvertantly	squash	the	startup
industry,	all	that	happens	is	that	the	founders	of	the	next	Google
stay	in	grad	school	instead	of	starting	a	company.

My	second	suggestion	will	seem	shocking	to	VCs:	let	founders
cash	out	partially	in	the	Series	A	round.	At	the	moment,	when
VCs	invest	in	a	startup,	all	the	stock	they	get	is	newly	issued	and
all	the	money	goes	to	the	company.	They	could	buy	some	stock
directly	from	the	founders	as	well.

Most	VCs	have	an	almost	religious	rule	against	doing	this.	They
don't	want	founders	to	get	a	penny	till	the	company	is	sold	or
goes	public.	VCs	are	obsessed	with	control,	and	they	worry	that
they'll	have	less	leverage	over	the	founders	if	the	founders	have
any	money.

This	is	a	dumb	plan.	In	fact,	letting	the	founders	sell	a	little	stock
early	would	generally	be	better	for	the	company,	because	it
would	cause	the	founders'	attitudes	toward	risk	to	be	aligned
with	the	VCs'.	As	things	currently	work,	their	attitudes	toward
risk	tend	to	be	diametrically	opposed:	the	founders,	who	have
nothing,	would	prefer	a	100%	chance	of	$1	million	to	a	20%
chance	of	$10	million,	while	the	VCs	can	afford	to	be	"rational"
and	prefer	the	latter.

Whatever	they	say,	the	reason	founders	are	selling	their
companies	early	instead	of	doing	Series	A	rounds	is	that	they	get
paid	up	front.	That	first	million	is	just	worth	so	much	more	than
the	subsequent	ones.	If	founders	could	sell	a	little	stock	early,
they'd	be	happy	to	take	VC	money	and	bet	the	rest	on	a	bigger
outcome.

So	why	not	let	the	founders	have	that	first	million,	or	at	least	half

million?	The	VCs	would	get	same	number	of	shares	for	the
money.	So	what	if	some	of	the	money	would	go	to	the	founders
instead	of	the	company?

Some	VCs	will	say	this	is	unthinkable—that	they	want	all	their
money	to	be	put	to	work	growing	the	company.	But	the	fact	is,
the	huge	size	of	current	VC	investments	is	dictated	by	the
structure	of	VC	funds,	not	the	needs	of	startups.	Often	as	not
these	large	investments	go	to	work	destroying	the	company
rather	than	growing	it.

The	angel	investors	who	funded	our	startup	let	the	founders	sell
some	stock	directly	to	them,	and	it	was	a	good	deal	for	everyone.
The	angels	made	a	huge	return	on	that	investment,	so	they're
happy.	And	for	us	founders	it	blunted	the	terrifying	all-or-
nothingness	of	a	startup,	which	in	its	raw	form	is	more	a
distraction	than	a	motivator.

If	VCs	are	frightened	at	the	idea	of	letting	founders	partially	cash
out,	let	me	tell	them	something	still	more	frightening:	you	are
now	competing	directly	with	Google.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,	and
Robert	Morris	for	reading	drafts	of	this.

venturecapital.html

	

How	to	Fund	a	Startup
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

November	2005

Venture	funding	works	like	gears.	A	typical	startup	goes	through
several	rounds	of	funding,	and	at	each	round	you	want	to	take
just	enough	money	to	reach	the	speed	where	you	can	shift	into
the	next	gear.

Few	startups	get	it	quite	right.	Many	are	underfunded.	A	few	are
overfunded,	which	is	like	trying	to	start	driving	in	third	gear.

I	think	it	would	help	founders	to	understand	funding	better—not
just	the	mechanics	of	it,	but	what	investors	are	thinking.	I	was
surprised	recently	when	I	realized	that	all	the	worst	problems	we
faced	in	our	startup	were	due	not	to	competitors,	but	investors.
Dealing	with	competitors	was	easy	by	comparison.

I	don't	mean	to	suggest	that	our	investors	were	nothing	but	a
drag	on	us.	They	were	helpful	in	negotiating	deals,	for	example.	I
mean	more	that	conflicts	with	investors	are	particularly	nasty.
Competitors	punch	you	in	the	jaw,	but	investors	have	you	by	the
balls.

Apparently	our	situation	was	not	unusual.	And	if	trouble	with
investors	is	one	of	the	biggest	threats	to	a	startup,	managing
them	is	one	of	the	most	important	skills	founders	need	to	learn.

Let's	start	by	talking	about	the	five	sources	of	startup	funding.
Then	we'll	trace	the	life	of	a	hypothetical	(very	fortunate)	startup
as	it	shifts	gears	through	successive	rounds.

Friends	and	Family

A	lot	of	startups	get	their	first	funding	from	friends	and	family.

http://ycombinator.com/apply.html

Excite	did,	for	example:	after	the	founders	graduated	from
college,	they	borrowed	$15,000	from	their	parents	to	start	a
company.	With	the	help	of	some	part-time	jobs	they	made	it	last
18	months.

If	your	friends	or	family	happen	to	be	rich,	the	line	blurs	between
them	and	angel	investors.	At	Viaweb	we	got	our	first	$10,000	of
seed	money	from	our	friend	Julian,	but	he	was	sufficiently	rich
that	it's	hard	to	say	whether	he	should	be	classified	as	a	friend	or
angel.	He	was	also	a	lawyer,	which	was	great,	because	it	meant
we	didn't	have	to	pay	legal	bills	out	of	that	initial	small	sum.

The	advantage	of	raising	money	from	friends	and	family	is	that
they're	easy	to	find.	You	already	know	them.	There	are	three
main	disadvantages:	you	mix	together	your	business	and
personal	life;	they	will	probably	not	be	as	well	connected	as
angels	or	venture	firms;	and	they	may	not	be	accredited
investors,	which	could	complicate	your	life	later.

The	SEC	defines	an	"accredited	investor"	as	someone	with	over	a
million	dollars	in	liquid	assets	or	an	income	of	over	$200,000	a
year.	The	regulatory	burden	is	much	lower	if	a	company's
shareholders	are	all	accredited	investors.	Once	you	take	money
from	the	general	public	you're	more	restricted	in	what	you	can
do.	[1]

A	startup's	life	will	be	more	complicated,	legally,	if	any	of	the
investors	aren't	accredited.	In	an	IPO,	it	might	not	merely	add
expense,	but	change	the	outcome.	A	lawyer	I	asked	about	it	said:

When	the	company	goes	public,	the	SEC	will
carefully	study	all	prior	issuances	of	stock	by	the
company	and	demand	that	it	take	immediate	action
to	cure	any	past	violations	of	securities	laws.	Those
remedial	actions	can	delay,	stall	or	even	kill	the	IPO.

Of	course	the	odds	of	any	given	startup	doing	an	IPO	are	small.
But	not	as	small	as	they	might	seem.	A	lot	of	startups	that	end	up
going	public	didn't	seem	likely	to	at	first.	(Who	could	have
guessed	that	the	company	Wozniak	and	Jobs	started	in	their
spare	time	selling	plans	for	microcomputers	would	yield	one	of

#f1n

the	biggest	IPOs	of	the	decade?)	Much	of	the	value	of	a	startup
consists	of	that	tiny	probability	multiplied	by	the	huge	outcome.

It	wasn't	because	they	weren't	accredited	investors	that	I	didn't
ask	my	parents	for	seed	money,	though.	When	we	were	starting
Viaweb,	I	didn't	know	about	the	concept	of	an	accredited
investor,	and	didn't	stop	to	think	about	the	value	of	investors'
connections.	The	reason	I	didn't	take	money	from	my	parents
was	that	I	didn't	want	them	to	lose	it.

Consulting

Another	way	to	fund	a	startup	is	to	get	a	job.	The	best	sort	of	job
is	a	consulting	project	in	which	you	can	build	whatever	software
you	wanted	to	sell	as	a	startup.	Then	you	can	gradually	transform
yourself	from	a	consulting	company	into	a	product	company,	and
have	your	clients	pay	your	development	expenses.

This	is	a	good	plan	for	someone	with	kids,	because	it	takes	most
of	the	risk	out	of	starting	a	startup.	There	never	has	to	be	a	time
when	you	have	no	revenues.	Risk	and	reward	are	usually
proportionate,	however:	you	should	expect	a	plan	that	cuts	the
risk	of	starting	a	startup	also	to	cut	the	average	return.	In	this
case,	you	trade	decreased	financial	risk	for	increased	risk	that
your	company	won't	succeed	as	a	startup.

But	isn't	the	consulting	company	itself	a	startup?	No,	not
generally.	A	company	has	to	be	more	than	small	and	newly
founded	to	be	a	startup.	There	are	millions	of	small	businesses	in
America,	but	only	a	few	thousand	are	startups.	To	be	a	startup,	a
company	has	to	be	a	product	business,	not	a	service	business.	By
which	I	mean	not	that	it	has	to	make	something	physical,	but	that
it	has	to	have	one	thing	it	sells	to	many	people,	rather	than	doing
custom	work	for	individual	clients.	Custom	work	doesn't	scale.	To
be	a	startup	you	need	to	be	the	band	that	sells	a	million	copies	of
a	song,	not	the	band	that	makes	money	by	playing	at	individual
weddings	and	bar	mitzvahs.

The	trouble	with	consulting	is	that	clients	have	an	awkward	habit
of	calling	you	on	the	phone.	Most	startups	operate	close	to	the
margin	of	failure,	and	the	distraction	of	having	to	deal	with

clients	could	be	enough	to	put	you	over	the	edge.	Especially	if
you	have	competitors	who	get	to	work	full	time	on	just	being	a
startup.

So	you	have	to	be	very	disciplined	if	you	take	the	consulting
route.	You	have	to	work	actively	to	prevent	your	company
growing	into	a	"weed	tree,"	dependent	on	this	source	of	easy	but
low-margin	money.	[2]

Indeed,	the	biggest	danger	of	consulting	may	be	that	it	gives	you
an	excuse	for	failure.	In	a	startup,	as	in	grad	school,	a	lot	of	what
ends	up	driving	you	are	the	expectations	of	your	family	and
friends.	Once	you	start	a	startup	and	tell	everyone	that's	what
you're	doing,	you're	now	on	a	path	labelled	"get	rich	or	bust."
You	now	have	to	get	rich,	or	you've	failed.

Fear	of	failure	is	an	extraordinarily	powerful	force.	Usually	it
prevents	people	from	starting	things,	but	once	you	publish	some
definite	ambition,	it	switches	directions	and	starts	working	in
your	favor.	I	think	it's	a	pretty	clever	piece	of	jiujitsu	to	set	this
irresistible	force	against	the	slightly	less	immovable	object	of
becoming	rich.	You	won't	have	it	driving	you	if	your	stated
ambition	is	merely	to	start	a	consulting	company	that	you	will
one	day	morph	into	a	startup.

An	advantage	of	consulting,	as	a	way	to	develop	a	product,	is	that
you	know	you're	making	something	at	least	one	customer	wants.
But	if	you	have	what	it	takes	to	start	a	startup	you	should	have
sufficient	vision	not	to	need	this	crutch.

Angel	Investors

Angels	are	individual	rich	people.	The	word	was	first	used	for
backers	of	Broadway	plays,	but	now	applies	to	individual
investors	generally.	Angels	who've	made	money	in	technology	are
preferable,	for	two	reasons:	they	understand	your	situation,	and
they're	a	source	of	contacts	and	advice.

The	contacts	and	advice	can	be	more	important	than	the	money.
When	del.icio.us	took	money	from	investors,	they	took	money
from,	among	others,	Tim	O'Reilly.	The	amount	he	put	in	was

#f2n

small	compared	to	the	VCs	who	led	the	round,	but	Tim	is	a	smart
and	influential	guy	and	it's	good	to	have	him	on	your	side.

You	can	do	whatever	you	want	with	money	from	consulting	or
friends	and	family.	With	angels	we're	now	talking	about	venture
funding	proper,	so	it's	time	to	introduce	the	concept	of	exit
strategy.	Younger	would-be	founders	are	often	surprised	that
investors	expect	them	either	to	sell	the	company	or	go	public.
The	reason	is	that	investors	need	to	get	their	capital	back.	They'll
only	consider	companies	that	have	an	exit	strategy—meaning
companies	that	could	get	bought	or	go	public.

This	is	not	as	selfish	as	it	sounds.	There	are	few	large,	private
technology	companies.	Those	that	don't	fail	all	seem	to	get
bought	or	go	public.	The	reason	is	that	employees	are	investors
too—of	their	time—and	they	want	just	as	much	to	be	able	to	cash
out.	If	your	competitors	offer	employees	stock	options	that	might
make	them	rich,	while	you	make	it	clear	you	plan	to	stay	private,
your	competitors	will	get	the	best	people.	So	the	principle	of	an
"exit"	is	not	just	something	forced	on	startups	by	investors,	but
part	of	what	it	means	to	be	a	startup.

Another	concept	we	need	to	introduce	now	is	valuation.	When
someone	buys	shares	in	a	company,	that	implicitly	establishes	a
value	for	it.	If	someone	pays	$20,000	for	10%	of	a	company,	the
company	is	in	theory	worth	$200,000.	I	say	"in	theory"	because
in	early	stage	investing,	valuations	are	voodoo.	As	a	company
gets	more	established,	its	valuation	gets	closer	to	an	actual
market	value.	But	in	a	newly	founded	startup,	the	valuation
number	is	just	an	artifact	of	the	respective	contributions	of
everyone	involved.

Startups	often	"pay"	investors	who	will	help	the	company	in	some
way	by	letting	them	invest	at	low	valuations.	If	I	had	a	startup
and	Steve	Jobs	wanted	to	invest	in	it,	I'd	give	him	the	stock	for
$10,	just	to	be	able	to	brag	that	he	was	an	investor.
Unfortunately,	it's	impractical	(if	not	illegal)	to	adjust	the
valuation	of	the	company	up	and	down	for	each	investor.
Startups'	valuations	are	supposed	to	rise	over	time.	So	if	you're
going	to	sell	cheap	stock	to	eminent	angels,	do	it	early,	when	it's
natural	for	the	company	to	have	a	low	valuation.

Some	angel	investors	join	together	in	syndicates.	Any	city	where
people	start	startups	will	have	one	or	more	of	them.	In	Boston
the	biggest	is	the	Common	Angels.	In	the	Bay	Area	it's	the	Band
of	Angels.	You	can	find	groups	near	you	through	the	Angel
Capital	Association.	[3]	However,	most	angel	investors	don't
belong	to	these	groups.	In	fact,	the	more	prominent	the	angel,
the	less	likely	they	are	to	belong	to	a	group.

Some	angel	groups	charge	you	money	to	pitch	your	idea	to	them.
Needless	to	say,	you	should	never	do	this.

One	of	the	dangers	of	taking	investment	from	individual	angels,
rather	than	through	an	angel	group	or	investment	firm,	is	that
they	have	less	reputation	to	protect.	A	big-name	VC	firm	will	not
screw	you	too	outrageously,	because	other	founders	would	avoid
them	if	word	got	out.	With	individual	angels	you	don't	have	this
protection,	as	we	found	to	our	dismay	in	our	own	startup.	In
many	startups'	lives	there	comes	a	point	when	you're	at	the
investors'	mercy—when	you're	out	of	money	and	the	only	place	to
get	more	is	your	existing	investors.	When	we	got	into	such	a
scrape,	our	investors	took	advantage	of	it	in	a	way	that	a	name-
brand	VC	probably	wouldn't	have.

Angels	have	a	corresponding	advantage,	however:	they're	also
not	bound	by	all	the	rules	that	VC	firms	are.	And	so	they	can,	for
example,	allow	founders	to	cash	out	partially	in	a	funding	round,
by	selling	some	of	their	stock	directly	to	the	investors.	I	think	this
will	become	more	common;	the	average	founder	is	eager	to	do	it,
and	selling,	say,	half	a	million	dollars	worth	of	stock	will	not,	as
VCs	fear,	cause	most	founders	to	be	any	less	committed	to	the
business.

The	same	angels	who	tried	to	screw	us	also	let	us	do	this,	and	so
on	balance	I'm	grateful	rather	than	angry.	(As	in	families,
relations	between	founders	and	investors	can	be	complicated.)

The	best	way	to	find	angel	investors	is	through	personal
introductions.	You	could	try	to	cold-call	angel	groups	near	you,
but	angels,	like	VCs,	will	pay	more	attention	to	deals
recommended	by	someone	they	respect.

http://commonangels.com/home.html
http://bandangels.com/
http://angelcapitalassociation.org/
#f3n

Deal	terms	with	angels	vary	a	lot.	There	are	no	generally
accepted	standards.	Sometimes	angels'	deal	terms	are	as
fearsome	as	VCs'.	Other	angels,	particularly	in	the	earliest
stages,	will	invest	based	on	a	two-page	agreement.

Angels	who	only	invest	occasionally	may	not	themselves	know
what	terms	they	want.	They	just	want	to	invest	in	this	startup.
What	kind	of	anti-dilution	protection	do	they	want?	Hell	if	they
know.	In	these	situations,	the	deal	terms	tend	to	be	random:	the
angel	asks	his	lawyer	to	create	a	vanilla	agreement,	and	the
terms	end	up	being	whatever	the	lawyer	considers	vanilla.	Which
in	practice	usually	means,	whatever	existing	agreement	he	finds
lying	around	his	firm.	(Few	legal	documents	are	created	from
scratch.)

These	heaps	o'	boilerplate	are	a	problem	for	small	startups,
because	they	tend	to	grow	into	the	union	of	all	preceding
documents.	I	know	of	one	startup	that	got	from	an	angel	investor
what	amounted	to	a	five	hundred	pound	handshake:	after
deciding	to	invest,	the	angel	presented	them	with	a	70-page
agreement.	The	startup	didn't	have	enough	money	to	pay	a
lawyer	even	to	read	it,	let	alone	negotiate	the	terms,	so	the	deal
fell	through.

One	solution	to	this	problem	would	be	to	have	the	startup's
lawyer	produce	the	agreement,	instead	of	the	angel's.	Some
angels	might	balk	at	this,	but	others	would	probably	welcome	it.

Inexperienced	angels	often	get	cold	feet	when	the	time	comes	to
write	that	big	check.	In	our	startup,	one	of	the	two	angels	in	the
initial	round	took	months	to	pay	us,	and	only	did	after	repeated
nagging	from	our	lawyer,	who	was	also,	fortunately,	his	lawyer.

It's	obvious	why	investors	delay.	Investing	in	startups	is	risky!
When	a	company	is	only	two	months	old,	every	day	you	wait
gives	you	1.7%	more	data	about	their	trajectory.	But	the	investor
is	already	being	compensated	for	that	risk	in	the	low	price	of	the
stock,	so	it	is	unfair	to	delay.

Fair	or	not,	investors	do	it	if	you	let	them.	Even	VCs	do	it.	And

funding	delays	are	a	big	distraction	for	founders,	who	ought	to	be
working	on	their	company,	not	worrying	about	investors.	What's
a	startup	to	do?	With	both	investors	and	acquirers,	the	only
leverage	you	have	is	competition.	If	an	investor	knows	you	have
other	investors	lined	up,	he'll	be	a	lot	more	eager	to	close--	and
not	just	because	he'll	worry	about	losing	the	deal,	but	because	if
other	investors	are	interested,	you	must	be	worth	investing	in.
It's	the	same	with	acquisitions.	No	one	wants	to	buy	you	till
someone	else	wants	to	buy	you,	and	then	everyone	wants	to	buy
you.

The	key	to	closing	deals	is	never	to	stop	pursuing	alternatives.
When	an	investor	says	he	wants	to	invest	in	you,	or	an	acquirer
says	they	want	to	buy	you,	don't	believe	it	till	you	get	the	check.
Your	natural	tendency	when	an	investor	says	yes	will	be	to	relax
and	go	back	to	writing	code.	Alas,	you	can't;	you	have	to	keep
looking	for	more	investors,	if	only	to	get	this	one	to	act.	[4]

Seed	Funding	Firms

Seed	firms	are	like	angels	in	that	they	invest	relatively	small
amounts	at	early	stages,	but	like	VCs	in	that	they're	companies
that	do	it	as	a	business,	rather	than	individuals	making
occasional	investments	on	the	side.

Till	now,	nearly	all	seed	firms	have	been	so-called	"incubators,"
so	Y	Combinator	gets	called	one	too,	though	the	only	thing	we
have	in	common	is	that	we	invest	in	the	earliest	phase.

According	to	the	National	Association	of	Business	Incubators,
there	are	about	800	incubators	in	the	US.	This	is	an	astounding
number,	because	I	know	the	founders	of	a	lot	of	startups,	and	I
can't	think	of	one	that	began	in	an	incubator.

What	is	an	incubator?	I'm	not	sure	myself.	The	defining	quality
seems	to	be	that	you	work	in	their	space.	That's	where	the	name
"incubator"	comes	from.	They	seem	to	vary	a	great	deal	in	other
respects.	At	one	extreme	is	the	sort	of	pork-barrel	project	where
a	town	gets	money	from	the	state	government	to	renovate	a
vacant	building	as	a	"high-tech	incubator,"	as	if	it	were	merely
lack	of	the	right	sort	of	office	space	that	had	till	now	prevented

#f4n
http://ycombinator.com/

the	town	from	becoming	a	startup	hub.	At	the	other	extreme	are
places	like	Idealab,	which	generates	ideas	for	new	startups
internally	and	hires	people	to	work	for	them.

The	classic	Bubble	incubators,	most	of	which	now	seem	to	be
dead,	were	like	VC	firms	except	that	they	took	a	much	bigger
role	in	the	startups	they	funded.	In	addition	to	working	in	their
space,	you	were	supposed	to	use	their	office	staff,	lawyers,
accountants,	and	so	on.

Whereas	incubators	tend	(or	tended)	to	exert	more	control	than
VCs,	Y	Combinator	exerts	less.	And	we	think	it's	better	if	startups
operate	out	of	their	own	premises,	however	crappy,	than	the
offices	of	their	investors.	So	it's	annoying	that	we	keep	getting
called	an	"incubator,"	but	perhaps	inevitable,	because	there's
only	one	of	us	so	far	and	no	word	yet	for	what	we	are.	If	we	have
to	be	called	something,	the	obvious	name	would	be	"excubator."
(The	name	is	more	excusable	if	one	considers	it	as	meaning	that
we	enable	people	to	escape	cubicles.)

Because	seed	firms	are	companies	rather	than	individual	people,
reaching	them	is	easier	than	reaching	angels.	Just	go	to	their
web	site	and	send	them	an	email.	The	importance	of	personal
introductions	varies,	but	is	less	than	with	angels	or	VCs.

The	fact	that	seed	firms	are	companies	also	means	the
investment	process	is	more	standardized.	(This	is	generally	true
with	angel	groups	too.)	Seed	firms	will	probably	have	set	deal
terms	they	use	for	every	startup	they	fund.	The	fact	that	the	deal
terms	are	standard	doesn't	mean	they're	favorable	to	you,	but	if
other	startups	have	signed	the	same	agreements	and	things	went
well	for	them,	it's	a	sign	the	terms	are	reasonable.

Seed	firms	differ	from	angels	and	VCs	in	that	they	invest
exclusively	in	the	earliest	phases—often	when	the	company	is
still	just	an	idea.	Angels	and	even	VC	firms	occasionally	do	this,
but	they	also	invest	at	later	stages.

The	problems	are	different	in	the	early	stages.	For	example,	in
the	first	couple	months	a	startup	may	completely	redefine	their
idea.	So	seed	investors	usually	care	less	about	the	idea	than	the

siliconvalley.html
ideas.html

people.	This	is	true	of	all	venture	funding,	but	especially	so	in	the
seed	stage.

Like	VCs,	one	of	the	advantages	of	seed	firms	is	the	advice	they
offer.	But	because	seed	firms	operate	in	an	earlier	phase,	they
need	to	offer	different	kinds	of	advice.	For	example,	a	seed	firm
should	be	able	to	give	advice	about	how	to	approach	VCs,	which
VCs	obviously	don't	need	to	do;	whereas	VCs	should	be	able	to
give	advice	about	how	to	hire	an	"executive	team,"	which	is	not
an	issue	in	the	seed	stage.

In	the	earliest	phases,	a	lot	of	the	problems	are	technical,	so	seed
firms	should	be	able	to	help	with	technical	as	well	as	business
problems.

Seed	firms	and	angel	investors	generally	want	to	invest	in	the
initial	phases	of	a	startup,	then	hand	them	off	to	VC	firms	for	the
next	round.	Occasionally	startups	go	from	seed	funding	direct	to
acquisition,	however,	and	I	expect	this	to	become	increasingly
common.

Google	has	been	aggressively	pursuing	this	route,	and	now	Yahoo
is	too.	Both	now	compete	directly	with	VCs.	And	this	is	a	smart
move.	Why	wait	for	further	funding	rounds	to	jack	up	a	startup's
price?	When	a	startup	reaches	the	point	where	VCs	have	enough
information	to	invest	in	it,	the	acquirer	should	have	enough
information	to	buy	it.	More	information,	in	fact;	with	their
technical	depth,	the	acquirers	should	be	better	at	picking
winners	than	VCs.

Venture	Capital	Funds

VC	firms	are	like	seed	firms	in	that	they're	actual	companies,	but
they	invest	other	people's	money,	and	much	larger	amounts	of	it.
VC	investments	average	several	million	dollars.	So	they	tend	to
come	later	in	the	life	of	a	startup,	are	harder	to	get,	and	come
with	tougher	terms.

The	word	"venture	capitalist"	is	sometimes	used	loosely	for	any
venture	investor,	but	there	is	a	sharp	difference	between	VCs	and
other	investors:	VC	firms	are	organized	as	funds,	much	like

http://ycombinator.com/buckman.html

hedge	funds	or	mutual	funds.	The	fund	managers,	who	are	called
"general	partners,"	get	about	2%	of	the	fund	annually	as	a
management	fee,	plus	about	20%	of	the	fund's	gains.

There	is	a	very	sharp	dropoff	in	performance	among	VC	firms,
because	in	the	VC	business	both	success	and	failure	are	self-
perpetuating.	When	an	investment	scores	spectacularly,	as
Google	did	for	Kleiner	and	Sequoia,	it	generates	a	lot	of	good
publicity	for	the	VCs.	And	many	founders	prefer	to	take	money
from	successful	VC	firms,	because	of	the	legitimacy	it	confers.
Hence	a	vicious	(for	the	losers)	cycle:	VC	firms	that	have	been
doing	badly	will	only	get	the	deals	the	bigger	fish	have	rejected,
causing	them	to	continue	to	do	badly.

As	a	result,	of	the	thousand	or	so	VC	funds	in	the	US	now,	only
about	50	are	likely	to	make	money,	and	it	is	very	hard	for	a	new
fund	to	break	into	this	group.

In	a	sense,	the	lower-tier	VC	firms	are	a	bargain	for	founders.
They	may	not	be	quite	as	smart	or	as	well	connected	as	the	big-
name	firms,	but	they	are	much	hungrier	for	deals.	This	means
you	should	be	able	to	get	better	terms	from	them.

Better	how?	The	most	obvious	is	valuation:	they'll	take	less	of
your	company.	But	as	well	as	money,	there's	power.	I	think
founders	will	increasingly	be	able	to	stay	on	as	CEO,	and	on
terms	that	will	make	it	fairly	hard	to	fire	them	later.

The	most	dramatic	change,	I	predict,	is	that	VCs	will	allow
founders	to	cash	out	partially	by	selling	some	of	their	stock	direct
to	the	VC	firm.	VCs	have	traditionally	resisted	letting	founders
get	anything	before	the	ultimate	"liquidity	event."	But	they're
also	desperate	for	deals.	And	since	I	know	from	my	own
experience	that	the	rule	against	buying	stock	from	founders	is	a
stupid	one,	this	is	a	natural	place	for	things	to	give	as	venture
funding	becomes	more	and	more	a	seller's	market.

The	disadvantage	of	taking	money	from	less	known	firms	is	that
people	will	assume,	correctly	or	not,	that	you	were	turned	down
by	the	more	exalted	ones.	But,	like	where	you	went	to	college,
the	name	of	your	VC	stops	mattering	once	you	have	some

vcsqueeze.html

performance	to	measure.	So	the	more	confident	you	are,	the	less
you	need	a	brand-name	VC.	We	funded	Viaweb	entirely	with
angel	money;	it	never	occurred	to	us	that	the	backing	of	a	well
known	VC	firm	would	make	us	seem	more	impressive.	[5]

Another	danger	of	less	known	firms	is	that,	like	angels,	they	have
less	reputation	to	protect.	I	suspect	it's	the	lower-tier	firms	that
are	responsible	for	most	of	the	tricks	that	have	given	VCs	such	a
bad	reputation	among	hackers.	They	are	doubly	hosed:	the
general	partners	themselves	are	less	able,	and	yet	they	have
harder	problems	to	solve,	because	the	top	VCs	skim	off	all	the
best	deals,	leaving	the	lower-tier	firms	exactly	the	startups	that
are	likely	to	blow	up.

For	example,	lower-tier	firms	are	much	more	likely	to	pretend	to
want	to	do	a	deal	with	you	just	to	lock	you	up	while	they	decide	if
they	really	want	to.	One	experienced	CFO	said:

The	better	ones	usually	will	not	give	a	term	sheet
unless	they	really	want	to	do	a	deal.	The	second	or
third	tier	firms	have	a	much	higher	break	rate—it
could	be	as	high	as	50%.

It's	obvious	why:	the	lower-tier	firms'	biggest	fear,	when	chance
throws	them	a	bone,	is	that	one	of	the	big	dogs	will	notice	and
take	it	away.	The	big	dogs	don't	have	to	worry	about	that.

Falling	victim	to	this	trick	could	really	hurt	you.	As	one	VC	told
me:

If	you	were	talking	to	four	VCs,	told	three	of	them
that	you	accepted	a	term	sheet,	and	then	have	to	call
them	back	to	tell	them	you	were	just	kidding,	you	are
absolutely	damaged	goods.

Here's	a	partial	solution:	when	a	VC	offers	you	a	term	sheet,	ask
how	many	of	their	last	10	term	sheets	turned	into	deals.	This	will
at	least	force	them	to	lie	outright	if	they	want	to	mislead	you.

Not	all	the	people	who	work	at	VC	firms	are	partners.	Most	firms
also	have	a	handful	of	junior	employees	called	something	like

#f5n

associates	or	analysts.	If	you	get	a	call	from	a	VC	firm,	go	to	their
web	site	and	check	whether	the	person	you	talked	to	is	a	partner.
Odds	are	it	will	be	a	junior	person;	they	scour	the	web	looking	for
startups	their	bosses	could	invest	in.	The	junior	people	will	tend
to	seem	very	positive	about	your	company.	They're	not
pretending;	they	want	to	believe	you're	a	hot	prospect,	because	it
would	be	a	huge	coup	for	them	if	their	firm	invested	in	a
company	they	discovered.	Don't	be	misled	by	this	optimism.	It's
the	partners	who	decide,	and	they	view	things	with	a	colder	eye.

Because	VCs	invest	large	amounts,	the	money	comes	with	more
restrictions.	Most	only	come	into	effect	if	the	company	gets	into
trouble.	For	example,	VCs	generally	write	it	into	the	deal	that	in
any	sale,	they	get	their	investment	back	first.	So	if	the	company
gets	sold	at	a	low	price,	the	founders	could	get	nothing.	Some
VCs	now	require	that	in	any	sale	they	get	4x	their	investment
back	before	the	common	stock	holders	(that	is,	you)	get	anything,
but	this	is	an	abuse	that	should	be	resisted.

Another	difference	with	large	investments	is	that	the	founders
are	usually	required	to	accept	"vesting"—to	surrender	their	stock
and	earn	it	back	over	the	next	4-5	years.	VCs	don't	want	to	invest
millions	in	a	company	the	founders	could	just	walk	away	from.
Financially,	vesting	has	little	effect,	but	in	some	situations	it
could	mean	founders	will	have	less	power.	If	VCs	got	de	facto
control	of	the	company	and	fired	one	of	the	founders,	he'd	lose
any	unvested	stock	unless	there	was	specific	protection	against
this.	So	vesting	would	in	that	situation	force	founders	to	toe	the
line.

The	most	noticeable	change	when	a	startup	takes	serious	funding
is	that	the	founders	will	no	longer	have	complete	control.	Ten
years	ago	VCs	used	to	insist	that	founders	step	down	as	CEO	and
hand	the	job	over	to	a	business	guy	they	supplied.	This	is	less	the
rule	now,	partly	because	the	disasters	of	the	Bubble	showed	that
generic	business	guys	don't	make	such	great	CEOs.

But	while	founders	will	increasingly	be	able	to	stay	on	as	CEO,
they'll	have	to	cede	some	power,	because	the	board	of	directors
will	become	more	powerful.	In	the	seed	stage,	the	board	is
generally	a	formality;	if	you	want	to	talk	to	the	other	board

members,	you	just	yell	into	the	next	room.	This	stops	with	VC-
scale	money.	In	a	typical	VC	funding	deal,	the	board	of	directors
might	be	composed	of	two	VCs,	two	founders,	and	one	outside
person	acceptable	to	both.	The	board	will	have	ultimate	power,
which	means	the	founders	now	have	to	convince	instead	of
commanding.

This	is	not	as	bad	as	it	sounds,	however.	Bill	Gates	is	in	the	same
position;	he	doesn't	have	majority	control	of	Microsoft;	in
principle	he	also	has	to	convince	instead	of	commanding.	And	yet
he	seems	pretty	commanding,	doesn't	he?	As	long	as	things	are
going	smoothly,	boards	don't	interfere	much.	The	danger	comes
when	there's	a	bump	in	the	road,	as	happened	to	Steve	Jobs	at
Apple.

Like	angels,	VCs	prefer	to	invest	in	deals	that	come	to	them
through	people	they	know.	So	while	nearly	all	VC	funds	have
some	address	you	can	send	your	business	plan	to,	VCs	privately
admit	the	chance	of	getting	funding	by	this	route	is	near	zero.
One	recently	told	me	that	he	did	not	know	a	single	startup	that
got	funded	this	way.

I	suspect	VCs	accept	business	plans	"over	the	transom"	more	as	a
way	to	keep	tabs	on	industry	trends	than	as	a	source	of	deals.	In
fact,	I	would	strongly	advise	against	mailing	your	business	plan
randomly	to	VCs,	because	they	treat	this	as	evidence	of	laziness.
Do	the	extra	work	of	getting	personal	introductions.	As	one	VC
put	it:

I'm	not	hard	to	find.	I	know	a	lot	of	people.	If	you
can't	find	some	way	to	reach	me,	how	are	you	going
to	create	a	successful	company?

One	of	the	most	difficult	problems	for	startup	founders	is
deciding	when	to	approach	VCs.	You	really	only	get	one	chance,
because	they	rely	heavily	on	first	impressions.	And	you	can't
approach	some	and	save	others	for	later,	because	(a)	they	ask
who	else	you've	talked	to	and	when	and	(b)	they	talk	among
themselves.	If	you're	talking	to	one	VC	and	he	finds	out	that	you
were	rejected	by	another	several	months	ago,	you'll	definitely
seem	shopworn.

So	when	do	you	approach	VCs?	When	you	can	convince	them.	If
the	founders	have	impressive	resumes	and	the	idea	isn't	hard	to
understand,	you	could	approach	VCs	quite	early.	Whereas	if	the
founders	are	unknown	and	the	idea	is	very	novel,	you	might	have
to	launch	the	thing	and	show	that	users	loved	it	before	VCs
would	be	convinced.

If	several	VCs	are	interested	in	you,	they	will	sometimes	be
willing	to	split	the	deal	between	them.	They're	more	likely	to	do
this	if	they're	close	in	the	VC	pecking	order.	Such	deals	may	be	a
net	win	for	founders,	because	you	get	multiple	VCs	interested	in
your	success,	and	you	can	ask	each	for	advice	about	the	other.
One	founder	I	know	wrote:

Two-firm	deals	are	great.	It	costs	you	a	little	more
equity,	but	being	able	to	play	the	two	firms	off	each
other	(as	well	as	ask	one	if	the	other	is	being	out	of
line)	is	invaluable.

When	you	do	negotiate	with	VCs,	remember	that	they've	done
this	a	lot	more	than	you	have.	They've	invested	in	dozens	of
startups,	whereas	this	is	probably	the	first	you've	founded.	But
don't	let	them	or	the	situation	intimidate	you.	The	average
founder	is	smarter	than	the	average	VC.	So	just	do	what	you'd	do
in	any	complex,	unfamiliar	situation:	proceed	deliberately,	and
question	anything	that	seems	odd.

It	is,	unfortunately,	common	for	VCs	to	put	terms	in	an
agreement	whose	consequences	surprise	founders	later,	and	also
common	for	VCs	to	defend	things	they	do	by	saying	that	they're
standard	in	the	industry.	Standard,	schmandard;	the	whole
industry	is	only	a	few	decades	old,	and	rapidly	evolving.	The
concept	of	"standard"	is	a	useful	one	when	you're	operating	on	a
small	scale	(Y	Combinator	uses	identical	terms	for	every	deal
because	for	tiny	seed-stage	investments	it's	not	worth	the
overhead	of	negotiating	individual	deals),	but	it	doesn't	apply	at
the	VC	level.	On	that	scale,	every	negotiation	is	unique.

Most	successful	startups	get	money	from	more	than	one	of	the
preceding	five	sources.	[6]	And,	confusingly,	the	names	of

#f6n

funding	sources	also	tend	to	be	used	as	the	names	of	different
rounds.	The	best	way	to	explain	how	it	all	works	is	to	follow	the
case	of	a	hypothetical	startup.

Stage	1:	Seed	Round

Our	startup	begins	when	a	group	of	three	friends	have	an	idea--
either	an	idea	for	something	they	might	build,	or	simply	the	idea
"let's	start	a	company."	Presumably	they	already	have	some
source	of	food	and	shelter.	But	if	you	have	food	and	shelter,	you
probably	also	have	something	you're	supposed	to	be	working	on:
either	classwork,	or	a	job.	So	if	you	want	to	work	full-time	on	a
startup,	your	money	situation	will	probably	change	too.

A	lot	of	startup	founders	say	they	started	the	company	without
any	idea	of	what	they	planned	to	do.	This	is	actually	less	common
than	it	seems:	many	have	to	claim	they	thought	of	the	idea	after
quitting	because	otherwise	their	former	employer	would	own	it.

The	three	friends	decide	to	take	the	leap.	Since	most	startups	are
in	competitive	businesses,	you	not	only	want	to	work	full-time	on
them,	but	more	than	full-time.	So	some	or	all	of	the	friends	quit
their	jobs	or	leave	school.	(Some	of	the	founders	in	a	startup	can
stay	in	grad	school,	but	at	least	one	has	to	make	the	company	his
full-time	job.)

They're	going	to	run	the	company	out	of	one	of	their	apartments
at	first,	and	since	they	don't	have	any	users	they	don't	have	to
pay	much	for	infrastructure.	Their	main	expenses	are	setting	up
the	company,	which	costs	a	couple	thousand	dollars	in	legal	work
and	registration	fees,	and	the	living	expenses	of	the	founders.

The	phrase	"seed	investment"	covers	a	broad	range.	To	some	VC
firms	it	means	$500,000,	but	to	most	startups	it	means	several
months'	living	expenses.	We'll	suppose	our	group	of	friends	start
with	$15,000	from	their	friend's	rich	uncle,	who	they	give	5%	of
the	company	in	return.	There's	only	common	stock	at	this	stage.
They	leave	20%	as	an	options	pool	for	later	employees	(but	they
set	things	up	so	that	they	can	issue	this	stock	to	themselves	if
they	get	bought	early	and	most	is	still	unissued),	and	the	three
founders	each	get	25%.

By	living	really	cheaply	they	think	they	can	make	the	remaining
money	last	five	months.	When	you	have	five	months'	runway	left,
how	soon	do	you	need	to	start	looking	for	your	next	round?
Answer:	immediately.	It	takes	time	to	find	investors,	and	time
(always	more	than	you	expect)	for	the	deal	to	close	even	after
they	say	yes.	So	if	our	group	of	founders	know	what	they're	doing
they'll	start	sniffing	around	for	angel	investors	right	away.	But	of
course	their	main	job	is	to	build	version	1	of	their	software.

The	friends	might	have	liked	to	have	more	money	in	this	first
phase,	but	being	slightly	underfunded	teaches	them	an	important
lesson.	For	a	startup,	cheapness	is	power.	The	lower	your	costs,
the	more	options	you	have—not	just	at	this	stage,	but	at	every
point	till	you're	profitable.	When	you	have	a	high	"burn	rate,"
you're	always	under	time	pressure,	which	means	(a)	you	don't
have	time	for	your	ideas	to	evolve,	and	(b)	you're	often	forced	to
take	deals	you	don't	like.

Every	startup's	rule	should	be:	spend	little,	and	work	fast.

After	ten	weeks'	work	the	three	friends	have	built	a	prototype
that	gives	one	a	taste	of	what	their	product	will	do.	It's	not	what
they	originally	set	out	to	do—in	the	process	of	writing	it,	they	had
some	new	ideas.	And	it	only	does	a	fraction	of	what	the	finished
product	will	do,	but	that	fraction	includes	stuff	that	no	one	else
has	done	before.

They've	also	written	at	least	a	skeleton	business	plan,	addressing
the	five	fundamental	questions:	what	they're	going	to	do,	why
users	need	it,	how	large	the	market	is,	how	they'll	make	money,
and	who	the	competitors	are	and	why	this	company	is	going	to
beat	them.	(That	last	has	to	be	more	specific	than	"they	suck"	or
"we'll	work	really	hard.")

If	you	have	to	choose	between	spending	time	on	the	demo	or	the
business	plan,	spend	most	on	the	demo.	Software	is	not	only
more	convincing,	but	a	better	way	to	explore	ideas.

Stage	2:	Angel	Round

While	writing	the	prototype,	the	group	has	been	traversing	their
network	of	friends	in	search	of	angel	investors.	They	find	some
just	as	the	prototype	is	demoable.	When	they	demo	it,	one	of	the
angels	is	willing	to	invest.	Now	the	group	is	looking	for	more
money:	they	want	enough	to	last	for	a	year,	and	maybe	to	hire	a
couple	friends.	So	they're	going	to	raise	$200,000.

The	angel	agrees	to	invest	at	a	pre-money	valuation	of	$1	million.
The	company	issues	$200,000	worth	of	new	shares	to	the	angel;
if	there	were	1000	shares	before	the	deal,	this	means	200
additional	shares.	The	angel	now	owns	200/1200	shares,	or	a
sixth	of	the	company,	and	all	the	previous	shareholders'
percentage	ownership	is	diluted	by	a	sixth.	After	the	deal,	the
capitalization	table	looks	like	this:

shareholder			shares				percent

angel											200							16.7
uncle												50								4.2
each	founder				250							20.8
option	pool					200							16.7
															----						-----
total										1200						100

To	keep	things	simple,	I	had	the	angel	do	a	straight	cash	for
stock	deal.	In	reality	the	angel	might	be	more	likely	to	make	the
investment	in	the	form	of	a	convertible	loan.	A	convertible	loan	is
a	loan	that	can	be	converted	into	stock	later;	it	works	out	the
same	as	a	stock	purchase	in	the	end,	but	gives	the	angel	more
protection	against	being	squashed	by	VCs	in	future	rounds.

Who	pays	the	legal	bills	for	this	deal?	The	startup,	remember,
only	has	a	couple	thousand	left.	In	practice	this	turns	out	to	be	a
sticky	problem	that	usually	gets	solved	in	some	improvised	way.
Maybe	the	startup	can	find	lawyers	who	will	do	it	cheaply	in	the
hope	of	future	work	if	the	startup	succeeds.	Maybe	someone	has
a	lawyer	friend.	Maybe	the	angel	pays	for	his	lawyer	to	represent
both	sides.	(Make	sure	if	you	take	the	latter	route	that	the	lawyer
is	representing	you	rather	than	merely	advising	you,	or	his	only
duty	is	to	the	investor.)

An	angel	investing	$200k	would	probably	expect	a	seat	on	the
board	of	directors.	He	might	also	want	preferred	stock,	meaning
a	special	class	of	stock	that	has	some	additional	rights	over	the
common	stock	everyone	else	has.	Typically	these	rights	include
vetoes	over	major	strategic	decisions,	protection	against	being
diluted	in	future	rounds,	and	the	right	to	get	one's	investment
back	first	if	the	company	is	sold.

Some	investors	might	expect	the	founders	to	accept	vesting	for	a
sum	this	size,	and	others	wouldn't.	VCs	are	more	likely	to	require
vesting	than	angels.	At	Viaweb	we	managed	to	raise	$2.5	million
from	angels	without	ever	accepting	vesting,	largely	because	we
were	so	inexperienced	that	we	were	appalled	at	the	idea.	In
practice	this	turned	out	to	be	good,	because	it	made	us	harder	to
push	around.

Our	experience	was	unusual;	vesting	is	the	norm	for	amounts
that	size.	Y	Combinator	doesn't	require	vesting,	because	(a)	we
invest	such	small	amounts,	and	(b)	we	think	it's	unnecessary,	and
that	the	hope	of	getting	rich	is	enough	motivation	to	keep
founders	at	work.	But	maybe	if	we	were	investing	millions	we
would	think	differently.

I	should	add	that	vesting	is	also	a	way	for	founders	to	protect
themselves	against	one	another.	It	solves	the	problem	of	what	to
do	if	one	of	the	founders	quits.	So	some	founders	impose	it	on
themselves	when	they	start	the	company.

The	angel	deal	takes	two	weeks	to	close,	so	we	are	now	three
months	into	the	life	of	the	company.

The	point	after	you	get	the	first	big	chunk	of	angel	money	will
usually	be	the	happiest	phase	in	a	startup's	life.	It's	a	lot	like
being	a	postdoc:	you	have	no	immediate	financial	worries,	and
few	responsibilities.	You	get	to	work	on	juicy	kinds	of	work,	like
designing	software.	You	don't	have	to	spend	time	on	bureaucratic
stuff,	because	you	haven't	hired	any	bureaucrats	yet.	Enjoy	it
while	it	lasts,	and	get	as	much	done	as	you	can,	because	you	will
never	again	be	so	productive.

With	an	apparently	inexhaustible	sum	of	money	sitting	safely	in
the	bank,	the	founders	happily	set	to	work	turning	their
prototype	into	something	they	can	release.	They	hire	one	of	their
friends—at	first	just	as	a	consultant,	so	they	can	try	him	out—and
then	a	month	later	as	employee	#1.	They	pay	him	the	smallest
salary	he	can	live	on,	plus	3%	of	the	company	in	restricted	stock,
vesting	over	four	years.	(So	after	this	the	option	pool	is	down	to
13.7%).	[7]	They	also	spend	a	little	money	on	a	freelance	graphic
designer.

How	much	stock	do	you	give	early	employees?	That	varies	so
much	that	there's	no	conventional	number.	If	you	get	someone
really	good,	really	early,	it	might	be	wise	to	give	him	as	much
stock	as	the	founders.	The	one	universal	rule	is	that	the	amount
of	stock	an	employee	gets	decreases	polynomially	with	the	age	of
the	company.	In	other	words,	you	get	rich	as	a	power	of	how
early	you	were.	So	if	some	friends	want	you	to	come	work	for
their	startup,	don't	wait	several	months	before	deciding.

A	month	later,	at	the	end	of	month	four,	our	group	of	founders
have	something	they	can	launch.	Gradually	through	word	of
mouth	they	start	to	get	users.	Seeing	the	system	in	use	by	real
users—people	they	don't	know—gives	them	lots	of	new	ideas.
Also	they	find	they	now	worry	obsessively	about	the	status	of
their	server.	(How	relaxing	founders'	lives	must	have	been	when
startups	wrote	VisiCalc.)

By	the	end	of	month	six,	the	system	is	starting	to	have	a	solid
core	of	features,	and	a	small	but	devoted	following.	People	start
to	write	about	it,	and	the	founders	are	starting	to	feel	like
experts	in	their	field.

We'll	assume	that	their	startup	is	one	that	could	put	millions
more	to	use.	Perhaps	they	need	to	spend	a	lot	on	marketing,	or
build	some	kind	of	expensive	infrastructure,	or	hire	highly	paid
salesmen.	So	they	decide	to	start	talking	to	VCs.	They	get
introductions	to	VCs	from	various	sources:	their	angel	investor
connects	them	with	a	couple;	they	meet	a	few	at	conferences;	a
couple	VCs	call	them	after	reading	about	them.

Step	3:	Series	A	Round

#f7n

Armed	with	their	now	somewhat	fleshed-out	business	plan	and
able	to	demo	a	real,	working	system,	the	founders	visit	the	VCs
they	have	introductions	to.	They	find	the	VCs	intimidating	and
inscrutable.	They	all	ask	the	same	question:	who	else	have	you
pitched	to?	(VCs	are	like	high	school	girls:	they're	acutely	aware
of	their	position	in	the	VC	pecking	order,	and	their	interest	in	a
company	is	a	function	of	the	interest	other	VCs	show	in	it.)

One	of	the	VC	firms	says	they	want	to	invest	and	offers	the
founders	a	term	sheet.	A	term	sheet	is	a	summary	of	what	the
deal	terms	will	be	when	and	if	they	do	a	deal;	lawyers	will	fill	in
the	details	later.	By	accepting	the	term	sheet,	the	startup	agrees
to	turn	away	other	VCs	for	some	set	amount	of	time	while	this
firm	does	the	"due	diligence"	required	for	the	deal.	Due	diligence
is	the	corporate	equivalent	of	a	background	check:	the	purpose	is
to	uncover	any	hidden	bombs	that	might	sink	the	company	later,
like	serious	design	flaws	in	the	product,	pending	lawsuits	against
the	company,	intellectual	property	issues,	and	so	on.	VCs'	legal
and	financial	due	diligence	is	pretty	thorough,	but	the	technical
due	diligence	is	generally	a	joke.	[8]

The	due	diligence	discloses	no	ticking	bombs,	and	six	weeks	later
they	go	ahead	with	the	deal.	Here	are	the	terms:	a	$2	million
investment	at	a	pre-money	valuation	of	$4	million,	meaning	that
after	the	deal	closes	the	VCs	will	own	a	third	of	the	company	(2	/
(4	+	2)).	The	VCs	also	insist	that	prior	to	the	deal	the	option	pool
be	enlarged	by	an	additional	hundred	shares.	So	the	total
number	of	new	shares	issued	is	750,	and	the	cap	table	becomes:

shareholder			shares				percent

VCs													650							33.3
angel											200							10.3
uncle												50								2.6
each	founder				250							12.8
employee									36*							1.8					*unvested
option	pool					264							13.5
															----						-----
total										1950						100

#f8n

This	picture	is	unrealistic	in	several	respects.	For	example,	while
the	percentages	might	end	up	looking	like	this,	it's	unlikely	that
the	VCs	would	keep	the	existing	numbers	of	shares.	In	fact,	every
bit	of	the	startup's	paperwork	would	probably	be	replaced,	as	if
the	company	were	being	founded	anew.	Also,	the	money	might
come	in	several	tranches,	the	later	ones	subject	to	various
conditions—though	this	is	apparently	more	common	in	deals	with
lower-tier	VCs	(whose	lot	in	life	is	to	fund	more	dubious	startups)
than	with	the	top	firms.

And	of	course	any	VCs	reading	this	are	probably	rolling	on	the
floor	laughing	at	how	my	hypothetical	VCs	let	the	angel	keep	his
10.3	of	the	company.	I	admit,	this	is	the	Bambi	version;	in
simplifying	the	picture,	I've	also	made	everyone	nicer.	In	the	real
world,	VCs	regard	angels	the	way	a	jealous	husband	feels	about
his	wife's	previous	boyfriends.	To	them	the	company	didn't	exist
before	they	invested	in	it.	[9]

I	don't	want	to	give	the	impression	you	have	to	do	an	angel	round
before	going	to	VCs.	In	this	example	I	stretched	things	out	to
show	multiple	sources	of	funding	in	action.	Some	startups	could
go	directly	from	seed	funding	to	a	VC	round;	several	of	the
companies	we've	funded	have.

The	founders	are	required	to	vest	their	shares	over	four	years,
and	the	board	is	now	reconstituted	to	consist	of	two	VCs,	two
founders,	and	a	fifth	person	acceptable	to	both.	The	angel
investor	cheerfully	surrenders	his	board	seat.

At	this	point	there	is	nothing	new	our	startup	can	teach	us	about
funding—or	at	least,	nothing	good.	[10]	The	startup	will	almost
certainly	hire	more	people	at	this	point;	those	millions	must	be
put	to	work,	after	all.	The	company	may	do	additional	funding
rounds,	presumably	at	higher	valuations.	They	may	if	they	are
extraordinarily	fortunate	do	an	IPO,	which	we	should	remember
is	also	in	principle	a	round	of	funding,	regardless	of	its	de	facto
purpose.	But	that,	if	not	beyond	the	bounds	of	possibility,	is
beyond	the	scope	of	this	article.

Deals	Fall	Through

#f9n
#f10n

Anyone	who's	been	through	a	startup	will	find	the	preceding
portrait	to	be	missing	something:	disasters.	If	there's	one	thing
all	startups	have	in	common,	it's	that	something	is	always	going
wrong.	And	nowhere	more	than	in	matters	of	funding.

For	example,	our	hypothetical	startup	never	spent	more	than	half
of	one	round	before	securing	the	next.	That's	more	ideal	than
typical.	Many	startups—even	successful	ones—come	close	to
running	out	of	money	at	some	point.	Terrible	things	happen	to
startups	when	they	run	out	of	money,	because	they're	designed
for	growth,	not	adversity.

But	the	most	unrealistic	thing	about	the	series	of	deals	I've
described	is	that	they	all	closed.	In	the	startup	world,	closing	is
not	what	deals	do.	What	deals	do	is	fall	through.	If	you're	starting
a	startup	you	would	do	well	to	remember	that.	Birds	fly;	fish
swim;	deals	fall	through.

Why?	Partly	the	reason	deals	seem	to	fall	through	so	often	is	that
you	lie	to	yourself.	You	want	the	deal	to	close,	so	you	start	to
believe	it	will.	But	even	correcting	for	this,	startup	deals	fall
through	alarmingly	often—far	more	often	than,	say,	deals	to	buy
real	estate.	The	reason	is	that	it's	such	a	risky	environment.
People	about	to	fund	or	acquire	a	startup	are	prone	to	wicked
cases	of	buyer's	remorse.	They	don't	really	grasp	the	risk	they're
taking	till	the	deal's	about	to	close.	And	then	they	panic.	And	not
just	inexperienced	angel	investors,	but	big	companies	too.

So	if	you're	a	startup	founder	wondering	why	some	angel
investor	isn't	returning	your	phone	calls,	you	can	at	least	take
comfort	in	the	thought	that	the	same	thing	is	happening	to	other
deals	a	hundred	times	the	size.

The	example	of	a	startup's	history	that	I've	presented	is	like	a
skeleton—accurate	so	far	as	it	goes,	but	needing	to	be	fleshed
out	to	be	a	complete	picture.	To	get	a	complete	picture,	just	add
in	every	possible	disaster.

A	frightening	prospect?	In	a	way.	And	yet	also	in	a	way
encouraging.	The	very	uncertainty	of	startups	frightens	away
almost	everyone.	People	overvalue	stability—especially	young

hiring.html

people,	who	ironically	need	it	least.	And	so	in	starting	a	startup,
as	in	any	really	bold	undertaking,	merely	deciding	to	do	it	gets
you	halfway	there.	On	the	day	of	the	race,	most	of	the	other
runners	won't	show	up.

Notes

[1]	The	aim	of	such	regulations	is	to	protect	widows	and	orphans
from	crooked	investment	schemes;	people	with	a	million	dollars
in	liquid	assets	are	assumed	to	be	able	to	protect	themselves.
The	unintended	consequence	is	that	the	investments	that
generate	the	highest	returns,	like	hedge	funds,	are	available	only
to	the	rich.

[2]	Consulting	is	where	product	companies	go	to	die.	IBM	is	the
most	famous	example.	So	starting	as	a	consulting	company	is	like
starting	out	in	the	grave	and	trying	to	work	your	way	up	into	the
world	of	the	living.

[3]	If	"near	you"	doesn't	mean	the	Bay	Area,	Boston,	or	Seattle,
consider	moving.	It's	not	a	coincidence	you	haven't	heard	of
many	startups	from	Philadelphia.

[4]	Investors	are	often	compared	to	sheep.	And	they	are	like
sheep,	but	that's	a	rational	response	to	their	situation.	Sheep	act
the	way	they	do	for	a	reason.	If	all	the	other	sheep	head	for	a
certain	field,	it's	probably	good	grazing.	And	when	a	wolf
appears,	is	he	going	to	eat	a	sheep	in	the	middle	of	the	flock,	or
one	near	the	edge?

[5]	This	was	partly	confidence,	and	partly	simple	ignorance.	We
didn't	know	ourselves	which	VC	firms	were	the	impressive	ones.
We	thought	software	was	all	that	mattered.	But	that	turned	out
to	be	the	right	direction	to	be	naive	in:	it's	much	better	to
overestimate	than	underestimate	the	importance	of	making	a
good	product.

[6]	I've	omitted	one	source:	government	grants.	I	don't	think
these	are	even	worth	thinking	about	for	the	average	startup.
Governments	may	mean	well	when	they	set	up	grant	programs	to
encourage	startups,	but	what	they	give	with	one	hand	they	take
away	with	the	other:	the	process	of	applying	is	inevitably	so
arduous,	and	the	restrictions	on	what	you	can	do	with	the	money
so	burdensome,	that	it	would	be	easier	to	take	a	job	to	get	the
money.

You	should	be	especially	suspicious	of	grants	whose	purpose	is
some	kind	of	social	engineering--	e.g.	to	encourage	more	startups
to	be	started	in	Mississippi.	Free	money	to	start	a	startup	in	a
place	where	few	succeed	is	hardly	free.

Some	government	agencies	run	venture	funding	groups,	which
make	investments	rather	than	giving	grants.	For	example,	the
CIA	runs	a	venture	fund	called	In-Q-Tel	that	is	modelled	on
private	sector	funds	and	apparently	generates	good	returns.
They	would	probably	be	worth	approaching—if	you	don't	mind
taking	money	from	the	CIA.

[7]	Options	have	largely	been	replaced	with	restricted	stock,
which	amounts	to	the	same	thing.	Instead	of	earning	the	right	to
buy	stock,	the	employee	gets	the	stock	up	front,	and	earns	the
right	not	to	have	to	give	it	back.	The	shares	set	aside	for	this
purpose	are	still	called	the	"option	pool."

[8]	First-rate	technical	people	do	not	generally	hire	themselves
out	to	do	due	diligence	for	VCs.	So	the	most	difficult	part	for
startup	founders	is	often	responding	politely	to	the	inane
questions	of	the	"expert"	they	send	to	look	you	over.

[9]	VCs	regularly	wipe	out	angels	by	issuing	arbitrary	amounts	of
new	stock.	They	seem	to	have	a	standard	piece	of	casuistry	for
this	situation:	that	the	angels	are	no	longer	working	to	help	the
company,	and	so	don't	deserve	to	keep	their	stock.	This	of	course
reflects	a	willful	misunderstanding	of	what	investment	means;
like	any	investor,	the	angel	is	being	compensated	for	risks	he
took	earlier.	By	a	similar	logic,	one	could	argue	that	the	VCs
should	be	deprived	of	their	shares	when	the	company	goes
public.

[10]	One	new	thing	the	company	might	encounter	is	a	down
round,	or	a	funding	round	at	valuation	lower	than	the	previous
round.	Down	rounds	are	bad	news;	it	is	generally	the	common
stock	holders	who	take	the	hit.	Some	of	the	most	fearsome
provisions	in	VC	deal	terms	have	to	do	with	down	rounds—like
"full	ratchet	anti-dilution,"	which	is	as	frightening	as	it	sounds.

Founders	are	tempted	to	ignore	these	clauses,	because	they
think	the	company	will	either	be	a	big	success	or	a	complete
bust.	VCs	know	otherwise:	it's	not	uncommon	for	startups	to
have	moments	of	adversity	before	they	ultimately	succeed.	So	it's
worth	negotiating	anti-dilution	provisions,	even	though	you	don't
think	you	need	to,	and	VCs	will	try	to	make	you	feel	that	you're
being	gratuitously	troublesome.

Thanks	to	Sam	Altman,	Hutch	Fishman,	Steve	Huffman,	Jessica
Livingston,	Sesha	Pratap,	Stan	Reiss,	Andy	Singleton,	Zak	Stone,
and	Aaron	Swartz	for	reading	drafts	of	this.

	

Web	2.0
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

November	2005

Does	"Web	2.0"	mean	anything?	Till	recently	I	thought	it	didn't,
but	the	truth	turns	out	to	be	more	complicated.	Originally,	yes,	it
was	meaningless.	Now	it	seems	to	have	acquired	a	meaning.	And
yet	those	who	dislike	the	term	are	probably	right,	because	if	it
means	what	I	think	it	does,	we	don't	need	it.

I	first	heard	the	phrase	"Web	2.0"	in	the	name	of	the	Web	2.0
conference	in	2004.	At	the	time	it	was	supposed	to	mean	using
"the	web	as	a	platform,"	which	I	took	to	refer	to	web-based
applications.	[1]

So	I	was	surprised	at	a	conference	this	summer	when	Tim
O'Reilly	led	a	session	intended	to	figure	out	a	definition	of	"Web
2.0."	Didn't	it	already	mean	using	the	web	as	a	platform?	And	if	it
didn't	already	mean	something,	why	did	we	need	the	phrase	at
all?

Origins

Tim	says	the	phrase	"Web	2.0"	first	arose	in	"a	brainstorming
session	between	O'Reilly	and	Medialive	International."	What	is
Medialive	International?	"Producers	of	technology	tradeshows
and	conferences,"	according	to	their	site.	So	presumably	that's
what	this	brainstorming	session	was	about.	O'Reilly	wanted	to
organize	a	conference	about	the	web,	and	they	were	wondering
what	to	call	it.

I	don't	think	there	was	any	deliberate	plan	to	suggest	there	was	a
new	version	of	the	web.	They	just	wanted	to	make	the	point	that
the	web	mattered	again.	It	was	a	kind	of	semantic	deficit
spending:	they	knew	new	things	were	coming,	and	the	"2.0"

http://ycombinator.com/apply.html
#f1n
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

referred	to	whatever	those	might	turn	out	to	be.

And	they	were	right.	New	things	were	coming.	But	the	new
version	number	led	to	some	awkwardness	in	the	short	term.	In
the	process	of	developing	the	pitch	for	the	first	conference,
someone	must	have	decided	they'd	better	take	a	stab	at
explaining	what	that	"2.0"	referred	to.	Whatever	it	meant,	"the
web	as	a	platform"	was	at	least	not	too	constricting.

The	story	about	"Web	2.0"	meaning	the	web	as	a	platform	didn't
live	much	past	the	first	conference.	By	the	second	conference,
what	"Web	2.0"	seemed	to	mean	was	something	about
democracy.	At	least,	it	did	when	people	wrote	about	it	online.	The
conference	itself	didn't	seem	very	grassroots.	It	cost	$2800,	so
the	only	people	who	could	afford	to	go	were	VCs	and	people	from
big	companies.

And	yet,	oddly	enough,	Ryan	Singel's	article	about	the
conference	in	Wired	News	spoke	of	"throngs	of	geeks."	When	a
friend	of	mine	asked	Ryan	about	this,	it	was	news	to	him.	He	said
he'd	originally	written	something	like	"throngs	of	VCs	and	biz	dev
guys"	but	had	later	shortened	it	just	to	"throngs,"	and	that	this
must	have	in	turn	been	expanded	by	the	editors	into	"throngs	of
geeks."	After	all,	a	Web	2.0	conference	would	presumably	be	full
of	geeks,	right?

Well,	no.	There	were	about	7.	Even	Tim	O'Reilly	was	wearing	a
suit,	a	sight	so	alien	I	couldn't	parse	it	at	first.	I	saw	him	walk	by
and	said	to	one	of	the	O'Reilly	people	"that	guy	looks	just	like
Tim."

"Oh,	that's	Tim.	He	bought	a	suit."	I	ran	after	him,	and	sure
enough,	it	was.	He	explained	that	he'd	just	bought	it	in	Thailand.

The	2005	Web	2.0	conference	reminded	me	of	Internet	trade
shows	during	the	Bubble,	full	of	prowling	VCs	looking	for	the
next	hot	startup.	There	was	that	same	odd	atmosphere	created
by	a	large	number	of	people	determined	not	to	miss	out.	Miss	out
on	what?	They	didn't	know.	Whatever	was	going	to	happen—
whatever	Web	2.0	turned	out	to	be.

http://www.wired.com/news/technology/0,1282,69114,00.html

I	wouldn't	quite	call	it	"Bubble	2.0"	just	because	VCs	are	eager	to
invest	again.	The	Internet	is	a	genuinely	big	deal.	The	bust	was
as	much	an	overreaction	as	the	boom.	It's	to	be	expected	that
once	we	started	to	pull	out	of	the	bust,	there	would	be	a	lot	of
growth	in	this	area,	just	as	there	was	in	the	industries	that
spiked	the	sharpest	before	the	Depression.

The	reason	this	won't	turn	into	a	second	Bubble	is	that	the	IPO
market	is	gone.	Venture	investors	are	driven	by	exit	strategies.
The	reason	they	were	funding	all	those	laughable	startups	during
the	late	90s	was	that	they	hoped	to	sell	them	to	gullible	retail
investors;	they	hoped	to	be	laughing	all	the	way	to	the	bank.	Now
that	route	is	closed.	Now	the	default	exit	strategy	is	to	get
bought,	and	acquirers	are	less	prone	to	irrational	exuberance
than	IPO	investors.	The	closest	you'll	get	to	Bubble	valuations	is
Rupert	Murdoch	paying	$580	million	for	Myspace.	That's	only	off
by	a	factor	of	10	or	so.

1.	Ajax

Does	"Web	2.0"	mean	anything	more	than	the	name	of	a
conference	yet?	I	don't	like	to	admit	it,	but	it's	starting	to.	When
people	say	"Web	2.0"	now,	I	have	some	idea	what	they	mean.	And
the	fact	that	I	both	despise	the	phrase	and	understand	it	is	the
surest	proof	that	it	has	started	to	mean	something.

One	ingredient	of	its	meaning	is	certainly	Ajax,	which	I	can	still
only	just	bear	to	use	without	scare	quotes.	Basically,	what	"Ajax"
means	is	"Javascript	now	works."	And	that	in	turn	means	that
web-based	applications	can	now	be	made	to	work	much	more	like
desktop	ones.

As	you	read	this,	a	whole	new	generation	of	software	is	being
written	to	take	advantage	of	Ajax.	There	hasn't	been	such	a	wave
of	new	applications	since	microcomputers	first	appeared.	Even
Microsoft	sees	it,	but	it's	too	late	for	them	to	do	anything	more
than	leak	"internal"	documents	designed	to	give	the	impression
they're	on	top	of	this	new	trend.

In	fact	the	new	generation	of	software	is	being	written	way	too
fast	for	Microsoft	even	to	channel	it,	let	alone	write	their	own	in

http://www.paulgraham.com/bubble.html
startupfunding.html
http://online.wsj.com/public/article/SB113098635587487074.html?mod=todays_free_feature
http://www.hypercamp.org/2005/11/09

house.	Their	only	hope	now	is	to	buy	all	the	best	Ajax	startups
before	Google	does.	And	even	that's	going	to	be	hard,	because
Google	has	as	big	a	head	start	in	buying	microstartups	as	it	did
in	search	a	few	years	ago.	After	all,	Google	Maps,	the	canonical
Ajax	application,	was	the	result	of	a	startup	they	bought.

So	ironically	the	original	description	of	the	Web	2.0	conference
turned	out	to	be	partially	right:	web-based	applications	are	a	big
component	of	Web	2.0.	But	I'm	convinced	they	got	this	right	by
accident.	The	Ajax	boom	didn't	start	till	early	2005,	when	Google
Maps	appeared	and	the	term	"Ajax"	was	coined.

2.	Democracy

The	second	big	element	of	Web	2.0	is	democracy.	We	now	have
several	examples	to	prove	that	amateurs	can	surpass
professionals,	when	they	have	the	right	kind	of	system	to	channel
their	efforts.	Wikipedia	may	be	the	most	famous.	Experts	have
given	Wikipedia	middling	reviews,	but	they	miss	the	critical
point:	it's	good	enough.	And	it's	free,	which	means	people
actually	read	it.	On	the	web,	articles	you	have	to	pay	for	might	as
well	not	exist.	Even	if	you	were	willing	to	pay	to	read	them
yourself,	you	can't	link	to	them.	They're	not	part	of	the
conversation.

Another	place	democracy	seems	to	win	is	in	deciding	what
counts	as	news.	I	never	look	at	any	news	site	now	except	Reddit.
[2]	I	know	if	something	major	happens,	or	someone	writes	a
particularly	interesting	article,	it	will	show	up	there.	Why	bother
checking	the	front	page	of	any	specific	paper	or	magazine?
Reddit's	like	an	RSS	feed	for	the	whole	web,	with	a	filter	for
quality.	Similar	sites	include	Digg,	a	technology	news	site	that's
rapidly	approaching	Slashdot	in	popularity,	and	del.icio.us,	the
collaborative	bookmarking	network	that	set	off	the	"tagging"
movement.	And	whereas	Wikipedia's	main	appeal	is	that	it's	good
enough	and	free,	these	sites	suggest	that	voters	do	a	significantly
better	job	than	human	editors.

The	most	dramatic	example	of	Web	2.0	democracy	is	not	in	the
selection	of	ideas,	but	their	production.	I've	noticed	for	a	while
that	the	stuff	I	read	on	individual	people's	sites	is	as	good	as	or

http://googlemapsmania.blogspot.com/2005/10/google-maps-lead-engineer-gazes-into.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
opensource.html
http://wikipedia.org/
http://reddit.com/
#f2n
http://digg.com/
http://del.icio.us/

better	than	the	stuff	I	read	in	newspapers	and	magazines.	And
now	I	have	independent	evidence:	the	top	links	on	Reddit	are
generally	links	to	individual	people's	sites	rather	than	to
magazine	articles	or	news	stories.

My	experience	of	writing	for	magazines	suggests	an	explanation.
Editors.	They	control	the	topics	you	can	write	about,	and	they
can	generally	rewrite	whatever	you	produce.	The	result	is	to
damp	extremes.	Editing	yields	95th	percentile	writing—95%	of
articles	are	improved	by	it,	but	5%	are	dragged	down.	5%	of	the
time	you	get	"throngs	of	geeks."

On	the	web,	people	can	publish	whatever	they	want.	Nearly	all	of
it	falls	short	of	the	editor-damped	writing	in	print	publications.
But	the	pool	of	writers	is	very,	very	large.	If	it's	large	enough,	the
lack	of	damping	means	the	best	writing	online	should	surpass	the
best	in	print.	[3]	And	now	that	the	web	has	evolved	mechanisms
for	selecting	good	stuff,	the	web	wins	net.	Selection	beats
damping,	for	the	same	reason	market	economies	beat	centrally
planned	ones.

Even	the	startups	are	different	this	time	around.	They	are	to	the
startups	of	the	Bubble	what	bloggers	are	to	the	print	media.
During	the	Bubble,	a	startup	meant	a	company	headed	by	an
MBA	that	was	blowing	through	several	million	dollars	of	VC
money	to	"get	big	fast"	in	the	most	literal	sense.	Now	it	means	a
smaller,	younger,	more	technical	group	that	just	decided	to	make
something	great.	They'll	decide	later	if	they	want	to	raise	VC-
scale	funding,	and	if	they	take	it,	they'll	take	it	on	their	terms.

3.	Don't	Maltreat	Users

I	think	everyone	would	agree	that	democracy	and	Ajax	are
elements	of	"Web	2.0."	I	also	see	a	third:	not	to	maltreat	users.
During	the	Bubble	a	lot	of	popular	sites	were	quite	high-handed
with	users.	And	not	just	in	obvious	ways,	like	making	them
register,	or	subjecting	them	to	annoying	ads.	The	very	design	of
the	average	site	in	the	late	90s	was	an	abuse.	Many	of	the	most
popular	sites	were	loaded	with	obtrusive	branding	that	made
them	slow	to	load	and	sent	the	user	the	message:	this	is	our	site,
not	yours.	(There's	a	physical	analog	in	the	Intel	and	Microsoft

#f3n
hiring.html
vcsqueeze.html

stickers	that	come	on	some	laptops.)

I	think	the	root	of	the	problem	was	that	sites	felt	they	were
giving	something	away	for	free,	and	till	recently	a	company
giving	anything	away	for	free	could	be	pretty	high-handed	about
it.	Sometimes	it	reached	the	point	of	economic	sadism:	site
owners	assumed	that	the	more	pain	they	caused	the	user,	the
more	benefit	it	must	be	to	them.	The	most	dramatic	remnant	of
this	model	may	be	at	salon.com,	where	you	can	read	the
beginning	of	a	story,	but	to	get	the	rest	you	have	sit	through	a
movie.

At	Y	Combinator	we	advise	all	the	startups	we	fund	never	to	lord
it	over	users.	Never	make	users	register,	unless	you	need	to	in
order	to	store	something	for	them.	If	you	do	make	users	register,
never	make	them	wait	for	a	confirmation	link	in	an	email;	in	fact,
don't	even	ask	for	their	email	address	unless	you	need	it	for	some
reason.	Don't	ask	them	any	unnecessary	questions.	Never	send
them	email	unless	they	explicitly	ask	for	it.	Never	frame	pages
you	link	to,	or	open	them	in	new	windows.	If	you	have	a	free
version	and	a	pay	version,	don't	make	the	free	version	too
restricted.	And	if	you	find	yourself	asking	"should	we	allow	users
to	do	x?"	just	answer	"yes"	whenever	you're	unsure.	Err	on	the
side	of	generosity.

In	How	to	Start	a	Startup	I	advised	startups	never	to	let	anyone
fly	under	them,	meaning	never	to	let	any	other	company	offer	a
cheaper,	easier	solution.	Another	way	to	fly	low	is	to	give	users
more	power.	Let	users	do	what	they	want.	If	you	don't	and	a
competitor	does,	you're	in	trouble.

iTunes	is	Web	2.0ish	in	this	sense.	Finally	you	can	buy	individual
songs	instead	of	having	to	buy	whole	albums.	The	recording
industry	hated	the	idea	and	resisted	it	as	long	as	possible.	But	it
was	obvious	what	users	wanted,	so	Apple	flew	under	the	labels.
[4]	Though	really	it	might	be	better	to	describe	iTunes	as	Web
1.5.	Web	2.0	applied	to	music	would	probably	mean	individual
bands	giving	away	DRMless	songs	for	free.

The	ultimate	way	to	be	nice	to	users	is	to	give	them	something
for	free	that	competitors	charge	for.	During	the	90s	a	lot	of

designedforwindows.html
start.html
#f4n

people	probably	thought	we'd	have	some	working	system	for
micropayments	by	now.	In	fact	things	have	gone	in	the	other
direction.	The	most	successful	sites	are	the	ones	that	figure	out
new	ways	to	give	stuff	away	for	free.	Craigslist	has	largely
destroyed	the	classified	ad	sites	of	the	90s,	and	OkCupid	looks
likely	to	do	the	same	to	the	previous	generation	of	dating	sites.

Serving	web	pages	is	very,	very	cheap.	If	you	can	make	even	a
fraction	of	a	cent	per	page	view,	you	can	make	a	profit.	And
technology	for	targeting	ads	continues	to	improve.	I	wouldn't	be
surprised	if	ten	years	from	now	eBay	had	been	supplanted	by	an
ad-supported	freeBay	(or,	more	likely,	gBay).

Odd	as	it	might	sound,	we	tell	startups	that	they	should	try	to
make	as	little	money	as	possible.	If	you	can	figure	out	a	way	to
turn	a	billion	dollar	industry	into	a	fifty	million	dollar	industry,	so
much	the	better,	if	all	fifty	million	go	to	you.	Though	indeed,
making	things	cheaper	often	turns	out	to	generate	more	money
in	the	end,	just	as	automating	things	often	turns	out	to	generate
more	jobs.

The	ultimate	target	is	Microsoft.	What	a	bang	that	balloon	is
going	to	make	when	someone	pops	it	by	offering	a	free	web-
based	alternative	to	MS	Office.	[5]	Who	will?	Google?	They	seem
to	be	taking	their	time.	I	suspect	the	pin	will	be	wielded	by	a
couple	of	20	year	old	hackers	who	are	too	naive	to	be	intimidated
by	the	idea.	(How	hard	can	it	be?)

The	Common	Thread

Ajax,	democracy,	and	not	dissing	users.	What	do	they	all	have	in
common?	I	didn't	realize	they	had	anything	in	common	till
recently,	which	is	one	of	the	reasons	I	disliked	the	term	"Web	2.0"
so	much.	It	seemed	that	it	was	being	used	as	a	label	for	whatever
happened	to	be	new—that	it	didn't	predict	anything.

But	there	is	a	common	thread.	Web	2.0	means	using	the	web	the
way	it's	meant	to	be	used.	The	"trends"	we're	seeing	now	are
simply	the	inherent	nature	of	the	web	emerging	from	under	the
broken	models	that	got	imposed	on	it	during	the	Bubble.

#f5n

I	realized	this	when	I	read	an	interview	with	Joe	Kraus,	the	co-
founder	of	Excite.	[6]

Excite	really	never	got	the	business	model	right	at
all.	We	fell	into	the	classic	problem	of	how	when	a
new	medium	comes	out	it	adopts	the	practices,	the
content,	the	business	models	of	the	old	medium—
which	fails,	and	then	the	more	appropriate	models
get	figured	out.

It	may	have	seemed	as	if	not	much	was	happening	during	the
years	after	the	Bubble	burst.	But	in	retrospect,	something	was
happening:	the	web	was	finding	its	natural	angle	of	repose.	The
democracy	component,	for	example—that's	not	an	innovation,	in
the	sense	of	something	someone	made	happen.	That's	what	the
web	naturally	tends	to	produce.

Ditto	for	the	idea	of	delivering	desktop-like	applications	over	the
web.	That	idea	is	almost	as	old	as	the	web.	But	the	first	time
around	it	was	co-opted	by	Sun,	and	we	got	Java	applets.	Java	has
since	been	remade	into	a	generic	replacement	for	C++,	but	in
1996	the	story	about	Java	was	that	it	represented	a	new	model	of
software.	Instead	of	desktop	applications,	you'd	run	Java
"applets"	delivered	from	a	server.

This	plan	collapsed	under	its	own	weight.	Microsoft	helped	kill	it,
but	it	would	have	died	anyway.	There	was	no	uptake	among
hackers.	When	you	find	PR	firms	promoting	something	as	the
next	development	platform,	you	can	be	sure	it's	not.	If	it	were,
you	wouldn't	need	PR	firms	to	tell	you,	because	hackers	would
already	be	writing	stuff	on	top	of	it,	the	way	sites	like
Busmonster	used	Google	Maps	as	a	platform	before	Google	even
meant	it	to	be	one.

The	proof	that	Ajax	is	the	next	hot	platform	is	that	thousands	of
hackers	have	spontaneously	started	building	things	on	top	of	it.
Mikey	likes	it.

There's	another	thing	all	three	components	of	Web	2.0	have	in
common.	Here's	a	clue.	Suppose	you	approached	investors	with
the	following	idea	for	a	Web	2.0	startup:

#f6n
submarine.html
http://busmonster.com/

Sites	like	del.icio.us	and	flickr	allow	users	to	"tag"
content	with	descriptive	tokens.	But	there	is	also
huge	source	of	implicit	tags	that	they	ignore:	the	text
within	web	links.	Moreover,	these	links	represent	a
social	network	connecting	the	individuals	and
organizations	who	created	the	pages,	and	by	using
graph	theory	we	can	compute	from	this	network	an
estimate	of	the	reputation	of	each	member.	We	plan
to	mine	the	web	for	these	implicit	tags,	and	use	them
together	with	the	reputation	hierarchy	they	embody
to	enhance	web	searches.

How	long	do	you	think	it	would	take	them	on	average	to	realize
that	it	was	a	description	of	Google?

Google	was	a	pioneer	in	all	three	components	of	Web	2.0:	their
core	business	sounds	crushingly	hip	when	described	in	Web	2.0
terms,	"Don't	maltreat	users"	is	a	subset	of	"Don't	be	evil,"	and	of
course	Google	set	off	the	whole	Ajax	boom	with	Google	Maps.

Web	2.0	means	using	the	web	as	it	was	meant	to	be	used,	and
Google	does.	That's	their	secret.	They're	sailing	with	the	wind,
instead	of	sitting	becalmed	praying	for	a	business	model,	like	the
print	media,	or	trying	to	tack	upwind	by	suing	their	customers,
like	Microsoft	and	the	record	labels.	[7]

Google	doesn't	try	to	force	things	to	happen	their	way.	They	try
to	figure	out	what's	going	to	happen,	and	arrange	to	be	standing
there	when	it	does.	That's	the	way	to	approach	technology—and
as	business	includes	an	ever	larger	technological	component,	the
right	way	to	do	business.

The	fact	that	Google	is	a	"Web	2.0"	company	shows	that,	while
meaningful,	the	term	is	also	rather	bogus.	It's	like	the	word
"allopathic."	It	just	means	doing	things	right,	and	it's	a	bad	sign
when	you	have	a	special	word	for	that.

Notes

#f7n

[1]	From	the	conference	site,	June	2004:	"While	the	first	wave	of
the	Web	was	closely	tied	to	the	browser,	the	second	wave	extends
applications	across	the	web	and	enables	a	new	generation	of
services	and	business	opportunities."	To	the	extent	this	means
anything,	it	seems	to	be	about	web-based	applications.

[2]	Disclosure:	Reddit	was	funded	by	Y	Combinator.	But	although
I	started	using	it	out	of	loyalty	to	the	home	team,	I've	become	a
genuine	addict.	While	we're	at	it,	I'm	also	an	investor	in	!MSFT,
having	sold	all	my	shares	earlier	this	year.

[3]	I'm	not	against	editing.	I	spend	more	time	editing	than
writing,	and	I	have	a	group	of	picky	friends	who	proofread	almost
everything	I	write.	What	I	dislike	is	editing	done	after	the	fact	by
someone	else.

[4]	Obvious	is	an	understatement.	Users	had	been	climbing	in
through	the	window	for	years	before	Apple	finally	moved	the
door.

[5]	Hint:	the	way	to	create	a	web-based	alternative	to	Office	may
not	be	to	write	every	component	yourself,	but	to	establish	a
protocol	for	web-based	apps	to	share	a	virtual	home	directory
spread	across	multiple	servers.	Or	it	may	be	to	write	it	all
yourself.

[6]	In	Jessica	Livingston's	Founders	at	Work.

[7]	Microsoft	didn't	sue	their	customers	directly,	but	they	seem	to
have	done	all	they	could	to	help	SCO	sue	them.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,
Peter	Norvig,	Aaron	Swartz,	and	Jeff	Weiner	for	reading	drafts	of
this,	and	to	the	guys	at	O'Reilly	and	Adaptive	Path	for	answering
my	questions.

http://web.archive.org/web/20040602111547/http://web2con.com/
road.html
http://ycombinator.com/
http://foundersatwork.com/

	

Good	and	Bad	Procrastination
December	2005

The	most	impressive	people	I	know	are	all	terrible
procrastinators.	So	could	it	be	that	procrastination	isn't	always
bad?

Most	people	who	write	about	procrastination	write	about	how	to
cure	it.	But	this	is,	strictly	speaking,	impossible.	There	are	an
infinite	number	of	things	you	could	be	doing.	No	matter	what	you
work	on,	you're	not	working	on	everything	else.	So	the	question
is	not	how	to	avoid	procrastination,	but	how	to	procrastinate
well.

There	are	three	variants	of	procrastination,	depending	on	what
you	do	instead	of	working	on	something:	you	could	work	on	(a)
nothing,	(b)	something	less	important,	or	(c)	something	more
important.	That	last	type,	I'd	argue,	is	good	procrastination.

That's	the	"absent-minded	professor,"	who	forgets	to	shave,	or
eat,	or	even	perhaps	look	where	he's	going	while	he's	thinking
about	some	interesting	question.	His	mind	is	absent	from	the
everyday	world	because	it's	hard	at	work	in	another.

That's	the	sense	in	which	the	most	impressive	people	I	know	are
all	procrastinators.	They're	type-C	procrastinators:	they	put	off
working	on	small	stuff	to	work	on	big	stuff.

What's	"small	stuff?"	Roughly,	work	that	has	zero	chance	of	being
mentioned	in	your	obituary.	It's	hard	to	say	at	the	time	what	will
turn	out	to	be	your	best	work	(will	it	be	your	magnum	opus	on
Sumerian	temple	architecture,	or	the	detective	thriller	you	wrote
under	a	pseudonym?),	but	there's	a	whole	class	of	tasks	you	can
safely	rule	out:	shaving,	doing	your	laundry,	cleaning	the	house,
writing	thank-you	notes—anything	that	might	be	called	an
errand.

Good	procrastination	is	avoiding	errands	to	do	real	work.

Good	in	a	sense,	at	least.	The	people	who	want	you	to	do	the
errands	won't	think	it's	good.	But	you	probably	have	to	annoy
them	if	you	want	to	get	anything	done.	The	mildest	seeming
people,	if	they	want	to	do	real	work,	all	have	a	certain	degree	of
ruthlessness	when	it	comes	to	avoiding	errands.

Some	errands,	like	replying	to	letters,	go	away	if	you	ignore	them
(perhaps	taking	friends	with	them).	Others,	like	mowing	the
lawn,	or	filing	tax	returns,	only	get	worse	if	you	put	them	off.	In
principle	it	shouldn't	work	to	put	off	the	second	kind	of	errand.
You're	going	to	have	to	do	whatever	it	is	eventually.	Why	not	(as
past-due	notices	are	always	saying)	do	it	now?

The	reason	it	pays	to	put	off	even	those	errands	is	that	real	work
needs	two	things	errands	don't:	big	chunks	of	time,	and	the	right
mood.	If	you	get	inspired	by	some	project,	it	can	be	a	net	win	to
blow	off	everything	you	were	supposed	to	do	for	the	next	few
days	to	work	on	it.	Yes,	those	errands	may	cost	you	more	time
when	you	finally	get	around	to	them.	But	if	you	get	a	lot	done
during	those	few	days,	you	will	be	net	more	productive.

In	fact,	it	may	not	be	a	difference	in	degree,	but	a	difference	in
kind.	There	may	be	types	of	work	that	can	only	be	done	in	long,
uninterrupted	stretches,	when	inspiration	hits,	rather	than
dutifully	in	scheduled	little	slices.	Empirically	it	seems	to	be	so.
When	I	think	of	the	people	I	know	who've	done	great	things,	I
don't	imagine	them	dutifully	crossing	items	off	to-do	lists.	I
imagine	them	sneaking	off	to	work	on	some	new	idea.

Conversely,	forcing	someone	to	perform	errands	synchronously	is
bound	to	limit	their	productivity.	The	cost	of	an	interruption	is
not	just	the	time	it	takes,	but	that	it	breaks	the	time	on	either
side	in	half.	You	probably	only	have	to	interrupt	someone	a
couple	times	a	day	before	they're	unable	to	work	on	hard
problems	at	all.

I've	wondered	a	lot	about	why	startups	are	most	productive	at
the	very	beginning,	when	they're	just	a	couple	guys	in	an

start.html

apartment.	The	main	reason	may	be	that	there's	no	one	to
interrupt	them	yet.	In	theory	it's	good	when	the	founders	finally
get	enough	money	to	hire	people	to	do	some	of	the	work	for
them.	But	it	may	be	better	to	be	overworked	than	interrupted.
Once	you	dilute	a	startup	with	ordinary	office	workers—with
type-B	procrastinators—the	whole	company	starts	to	resonate	at
their	frequency.	They're	interrupt-driven,	and	soon	you	are	too.

Errands	are	so	effective	at	killing	great	projects	that	a	lot	of
people	use	them	for	that	purpose.	Someone	who	has	decided	to
write	a	novel,	for	example,	will	suddenly	find	that	the	house
needs	cleaning.	People	who	fail	to	write	novels	don't	do	it	by
sitting	in	front	of	a	blank	page	for	days	without	writing	anything.
They	do	it	by	feeding	the	cat,	going	out	to	buy	something	they
need	for	their	apartment,	meeting	a	friend	for	coffee,	checking
email.	"I	don't	have	time	to	work,"	they	say.	And	they	don't;
they've	made	sure	of	that.

(There's	also	a	variant	where	one	has	no	place	to	work.	The	cure
is	to	visit	the	places	where	famous	people	worked,	and	see	how
unsuitable	they	were.)

I've	used	both	these	excuses	at	one	time	or	another.	I've	learned
a	lot	of	tricks	for	making	myself	work	over	the	last	20	years,	but
even	now	I	don't	win	consistently.	Some	days	I	get	real	work
done.	Other	days	are	eaten	up	by	errands.	And	I	know	it's	usually
my	fault:	I	let	errands	eat	up	the	day,	to	avoid	facing	some	hard
problem.

The	most	dangerous	form	of	procrastination	is	unacknowledged
type-B	procrastination,	because	it	doesn't	feel	like
procrastination.	You're	"getting	things	done."	Just	the	wrong
things.

Any	advice	about	procrastination	that	concentrates	on	crossing
things	off	your	to-do	list	is	not	only	incomplete,	but	positively
misleading,	if	it	doesn't	consider	the	possibility	that	the	to-do	list
is	itself	a	form	of	type-B	procrastination.	In	fact,	possibility	is	too
weak	a	word.	Nearly	everyone's	is.	Unless	you're	working	on	the
biggest	things	you	could	be	working	on,	you're	type-B
procrastinating,	no	matter	how	much	you're	getting	done.

In	his	famous	essay	You	and	Your	Research	(which	I	recommend
to	anyone	ambitious,	no	matter	what	they're	working	on),
Richard	Hamming	suggests	that	you	ask	yourself	three
questions:

1.	 What	are	the	most	important	problems	in	your	field?

2.	 Are	you	working	on	one	of	them?

3.	 Why	not?

Hamming	was	at	Bell	Labs	when	he	started	asking	such
questions.	In	principle	anyone	there	ought	to	have	been	able	to
work	on	the	most	important	problems	in	their	field.	Perhaps	not
everyone	can	make	an	equally	dramatic	mark	on	the	world;	I
don't	know;	but	whatever	your	capacities,	there	are	projects	that
stretch	them.	So	Hamming's	exercise	can	be	generalized	to:

What's	the	best	thing	you	could	be	working	on,	and
why	aren't	you?

Most	people	will	shy	away	from	this	question.	I	shy	away	from	it
myself;	I	see	it	there	on	the	page	and	quickly	move	on	to	the	next
sentence.	Hamming	used	to	go	around	actually	asking	people
this,	and	it	didn't	make	him	popular.	But	it's	a	question	anyone
ambitious	should	face.

The	trouble	is,	you	may	end	up	hooking	a	very	big	fish	with	this
bait.	To	do	good	work,	you	need	to	do	more	than	find	good
projects.	Once	you've	found	them,	you	have	to	get	yourself	to
work	on	them,	and	that	can	be	hard.	The	bigger	the	problem,	the
harder	it	is	to	get	yourself	to	work	on	it.

Of	course,	the	main	reason	people	find	it	difficult	to	work	on	a
particular	problem	is	that	they	don't	enjoy	it.	When	you're	young,
especially,	you	often	find	yourself	working	on	stuff	you	don't
really	like--	because	it	seems	impressive,	for	example,	or	because
you've	been	assigned	to	work	on	it.	Most	grad	students	are	stuck
working	on	big	problems	they	don't	really	like,	and	grad	school	is
thus	synonymous	with	procrastination.

hamming.html
hs.html

But	even	when	you	like	what	you're	working	on,	it's	easier	to	get
yourself	to	work	on	small	problems	than	big	ones.	Why?	Why	is	it
so	hard	to	work	on	big	problems?	One	reason	is	that	you	may	not
get	any	reward	in	the	forseeable	future.	If	you	work	on
something	you	can	finish	in	a	day	or	two,	you	can	expect	to	have
a	nice	feeling	of	accomplishment	fairly	soon.	If	the	reward	is
indefinitely	far	in	the	future,	it	seems	less	real.

Another	reason	people	don't	work	on	big	projects	is,	ironically,
fear	of	wasting	time.	What	if	they	fail?	Then	all	the	time	they
spent	on	it	will	be	wasted.	(In	fact	it	probably	won't	be,	because
work	on	hard	projects	almost	always	leads	somewhere.)

But	the	trouble	with	big	problems	can't	be	just	that	they	promise
no	immediate	reward	and	might	cause	you	to	waste	a	lot	of	time.
If	that	were	all,	they'd	be	no	worse	than	going	to	visit	your	in-
laws.	There's	more	to	it	than	that.	Big	problems	are	terrifying.
There's	an	almost	physical	pain	in	facing	them.	It's	like	having	a
vacuum	cleaner	hooked	up	to	your	imagination.	All	your	initial
ideas	get	sucked	out	immediately,	and	you	don't	have	any	more,
and	yet	the	vacuum	cleaner	is	still	sucking.

You	can't	look	a	big	problem	too	directly	in	the	eye.	You	have	to
approach	it	somewhat	obliquely.	But	you	have	to	adjust	the	angle
just	right:	you	have	to	be	facing	the	big	problem	directly	enough
that	you	catch	some	of	the	excitement	radiating	from	it,	but	not
so	much	that	it	paralyzes	you.	You	can	tighten	the	angle	once	you
get	going,	just	as	a	sailboat	can	sail	closer	to	the	wind	once	it
gets	underway.

If	you	want	to	work	on	big	things,	you	seem	to	have	to	trick
yourself	into	doing	it.	You	have	to	work	on	small	things	that	could
grow	into	big	things,	or	work	on	successively	larger	things,	or
split	the	moral	load	with	collaborators.	It's	not	a	sign	of
weakness	to	depend	on	such	tricks.	The	very	best	work	has	been
done	this	way.

When	I	talk	to	people	who've	managed	to	make	themselves	work
on	big	things,	I	find	that	all	blow	off	errands,	and	all	feel	guilty
about	it.	I	don't	think	they	should	feel	guilty.	There's	more	to	do

than	anyone	could.	So	someone	doing	the	best	work	they	can	is
inevitably	going	to	leave	a	lot	of	errands	undone.	It	seems	a
mistake	to	feel	bad	about	that.

I	think	the	way	to	"solve"	the	problem	of	procrastination	is	to	let
delight	pull	you	instead	of	making	a	to-do	list	push	you.	Work	on
an	ambitious	project	you	really	enjoy,	and	sail	as	close	to	the
wind	as	you	can,	and	you'll	leave	the	right	things	undone.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Robert
Morris	for	reading	drafts	of	this.

	

How	to	Do	What	You	Love
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

January	2006

To	do	something	well	you	have	to	like	it.	That	idea	is	not	exactly
novel.	We've	got	it	down	to	four	words:	"Do	what	you	love."	But
it's	not	enough	just	to	tell	people	that.	Doing	what	you	love	is
complicated.

The	very	idea	is	foreign	to	what	most	of	us	learn	as	kids.	When	I
was	a	kid,	it	seemed	as	if	work	and	fun	were	opposites	by
definition.	Life	had	two	states:	some	of	the	time	adults	were
making	you	do	things,	and	that	was	called	work;	the	rest	of	the
time	you	could	do	what	you	wanted,	and	that	was	called	playing.
Occasionally	the	things	adults	made	you	do	were	fun,	just	as,
occasionally,	playing	wasn't	—	for	example,	if	you	fell	and	hurt
yourself.	But	except	for	these	few	anomalous	cases,	work	was
pretty	much	defined	as	not-fun.

And	it	did	not	seem	to	be	an	accident.	School,	it	was	implied,	was
tedious	because	it	was	preparation	for	grownup	work.

The	world	then	was	divided	into	two	groups,	grownups	and	kids.
Grownups,	like	some	kind	of	cursed	race,	had	to	work.	Kids
didn't,	but	they	did	have	to	go	to	school,	which	was	a	dilute
version	of	work	meant	to	prepare	us	for	the	real	thing.	Much	as
we	disliked	school,	the	grownups	all	agreed	that	grownup	work
was	worse,	and	that	we	had	it	easy.

Teachers	in	particular	all	seemed	to	believe	implicitly	that	work
was	not	fun.	Which	is	not	surprising:	work	wasn't	fun	for	most	of
them.	Why	did	we	have	to	memorize	state	capitals	instead	of
playing	dodgeball?	For	the	same	reason	they	had	to	watch	over	a
bunch	of	kids	instead	of	lying	on	a	beach.	You	couldn't	just	do
what	you	wanted.

http://ycombinator.com/apply.html

I'm	not	saying	we	should	let	little	kids	do	whatever	they	want.
They	may	have	to	be	made	to	work	on	certain	things.	But	if	we
make	kids	work	on	dull	stuff,	it	might	be	wise	to	tell	them	that
tediousness	is	not	the	defining	quality	of	work,	and	indeed	that
the	reason	they	have	to	work	on	dull	stuff	now	is	so	they	can
work	on	more	interesting	stuff	later.	[1]

Once,	when	I	was	about	9	or	10,	my	father	told	me	I	could	be
whatever	I	wanted	when	I	grew	up,	so	long	as	I	enjoyed	it.	I
remember	that	precisely	because	it	seemed	so	anomalous.	It	was
like	being	told	to	use	dry	water.	Whatever	I	thought	he	meant,	I
didn't	think	he	meant	work	could	literally	be	fun	—	fun	like
playing.	It	took	me	years	to	grasp	that.

Jobs

By	high	school,	the	prospect	of	an	actual	job	was	on	the	horizon.
Adults	would	sometimes	come	to	speak	to	us	about	their	work,	or
we	would	go	to	see	them	at	work.	It	was	always	understood	that
they	enjoyed	what	they	did.	In	retrospect	I	think	one	may	have:
the	private	jet	pilot.	But	I	don't	think	the	bank	manager	really
did.

The	main	reason	they	all	acted	as	if	they	enjoyed	their	work	was
presumably	the	upper-middle	class	convention	that	you're
supposed	to.	It	would	not	merely	be	bad	for	your	career	to	say
that	you	despised	your	job,	but	a	social	faux-pas.

Why	is	it	conventional	to	pretend	to	like	what	you	do?	The	first
sentence	of	this	essay	explains	that.	If	you	have	to	like	something
to	do	it	well,	then	the	most	successful	people	will	all	like	what
they	do.	That's	where	the	upper-middle	class	tradition	comes
from.	Just	as	houses	all	over	America	are	full	of	chairs	that	are,
without	the	owners	even	knowing	it,	nth-degree	imitations	of
chairs	designed	250	years	ago	for	French	kings,	conventional
attitudes	about	work	are,	without	the	owners	even	knowing	it,
nth-degree	imitations	of	the	attitudes	of	people	who've	done
great	things.

What	a	recipe	for	alienation.	By	the	time	they	reach	an	age	to

#f1n
http://images.google.com/images?q=louis%20xv%20chair

think	about	what	they'd	like	to	do,	most	kids	have	been
thoroughly	misled	about	the	idea	of	loving	one's	work.	School	has
trained	them	to	regard	work	as	an	unpleasant	duty.	Having	a	job
is	said	to	be	even	more	onerous	than	schoolwork.	And	yet	all	the
adults	claim	to	like	what	they	do.	You	can't	blame	kids	for
thinking	"I	am	not	like	these	people;	I	am	not	suited	to	this
world."

Actually	they've	been	told	three	lies:	the	stuff	they've	been
taught	to	regard	as	work	in	school	is	not	real	work;	grownup
work	is	not	(necessarily)	worse	than	schoolwork;	and	many	of	the
adults	around	them	are	lying	when	they	say	they	like	what	they
do.

The	most	dangerous	liars	can	be	the	kids'	own	parents.	If	you
take	a	boring	job	to	give	your	family	a	high	standard	of	living,	as
so	many	people	do,	you	risk	infecting	your	kids	with	the	idea	that
work	is	boring.	[2]	Maybe	it	would	be	better	for	kids	in	this	one
case	if	parents	were	not	so	unselfish.	A	parent	who	set	an
example	of	loving	their	work	might	help	their	kids	more	than	an
expensive	house.	[3]

It	was	not	till	I	was	in	college	that	the	idea	of	work	finally	broke
free	from	the	idea	of	making	a	living.	Then	the	important
question	became	not	how	to	make	money,	but	what	to	work	on.
Ideally	these	coincided,	but	some	spectacular	boundary	cases
(like	Einstein	in	the	patent	office)	proved	they	weren't	identical.

The	definition	of	work	was	now	to	make	some	original
contribution	to	the	world,	and	in	the	process	not	to	starve.	But
after	the	habit	of	so	many	years	my	idea	of	work	still	included	a
large	component	of	pain.	Work	still	seemed	to	require	discipline,
because	only	hard	problems	yielded	grand	results,	and	hard
problems	couldn't	literally	be	fun.	Surely	one	had	to	force	oneself
to	work	on	them.

If	you	think	something's	supposed	to	hurt,	you're	less	likely	to
notice	if	you're	doing	it	wrong.	That	about	sums	up	my
experience	of	graduate	school.

Bounds

#f2n
#f3n

How	much	are	you	supposed	to	like	what	you	do?	Unless	you
know	that,	you	don't	know	when	to	stop	searching.	And	if,	like
most	people,	you	underestimate	it,	you'll	tend	to	stop	searching
too	early.	You'll	end	up	doing	something	chosen	for	you	by	your
parents,	or	the	desire	to	make	money,	or	prestige	—	or	sheer
inertia.

Here's	an	upper	bound:	Do	what	you	love	doesn't	mean,	do	what
you	would	like	to	do	most	this	second.	Even	Einstein	probably
had	moments	when	he	wanted	to	have	a	cup	of	coffee,	but	told
himself	he	ought	to	finish	what	he	was	working	on	first.

It	used	to	perplex	me	when	I	read	about	people	who	liked	what
they	did	so	much	that	there	was	nothing	they'd	rather	do.	There
didn't	seem	to	be	any	sort	of	work	I	liked	that	much.	If	I	had	a
choice	of	(a)	spending	the	next	hour	working	on	something	or	(b)
be	teleported	to	Rome	and	spend	the	next	hour	wandering	about,
was	there	any	sort	of	work	I'd	prefer?	Honestly,	no.

But	the	fact	is,	almost	anyone	would	rather,	at	any	given	moment,
float	about	in	the	Carribbean,	or	have	sex,	or	eat	some	delicious
food,	than	work	on	hard	problems.	The	rule	about	doing	what	you
love	assumes	a	certain	length	of	time.	It	doesn't	mean,	do	what
will	make	you	happiest	this	second,	but	what	will	make	you
happiest	over	some	longer	period,	like	a	week	or	a	month.

Unproductive	pleasures	pall	eventually.	After	a	while	you	get
tired	of	lying	on	the	beach.	If	you	want	to	stay	happy,	you	have	to
do	something.

As	a	lower	bound,	you	have	to	like	your	work	more	than	any
unproductive	pleasure.	You	have	to	like	what	you	do	enough	that
the	concept	of	"spare	time"	seems	mistaken.	Which	is	not	to	say
you	have	to	spend	all	your	time	working.	You	can	only	work	so
much	before	you	get	tired	and	start	to	screw	up.	Then	you	want
to	do	something	else	—	even	something	mindless.	But	you	don't
regard	this	time	as	the	prize	and	the	time	you	spend	working	as
the	pain	you	endure	to	earn	it.

I	put	the	lower	bound	there	for	practical	reasons.	If	your	work	is

not	your	favorite	thing	to	do,	you'll	have	terrible	problems	with
procrastination.	You'll	have	to	force	yourself	to	work,	and	when
you	resort	to	that	the	results	are	distinctly	inferior.

To	be	happy	I	think	you	have	to	be	doing	something	you	not	only
enjoy,	but	admire.	You	have	to	be	able	to	say,	at	the	end,	wow,
that's	pretty	cool.	This	doesn't	mean	you	have	to	make
something.	If	you	learn	how	to	hang	glide,	or	to	speak	a	foreign
language	fluently,	that	will	be	enough	to	make	you	say,	for	a
while	at	least,	wow,	that's	pretty	cool.	What	there	has	to	be	is	a
test.

So	one	thing	that	falls	just	short	of	the	standard,	I	think,	is
reading	books.	Except	for	some	books	in	math	and	the	hard
sciences,	there's	no	test	of	how	well	you've	read	a	book,	and
that's	why	merely	reading	books	doesn't	quite	feel	like	work.	You
have	to	do	something	with	what	you've	read	to	feel	productive.

I	think	the	best	test	is	one	Gino	Lee	taught	me:	to	try	to	do	things
that	would	make	your	friends	say	wow.	But	it	probably	wouldn't
start	to	work	properly	till	about	age	22,	because	most	people
haven't	had	a	big	enough	sample	to	pick	friends	from	before
then.

Sirens

What	you	should	not	do,	I	think,	is	worry	about	the	opinion	of
anyone	beyond	your	friends.	You	shouldn't	worry	about	prestige.
Prestige	is	the	opinion	of	the	rest	of	the	world.	When	you	can	ask
the	opinions	of	people	whose	judgement	you	respect,	what	does
it	add	to	consider	the	opinions	of	people	you	don't	even	know?	[4]

This	is	easy	advice	to	give.	It's	hard	to	follow,	especially	when
you're	young.	[5]	Prestige	is	like	a	powerful	magnet	that	warps
even	your	beliefs	about	what	you	enjoy.	It	causes	you	to	work	not
on	what	you	like,	but	what	you'd	like	to	like.

That's	what	leads	people	to	try	to	write	novels,	for	example.	They
like	reading	novels.	They	notice	that	people	who	write	them	win
Nobel	prizes.	What	could	be	more	wonderful,	they	think,	than	to
be	a	novelist?	But	liking	the	idea	of	being	a	novelist	is	not

#f4n
#f5n

enough;	you	have	to	like	the	actual	work	of	novel-writing	if	you're
going	to	be	good	at	it;	you	have	to	like	making	up	elaborate	lies.

Prestige	is	just	fossilized	inspiration.	If	you	do	anything	well
enough,	you'll	make	it	prestigious.	Plenty	of	things	we	now
consider	prestigious	were	anything	but	at	first.	Jazz	comes	to
mind	—	though	almost	any	established	art	form	would	do.	So	just
do	what	you	like,	and	let	prestige	take	care	of	itself.

Prestige	is	especially	dangerous	to	the	ambitious.	If	you	want	to
make	ambitious	people	waste	their	time	on	errands,	the	way	to
do	it	is	to	bait	the	hook	with	prestige.	That's	the	recipe	for
getting	people	to	give	talks,	write	forewords,	serve	on
committees,	be	department	heads,	and	so	on.	It	might	be	a	good
rule	simply	to	avoid	any	prestigious	task.	If	it	didn't	suck,	they
wouldn't	have	had	to	make	it	prestigious.

Similarly,	if	you	admire	two	kinds	of	work	equally,	but	one	is
more	prestigious,	you	should	probably	choose	the	other.	Your
opinions	about	what's	admirable	are	always	going	to	be	slightly
influenced	by	prestige,	so	if	the	two	seem	equal	to	you,	you
probably	have	more	genuine	admiration	for	the	less	prestigious
one.

The	other	big	force	leading	people	astray	is	money.	Money	by
itself	is	not	that	dangerous.	When	something	pays	well	but	is
regarded	with	contempt,	like	telemarketing,	or	prostitution,	or
personal	injury	litigation,	ambitious	people	aren't	tempted	by	it.
That	kind	of	work	ends	up	being	done	by	people	who	are	"just
trying	to	make	a	living."	(Tip:	avoid	any	field	whose	practitioners
say	this.)	The	danger	is	when	money	is	combined	with	prestige,
as	in,	say,	corporate	law,	or	medicine.	A	comparatively	safe	and
prosperous	career	with	some	automatic	baseline	prestige	is
dangerously	tempting	to	someone	young,	who	hasn't	thought
much	about	what	they	really	like.

The	test	of	whether	people	love	what	they	do	is	whether	they'd
do	it	even	if	they	weren't	paid	for	it	—	even	if	they	had	to	work	at
another	job	to	make	a	living.	How	many	corporate	lawyers	would
do	their	current	work	if	they	had	to	do	it	for	free,	in	their	spare
time,	and	take	day	jobs	as	waiters	to	support	themselves?

This	test	is	especially	helpful	in	deciding	between	different	kinds
of	academic	work,	because	fields	vary	greatly	in	this	respect.
Most	good	mathematicians	would	work	on	math	even	if	there
were	no	jobs	as	math	professors,	whereas	in	the	departments	at
the	other	end	of	the	spectrum,	the	availability	of	teaching	jobs	is
the	driver:	people	would	rather	be	English	professors	than	work
in	ad	agencies,	and	publishing	papers	is	the	way	you	compete	for
such	jobs.	Math	would	happen	without	math	departments,	but	it
is	the	existence	of	English	majors,	and	therefore	jobs	teaching
them,	that	calls	into	being	all	those	thousands	of	dreary	papers
about	gender	and	identity	in	the	novels	of	Conrad.	No	one	does
that	kind	of	thing	for	fun.

The	advice	of	parents	will	tend	to	err	on	the	side	of	money.	It
seems	safe	to	say	there	are	more	undergrads	who	want	to	be
novelists	and	whose	parents	want	them	to	be	doctors	than	who
want	to	be	doctors	and	whose	parents	want	them	to	be	novelists.
The	kids	think	their	parents	are	"materialistic."	Not	necessarily.
All	parents	tend	to	be	more	conservative	for	their	kids	than	they
would	for	themselves,	simply	because,	as	parents,	they	share
risks	more	than	rewards.	If	your	eight	year	old	son	decides	to
climb	a	tall	tree,	or	your	teenage	daughter	decides	to	date	the
local	bad	boy,	you	won't	get	a	share	in	the	excitement,	but	if	your
son	falls,	or	your	daughter	gets	pregnant,	you'll	have	to	deal	with
the	consequences.

Discipline

With	such	powerful	forces	leading	us	astray,	it's	not	surprising
we	find	it	so	hard	to	discover	what	we	like	to	work	on.	Most
people	are	doomed	in	childhood	by	accepting	the	axiom	that
work	=	pain.	Those	who	escape	this	are	nearly	all	lured	onto	the
rocks	by	prestige	or	money.	How	many	even	discover	something
they	love	to	work	on?	A	few	hundred	thousand,	perhaps,	out	of
billions.

It's	hard	to	find	work	you	love;	it	must	be,	if	so	few	do.	So	don't
underestimate	this	task.	And	don't	feel	bad	if	you	haven't
succeeded	yet.	In	fact,	if	you	admit	to	yourself	that	you're
discontented,	you're	a	step	ahead	of	most	people,	who	are	still	in

http://www.google.com/scholar?q=gender+identity+narrative+discourse+transcend

denial.	If	you're	surrounded	by	colleagues	who	claim	to	enjoy
work	that	you	find	contemptible,	odds	are	they're	lying	to
themselves.	Not	necessarily,	but	probably.

Although	doing	great	work	takes	less	discipline	than	people	think
—	because	the	way	to	do	great	work	is	to	find	something	you	like
so	much	that	you	don't	have	to	force	yourself	to	do	it	—	finding
work	you	love	does	usually	require	discipline.	Some	people	are
lucky	enough	to	know	what	they	want	to	do	when	they're	12,	and
just	glide	along	as	if	they	were	on	railroad	tracks.	But	this	seems
the	exception.	More	often	people	who	do	great	things	have
careers	with	the	trajectory	of	a	ping-pong	ball.	They	go	to	school
to	study	A,	drop	out	and	get	a	job	doing	B,	and	then	become
famous	for	C	after	taking	it	up	on	the	side.

Sometimes	jumping	from	one	sort	of	work	to	another	is	a	sign	of
energy,	and	sometimes	it's	a	sign	of	laziness.	Are	you	dropping
out,	or	boldly	carving	a	new	path?	You	often	can't	tell	yourself.
Plenty	of	people	who	will	later	do	great	things	seem	to	be
disappointments	early	on,	when	they're	trying	to	find	their	niche.

Is	there	some	test	you	can	use	to	keep	yourself	honest?	One	is	to
try	to	do	a	good	job	at	whatever	you're	doing,	even	if	you	don't
like	it.	Then	at	least	you'll	know	you're	not	using	dissatisfaction
as	an	excuse	for	being	lazy.	Perhaps	more	importantly,	you'll	get
into	the	habit	of	doing	things	well.

Another	test	you	can	use	is:	always	produce.	For	example,	if	you
have	a	day	job	you	don't	take	seriously	because	you	plan	to	be	a
novelist,	are	you	producing?	Are	you	writing	pages	of	fiction,
however	bad?	As	long	as	you're	producing,	you'll	know	you're	not
merely	using	the	hazy	vision	of	the	grand	novel	you	plan	to	write
one	day	as	an	opiate.	The	view	of	it	will	be	obstructed	by	the	all
too	palpably	flawed	one	you're	actually	writing.

"Always	produce"	is	also	a	heuristic	for	finding	the	work	you	love.
If	you	subject	yourself	to	that	constraint,	it	will	automatically
push	you	away	from	things	you	think	you're	supposed	to	work	on,
toward	things	you	actually	like.	"Always	produce"	will	discover
your	life's	work	the	way	water,	with	the	aid	of	gravity,	finds	the
hole	in	your	roof.

Of	course,	figuring	out	what	you	like	to	work	on	doesn't	mean
you	get	to	work	on	it.	That's	a	separate	question.	And	if	you're
ambitious	you	have	to	keep	them	separate:	you	have	to	make	a
conscious	effort	to	keep	your	ideas	about	what	you	want	from
being	contaminated	by	what	seems	possible.	[6]

It's	painful	to	keep	them	apart,	because	it's	painful	to	observe	the
gap	between	them.	So	most	people	pre-emptively	lower	their
expectations.	For	example,	if	you	asked	random	people	on	the
street	if	they'd	like	to	be	able	to	draw	like	Leonardo,	you'd	find
most	would	say	something	like	"Oh,	I	can't	draw."	This	is	more	a
statement	of	intention	than	fact;	it	means,	I'm	not	going	to	try.
Because	the	fact	is,	if	you	took	a	random	person	off	the	street
and	somehow	got	them	to	work	as	hard	as	they	possibly	could	at
drawing	for	the	next	twenty	years,	they'd	get	surprisingly	far.	But
it	would	require	a	great	moral	effort;	it	would	mean	staring
failure	in	the	eye	every	day	for	years.	And	so	to	protect
themselves	people	say	"I	can't."

Another	related	line	you	often	hear	is	that	not	everyone	can	do
work	they	love	—	that	someone	has	to	do	the	unpleasant	jobs.
Really?	How	do	you	make	them?	In	the	US	the	only	mechanism
for	forcing	people	to	do	unpleasant	jobs	is	the	draft,	and	that
hasn't	been	invoked	for	over	30	years.	All	we	can	do	is	encourage
people	to	do	unpleasant	work,	with	money	and	prestige.

If	there's	something	people	still	won't	do,	it	seems	as	if	society
just	has	to	make	do	without.	That's	what	happened	with	domestic
servants.	For	millennia	that	was	the	canonical	example	of	a	job
"someone	had	to	do."	And	yet	in	the	mid	twentieth	century
servants	practically	disappeared	in	rich	countries,	and	the	rich
have	just	had	to	do	without.

So	while	there	may	be	some	things	someone	has	to	do,	there's	a
good	chance	anyone	saying	that	about	any	particular	job	is
mistaken.	Most	unpleasant	jobs	would	either	get	automated	or	go
undone	if	no	one	were	willing	to	do	them.

Two	Routes

#f6n

There's	another	sense	of	"not	everyone	can	do	work	they	love"
that's	all	too	true,	however.	One	has	to	make	a	living,	and	it's
hard	to	get	paid	for	doing	work	you	love.	There	are	two	routes	to
that	destination:

The	organic	route:	as	you	become	more	eminent,
gradually	to	increase	the	parts	of	your	job	that	you
like	at	the	expense	of	those	you	don't.

The	two-job	route:	to	work	at	things	you	don't	like	to
get	money	to	work	on	things	you	do.

The	organic	route	is	more	common.	It	happens	naturally	to
anyone	who	does	good	work.	A	young	architect	has	to	take
whatever	work	he	can	get,	but	if	he	does	well	he'll	gradually	be
in	a	position	to	pick	and	choose	among	projects.	The
disadvantage	of	this	route	is	that	it's	slow	and	uncertain.	Even
tenure	is	not	real	freedom.

The	two-job	route	has	several	variants	depending	on	how	long
you	work	for	money	at	a	time.	At	one	extreme	is	the	"day	job,"
where	you	work	regular	hours	at	one	job	to	make	money,	and
work	on	what	you	love	in	your	spare	time.	At	the	other	extreme
you	work	at	something	till	you	make	enough	not	to	have	to	work
for	money	again.

The	two-job	route	is	less	common	than	the	organic	route,
because	it	requires	a	deliberate	choice.	It's	also	more	dangerous.
Life	tends	to	get	more	expensive	as	you	get	older,	so	it's	easy	to
get	sucked	into	working	longer	than	you	expected	at	the	money
job.	Worse	still,	anything	you	work	on	changes	you.	If	you	work
too	long	on	tedious	stuff,	it	will	rot	your	brain.	And	the	best
paying	jobs	are	most	dangerous,	because	they	require	your	full
attention.

The	advantage	of	the	two-job	route	is	that	it	lets	you	jump	over
obstacles.	The	landscape	of	possible	jobs	isn't	flat;	there	are
walls	of	varying	heights	between	different	kinds	of	work.	[7]	The
trick	of	maximizing	the	parts	of	your	job	that	you	like	can	get	you
from	architecture	to	product	design,	but	not,	probably,	to	music.
If	you	make	money	doing	one	thing	and	then	work	on	another,

wealth.html
#f7n

you	have	more	freedom	of	choice.

Which	route	should	you	take?	That	depends	on	how	sure	you	are
of	what	you	want	to	do,	how	good	you	are	at	taking	orders,	how
much	risk	you	can	stand,	and	the	odds	that	anyone	will	pay	(in
your	lifetime)	for	what	you	want	to	do.	If	you're	sure	of	the
general	area	you	want	to	work	in	and	it's	something	people	are
likely	to	pay	you	for,	then	you	should	probably	take	the	organic
route.	But	if	you	don't	know	what	you	want	to	work	on,	or	don't
like	to	take	orders,	you	may	want	to	take	the	two-job	route,	if	you
can	stand	the	risk.

Don't	decide	too	soon.	Kids	who	know	early	what	they	want	to	do
seem	impressive,	as	if	they	got	the	answer	to	some	math
question	before	the	other	kids.	They	have	an	answer,	certainly,
but	odds	are	it's	wrong.

A	friend	of	mine	who	is	a	quite	successful	doctor	complains
constantly	about	her	job.	When	people	applying	to	medical	school
ask	her	for	advice,	she	wants	to	shake	them	and	yell	"Don't	do
it!"	(But	she	never	does.)	How	did	she	get	into	this	fix?	In	high
school	she	already	wanted	to	be	a	doctor.	And	she	is	so	ambitious
and	determined	that	she	overcame	every	obstacle	along	the	way
—	including,	unfortunately,	not	liking	it.

Now	she	has	a	life	chosen	for	her	by	a	high-school	kid.

When	you're	young,	you're	given	the	impression	that	you'll	get
enough	information	to	make	each	choice	before	you	need	to
make	it.	But	this	is	certainly	not	so	with	work.	When	you're
deciding	what	to	do,	you	have	to	operate	on	ridiculously
incomplete	information.	Even	in	college	you	get	little	idea	what
various	types	of	work	are	like.	At	best	you	may	have	a	couple
internships,	but	not	all	jobs	offer	internships,	and	those	that	do
don't	teach	you	much	more	about	the	work	than	being	a	batboy
teaches	you	about	playing	baseball.

In	the	design	of	lives,	as	in	the	design	of	most	other	things,	you
get	better	results	if	you	use	flexible	media.	So	unless	you're	fairly
sure	what	you	want	to	do,	your	best	bet	may	be	to	choose	a	type
of	work	that	could	turn	into	either	an	organic	or	two-job	career.

That	was	probably	part	of	the	reason	I	chose	computers.	You	can
be	a	professor,	or	make	a	lot	of	money,	or	morph	it	into	any
number	of	other	kinds	of	work.

It's	also	wise,	early	on,	to	seek	jobs	that	let	you	do	many	different
things,	so	you	can	learn	faster	what	various	kinds	of	work	are
like.	Conversely,	the	extreme	version	of	the	two-job	route	is
dangerous	because	it	teaches	you	so	little	about	what	you	like.	If
you	work	hard	at	being	a	bond	trader	for	ten	years,	thinking	that
you'll	quit	and	write	novels	when	you	have	enough	money,	what
happens	when	you	quit	and	then	discover	that	you	don't	actually
like	writing	novels?

Most	people	would	say,	I'd	take	that	problem.	Give	me	a	million
dollars	and	I'll	figure	out	what	to	do.	But	it's	harder	than	it	looks.
Constraints	give	your	life	shape.	Remove	them	and	most	people
have	no	idea	what	to	do:	look	at	what	happens	to	those	who	win
lotteries	or	inherit	money.	Much	as	everyone	thinks	they	want
financial	security,	the	happiest	people	are	not	those	who	have	it,
but	those	who	like	what	they	do.	So	a	plan	that	promises	freedom
at	the	expense	of	knowing	what	to	do	with	it	may	not	be	as	good
as	it	seems.

Whichever	route	you	take,	expect	a	struggle.	Finding	work	you
love	is	very	difficult.	Most	people	fail.	Even	if	you	succeed,	it's
rare	to	be	free	to	work	on	what	you	want	till	your	thirties	or
forties.	But	if	you	have	the	destination	in	sight	you'll	be	more
likely	to	arrive	at	it.	If	you	know	you	can	love	work,	you're	in	the
home	stretch,	and	if	you	know	what	work	you	love,	you're
practically	there.

Notes

[1]	Currently	we	do	the	opposite:	when	we	make	kids	do	boring
work,	like	arithmetic	drills,	instead	of	admitting	frankly	that	it's

boring,	we	try	to	disguise	it	with	superficial	decorations.

[2]	One	father	told	me	about	a	related	phenomenon:	he	found
himself	concealing	from	his	family	how	much	he	liked	his	work.
When	he	wanted	to	go	to	work	on	a	saturday,	he	found	it	easier
to	say	that	it	was	because	he	"had	to"	for	some	reason,	rather
than	admitting	he	preferred	to	work	than	stay	home	with	them.

[3]	Something	similar	happens	with	suburbs.	Parents	move	to
suburbs	to	raise	their	kids	in	a	safe	environment,	but	suburbs	are
so	dull	and	artificial	that	by	the	time	they're	fifteen	the	kids	are
convinced	the	whole	world	is	boring.

[4]	I'm	not	saying	friends	should	be	the	only	audience	for	your
work.	The	more	people	you	can	help,	the	better.	But	friends
should	be	your	compass.

[5]	Donald	Hall	said	young	would-be	poets	were	mistaken	to	be
so	obsessed	with	being	published.	But	you	can	imagine	what	it
would	do	for	a	24	year	old	to	get	a	poem	published	in	The	New
Yorker.	Now	to	people	he	meets	at	parties	he's	a	real	poet.
Actually	he's	no	better	or	worse	than	he	was	before,	but	to	a
clueless	audience	like	that,	the	approval	of	an	official	authority
makes	all	the	difference.	So	it's	a	harder	problem	than	Hall
realizes.	The	reason	the	young	care	so	much	about	prestige	is
that	the	people	they	want	to	impress	are	not	very	discerning.

[6]	This	is	isomorphic	to	the	principle	that	you	should	prevent
your	beliefs	about	how	things	are	from	being	contaminated	by
how	you	wish	they	were.	Most	people	let	them	mix	pretty
promiscuously.	The	continuing	popularity	of	religion	is	the	most
visible	index	of	that.

[7]	A	more	accurate	metaphor	would	be	to	say	that	the	graph	of
jobs	is	not	very	well	connected.

Thanks	to	Trevor	Blackwell,	Dan	Friedman,	Sarah	Harlin,	Jessica
Livingston,	Jackie	McDonough,	Robert	Morris,	Peter	Norvig,
David	Sloo,	and	Aaron	Swartz	for	reading	drafts	of	this.

	

Why	YC
March	2006,	rev	August	2009

Yesterday	one	of	the	founders	we	funded	asked	me	why	we
started	Y	Combinator.	Or	more	precisely,	he	asked	if	we'd	started
YC	mainly	for	fun.

Kind	of,	but	not	quite.	It	is	enormously	fun	to	be	able	to	work
with	Rtm	and	Trevor	again.	I	missed	that	after	we	sold	Viaweb,
and	for	all	the	years	after	I	always	had	a	background	process
running,	looking	for	something	we	could	do	together.	There	is
definitely	an	aspect	of	a	band	reunion	to	Y	Combinator.	Every
couple	days	I	slip	and	call	it	"Viaweb."

Viaweb	we	started	very	explicitly	to	make	money.	I	was	sick	of
living	from	one	freelance	project	to	the	next,	and	decided	to	just
work	as	hard	as	I	could	till	I'd	made	enough	to	solve	the	problem
once	and	for	all.	Viaweb	was	sometimes	fun,	but	it	wasn't
designed	for	fun,	and	mostly	it	wasn't.	I'd	be	surprised	if	any
startup	is.	All	startups	are	mostly	schleps.

The	real	reason	we	started	Y	Combinator	is	neither	selfish	nor
virtuous.	We	didn't	start	it	mainly	to	make	money;	we	have	no
idea	what	our	average	returns	might	be,	and	won't	know	for
years.	Nor	did	we	start	YC	mainly	to	help	out	young	would-be
founders,	though	we	do	like	the	idea,	and	comfort	ourselves
occasionally	with	the	thought	that	if	all	our	investments	tank,	we
will	thus	have	been	doing	something	unselfish.	(It's	oddly
nondeterministic.)

The	real	reason	we	started	Y	Combinator	is	one	probably	only	a
hacker	would	understand.	We	did	it	because	it	seems	such	a
great	hack.	There	are	thousands	of	smart	people	who	could	start
companies	and	don't,	and	with	a	relatively	small	amount	of	force
applied	at	just	the	right	place,	we	can	spring	on	the	world	a
stream	of	new	startups	that	might	otherwise	not	have	existed.

http://ycombinator.com/
gba.html

In	a	way	this	is	virtuous,	because	I	think	startups	are	a	good
thing.	But	really	what	motivates	us	is	the	completely	amoral
desire	that	would	motivate	any	hacker	who	looked	at	some
complex	device	and	realized	that	with	a	tiny	tweak	he	could
make	it	run	more	efficiently.	In	this	case,	the	device	is	the	world's
economy,	which	fortunately	happens	to	be	open	source.

	

6,631,372
March	2006,	rev	August	2009

A	couple	days	ago	I	found	to	my	surprise	that	I'd	been	granted	a
patent.	It	issued	in	2003,	but	no	one	told	me.	I	wouldn't	know
about	it	now	except	that	a	few	months	ago,	while	visiting	Yahoo,	I
happened	to	run	into	a	Big	Cheese	I	knew	from	working	there	in
the	late	nineties.	He	brought	up	something	called	Revenue	Loop,
which	Viaweb	had	been	working	on	when	they	bought	us.

The	idea	is	basically	that	you	sort	search	results	not	in	order	of
textual	"relevance"	(as	search	engines	did	then)	nor	in	order	of
how	much	advertisers	bid	(as	Overture	did)	but	in	order	of	the
bid	times	the	number	of	transactions.	Ordinarily	you'd	do	this	for
shopping	searches,	though	in	fact	one	of	the	features	of	our
scheme	is	that	it	automatically	detects	which	searches	are
shopping	searches.

If	you	just	order	the	results	in	order	of	bids,	you	can	make	the
search	results	useless,	because	the	first	results	could	be
dominated	by	lame	sites	that	had	bid	the	most.	But	if	you	order
results	by	bid	multiplied	by	transactions,	far	from	selling	out,
you're	getting	a	better	measure	of	relevance.	What	could	be	a
better	sign	that	someone	was	satisfied	with	a	search	result	than
going	to	the	site	and	buying	something?

And,	of	course,	this	algorithm	automatically	maximizes	the
revenue	of	the	search	engine.

Everyone	is	focused	on	this	type	of	approach	now,	but	few	were
in	1998.	In	1998	it	was	all	about	selling	banner	ads.	We	didn't
know	that,	so	we	were	pretty	excited	when	we	figured	out	what
seemed	to	us	the	optimal	way	of	doing	shopping	searches.

When	Yahoo	was	thinking	of	buying	us,	we	had	a	meeting	with
Jerry	Yang	in	New	York.	For	him,	I	now	realize,	this	was	supposed

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,631,372.PN.&OS=PN/6,631,372&RS=PN/6,631,372

to	be	one	of	those	meetings	when	you	check	out	a	company
you've	pretty	much	decided	to	buy,	just	to	make	sure	they're	ok
guys.	We	weren't	expected	to	do	more	than	chat	and	seem	smart
and	reasonable.	He	must	have	been	dismayed	when	I	jumped	up
to	the	whiteboard	and	launched	into	a	presentation	of	our
exciting	new	technology.

I	was	just	as	dismayed	when	he	didn't	seem	to	care	at	all	about
it.	At	the	time	I	thought,	"boy,	is	this	guy	poker-faced.	We	present
to	him	what	has	to	be	the	optimal	way	of	sorting	product	search
results,	and	he's	not	even	curious."	I	didn't	realize	till	much	later
why	he	didn't	care.	In	1998,	advertisers	were	overpaying
enormously	for	ads	on	web	sites.	In	1998,	if	advertisers	paid	the
maximum	that	traffic	was	worth	to	them,	Yahoo's	revenues	would
have	decreased.

Things	are	different	now,	of	course.	Now	this	sort	of	thing	is	all
the	rage.	So	when	I	ran	into	the	Yahoo	exec	I	knew	from	the	old
days	in	the	Yahoo	cafeteria	a	few	months	ago,	the	first	thing	he
remembered	was	not	(fortunately)	all	the	fights	I	had	with	him,
but	Revenue	Loop.

"Well,"	I	said,	"I	think	we	actually	applied	for	a	patent	on	it.	I'm
not	sure	what	happened	to	the	application	after	I	left."

"Really?	That	would	be	an	important	patent."

So	someone	investigated,	and	sure	enough,	that	patent
application	had	continued	in	the	pipeline	for	several	years	after,
and	finally	issued	in	2003.

The	main	thing	that	struck	me	on	reading	it,	actually,	is	that
lawyers	at	some	point	messed	up	my	nice	clear	writing.	Some
clever	person	with	a	spell	checker	reduced	one	section	to	Zen-
like	incomprehensibility:

Also,	common	spelling	errors	will	tend	to	get	fixed.
For	example,	if	users	searching	for	"compact	disc
player"	end	up	spending	considerable	money	at	sites
offering	compact	disc	players,	then	those	pages	will
have	a	higher	relevance	for	that	search	phrase,	even

though	the	phrase	"compact	disc	player"	is	not
present	on	those	pages.

(That	"compat	disc	player"	wasn't	a	typo,	guys.)

For	the	fine	prose	of	the	original,	see	the	provisional	application
of	February	1998,	back	when	we	were	still	Viaweb	and	couldn't
afford	to	pay	lawyers	to	turn	every	"a	lot	of"	into	"considerable."

	

Are	Software	Patents	Evil?
March	2006

(This	essay	is	derived	from	a	talk	at	Google.)

A	few	weeks	ago	I	found	to	my	surprise	that	I'd	been	granted
four	patents.	This	was	all	the	more	surprising	because	I'd	only
applied	for	three.	The	patents	aren't	mine,	of	course.	They	were
assigned	to	Viaweb,	and	became	Yahoo's	when	they	bought	us.
But	the	news	set	me	thinking	about	the	question	of	software
patents	generally.

Patents	are	a	hard	problem.	I've	had	to	advise	most	of	the
startups	we've	funded	about	them,	and	despite	years	of
experience	I'm	still	not	always	sure	I'm	giving	the	right	advice.

One	thing	I	do	feel	pretty	certain	of	is	that	if	you're	against
software	patents,	you're	against	patents	in	general.	Gradually
our	machines	consist	more	and	more	of	software.	Things	that
used	to	be	done	with	levers	and	cams	and	gears	are	now	done
with	loops	and	trees	and	closures.	There's	nothing	special	about
physical	embodiments	of	control	systems	that	should	make	them
patentable,	and	the	software	equivalent	not.

Unfortunately,	patent	law	is	inconsistent	on	this	point.	Patent	law
in	most	countries	says	that	algorithms	aren't	patentable.	This
rule	is	left	over	from	a	time	when	"algorithm"	meant	something
like	the	Sieve	of	Eratosthenes.	In	1800,	people	could	not	see	as
readily	as	we	can	that	a	great	many	patents	on	mechanical
objects	were	really	patents	on	the	algorithms	they	embodied.

Patent	lawyers	still	have	to	pretend	that's	what	they're	doing
when	they	patent	algorithms.	You	must	not	use	the	word
"algorithm"	in	the	title	of	a	patent	application,	just	as	you	must
not	use	the	word	"essays"	in	the	title	of	a	book.	If	you	want	to
patent	an	algorithm,	you	have	to	frame	it	as	a	computer	system

http://paulgraham.infogami.com/blog/morepatents

executing	that	algorithm.	Then	it's	mechanical;	phew.	The	default
euphemism	for	algorithm	is	"system	and	method."	Try	a	patent
search	for	that	phrase	and	see	how	many	results	you	get.

Since	software	patents	are	no	different	from	hardware	patents,
people	who	say	"software	patents	are	evil"	are	saying	simply
"patents	are	evil."	So	why	do	so	many	people	complain	about
software	patents	specifically?

I	think	the	problem	is	more	with	the	patent	office	than	the
concept	of	software	patents.	Whenever	software	meets
government,	bad	things	happen,	because	software	changes	fast
and	government	changes	slow.	The	patent	office	has	been
overwhelmed	by	both	the	volume	and	the	novelty	of	applications
for	software	patents,	and	as	a	result	they've	made	a	lot	of
mistakes.

The	most	common	is	to	grant	patents	that	shouldn't	be	granted.
To	be	patentable,	an	invention	has	to	be	more	than	new.	It	also
has	to	be	non-obvious.	And	this,	especially,	is	where	the	USPTO
has	been	dropping	the	ball.	Slashdot	has	an	icon	that	expresses
the	problem	vividly:	a	knife	and	fork	with	the	words	"patent
pending"	superimposed.

The	scary	thing	is,	this	is	the	only	icon	they	have	for	patent
stories.	Slashdot	readers	now	take	it	for	granted	that	a	story
about	a	patent	will	be	about	a	bogus	patent.	That's	how	bad	the
problem	has	become.

The	problem	with	Amazon's	notorious	one-click	patent,	for
example,	is	not	that	it's	a	software	patent,	but	that	it's	obvious.
Any	online	store	that	kept	people's	shipping	addresses	would
have	implemented	this.	The	reason	Amazon	did	it	first	was	not
that	they	were	especially	smart,	but	because	they	were	one	of
the	earliest	sites	with	enough	clout	to	force	customers	to	log	in
before	they	could	buy	something.	[1]

We,	as	hackers,	know	the	USPTO	is	letting	people	patent	the
knives	and	forks	of	our	world.	The	problem	is,	the	USPTO	are	not
hackers.	They're	probably	good	at	judging	new	inventions	for
casting	steel	or	grinding	lenses,	but	they	don't	understand

#f1n

software	yet.

At	this	point	an	optimist	would	be	tempted	to	add	"but	they	will
eventually."	Unfortunately	that	might	not	be	true.	The	problem
with	software	patents	is	an	instance	of	a	more	general	one:	the
patent	office	takes	a	while	to	understand	new	technology.	If	so,
this	problem	will	only	get	worse,	because	the	rate	of
technological	change	seems	to	be	increasing.	In	thirty	years,	the
patent	office	may	understand	the	sort	of	things	we	now	patent	as
software,	but	there	will	be	other	new	types	of	inventions	they
understand	even	less.

Applying	for	a	patent	is	a	negotiation.	You	generally	apply	for	a
broader	patent	than	you	think	you'll	be	granted,	and	the
examiners	reply	by	throwing	out	some	of	your	claims	and
granting	others.	So	I	don't	really	blame	Amazon	for	applying	for
the	one-click	patent.	The	big	mistake	was	the	patent	office's,	for
not	insisting	on	something	narrower,	with	real	technical	content.
By	granting	such	an	over-broad	patent,	the	USPTO	in	effect	slept
with	Amazon	on	the	first	date.	Was	Amazon	supposed	to	say	no?

Where	Amazon	went	over	to	the	dark	side	was	not	in	applying	for
the	patent,	but	in	enforcing	it.	A	lot	of	companies	(Microsoft,	for
example)	have	been	granted	large	numbers	of	preposterously
over-broad	patents,	but	they	keep	them	mainly	for	defensive
purposes.	Like	nuclear	weapons,	the	main	role	of	big	companies'
patent	portfolios	is	to	threaten	anyone	who	attacks	them	with	a
counter-suit.	Amazon's	suit	against	Barnes	&	Noble	was	thus	the
equivalent	of	a	nuclear	first	strike.

That	suit	probably	hurt	Amazon	more	than	it	helped	them.
Barnes	&	Noble	was	a	lame	site;	Amazon	would	have	crushed
them	anyway.	To	attack	a	rival	they	could	have	ignored,	Amazon
put	a	lasting	black	mark	on	their	own	reputation.	Even	now	I
think	if	you	asked	hackers	to	free-associate	about	Amazon,	the
one-click	patent	would	turn	up	in	the	first	ten	topics.

Google	clearly	doesn't	feel	that	merely	holding	patents	is	evil.
They've	applied	for	a	lot	of	them.	Are	they	hypocrites?	Are
patents	evil?

There	are	really	two	variants	of	that	question,	and	people
answering	it	often	aren't	clear	in	their	own	minds	which	they're
answering.	There's	a	narrow	variant:	is	it	bad,	given	the	current
legal	system,	to	apply	for	patents?	and	also	a	broader	one:	is	it
bad	that	the	current	legal	system	allows	patents?

These	are	separate	questions.	For	example,	in	preindustrial
societies	like	medieval	Europe,	when	someone	attacked	you,	you
didn't	call	the	police.	There	were	no	police.	When	attacked,	you
were	supposed	to	fight	back,	and	there	were	conventions	about
how	to	do	it.	Was	this	wrong?	That's	two	questions:	was	it	wrong
to	take	justice	into	your	own	hands,	and	was	it	wrong	that	you
had	to?	We	tend	to	say	yes	to	the	second,	but	no	to	the	first.	If	no
one	else	will	defend	you,	you	have	to	defend	yourself.	[2]

The	situation	with	patents	is	similar.	Business	is	a	kind	of
ritualized	warfare.	Indeed,	it	evolved	from	actual	warfare:	most
early	traders	switched	on	the	fly	from	merchants	to	pirates
depending	on	how	strong	you	seemed.	In	business	there	are
certain	rules	describing	how	companies	may	and	may	not
compete	with	one	another,	and	someone	deciding	that	they're
going	to	play	by	their	own	rules	is	missing	the	point.	Saying	"I'm
not	going	to	apply	for	patents	just	because	everyone	else	does"	is
not	like	saying	"I'm	not	going	to	lie	just	because	everyone	else
does."	It's	more	like	saying	"I'm	not	going	to	use	TCP/IP	just
because	everyone	else	does."	Oh	yes	you	are.

A	closer	comparison	might	be	someone	seeing	a	hockey	game	for
the	first	time,	realizing	with	shock	that	the	players	were
deliberately	bumping	into	one	another,	and	deciding	that	one
would	on	no	account	be	so	rude	when	playing	hockey	oneself.

Hockey	allows	checking.	It's	part	of	the	game.	If	your	team
refuses	to	do	it,	you	simply	lose.	So	it	is	in	business.	Under	the
present	rules,	patents	are	part	of	the	game.

What	does	that	mean	in	practice?	We	tell	the	startups	we	fund
not	to	worry	about	infringing	patents,	because	startups	rarely	get
sued	for	patent	infringement.	There	are	only	two	reasons
someone	might	sue	you:	for	money,	or	to	prevent	you	from
competing	with	them.	Startups	are	too	poor	to	be	worth	suing	for

#f2n

money.	And	in	practice	they	don't	seem	to	get	sued	much	by
competitors,	either.	They	don't	get	sued	by	other	startups
because	(a)	patent	suits	are	an	expensive	distraction,	and	(b)
since	the	other	startups	are	as	young	as	they	are,	their	patents
probably	haven't	issued	yet.	[3]	Nor	do	startups,	at	least	in	the
software	business,	seem	to	get	sued	much	by	established
competitors.	Despite	all	the	patents	Microsoft	holds,	I	don't	know
of	an	instance	where	they	sued	a	startup	for	patent	infringement.
Companies	like	Microsoft	and	Oracle	don't	win	by	winning
lawsuits.	That's	too	uncertain.	They	win	by	locking	competitors
out	of	their	sales	channels.	If	you	do	manage	to	threaten	them,
they're	more	likely	to	buy	you	than	sue	you.

When	you	read	of	big	companies	filing	patent	suits	against
smaller	ones,	it's	usually	a	big	company	on	the	way	down,
grasping	at	straws.	For	example,	Unisys's	attempts	to	enforce
their	patent	on	LZW	compression.	When	you	see	a	big	company
threatening	patent	suits,	sell.	When	a	company	starts	fighting
over	IP,	it's	a	sign	they've	lost	the	real	battle,	for	users.

A	company	that	sues	competitors	for	patent	infringement	is	like	a
defender	who	has	been	beaten	so	thoroughly	that	he	turns	to
plead	with	the	referee.	You	don't	do	that	if	you	can	still	reach	the
ball,	even	if	you	genuinely	believe	you've	been	fouled.	So	a
company	threatening	patent	suits	is	a	company	in	trouble.

When	we	were	working	on	Viaweb,	a	bigger	company	in	the	e-
commerce	business	was	granted	a	patent	on	online	ordering,	or
something	like	that.	I	got	a	call	from	a	VP	there	asking	if	we'd
like	to	license	it.	I	replied	that	I	thought	the	patent	was
completely	bogus,	and	would	never	hold	up	in	court.	"Ok,"	he
replied.	"So,	are	you	guys	hiring?"

If	your	startup	grows	big	enough,	however,	you'll	start	to	get
sued,	no	matter	what	you	do.	If	you	go	public,	for	example,	you'll
be	sued	by	multiple	patent	trolls	who	hope	you'll	pay	them	off	to
go	away.	More	on	them	later.

In	other	words,	no	one	will	sue	you	for	patent	infringement	till
you	have	money,	and	once	you	have	money,	people	will	sue	you
whether	they	have	grounds	to	or	not.	So	I	advise	fatalism.	Don't

#f3n
http://www.theregister.co.uk/2006/03/15/azul_sues_sun/

waste	your	time	worrying	about	patent	infringement.	You're
probably	violating	a	patent	every	time	you	tie	your	shoelaces.	At
the	start,	at	least,	just	worry	about	making	something	great	and
getting	lots	of	users.	If	you	grow	to	the	point	where	anyone
considers	you	worth	attacking,	you're	doing	well.

We	do	advise	the	companies	we	fund	to	apply	for	patents,	but	not
so	they	can	sue	competitors.	Successful	startups	either	get
bought	or	grow	into	big	companies.	If	a	startup	wants	to	grow
into	a	big	company,	they	should	apply	for	patents	to	build	up	the
patent	portfolio	they'll	need	to	maintain	an	armed	truce	with
other	big	companies.	If	they	want	to	get	bought,	they	should
apply	for	patents	because	patents	are	part	of	the	mating	dance
with	acquirers.

Most	startups	that	succeed	do	it	by	getting	bought,	and	most
acquirers	care	about	patents.	Startup	acquisitions	are	usually	a
build-vs-buy	decision	for	the	acquirer.	Should	we	buy	this	little
startup	or	build	our	own?	And	two	things,	especially,	make	them
decide	not	to	build	their	own:	if	you	already	have	a	large	and
rapidly	growing	user	base,	and	if	you	have	a	fairly	solid	patent
application	on	critical	parts	of	your	software.

There's	a	third	reason	big	companies	should	prefer	buying	to
building:	that	if	they	built	their	own,	they'd	screw	it	up.	But	few
big	companies	are	smart	enough	yet	to	admit	this	to	themselves.
It's	usually	the	acquirer's	engineers	who	are	asked	how	hard	it
would	be	for	the	company	to	build	their	own,	and	they
overestimate	their	abilities.	[4]	A	patent	seems	to	change	the
balance.	It	gives	the	acquirer	an	excuse	to	admit	they	couldn't
copy	what	you're	doing.	It	may	also	help	them	to	grasp	what's
special	about	your	technology.

Frankly,	it	surprises	me	how	small	a	role	patents	play	in	the
software	business.	It's	kind	of	ironic,	considering	all	the	dire
things	experts	say	about	software	patents	stifling	innovation,	but
when	one	looks	closely	at	the	software	business,	the	most
striking	thing	is	how	little	patents	seem	to	matter.

In	other	fields,	companies	regularly	sue	competitors	for	patent
infringement.	For	example,	the	airport	baggage	scanning

#f4n

business	was	for	many	years	a	cozy	duopoly	shared	between	two
companies,	InVision	and	L-3.	In	2002	a	startup	called	Reveal
appeared,	with	new	technology	that	let	them	build	scanners	a
third	the	size.	They	were	sued	for	patent	infringement	before
they'd	even	released	a	product.

You	rarely	hear	that	kind	of	story	in	our	world.	The	one	example
I've	found	is,	embarrassingly	enough,	Yahoo,	which	filed	a	patent
suit	against	a	gaming	startup	called	Xfire	in	2005.	Xfire	doesn't
seem	to	be	a	very	big	deal,	and	it's	hard	to	say	why	Yahoo	felt
threatened.	Xfire's	VP	of	engineering	had	worked	at	Yahoo	on
similar	stuff--	in	fact,	he	was	listed	as	an	inventor	on	the	patent
Yahoo	sued	over--	so	perhaps	there	was	something	personal
about	it.	My	guess	is	that	someone	at	Yahoo	goofed.	At	any	rate
they	didn't	pursue	the	suit	very	vigorously.

Why	do	patents	play	so	small	a	role	in	software?	I	can	think	of
three	possible	reasons.

One	is	that	software	is	so	complicated	that	patents	by	themselves
are	not	worth	very	much.	I	may	be	maligning	other	fields	here,
but	it	seems	that	in	most	types	of	engineering	you	can	hand	the
details	of	some	new	technique	to	a	group	of	medium-high	quality
people	and	get	the	desired	result.	For	example,	if	someone
develops	a	new	process	for	smelting	ore	that	gets	a	better	yield,
and	you	assemble	a	team	of	qualified	experts	and	tell	them	about
it,	they'll	be	able	to	get	the	same	yield.	This	doesn't	seem	to	work
in	software.	Software	is	so	subtle	and	unpredictable	that
"qualified	experts"	don't	get	you	very	far.

That's	why	we	rarely	hear	phrases	like	"qualified	expert"	in	the
software	business.	What	that	level	of	ability	can	get	you	is,	say,	to
make	your	software	compatible	with	some	other	piece	of
software--	in	eight	months,	at	enormous	cost.	To	do	anything
harder	you	need	individual	brilliance.	If	you	assemble	a	team	of
qualified	experts	and	tell	them	to	make	a	new	web-based	email
program,	they'll	get	their	asses	kicked	by	a	team	of	inspired
nineteen	year	olds.

Experts	can	implement,	but	they	can't	design.	Or	rather,
expertise	in	implementation	is	the	only	kind	most	people,

taste.html

including	the	experts	themselves,	can	measure.	[5]

But	design	is	a	definite	skill.	It's	not	just	an	airy	intangible.
Things	always	seem	intangible	when	you	don't	understand	them.
Electricity	seemed	an	airy	intangible	to	most	people	in	1800.
Who	knew	there	was	so	much	to	know	about	it?	So	it	is	with
design.	Some	people	are	good	at	it	and	some	people	are	bad	at	it,
and	there's	something	very	tangible	they're	good	or	bad	at.

The	reason	design	counts	so	much	in	software	is	probably	that
there	are	fewer	constraints	than	on	physical	things.	Building
physical	things	is	expensive	and	dangerous.	The	space	of	possible
choices	is	smaller;	you	tend	to	have	to	work	as	part	of	a	larger
group;	and	you're	subject	to	a	lot	of	regulations.	You	don't	have
any	of	that	if	you	and	a	couple	friends	decide	to	create	a	new
web-based	application.

Because	there's	so	much	scope	for	design	in	software,	a
successful	application	tends	to	be	way	more	than	the	sum	of	its
patents.	What	protects	little	companies	from	being	copied	by
bigger	competitors	is	not	just	their	patents,	but	the	thousand
little	things	the	big	company	will	get	wrong	if	they	try.

The	second	reason	patents	don't	count	for	much	in	our	world	is
that	startups	rarely	attack	big	companies	head-on,	the	way
Reveal	did.	In	the	software	business,	startups	beat	established
companies	by	transcending	them.	Startups	don't	build	desktop
word	processing	programs	to	compete	with	Microsoft	Word.	[6]
They	build	Writely.	If	this	paradigm	is	crowded,	just	wait	for	the
next	one;	they	run	pretty	frequently	on	this	route.

Fortunately	for	startups,	big	companies	are	extremely	good	at
denial.	If	you	take	the	trouble	to	attack	them	from	an	oblique
angle,	they'll	meet	you	half-way	and	maneuver	to	keep	you	in
their	blind	spot.	To	sue	a	startup	would	mean	admitting	it	was
dangerous,	and	that	often	means	seeing	something	the	big
company	doesn't	want	to	see.	IBM	used	to	sue	its	mainframe
competitors	regularly,	but	they	didn't	bother	much	about	the
microcomputer	industry	because	they	didn't	want	to	see	the
threat	it	posed.	Companies	building	web	based	apps	are	similarly
protected	from	Microsoft,	which	even	now	doesn't	want	to

#f5n
#f6n

imagine	a	world	in	which	Windows	is	irrelevant.

The	third	reason	patents	don't	seem	to	matter	very	much	in
software	is	public	opinion--	or	rather,	hacker	opinion.	In	a	recent
interview,	Steve	Ballmer	coyly	left	open	the	possibility	of
attacking	Linux	on	patent	grounds.	But	I	doubt	Microsoft	would
ever	be	so	stupid.	They'd	face	the	mother	of	all	boycotts.	And	not
just	from	the	technical	community	in	general;	a	lot	of	their	own
people	would	rebel.

Good	hackers	care	a	lot	about	matters	of	principle,	and	they	are
highly	mobile.	If	a	company	starts	misbehaving,	smart	people
won't	work	there.	For	some	reason	this	seems	to	be	more	true	in
software	than	other	businesses.	I	don't	think	it's	because	hackers
have	intrinsically	higher	principles	so	much	as	that	their	skills
are	easily	transferrable.	Perhaps	we	can	split	the	difference	and
say	that	mobility	gives	hackers	the	luxury	of	being	principled.

Google's	"don't	be	evil"	policy	may	for	this	reason	be	the	most
valuable	thing	they've	discovered.	It's	very	constraining	in	some
ways.	If	Google	does	do	something	evil,	they	get	doubly	whacked
for	it:	once	for	whatever	they	did,	and	again	for	hypocrisy.	But	I
think	it's	worth	it.	It	helps	them	to	hire	the	best	people,	and	it's
better,	even	from	a	purely	selfish	point	of	view,	to	be	constrained
by	principles	than	by	stupidity.

(I	wish	someone	would	get	this	point	across	to	the	present
administration.)

I'm	not	sure	what	the	proportions	are	of	the	preceding	three
ingredients,	but	the	custom	among	the	big	companies	seems	to
be	not	to	sue	the	small	ones,	and	the	startups	are	mostly	too	busy
and	too	poor	to	sue	one	another.	So	despite	the	huge	number	of
software	patents	there's	not	a	lot	of	suing	going	on.	With	one
exception:	patent	trolls.

Patent	trolls	are	companies	consisting	mainly	of	lawyers	whose
whole	business	is	to	accumulate	patents	and	threaten	to	sue
companies	who	actually	make	things.	Patent	trolls,	it	seems	safe
to	say,	are	evil.	I	feel	a	bit	stupid	saying	that,	because	when
you're	saying	something	that	Richard	Stallman	and	Bill	Gates

http://www.computing.co.uk/forbes/news/2152720/interview-steve-ballmer-linux

would	both	agree	with,	you	must	be	perilously	close	to
tautologies.

The	CEO	of	Forgent,	one	of	the	most	notorious	patent	trolls,	says
that	what	his	company	does	is	"the	American	way."	Actually
that's	not	true.	The	American	way	is	to	make	money	by	creating
wealth,	not	by	suing	people.	[7]	What	companies	like	Forgent	do
is	actually	the	proto-industrial	way.	In	the	period	just	before	the
industrial	revolution,	some	of	the	greatest	fortunes	in	countries
like	England	and	France	were	made	by	courtiers	who	extracted
some	lucrative	right	from	the	crown--	like	the	right	to	collect
taxes	on	the	import	of	silk--	and	then	used	this	to	squeeze	money
from	the	merchants	in	that	business.	So	when	people	compare
patent	trolls	to	the	mafia,	they're	more	right	than	they	know,
because	the	mafia	too	are	not	merely	bad,	but	bad	specifically	in
the	sense	of	being	an	obsolete	business	model.

Patent	trolls	seem	to	have	caught	big	companies	by	surprise.	In
the	last	couple	years	they've	extracted	hundreds	of	millions	of
dollars	from	them.	Patent	trolls	are	hard	to	fight	precisely
because	they	create	nothing.	Big	companies	are	safe	from	being
sued	by	other	big	companies	because	they	can	threaten	a
counter-suit.	But	because	patent	trolls	don't	make	anything,
there's	nothing	they	can	be	sued	for.	I	predict	this	loophole	will
get	closed	fairly	quickly,	at	least	by	legal	standards.	It's	clearly
an	abuse	of	the	system,	and	the	victims	are	powerful.	[8]

But	evil	as	patent	trolls	are,	I	don't	think	they	hamper	innovation
much.	They	don't	sue	till	a	startup	has	made	money,	and	by	that
point	the	innovation	that	generated	it	has	already	happened.	I
can't	think	of	a	startup	that	avoided	working	on	some	problem
because	of	patent	trolls.

So	much	for	hockey	as	the	game	is	played	now.	What	about	the
more	theoretical	question	of	whether	hockey	would	be	a	better
game	without	checking?	Do	patents	encourage	or	discourage
innovation?

This	is	a	very	hard	question	to	answer	in	the	general	case.	People
write	whole	books	on	the	topic.	One	of	my	main	hobbies	is	the
history	of	technology,	and	even	though	I've	studied	the	subject

wealth.html
#f7n
#f8n

for	years,	it	would	take	me	several	weeks	of	research	to	be	able
to	say	whether	patents	have	in	general	been	a	net	win.

One	thing	I	can	say	is	that	99.9%	of	the	people	who	express
opinions	on	the	subject	do	it	not	based	on	such	research,	but	out
of	a	kind	of	religious	conviction.	At	least,	that's	the	polite	way	of
putting	it;	the	colloquial	version	involves	speech	coming	out	of
organs	not	designed	for	that	purpose.

Whether	they	encourage	innovation	or	not,	patents	were	at	least
intended	to.	You	don't	get	a	patent	for	nothing.	In	return	for	the
exclusive	right	to	use	an	idea,	you	have	to	publish	it,	and	it	was
largely	to	encourage	such	openness	that	patents	were
established.

Before	patents,	people	protected	ideas	by	keeping	them	secret.
With	patents,	central	governments	said,	in	effect,	if	you	tell
everyone	your	idea,	we'll	protect	it	for	you.	There	is	a	parallel
here	to	the	rise	of	civil	order,	which	happened	at	roughly	the
same	time.	Before	central	governments	were	powerful	enough	to
enforce	order,	rich	people	had	private	armies.	As	governments
got	more	powerful,	they	gradually	compelled	magnates	to	cede
most	responsibility	for	protecting	them.	(Magnates	still	have
bodyguards,	but	no	longer	to	protect	them	from	other	magnates.)

Patents,	like	police,	are	involved	in	many	abuses.	But	in	both
cases	the	default	is	something	worse.	The	choice	is	not	"patents
or	freedom?"	any	more	than	it	is	"police	or	freedom?"	The	actual
questions	are	respectively	"patents	or	secrecy?"	and	"police	or
gangs?"

As	with	gangs,	we	have	some	idea	what	secrecy	would	be	like,
because	that's	how	things	used	to	be.	The	economy	of	medieval
Europe	was	divided	up	into	little	tribes,	each	jealously	guarding
their	privileges	and	secrets.	In	Shakespeare's	time,	"mystery"
was	synonymous	with	"craft."	Even	today	we	can	see	an	echo	of
the	secrecy	of	medieval	guilds,	in	the	now	pointless	secrecy	of
the	Masons.

The	most	memorable	example	of	medieval	industrial	secrecy	is
probably	Venice,	which	forbade	glassblowers	to	leave	the	city,

and	sent	assassins	after	those	who	tried.	We	might	like	to	think
we	wouldn't	go	so	far,	but	the	movie	industry	has	already	tried	to
pass	laws	prescribing	three	year	prison	terms	just	for	putting
movies	on	public	networks.	Want	to	try	a	frightening	thought
experiment?	If	the	movie	industry	could	have	any	law	they
wanted,	where	would	they	stop?	Short	of	the	death	penalty,	one
assumes,	but	how	close	would	they	get?

Even	worse	than	the	spectacular	abuses	might	be	the	overall
decrease	in	efficiency	that	would	accompany	increased	secrecy.
As	anyone	who	has	dealt	with	organizations	that	operate	on	a
"need	to	know"	basis	can	attest,	dividing	information	up	into
little	cells	is	terribly	inefficient.	The	flaw	in	the	"need	to	know"
principle	is	that	you	don't	know	who	needs	to	know	something.
An	idea	from	one	area	might	spark	a	great	discovery	in	another.
But	the	discoverer	doesn't	know	he	needs	to	know	it.

If	secrecy	were	the	only	protection	for	ideas,	companies	wouldn't
just	have	to	be	secretive	with	other	companies;	they'd	have	to	be
secretive	internally.	This	would	encourage	what	is	already	the
worst	trait	of	big	companies.

I'm	not	saying	secrecy	would	be	worse	than	patents,	just	that	we
couldn't	discard	patents	for	free.	Businesses	would	become	more
secretive	to	compensate,	and	in	some	fields	this	might	get	ugly.
Nor	am	I	defending	the	current	patent	system.	There	is	clearly	a
lot	that's	broken	about	it.	But	the	breakage	seems	to	affect
software	less	than	most	other	fields.

In	the	software	business	I	know	from	experience	whether	patents
encourage	or	discourage	innovation,	and	the	answer	is	the	type
that	people	who	like	to	argue	about	public	policy	least	like	to
hear:	they	don't	affect	innovation	much,	one	way	or	the	other.
Most	innovation	in	the	software	business	happens	in	startups,
and	startups	should	simply	ignore	other	companies'	patents.	At
least,	that's	what	we	advise,	and	we	bet	money	on	that	advice.

The	only	real	role	of	patents,	for	most	startups,	is	as	an	element
of	the	mating	dance	with	acquirers.	There	patents	do	help	a
little.	And	so	they	do	encourage	innovation	indirectly,	in	that	they
give	more	power	to	startups,	which	is	where,	pound	for	pound,

http://news.com.com/2100-1026_3-5106684.html

the	most	innovation	happens.	But	even	in	the	mating	dance,
patents	are	of	secondary	importance.	It	matters	more	to	make
something	great	and	get	a	lot	of	users.

Notes

[1]	You	have	to	be	careful	here,	because	a	great	discovery	often
seems	obvious	in	retrospect.	One-click	ordering,	however,	is	not
such	a	discovery.

[2]	"Turn	the	other	cheek"	skirts	the	issue;	the	critical	question	is
not	how	to	deal	with	slaps,	but	sword	thrusts.

[3]	Applying	for	a	patent	is	now	very	slow,	but	it	might	actually
be	bad	if	that	got	fixed.	At	the	moment	the	time	it	takes	to	get	a
patent	is	conveniently	just	longer	than	the	time	it	takes	a	startup
to	succeed	or	fail.

[4]	Instead	of	the	canonical	"could	you	build	this?"	maybe	the
corp	dev	guys	should	be	asking	"will	you	build	this?"	or	even
"why	haven't	you	already	built	this?"

[5]	Design	ability	is	so	hard	to	measure	that	you	can't	even	trust
the	design	world's	internal	standards.	You	can't	assume	that
someone	with	a	degree	in	design	is	any	good	at	design,	or	that	an
eminent	designer	is	any	better	than	his	peers.	If	that	worked,	any
company	could	build	products	as	good	as	Apple's	just	by	hiring
sufficiently	qualified	designers.

[6]	If	anyone	wanted	to	try,	we'd	be	interested	to	hear	from	them.
I	suspect	it's	one	of	those	things	that's	not	as	hard	as	everyone
assumes.

[7]	Patent	trolls	can't	even	claim,	like	speculators,	that	they
"create"	liquidity.

[8]	If	big	companies	don't	want	to	wait	for	the	government	to
take	action,	there	is	a	way	to	fight	back	themselves.	For	a	long
time	I	thought	there	wasn't,	because	there	was	nothing	to	grab

onto.	But	there	is	one	resource	patent	trolls	need:	lawyers.	Big
technology	companies	between	them	generate	a	lot	of	legal
business.	If	they	agreed	among	themselves	never	to	do	business
with	any	firm	employing	anyone	who	had	worked	for	a	patent
troll,	either	as	an	employee	or	as	outside	counsel,	they	could
probably	starve	the	trolls	of	the	lawyers	they	need.

Thanks	to	Dan	Bloomberg,	Paul	Buchheit,	Sarah	Harlin,	Jessica
Livingston,	and	Peter	Norvig	for	reading	drafts	of	this,	to	Joel
Lehrer	and	Peter	Eng	for	answering	my	questions	about	patents,
and	to	Ankur	Pansari	for	inviting	me	to	speak.

	

See	Randomness
April	2006,	rev	August	2009

Plato	quotes	Socrates	as	saying	"the	unexamined	life	is	not	worth
living."	Part	of	what	he	meant	was	that	the	proper	role	of	humans
is	to	think,	just	as	the	proper	role	of	anteaters	is	to	poke	their
noses	into	anthills.

A	lot	of	ancient	philosophy	had	the	quality	—	and	I	don't	mean
this	in	an	insulting	way	—	of	the	kind	of	conversations	freshmen
have	late	at	night	in	common	rooms:

What	is	our	purpose?	Well,	we	humans	are	as
conspicuously	different	from	other	animals	as	the
anteater.	In	our	case	the	distinguishing	feature	is	the
ability	to	reason.	So	obviously	that	is	what	we	should
be	doing,	and	a	human	who	doesn't	is	doing	a	bad	job
of	being	human	—	is	no	better	than	an	animal.

Now	we'd	give	a	different	answer.	At	least,	someone	Socrates's
age	would.	We'd	ask	why	we	even	suppose	we	have	a	"purpose"
in	life.	We	may	be	better	adapted	for	some	things	than	others;	we
may	be	happier	doing	things	we're	adapted	for;	but	why	assume
purpose?

The	history	of	ideas	is	a	history	of	gradually	discarding	the
assumption	that	it's	all	about	us.	No,	it	turns	out,	the	earth	is	not
the	center	of	the	universe	—	not	even	the	center	of	the	solar
system.	No,	it	turns	out,	humans	are	not	created	by	God	in	his
own	image;	they're	just	one	species	among	many,	descended	not
merely	from	apes,	but	from	microorganisms.	Even	the	concept	of
"me"	turns	out	to	be	fuzzy	around	the	edges	if	you	examine	it
closely.

The	idea	that	we're	the	center	of	things	is	difficult	to	discard.	So
difficult	that	there's	probably	room	to	discard	more.	Richard
Dawkins	made	another	step	in	that	direction	only	in	the	last

several	decades,	with	the	idea	of	the	selfish	gene.	No,	it	turns
out,	we're	not	even	the	protagonists:	we're	just	the	latest	model
vehicle	our	genes	have	constructed	to	travel	around	in.	And
having	kids	is	our	genes	heading	for	the	lifeboats.	Reading	that
book	snapped	my	brain	out	of	its	previous	way	of	thinking	the
way	Darwin's	must	have	when	it	first	appeared.

(Few	people	can	experience	now	what	Darwin's	contemporaries
did	when	The	Origin	of	Species	was	first	published,	because
everyone	now	is	raised	either	to	take	evolution	for	granted,	or	to
regard	it	as	a	heresy.	No	one	encounters	the	idea	of	natural
selection	for	the	first	time	as	an	adult.)

So	if	you	want	to	discover	things	that	have	been	overlooked	till
now,	one	really	good	place	to	look	is	in	our	blind	spot:	in	our
natural,	naive	belief	that	it's	all	about	us.	And	expect	to
encounter	ferocious	opposition	if	you	do.

Conversely,	if	you	have	to	choose	between	two	theories,	prefer
the	one	that	doesn't	center	on	you.

This	principle	isn't	only	for	big	ideas.	It	works	in	everyday	life,
too.	For	example,	suppose	you're	saving	a	piece	of	cake	in	the
fridge,	and	you	come	home	one	day	to	find	your	housemate	has
eaten	it.	Two	possible	theories:

a)	Your	housemate	did	it	deliberately	to	upset	you.
He	knew	you	were	saving	that	piece	of	cake.

b)	Your	housemate	was	hungry.

I	say	pick	b.	No	one	knows	who	said	"never	attribute	to	malice
what	can	be	explained	by	incompetence,"	but	it	is	a	powerful
idea.	Its	more	general	version	is	our	answer	to	the	Greeks:

Don't	see	purpose	where	there	isn't.

Or	better	still,	the	positive	version:

See	randomness.

http://en.wikipedia.org/wiki/The_Selfish_Gene

	

The	Hardest	Lessons	for
Startups	to	Learn
April	2006

(This	essay	is	derived	from	a	talk	at	the	2006	Startup	School.)

The	startups	we've	funded	so	far	are	pretty	quick,	but	they	seem
quicker	to	learn	some	lessons	than	others.	I	think	it's	because
some	things	about	startups	are	kind	of	counterintuitive.

We've	now	invested	in	enough	companies	that	I've	learned	a	trick
for	determining	which	points	are	the	counterintuitive	ones:
they're	the	ones	I	have	to	keep	repeating.

So	I'm	going	to	number	these	points,	and	maybe	with	future
startups	I'll	be	able	to	pull	off	a	form	of	Huffman	coding.	I'll	make
them	all	read	this,	and	then	instead	of	nagging	them	in	detail,	I'll
just	be	able	to	say:	number	four!

1.	Release	Early.

The	thing	I	probably	repeat	most	is	this	recipe	for	a	startup:	get
a	version	1	out	fast,	then	improve	it	based	on	users'	reactions.

By	"release	early"	I	don't	mean	you	should	release	something	full
of	bugs,	but	that	you	should	release	something	minimal.	Users
hate	bugs,	but	they	don't	seem	to	mind	a	minimal	version	1,	if
there's	more	coming	soon.

There	are	several	reasons	it	pays	to	get	version	1	done	fast.	One
is	that	this	is	simply	the	right	way	to	write	software,	whether	for
a	startup	or	not.	I've	been	repeating	that	since	1993,	and	I
haven't	seen	much	since	to	contradict	it.	I've	seen	a	lot	of
startups	die	because	they	were	too	slow	to	release	stuff,	and
none	because	they	were	too	quick.	[1]

http://startupschool.org/
http://ycombinator.com/
#f1n

One	of	the	things	that	will	surprise	you	if	you	build	something
popular	is	that	you	won't	know	your	users.	Reddit	now	has
almost	half	a	million	unique	visitors	a	month.	Who	are	all	those
people?	They	have	no	idea.	No	web	startup	does.	And	since	you
don't	know	your	users,	it's	dangerous	to	guess	what	they'll	like.
Better	to	release	something	and	let	them	tell	you.

Wufoo	took	this	to	heart	and	released	their	form-builder	before
the	underlying	database.	You	can't	even	drive	the	thing	yet,	but
83,000	people	came	to	sit	in	the	driver's	seat	and	hold	the
steering	wheel.	And	Wufoo	got	valuable	feedback	from	it:	Linux
users	complained	they	used	too	much	Flash,	so	they	rewrote
their	software	not	to.	If	they'd	waited	to	release	everything	at
once,	they	wouldn't	have	discovered	this	problem	till	it	was	more
deeply	wired	in.

Even	if	you	had	no	users,	it	would	still	be	important	to	release
quickly,	because	for	a	startup	the	initial	release	acts	as	a
shakedown	cruise.	If	anything	major	is	broken--	if	the	idea's	no
good,	for	example,	or	the	founders	hate	one	another--	the	stress
of	getting	that	first	version	out	will	expose	it.	And	if	you	have
such	problems	you	want	to	find	them	early.

Perhaps	the	most	important	reason	to	release	early,	though,	is
that	it	makes	you	work	harder.	When	you're	working	on
something	that	isn't	released,	problems	are	intriguing.	In
something	that's	out	there,	problems	are	alarming.	There	is	a	lot
more	urgency	once	you	release.	And	I	think	that's	precisely	why
people	put	it	off.	They	know	they'll	have	to	work	a	lot	harder
once	they	do.	[2]

2.	Keep	Pumping	Out	Features.

Of	course,	"release	early"	has	a	second	component,	without
which	it	would	be	bad	advice.	If	you're	going	to	start	with
something	that	doesn't	do	much,	you	better	improve	it	fast.

What	I	find	myself	repeating	is	"pump	out	features."	And	this	rule
isn't	just	for	the	initial	stages.	This	is	something	all	startups
should	do	for	as	long	as	they	want	to	be	considered	startups.

http://reddit.com/
http://wufoo.com/
#f2n

I	don't	mean,	of	course,	that	you	should	make	your	application
ever	more	complex.	By	"feature"	I	mean	one	unit	of	hacking--	one
quantum	of	making	users'	lives	better.

As	with	exercise,	improvements	beget	improvements.	If	you	run
every	day,	you'll	probably	feel	like	running	tomorrow.	But	if	you
skip	running	for	a	couple	weeks,	it	will	be	an	effort	to	drag
yourself	out.	So	it	is	with	hacking:	the	more	ideas	you	implement,
the	more	ideas	you'll	have.	You	should	make	your	system	better
at	least	in	some	small	way	every	day	or	two.

This	is	not	just	a	good	way	to	get	development	done;	it	is	also	a
form	of	marketing.	Users	love	a	site	that's	constantly	improving.
In	fact,	users	expect	a	site	to	improve.	Imagine	if	you	visited	a
site	that	seemed	very	good,	and	then	returned	two	months	later
and	not	one	thing	had	changed.	Wouldn't	it	start	to	seem	lame?
[3]

They'll	like	you	even	better	when	you	improve	in	response	to
their	comments,	because	customers	are	used	to	companies
ignoring	them.	If	you're	the	rare	exception--	a	company	that
actually	listens--	you'll	generate	fanatical	loyalty.	You	won't	need
to	advertise,	because	your	users	will	do	it	for	you.

This	seems	obvious	too,	so	why	do	I	have	to	keep	repeating	it?	I
think	the	problem	here	is	that	people	get	used	to	how	things	are.
Once	a	product	gets	past	the	stage	where	it	has	glaring	flaws,
you	start	to	get	used	to	it,	and	gradually	whatever	features	it
happens	to	have	become	its	identity.	For	example,	I	doubt	many
people	at	Yahoo	(or	Google	for	that	matter)	realized	how	much
better	web	mail	could	be	till	Paul	Buchheit	showed	them.

I	think	the	solution	is	to	assume	that	anything	you've	made	is	far
short	of	what	it	could	be.	Force	yourself,	as	a	sort	of	intellectual
exercise,	to	keep	thinking	of	improvements.	Ok,	sure,	what	you
have	is	perfect.	But	if	you	had	to	change	something,	what	would
it	be?

If	your	product	seems	finished,	there	are	two	possible
explanations:	(a)	it	is	finished,	or	(b)	you	lack	imagination.

#f3n

Experience	suggests	(b)	is	a	thousand	times	more	likely.

3.	Make	Users	Happy.

Improving	constantly	is	an	instance	of	a	more	general	rule:	make
users	happy.	One	thing	all	startups	have	in	common	is	that	they
can't	force	anyone	to	do	anything.	They	can't	force	anyone	to	use
their	software,	and	they	can't	force	anyone	to	do	deals	with	them.
A	startup	has	to	sing	for	its	supper.	That's	why	the	successful
ones	make	great	things.	They	have	to,	or	die.

When	you're	running	a	startup	you	feel	like	a	little	bit	of	debris
blown	about	by	powerful	winds.	The	most	powerful	wind	is	users.
They	can	either	catch	you	and	loft	you	up	into	the	sky,	as	they	did
with	Google,	or	leave	you	flat	on	the	pavement,	as	they	do	with
most	startups.	Users	are	a	fickle	wind,	but	more	powerful	than
any	other.	If	they	take	you	up,	no	competitor	can	keep	you	down.

As	a	little	piece	of	debris,	the	rational	thing	for	you	to	do	is	not	to
lie	flat,	but	to	curl	yourself	into	a	shape	the	wind	will	catch.

I	like	the	wind	metaphor	because	it	reminds	you	how	impersonal
the	stream	of	traffic	is.	The	vast	majority	of	people	who	visit	your
site	will	be	casual	visitors.	It's	them	you	have	to	design	your	site
for.	The	people	who	really	care	will	find	what	they	want	by
themselves.

The	median	visitor	will	arrive	with	their	finger	poised	on	the
Back	button.	Think	about	your	own	experience:	most	links	you
follow	lead	to	something	lame.	Anyone	who	has	used	the	web	for
more	than	a	couple	weeks	has	been	trained	to	click	on	Back	after
following	a	link.	So	your	site	has	to	say	"Wait!	Don't	click	on
Back.	This	site	isn't	lame.	Look	at	this,	for	example."

There	are	two	things	you	have	to	do	to	make	people	pause.	The
most	important	is	to	explain,	as	concisely	as	possible,	what	the
hell	your	site	is	about.	How	often	have	you	visited	a	site	that
seemed	to	assume	you	already	knew	what	they	did?	For	example,
the	corporate	site	that	says	the	company	makes

enterprise	content	management	solutions	for

business	that	enable	organizations	to	unify	people,
content	and	processes	to	minimize	business	risk,
accelerate	time-to-value	and	sustain	lower	total	cost
of	ownership.

An	established	company	may	get	away	with	such	an	opaque
description,	but	no	startup	can.	A	startup	should	be	able	to
explain	in	one	or	two	sentences	exactly	what	it	does.	[4]	And	not
just	to	users.	You	need	this	for	everyone:	investors,	acquirers,
partners,	reporters,	potential	employees,	and	even	current
employees.	You	probably	shouldn't	even	start	a	company	to	do
something	that	can't	be	described	compellingly	in	one	or	two
sentences.

The	other	thing	I	repeat	is	to	give	people	everything	you've	got,
right	away.	If	you	have	something	impressive,	try	to	put	it	on	the
front	page,	because	that's	the	only	one	most	visitors	will	see.
Though	indeed	there's	a	paradox	here:	the	more	you	push	the
good	stuff	toward	the	front,	the	more	likely	visitors	are	to	explore
further.	[5]

In	the	best	case	these	two	suggestions	get	combined:	you	tell
visitors	what	your	site	is	about	by	showing	them.	One	of	the
standard	pieces	of	advice	in	fiction	writing	is	"show,	don't	tell."
Don't	say	that	a	character's	angry;	have	him	grind	his	teeth,	or
break	his	pencil	in	half.	Nothing	will	explain	what	your	site	does
so	well	as	using	it.

The	industry	term	here	is	"conversion."	The	job	of	your	site	is	to
convert	casual	visitors	into	users--	whatever	your	definition	of	a
user	is.	You	can	measure	this	in	your	growth	rate.	Either	your
site	is	catching	on,	or	it	isn't,	and	you	must	know	which.	If	you
have	decent	growth,	you'll	win	in	the	end,	no	matter	how	obscure
you	are	now.	And	if	you	don't,	you	need	to	fix	something.

4.	Fear	the	Right	Things.

Another	thing	I	find	myself	saying	a	lot	is	"don't	worry."	Actually,
it's	more	often	"don't	worry	about	this;	worry	about	that	instead."
Startups	are	right	to	be	paranoid,	but	they	sometimes	fear	the
wrong	things.

#f4n
#f5n

Most	visible	disasters	are	not	so	alarming	as	they	seem.
Disasters	are	normal	in	a	startup:	a	founder	quits,	you	discover	a
patent	that	covers	what	you're	doing,	your	servers	keep	crashing,
you	run	into	an	insoluble	technical	problem,	you	have	to	change
your	name,	a	deal	falls	through--	these	are	all	par	for	the	course.
They	won't	kill	you	unless	you	let	them.

Nor	will	most	competitors.	A	lot	of	startups	worry	"what	if	Google
builds	something	like	us?"	Actually	big	companies	are	not	the
ones	you	have	to	worry	about--	not	even	Google.	The	people	at
Google	are	smart,	but	no	smarter	than	you;	they're	not	as
motivated,	because	Google	is	not	going	to	go	out	of	business	if
this	one	product	fails;	and	even	at	Google	they	have	a	lot	of
bureaucracy	to	slow	them	down.

What	you	should	fear,	as	a	startup,	is	not	the	established	players,
but	other	startups	you	don't	know	exist	yet.	They're	way	more
dangerous	than	Google	because,	like	you,	they're	cornered
animals.

Looking	just	at	existing	competitors	can	give	you	a	false	sense	of
security.	You	should	compete	against	what	someone	else	could	be
doing,	not	just	what	you	can	see	people	doing.	A	corollary	is	that
you	shouldn't	relax	just	because	you	have	no	visible	competitors
yet.	No	matter	what	your	idea,	there's	someone	else	out	there
working	on	the	same	thing.

That's	the	downside	of	it	being	easier	to	start	a	startup:	more
people	are	doing	it.	But	I	disagree	with	Caterina	Fake	when	she
says	that	makes	this	a	bad	time	to	start	a	startup.	More	people
are	starting	startups,	but	not	as	many	more	as	could.	Most
college	graduates	still	think	they	have	to	get	a	job.	The	average
person	can't	ignore	something	that's	been	beaten	into	their	head
since	they	were	three	just	because	serving	web	pages	recently
got	a	lot	cheaper.

And	in	any	case,	competitors	are	not	the	biggest	threat.	Way
more	startups	hose	themselves	than	get	crushed	by	competitors.
There	are	a	lot	of	ways	to	do	it,	but	the	three	main	ones	are
internal	disputes,	inertia,	and	ignoring	users.	Each	is,	by	itself,

enough	to	kill	you.	But	if	I	had	to	pick	the	worst,	it	would	be
ignoring	users.	If	you	want	a	recipe	for	a	startup	that's	going	to
die,	here	it	is:	a	couple	of	founders	who	have	some	great	idea
they	know	everyone	is	going	to	love,	and	that's	what	they're
going	to	build,	no	matter	what.

Almost	everyone's	initial	plan	is	broken.	If	companies	stuck	to
their	initial	plans,	Microsoft	would	be	selling	programming
languages,	and	Apple	would	be	selling	printed	circuit	boards.	In
both	cases	their	customers	told	them	what	their	business	should
be--	and	they	were	smart	enough	to	listen.

As	Richard	Feynman	said,	the	imagination	of	nature	is	greater
than	the	imagination	of	man.	You'll	find	more	interesting	things
by	looking	at	the	world	than	you	could	ever	produce	just	by
thinking.	This	principle	is	very	powerful.	It's	why	the	best
abstract	painting	still	falls	short	of	Leonardo,	for	example.	And	it
applies	to	startups	too.	No	idea	for	a	product	could	ever	be	so
clever	as	the	ones	you	can	discover	by	smashing	a	beam	of
prototypes	into	a	beam	of	users.

5.	Commitment	Is	a	Self-Fulfilling	Prophecy.

I	now	have	enough	experience	with	startups	to	be	able	to	say
what	the	most	important	quality	is	in	a	startup	founder,	and	it's
not	what	you	might	think.	The	most	important	quality	in	a	startup
founder	is	determination.	Not	intelligence--	determination.

This	is	a	little	depressing.	I'd	like	to	believe	Viaweb	succeeded
because	we	were	smart,	not	merely	determined.	A	lot	of	people
in	the	startup	world	want	to	believe	that.	Not	just	founders,	but
investors	too.	They	like	the	idea	of	inhabiting	a	world	ruled	by
intelligence.	And	you	can	tell	they	really	believe	this,	because	it
affects	their	investment	decisions.

Time	after	time	VCs	invest	in	startups	founded	by	eminent
professors.	This	may	work	in	biotech,	where	a	lot	of	startups
simply	commercialize	existing	research,	but	in	software	you	want
to	invest	in	students,	not	professors.	Microsoft,	Yahoo,	and
Google	were	all	founded	by	people	who	dropped	out	of	school	to
do	it.	What	students	lack	in	experience	they	more	than	make	up

in	dedication.

Of	course,	if	you	want	to	get	rich,	it's	not	enough	merely	to	be
determined.	You	have	to	be	smart	too,	right?	I'd	like	to	think	so,
but	I've	had	an	experience	that	convinced	me	otherwise:	I	spent
several	years	living	in	New	York.

You	can	lose	quite	a	lot	in	the	brains	department	and	it	won't	kill
you.	But	lose	even	a	little	bit	in	the	commitment	department,	and
that	will	kill	you	very	rapidly.

Running	a	startup	is	like	walking	on	your	hands:	it's	possible,	but
it	requires	extraordinary	effort.	If	an	ordinary	employee	were
asked	to	do	the	things	a	startup	founder	has	to,	he'd	be	very
indignant.	Imagine	if	you	were	hired	at	some	big	company,	and	in
addition	to	writing	software	ten	times	faster	than	you'd	ever	had
to	before,	they	expected	you	to	answer	support	calls,	administer
the	servers,	design	the	web	site,	cold-call	customers,	find	the
company	office	space,	and	go	out	and	get	everyone	lunch.

And	to	do	all	this	not	in	the	calm,	womb-like	atmosphere	of	a	big
company,	but	against	a	backdrop	of	constant	disasters.	That's	the
part	that	really	demands	determination.	In	a	startup,	there's
always	some	disaster	happening.	So	if	you're	the	least	bit
inclined	to	find	an	excuse	to	quit,	there's	always	one	right	there.

But	if	you	lack	commitment,	chances	are	it	will	have	been	hurting
you	long	before	you	actually	quit.	Everyone	who	deals	with
startups	knows	how	important	commitment	is,	so	if	they	sense
you're	ambivalent,	they	won't	give	you	much	attention.	If	you
lack	commitment,	you'll	just	find	that	for	some	mysterious	reason
good	things	happen	to	your	competitors	but	not	to	you.	If	you
lack	commitment,	it	will	seem	to	you	that	you're	unlucky.

Whereas	if	you're	determined	to	stick	around,	people	will	pay
attention	to	you,	because	odds	are	they'll	have	to	deal	with	you
later.	You're	a	local,	not	just	a	tourist,	so	everyone	has	to	come	to
terms	with	you.

At	Y	Combinator	we	sometimes	mistakenly	fund	teams	who	have
the	attitude	that	they're	going	to	give	this	startup	thing	a	shot	for

three	months,	and	if	something	great	happens,	they'll	stick	with
it--	"something	great"	meaning	either	that	someone	wants	to	buy
them	or	invest	millions	of	dollars	in	them.	But	if	this	is	your
attitude,	"something	great"	is	very	unlikely	to	happen	to	you,
because	both	acquirers	and	investors	judge	you	by	your	level	of
commitment.

If	an	acquirer	thinks	you're	going	to	stick	around	no	matter	what,
they'll	be	more	likely	to	buy	you,	because	if	they	don't	and	you
stick	around,	you'll	probably	grow,	your	price	will	go	up,	and
they'll	be	left	wishing	they'd	bought	you	earlier.	Ditto	for
investors.	What	really	motivates	investors,	even	big	VCs,	is	not
the	hope	of	good	returns,	but	the	fear	of	missing	out.	[6]	So	if	you
make	it	clear	you're	going	to	succeed	no	matter	what,	and	the
only	reason	you	need	them	is	to	make	it	happen	a	little	faster,
you're	much	more	likely	to	get	money.

You	can't	fake	this.	The	only	way	to	convince	everyone	that
you're	ready	to	fight	to	the	death	is	actually	to	be	ready	to.

You	have	to	be	the	right	kind	of	determined,	though.	I	carefully
chose	the	word	determined	rather	than	stubborn,	because
stubbornness	is	a	disastrous	quality	in	a	startup.	You	have	to	be
determined,	but	flexible,	like	a	running	back.	A	successful
running	back	doesn't	just	put	his	head	down	and	try	to	run
through	people.	He	improvises:	if	someone	appears	in	front	of
him,	he	runs	around	them;	if	someone	tries	to	grab	him,	he	spins
out	of	their	grip;	he'll	even	run	in	the	wrong	direction	briefly	if
that	will	help.	The	one	thing	he'll	never	do	is	stand	still.	[7]

6.	There	Is	Always	Room.

I	was	talking	recently	to	a	startup	founder	about	whether	it
might	be	good	to	add	a	social	component	to	their	software.	He
said	he	didn't	think	so,	because	the	whole	social	thing	was
tapped	out.	Really?	So	in	a	hundred	years	the	only	social
networking	sites	will	be	the	Facebook,	MySpace,	Flickr,	and
Del.icio.us?	Not	likely.

There	is	always	room	for	new	stuff.	At	every	point	in	history,	even
the	darkest	bits	of	the	dark	ages,	people	were	discovering	things

#f6n
#f7n

that	made	everyone	say	"why	didn't	anyone	think	of	that	before?"
We	know	this	continued	to	be	true	up	till	2004,	when	the
Facebook	was	founded--	though	strictly	speaking	someone	else
did	think	of	that.

The	reason	we	don't	see	the	opportunities	all	around	us	is	that
we	adjust	to	however	things	are,	and	assume	that's	how	things
have	to	be.	For	example,	it	would	seem	crazy	to	most	people	to
try	to	make	a	better	search	engine	than	Google.	Surely	that	field,
at	least,	is	tapped	out.	Really?	In	a	hundred	years--	or	even
twenty--	are	people	still	going	to	search	for	information	using
something	like	the	current	Google?	Even	Google	probably	doesn't
think	that.

In	particular,	I	don't	think	there's	any	limit	to	the	number	of
startups.	Sometimes	you	hear	people	saying	"All	these	guys
starting	startups	now	are	going	to	be	disappointed.	How	many
little	startups	are	Google	and	Yahoo	going	to	buy,	after	all?"	That
sounds	cleverly	skeptical,	but	I	can	prove	it's	mistaken.	No	one
proposes	that	there's	some	limit	to	the	number	of	people	who	can
be	employed	in	an	economy	consisting	of	big,	slow-moving
companies	with	a	couple	thousand	people	each.	Why	should
there	be	any	limit	to	the	number	who	could	be	employed	by
small,	fast-moving	companies	with	ten	each?	It	seems	to	me	the
only	limit	would	be	the	number	of	people	who	want	to	work	that
hard.

The	limit	on	the	number	of	startups	is	not	the	number	that	can
get	acquired	by	Google	and	Yahoo--	though	it	seems	even	that
should	be	unlimited,	if	the	startups	were	actually	worth	buying--
but	the	amount	of	wealth	that	can	be	created.	And	I	don't	think
there's	any	limit	on	that,	except	cosmological	ones.

So	for	all	practical	purposes,	there	is	no	limit	to	the	number	of
startups.	Startups	make	wealth,	which	means	they	make	things
people	want,	and	if	there's	a	limit	on	the	number	of	things	people
want,	we	are	nowhere	near	it.	I	still	don't	even	have	a	flying	car.

7.	Don't	Get	Your	Hopes	Up.

This	is	another	one	I've	been	repeating	since	long	before	Y

Combinator.	It	was	practically	the	corporate	motto	at	Viaweb.

Startup	founders	are	naturally	optimistic.	They	wouldn't	do	it
otherwise.	But	you	should	treat	your	optimism	the	way	you'd
treat	the	core	of	a	nuclear	reactor:	as	a	source	of	power	that's
also	very	dangerous.	You	have	to	build	a	shield	around	it,	or	it
will	fry	you.

The	shielding	of	a	reactor	is	not	uniform;	the	reactor	would	be
useless	if	it	were.	It's	pierced	in	a	few	places	to	let	pipes	in.	An
optimism	shield	has	to	be	pierced	too.	I	think	the	place	to	draw
the	line	is	between	what	you	expect	of	yourself,	and	what	you
expect	of	other	people.	It's	ok	to	be	optimistic	about	what	you
can	do,	but	assume	the	worst	about	machines	and	other	people.

This	is	particularly	necessary	in	a	startup,	because	you	tend	to	be
pushing	the	limits	of	whatever	you're	doing.	So	things	don't
happen	in	the	smooth,	predictable	way	they	do	in	the	rest	of	the
world.	Things	change	suddenly,	and	usually	for	the	worse.

Shielding	your	optimism	is	nowhere	more	important	than	with
deals.	If	your	startup	is	doing	a	deal,	just	assume	it's	not	going	to
happen.	The	VCs	who	say	they're	going	to	invest	in	you	aren't.
The	company	that	says	they're	going	to	buy	you	isn't.	The	big
customer	who	wants	to	use	your	system	in	their	whole	company
won't.	Then	if	things	work	out	you	can	be	pleasantly	surprised.

The	reason	I	warn	startups	not	to	get	their	hopes	up	is	not	to
save	them	from	being	disappointed	when	things	fall	through.	It's
for	a	more	practical	reason:	to	prevent	them	from	leaning	their
company	against	something	that's	going	to	fall	over,	taking	them
with	it.

For	example,	if	someone	says	they	want	to	invest	in	you,	there's	a
natural	tendency	to	stop	looking	for	other	investors.	That's	why
people	proposing	deals	seem	so	positive:	they	want	you	to	stop
looking.	And	you	want	to	stop	too,	because	doing	deals	is	a	pain.
Raising	money,	in	particular,	is	a	huge	time	sink.	So	you	have	to
consciously	force	yourself	to	keep	looking.

Even	if	you	ultimately	do	the	first	deal,	it	will	be	to	your

advantage	to	have	kept	looking,	because	you'll	get	better	terms.
Deals	are	dynamic;	unless	you're	negotiating	with	someone
unusually	honest,	there's	not	a	single	point	where	you	shake
hands	and	the	deal's	done.	There	are	usually	a	lot	of	subsidiary
questions	to	be	cleared	up	after	the	handshake,	and	if	the	other
side	senses	weakness--	if	they	sense	you	need	this	deal--	they	will
be	very	tempted	to	screw	you	in	the	details.

VCs	and	corp	dev	guys	are	professional	negotiators.	They're
trained	to	take	advantage	of	weakness.	[8]	So	while	they're	often
nice	guys,	they	just	can't	help	it.	And	as	pros	they	do	this	more
than	you.	So	don't	even	try	to	bluff	them.	The	only	way	a	startup
can	have	any	leverage	in	a	deal	is	genuinely	not	to	need	it.	And	if
you	don't	believe	in	a	deal,	you'll	be	less	likely	to	depend	on	it.

So	I	want	to	plant	a	hypnotic	suggestion	in	your	heads:	when	you
hear	someone	say	the	words	"we	want	to	invest	in	you"	or	"we
want	to	acquire	you,"	I	want	the	following	phrase	to	appear
automatically	in	your	head:	don't	get	your	hopes	up.	Just
continue	running	your	company	as	if	this	deal	didn't	exist.
Nothing	is	more	likely	to	make	it	close.

The	way	to	succeed	in	a	startup	is	to	focus	on	the	goal	of	getting
lots	of	users,	and	keep	walking	swiftly	toward	it	while	investors
and	acquirers	scurry	alongside	trying	to	wave	money	in	your
face.

Speed,	not	Money

The	way	I've	described	it,	starting	a	startup	sounds	pretty
stressful.	It	is.	When	I	talk	to	the	founders	of	the	companies
we've	funded,	they	all	say	the	same	thing:	I	knew	it	would	be
hard,	but	I	didn't	realize	it	would	be	this	hard.

So	why	do	it?	It	would	be	worth	enduring	a	lot	of	pain	and	stress
to	do	something	grand	or	heroic,	but	just	to	make	money?	Is
making	money	really	that	important?

No,	not	really.	It	seems	ridiculous	to	me	when	people	take
business	too	seriously.	I	regard	making	money	as	a	boring	errand
to	be	got	out	of	the	way	as	soon	as	possible.	There	is	nothing

#f8n

grand	or	heroic	about	starting	a	startup	per	se.

So	why	do	I	spend	so	much	time	thinking	about	startups?	I'll	tell
you	why.	Economically,	a	startup	is	best	seen	not	as	a	way	to	get
rich,	but	as	a	way	to	work	faster.	You	have	to	make	a	living,	and	a
startup	is	a	way	to	get	that	done	quickly,	instead	of	letting	it	drag
on	through	your	whole	life.	[9]

We	take	it	for	granted	most	of	the	time,	but	human	life	is	fairly
miraculous.	It	is	also	palpably	short.	You're	given	this	marvellous
thing,	and	then	poof,	it's	taken	away.	You	can	see	why	people
invent	gods	to	explain	it.	But	even	to	people	who	don't	believe	in
gods,	life	commands	respect.	There	are	times	in	most	of	our	lives
when	the	days	go	by	in	a	blur,	and	almost	everyone	has	a	sense,
when	this	happens,	of	wasting	something	precious.	As	Ben
Franklin	said,	if	you	love	life,	don't	waste	time,	because	time	is
what	life	is	made	of.

So	no,	there's	nothing	particularly	grand	about	making	money.
That's	not	what	makes	startups	worth	the	trouble.	What's
important	about	startups	is	the	speed.	By	compressing	the	dull
but	necessary	task	of	making	a	living	into	the	smallest	possible
time,	you	show	respect	for	life,	and	there	is	something	grand
about	that.

Notes

[1]	Startups	can	die	from	releasing	something	full	of	bugs,	and
not	fixing	them	fast	enough,	but	I	don't	know	of	any	that	died
from	releasing	something	stable	but	minimal	very	early,	then
promptly	improving	it.

[2]	I	know	this	is	why	I	haven't	released	Arc.	The	moment	I	do,
I'll	have	people	nagging	me	for	features.

[3]	A	web	site	is	different	from	a	book	or	movie	or	desktop
application	in	this	respect.	Users	judge	a	site	not	as	a	single

#f9n

snapshot,	but	as	an	animation	with	multiple	frames.	Of	the	two,
I'd	say	the	rate	of	improvement	is	more	important	to	users	than
where	you	currently	are.

[4]	It	should	not	always	tell	this	to	users,	however.	For	example,
MySpace	is	basically	a	replacement	mall	for	mallrats.	But	it	was
wiser	for	them,	initially,	to	pretend	that	the	site	was	about	bands.

[5]	Similarly,	don't	make	users	register	to	try	your	site.	Maybe
what	you	have	is	so	valuable	that	visitors	should	gladly	register
to	get	at	it.	But	they've	been	trained	to	expect	the	opposite.	Most
of	the	things	they've	tried	on	the	web	have	sucked--	and	probably
especially	those	that	made	them	register.

[6]	VCs	have	rational	reasons	for	behaving	this	way.	They	don't
make	their	money	(if	they	make	money)	off	their	median
investments.	In	a	typical	fund,	half	the	companies	fail,	most	of
the	rest	generate	mediocre	returns,	and	one	or	two	"make	the
fund"	by	succeeding	spectacularly.	So	if	they	miss	just	a	few	of
the	most	promising	opportunities,	it	could	hose	the	whole	fund.

[7]	The	attitude	of	a	running	back	doesn't	translate	to	soccer.
Though	it	looks	great	when	a	forward	dribbles	past	multiple
defenders,	a	player	who	persists	in	trying	such	things	will	do
worse	in	the	long	term	than	one	who	passes.

[8]	The	reason	Y	Combinator	never	negotiates	valuations	is	that
we're	not	professional	negotiators,	and	don't	want	to	turn	into
them.

[9]	There	are	two	ways	to	do	work	you	love:	(a)	to	make	money,
then	work	on	what	you	love,	or	(b)	to	get	a	job	where	you	get
paid	to	work	on	stuff	you	love.	In	practice	the	first	phases	of	both
consist	mostly	of	unedifying	schleps,	and	in	(b)	the	second	phase
is	less	secure.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Beau	Hartshorne,
Jessica	Livingston,	and	Robert	Morris	for	reading	drafts	of	this.

love.html

	

How	to	Be	Silicon	Valley
May	2006

(This	essay	is	derived	from	a	keynote	at	Xtech.)

Could	you	reproduce	Silicon	Valley	elsewhere,	or	is	there
something	unique	about	it?

It	wouldn't	be	surprising	if	it	were	hard	to	reproduce	in	other
countries,	because	you	couldn't	reproduce	it	in	most	of	the	US
either.	What	does	it	take	to	make	a	silicon	valley	even	here?

What	it	takes	is	the	right	people.	If	you	could	get	the	right	ten
thousand	people	to	move	from	Silicon	Valley	to	Buffalo,	Buffalo
would	become	Silicon	Valley.	[1]

That's	a	striking	departure	from	the	past.	Up	till	a	couple
decades	ago,	geography	was	destiny	for	cities.	All	great	cities
were	located	on	waterways,	because	cities	made	money	by	trade,
and	water	was	the	only	economical	way	to	ship.

Now	you	could	make	a	great	city	anywhere,	if	you	could	get	the
right	people	to	move	there.	So	the	question	of	how	to	make	a
silicon	valley	becomes:	who	are	the	right	people,	and	how	do	you
get	them	to	move?

Two	Types

I	think	you	only	need	two	kinds	of	people	to	create	a	technology
hub:	rich	people	and	nerds.	They're	the	limiting	reagents	in	the
reaction	that	produces	startups,	because	they're	the	only	ones
present	when	startups	get	started.	Everyone	else	will	move.

Observation	bears	this	out:	within	the	US,	towns	have	become
startup	hubs	if	and	only	if	they	have	both	rich	people	and	nerds.
Few	startups	happen	in	Miami,	for	example,	because	although

#f1n

it's	full	of	rich	people,	it	has	few	nerds.	It's	not	the	kind	of	place
nerds	like.

Whereas	Pittsburgh	has	the	opposite	problem:	plenty	of	nerds,
but	no	rich	people.	The	top	US	Computer	Science	departments
are	said	to	be	MIT,	Stanford,	Berkeley,	and	Carnegie-Mellon.	MIT
yielded	Route	128.	Stanford	and	Berkeley	yielded	Silicon	Valley.
But	Carnegie-Mellon?	The	record	skips	at	that	point.	Lower	down
the	list,	the	University	of	Washington	yielded	a	high-tech
community	in	Seattle,	and	the	University	of	Texas	at	Austin
yielded	one	in	Austin.	But	what	happened	in	Pittsburgh?	And	in
Ithaca,	home	of	Cornell,	which	is	also	high	on	the	list?

I	grew	up	in	Pittsburgh	and	went	to	college	at	Cornell,	so	I	can
answer	for	both.	The	weather	is	terrible,	particularly	in	winter,
and	there's	no	interesting	old	city	to	make	up	for	it,	as	there	is	in
Boston.	Rich	people	don't	want	to	live	in	Pittsburgh	or	Ithaca.	So
while	there	are	plenty	of	hackers	who	could	start	startups,
there's	no	one	to	invest	in	them.

Not	Bureaucrats

Do	you	really	need	the	rich	people?	Wouldn't	it	work	to	have	the
government	invest	in	the	nerds?	No,	it	would	not.	Startup
investors	are	a	distinct	type	of	rich	people.	They	tend	to	have	a
lot	of	experience	themselves	in	the	technology	business.	This	(a)
helps	them	pick	the	right	startups,	and	(b)	means	they	can	supply
advice	and	connections	as	well	as	money.	And	the	fact	that	they
have	a	personal	stake	in	the	outcome	makes	them	really	pay
attention.

Bureaucrats	by	their	nature	are	the	exact	opposite	sort	of	people
from	startup	investors.	The	idea	of	them	making	startup
investments	is	comic.	It	would	be	like	mathematicians	running
Vogue--	or	perhaps	more	accurately,	Vogue	editors	running	a
math	journal.	[2]

Though	indeed,	most	things	bureaucrats	do,	they	do	badly.	We
just	don't	notice	usually,	because	they	only	have	to	compete
against	other	bureaucrats.	But	as	startup	investors	they'd	have	to
compete	against	pros	with	a	great	deal	more	experience	and

#f2n

motivation.

Even	corporations	that	have	in-house	VC	groups	generally	forbid
them	to	make	their	own	investment	decisions.	Most	are	only
allowed	to	invest	in	deals	where	some	reputable	private	VC	firm
is	willing	to	act	as	lead	investor.

Not	Buildings

If	you	go	to	see	Silicon	Valley,	what	you'll	see	are	buildings.	But
it's	the	people	that	make	it	Silicon	Valley,	not	the	buildings.	I	read
occasionally	about	attempts	to	set	up	"technology	parks"	in	other
places,	as	if	the	active	ingredient	of	Silicon	Valley	were	the	office
space.	An	article	about	Sophia	Antipolis	bragged	that	companies
there	included	Cisco,	Compaq,	IBM,	NCR,	and	Nortel.	Don't	the
French	realize	these	aren't	startups?

Building	office	buildings	for	technology	companies	won't	get	you
a	silicon	valley,	because	the	key	stage	in	the	life	of	a	startup
happens	before	they	want	that	kind	of	space.	The	key	stage	is
when	they're	three	guys	operating	out	of	an	apartment.
Wherever	the	startup	is	when	it	gets	funded,	it	will	stay.	The
defining	quality	of	Silicon	Valley	is	not	that	Intel	or	Apple	or
Google	have	offices	there,	but	that	they	were	started	there.

So	if	you	want	to	reproduce	Silicon	Valley,	what	you	need	to
reproduce	is	those	two	or	three	founders	sitting	around	a	kitchen
table	deciding	to	start	a	company.	And	to	reproduce	that	you
need	those	people.

Universities

The	exciting	thing	is,	all	you	need	are	the	people.	If	you	could
attract	a	critical	mass	of	nerds	and	investors	to	live	somewhere,
you	could	reproduce	Silicon	Valley.	And	both	groups	are	highly
mobile.	They'll	go	where	life	is	good.	So	what	makes	a	place	good
to	them?

What	nerds	like	is	other	nerds.	Smart	people	will	go	wherever
other	smart	people	are.	And	in	particular,	to	great	universities.	In
theory	there	could	be	other	ways	to	attract	them,	but	so	far

http://www.google.com/search?q=technology+park

universities	seem	to	be	indispensable.	Within	the	US,	there	are
no	technology	hubs	without	first-rate	universities--	or	at	least,
first-rate	computer	science	departments.

So	if	you	want	to	make	a	silicon	valley,	you	not	only	need	a
university,	but	one	of	the	top	handful	in	the	world.	It	has	to	be
good	enough	to	act	as	a	magnet,	drawing	the	best	people	from
thousands	of	miles	away.	And	that	means	it	has	to	stand	up	to
existing	magnets	like	MIT	and	Stanford.

This	sounds	hard.	Actually	it	might	be	easy.	My	professor	friends,
when	they're	deciding	where	they'd	like	to	work,	consider	one
thing	above	all:	the	quality	of	the	other	faculty.	What	attracts
professors	is	good	colleagues.	So	if	you	managed	to	recruit,	en
masse,	a	significant	number	of	the	best	young	researchers,	you
could	create	a	first-rate	university	from	nothing	overnight.	And
you	could	do	that	for	surprisingly	little.	If	you	paid	200	people
hiring	bonuses	of	$3	million	apiece,	you	could	put	together	a
faculty	that	would	bear	comparison	with	any	in	the	world.	And
from	that	point	the	chain	reaction	would	be	self-sustaining.	So
whatever	it	costs	to	establish	a	mediocre	university,	for	an
additional	half	billion	or	so	you	could	have	a	great	one.	[3]

Personality

However,	merely	creating	a	new	university	would	not	be	enough
to	start	a	silicon	valley.	The	university	is	just	the	seed.	It	has	to
be	planted	in	the	right	soil,	or	it	won't	germinate.	Plant	it	in	the
wrong	place,	and	you	just	create	Carnegie-Mellon.

To	spawn	startups,	your	university	has	to	be	in	a	town	that	has
attractions	other	than	the	university.	It	has	to	be	a	place	where
investors	want	to	live,	and	students	want	to	stay	after	they
graduate.

The	two	like	much	the	same	things,	because	most	startup
investors	are	nerds	themselves.	So	what	do	nerds	look	for	in	a
town?	Their	tastes	aren't	completely	different	from	other
people's,	because	a	lot	of	the	towns	they	like	most	in	the	US	are
also	big	tourist	destinations:	San	Francisco,	Boston,	Seattle.	But
their	tastes	can't	be	quite	mainstream	either,	because	they

#f3n

dislike	other	big	tourist	destinations,	like	New	York,	Los	Angeles,
and	Las	Vegas.

There	has	been	a	lot	written	lately	about	the	"creative	class."	The
thesis	seems	to	be	that	as	wealth	derives	increasingly	from	ideas,
cities	will	prosper	only	if	they	attract	those	who	have	them.	That
is	certainly	true;	in	fact	it	was	the	basis	of	Amsterdam's
prosperity	400	years	ago.

A	lot	of	nerd	tastes	they	share	with	the	creative	class	in	general.
For	example,	they	like	well-preserved	old	neighborhoods	instead
of	cookie-cutter	suburbs,	and	locally-owned	shops	and
restaurants	instead	of	national	chains.	Like	the	rest	of	the
creative	class,	they	want	to	live	somewhere	with	personality.

What	exactly	is	personality?	I	think	it's	the	feeling	that	each
building	is	the	work	of	a	distinct	group	of	people.	A	town	with
personality	is	one	that	doesn't	feel	mass-produced.	So	if	you	want
to	make	a	startup	hub--	or	any	town	to	attract	the	"creative
class"--	you	probably	have	to	ban	large	development	projects.
When	a	large	tract	has	been	developed	by	a	single	organization,
you	can	always	tell.	[4]

Most	towns	with	personality	are	old,	but	they	don't	have	to	be.
Old	towns	have	two	advantages:	they're	denser,	because	they
were	laid	out	before	cars,	and	they're	more	varied,	because	they
were	built	one	building	at	a	time.	You	could	have	both	now.	Just
have	building	codes	that	ensure	density,	and	ban	large	scale
developments.

A	corollary	is	that	you	have	to	keep	out	the	biggest	developer	of
all:	the	government.	A	government	that	asks	"How	can	we	build	a
silicon	valley?"	has	probably	ensured	failure	by	the	way	they
framed	the	question.	You	don't	build	a	silicon	valley;	you	let	one
grow.

Nerds

If	you	want	to	attract	nerds,	you	need	more	than	a	town	with
personality.	You	need	a	town	with	the	right	personality.	Nerds	are
a	distinct	subset	of	the	creative	class,	with	different	tastes	from

#f4n

the	rest.	You	can	see	this	most	clearly	in	New	York,	which
attracts	a	lot	of	creative	people,	but	few	nerds.	[5]

What	nerds	like	is	the	kind	of	town	where	people	walk	around
smiling.	This	excludes	LA,	where	no	one	walks	at	all,	and	also
New	York,	where	people	walk,	but	not	smiling.	When	I	was	in
grad	school	in	Boston,	a	friend	came	to	visit	from	New	York.	On
the	subway	back	from	the	airport	she	asked	"Why	is	everyone
smiling?"	I	looked	and	they	weren't	smiling.	They	just	looked	like
they	were	compared	to	the	facial	expressions	she	was	used	to.

If	you've	lived	in	New	York,	you	know	where	these	facial
expressions	come	from.	It's	the	kind	of	place	where	your	mind
may	be	excited,	but	your	body	knows	it's	having	a	bad	time.
People	don't	so	much	enjoy	living	there	as	endure	it	for	the	sake
of	the	excitement.	And	if	you	like	certain	kinds	of	excitement,
New	York	is	incomparable.	It's	a	hub	of	glamour,	a	magnet	for	all
the	shorter	half-life	isotopes	of	style	and	fame.

Nerds	don't	care	about	glamour,	so	to	them	the	appeal	of	New
York	is	a	mystery.	People	who	like	New	York	will	pay	a	fortune	for
a	small,	dark,	noisy	apartment	in	order	to	live	in	a	town	where
the	cool	people	are	really	cool.	A	nerd	looks	at	that	deal	and	sees
only:	pay	a	fortune	for	a	small,	dark,	noisy	apartment.

Nerds	will	pay	a	premium	to	live	in	a	town	where	the	smart
people	are	really	smart,	but	you	don't	have	to	pay	as	much	for
that.	It's	supply	and	demand:	glamour	is	popular,	so	you	have	to
pay	a	lot	for	it.

Most	nerds	like	quieter	pleasures.	They	like	cafes	instead	of
clubs;	used	bookshops	instead	of	fashionable	clothing	shops;
hiking	instead	of	dancing;	sunlight	instead	of	tall	buildings.	A
nerd's	idea	of	paradise	is	Berkeley	or	Boulder.

Youth

It's	the	young	nerds	who	start	startups,	so	it's	those	specifically
the	city	has	to	appeal	to.	The	startup	hubs	in	the	US	are	all
young-feeling	towns.	This	doesn't	mean	they	have	to	be	new.
Cambridge	has	the	oldest	town	plan	in	America,	but	it	feels

#f5n

young	because	it's	full	of	students.

What	you	can't	have,	if	you	want	to	create	a	silicon	valley,	is	a
large,	existing	population	of	stodgy	people.	It	would	be	a	waste	of
time	to	try	to	reverse	the	fortunes	of	a	declining	industrial	town
like	Detroit	or	Philadelphia	by	trying	to	encourage	startups.
Those	places	have	too	much	momentum	in	the	wrong	direction.
You're	better	off	starting	with	a	blank	slate	in	the	form	of	a	small
town.	Or	better	still,	if	there's	a	town	young	people	already	flock
to,	that	one.

The	Bay	Area	was	a	magnet	for	the	young	and	optimistic	for
decades	before	it	was	associated	with	technology.	It	was	a	place
people	went	in	search	of	something	new.	And	so	it	became
synonymous	with	California	nuttiness.	There's	still	a	lot	of	that
there.	If	you	wanted	to	start	a	new	fad--	a	new	way	to	focus	one's
"energy,"	for	example,	or	a	new	category	of	things	not	to	eat--	the
Bay	Area	would	be	the	place	to	do	it.	But	a	place	that	tolerates
oddness	in	the	search	for	the	new	is	exactly	what	you	want	in	a
startup	hub,	because	economically	that's	what	startups	are.	Most
good	startup	ideas	seem	a	little	crazy;	if	they	were	obviously
good	ideas,	someone	would	have	done	them	already.

(How	many	people	are	going	to	want	computers	in	their	houses?
What,	another	search	engine?)

That's	the	connection	between	technology	and	liberalism.
Without	exception	the	high-tech	cities	in	the	US	are	also	the	most
liberal.	But	it's	not	because	liberals	are	smarter	that	this	is	so.
It's	because	liberal	cities	tolerate	odd	ideas,	and	smart	people	by
definition	have	odd	ideas.

Conversely,	a	town	that	gets	praised	for	being	"solid"	or
representing	"traditional	values"	may	be	a	fine	place	to	live,	but
it's	never	going	to	succeed	as	a	startup	hub.	The	2004
presidential	election,	though	a	disaster	in	other	respects,
conveniently	supplied	us	with	a	county-by-county	map	of	such
places.	[6]

To	attract	the	young,	a	town	must	have	an	intact	center.	In	most
American	cities	the	center	has	been	abandoned,	and	the	growth,

http://www-personal.umich.edu/~mejn/election/2004/countymaplinearlarge.png
#f6n

if	any,	is	in	the	suburbs.	Most	American	cities	have	been	turned
inside	out.	But	none	of	the	startup	hubs	has:	not	San	Francisco,
or	Boston,	or	Seattle.	They	all	have	intact	centers.	[7]	My	guess
is	that	no	city	with	a	dead	center	could	be	turned	into	a	startup
hub.	Young	people	don't	want	to	live	in	the	suburbs.

Within	the	US,	the	two	cities	I	think	could	most	easily	be	turned
into	new	silicon	valleys	are	Boulder	and	Portland.	Both	have	the
kind	of	effervescent	feel	that	attracts	the	young.	They're	each
only	a	great	university	short	of	becoming	a	silicon	valley,	if	they
wanted	to.

Time

A	great	university	near	an	attractive	town.	Is	that	all	it	takes?
That	was	all	it	took	to	make	the	original	Silicon	Valley.	Silicon
Valley	traces	its	origins	to	William	Shockley,	one	of	the	inventors
of	the	transistor.	He	did	the	research	that	won	him	the	Nobel
Prize	at	Bell	Labs,	but	when	he	started	his	own	company	in	1956
he	moved	to	Palo	Alto	to	do	it.	At	the	time	that	was	an	odd	thing
to	do.	Why	did	he?	Because	he	had	grown	up	there	and
remembered	how	nice	it	was.	Now	Palo	Alto	is	suburbia,	but	then
it	was	a	charming	college	town--	a	charming	college	town	with
perfect	weather	and	San	Francisco	only	an	hour	away.

The	companies	that	rule	Silicon	Valley	now	are	all	descended	in
various	ways	from	Shockley	Semiconductor.	Shockley	was	a
difficult	man,	and	in	1957	his	top	people--	"the	traitorous	eight"--
left	to	start	a	new	company,	Fairchild	Semiconductor.	Among
them	were	Gordon	Moore	and	Robert	Noyce,	who	went	on	to
found	Intel,	and	Eugene	Kleiner,	who	founded	the	VC	firm
Kleiner	Perkins.	Forty-two	years	later,	Kleiner	Perkins	funded
Google,	and	the	partner	responsible	for	the	deal	was	John	Doerr,
who	came	to	Silicon	Valley	in	1974	to	work	for	Intel.

So	although	a	lot	of	the	newest	companies	in	Silicon	Valley	don't
make	anything	out	of	silicon,	there	always	seem	to	be	multiple
links	back	to	Shockley.	There's	a	lesson	here:	startups	beget
startups.	People	who	work	for	startups	start	their	own.	People
who	get	rich	from	startups	fund	new	ones.	I	suspect	this	kind	of
organic	growth	is	the	only	way	to	produce	a	startup	hub,	because

#f7n

it's	the	only	way	to	grow	the	expertise	you	need.

That	has	two	important	implications.	The	first	is	that	you	need
time	to	grow	a	silicon	valley.	The	university	you	could	create	in	a
couple	years,	but	the	startup	community	around	it	has	to	grow
organically.	The	cycle	time	is	limited	by	the	time	it	takes	a
company	to	succeed,	which	probably	averages	about	five	years.

The	other	implication	of	the	organic	growth	hypothesis	is	that
you	can't	be	somewhat	of	a	startup	hub.	You	either	have	a	self-
sustaining	chain	reaction,	or	not.	Observation	confirms	this	too:
cities	either	have	a	startup	scene,	or	they	don't.	There	is	no
middle	ground.	Chicago	has	the	third	largest	metropolitan	area
in	America.	As	a	source	of	startups	it's	negligible	compared	to
Seattle,	number	15.

The	good	news	is	that	the	initial	seed	can	be	quite	small.
Shockley	Semiconductor,	though	itself	not	very	successful,	was
big	enough.	It	brought	a	critical	mass	of	experts	in	an	important
new	technology	together	in	a	place	they	liked	enough	to	stay.

Competing

Of	course,	a	would-be	silicon	valley	faces	an	obstacle	the	original
one	didn't:	it	has	to	compete	with	Silicon	Valley.	Can	that	be
done?	Probably.

One	of	Silicon	Valley's	biggest	advantages	is	its	venture	capital
firms.	This	was	not	a	factor	in	Shockley's	day,	because	VC	funds
didn't	exist.	In	fact,	Shockley	Semiconductor	and	Fairchild
Semiconductor	were	not	startups	at	all	in	our	sense.	They	were
subsidiaries--	of	Beckman	Instruments	and	Fairchild	Camera	and
Instrument	respectively.	Those	companies	were	apparently
willing	to	establish	subsidiaries	wherever	the	experts	wanted	to
live.

Venture	investors,	however,	prefer	to	fund	startups	within	an
hour's	drive.	For	one,	they're	more	likely	to	notice	startups
nearby.	But	when	they	do	notice	startups	in	other	towns	they
prefer	them	to	move.	They	don't	want	to	have	to	travel	to	attend
board	meetings,	and	in	any	case	the	odds	of	succeeding	are

higher	in	a	startup	hub.

The	centralizing	effect	of	venture	firms	is	a	double	one:	they
cause	startups	to	form	around	them,	and	those	draw	in	more
startups	through	acquisitions.	And	although	the	first	may	be
weakening	because	it's	now	so	cheap	to	start	some	startups,	the
second	seems	as	strong	as	ever.	Three	of	the	most	admired	"Web
2.0"	companies	were	started	outside	the	usual	startup	hubs,	but
two	of	them	have	already	been	reeled	in	through	acquisitions.

Such	centralizing	forces	make	it	harder	for	new	silicon	valleys	to
get	started.	But	by	no	means	impossible.	Ultimately	power	rests
with	the	founders.	A	startup	with	the	best	people	will	beat	one
with	funding	from	famous	VCs,	and	a	startup	that	was	sufficiently
successful	would	never	have	to	move.	So	a	town	that	could	exert
enough	pull	over	the	right	people	could	resist	and	perhaps	even
surpass	Silicon	Valley.

For	all	its	power,	Silicon	Valley	has	a	great	weakness:	the
paradise	Shockley	found	in	1956	is	now	one	giant	parking	lot.
San	Francisco	and	Berkeley	are	great,	but	they're	forty	miles
away.	Silicon	Valley	proper	is	soul-crushing	suburban	sprawl.	It
has	fabulous	weather,	which	makes	it	significantly	better	than
the	soul-crushing	sprawl	of	most	other	American	cities.	But	a
competitor	that	managed	to	avoid	sprawl	would	have	real
leverage.	All	a	city	needs	is	to	be	the	kind	of	place	the	next
traitorous	eight	look	at	and	say	"I	want	to	stay	here,"	and	that
would	be	enough	to	get	the	chain	reaction	started.

Notes

[1]	It's	interesting	to	consider	how	low	this	number	could	be
made.	I	suspect	five	hundred	would	be	enough,	even	if	they	could
bring	no	assets	with	them.	Probably	just	thirty,	if	I	could	pick
them,	would	be	enough	to	turn	Buffalo	into	a	significant	startup
hub.

http://www.flickr.com/photos/caterina/34637/

[2]	Bureaucrats	manage	to	allocate	research	funding	moderately
well,	but	only	because	(like	an	in-house	VC	fund)	they	outsource
most	of	the	work	of	selection.	A	professor	at	a	famous	university
who	is	highly	regarded	by	his	peers	will	get	funding,	pretty	much
regardless	of	the	proposal.	That	wouldn't	work	for	startups,
whose	founders	aren't	sponsored	by	organizations,	and	are	often
unknowns.

[3]	You'd	have	to	do	it	all	at	once,	or	at	least	a	whole	department
at	a	time,	because	people	would	be	more	likely	to	come	if	they
knew	their	friends	were.	And	you	should	probably	start	from
scratch,	rather	than	trying	to	upgrade	an	existing	university,	or
much	energy	would	be	lost	in	friction.

[4]	Hypothesis:	Any	plan	in	which	multiple	independent	buildings
are	gutted	or	demolished	to	be	"redeveloped"	as	a	single	project
is	a	net	loss	of	personality	for	the	city,	with	the	exception	of	the
conversion	of	buildings	not	previously	public,	like	warehouses.

[5]	A	few	startups	get	started	in	New	York,	but	less	than	a	tenth
as	many	per	capita	as	in	Boston,	and	mostly	in	less	nerdy	fields
like	finance	and	media.

[6]	Some	blue	counties	are	false	positives	(reflecting	the
remaining	power	of	Democractic	party	machines),	but	there	are
no	false	negatives.	You	can	safely	write	off	all	the	red	counties.

[7]	Some	"urban	renewal"	experts	took	a	shot	at	destroying
Boston's	in	the	1960s,	leaving	the	area	around	city	hall	a	bleak
wasteland,	but	most	neighborhoods	successfully	resisted	them.

Thanks	to	Chris	Anderson,	Trevor	Blackwell,	Marc	Hedlund,
Jessica	Livingston,	Robert	Morris,	Greg	Mcadoo,	Fred	Wilson,
and	Stephen	Wolfram	for	reading	drafts	of	this,	and	to	Ed
Dumbill	for	inviting	me	to	speak.

(The	second	part	of	this	talk	became	Why	Startups	Condense	in
America.)

http://www.pps.org/great_public_spaces/one?public_place_id=148
america.html

	

Why	Startups	Condense	in
America
May	2006

(This	essay	is	derived	from	a	keynote	at	Xtech.)

Startups	happen	in	clusters.	There	are	a	lot	of	them	in	Silicon
Valley	and	Boston,	and	few	in	Chicago	or	Miami.	A	country	that
wants	startups	will	probably	also	have	to	reproduce	whatever
makes	these	clusters	form.

I've	claimed	that	the	recipe	is	a	great	university	near	a	town
smart	people	like.	If	you	set	up	those	conditions	within	the	US,
startups	will	form	as	inevitably	as	water	droplets	condense	on	a
cold	piece	of	metal.	But	when	I	consider	what	it	would	take	to
reproduce	Silicon	Valley	in	another	country,	it's	clear	the	US	is	a
particularly	humid	environment.	Startups	condense	more	easily
here.

It	is	by	no	means	a	lost	cause	to	try	to	create	a	silicon	valley	in
another	country.	There's	room	not	merely	to	equal	Silicon	Valley,
but	to	surpass	it.	But	if	you	want	to	do	that,	you	have	to
understand	the	advantages	startups	get	from	being	in	America.

1.	The	US	Allows	Immigration.

For	example,	I	doubt	it	would	be	possible	to	reproduce	Silicon
Valley	in	Japan,	because	one	of	Silicon	Valley's	most	distinctive
features	is	immigration.	Half	the	people	there	speak	with
accents.	And	the	Japanese	don't	like	immigration.	When	they
think	about	how	to	make	a	Japanese	silicon	valley,	I	suspect	they
unconsciously	frame	it	as	how	to	make	one	consisting	only	of
Japanese	people.	This	way	of	framing	the	question	probably
guarantees	failure.

siliconvalley.html

A	silicon	valley	has	to	be	a	mecca	for	the	smart	and	the
ambitious,	and	you	can't	have	a	mecca	if	you	don't	let	people	into
it.

Of	course,	it's	not	saying	much	that	America	is	more	open	to
immigration	than	Japan.	Immigration	policy	is	one	area	where	a
competitor	could	do	better.

2.	The	US	Is	a	Rich	Country.

I	could	see	India	one	day	producing	a	rival	to	Silicon	Valley.
Obviously	they	have	the	right	people:	you	can	tell	that	by	the
number	of	Indians	in	the	current	Silicon	Valley.	The	problem	with
India	itself	is	that	it's	still	so	poor.

In	poor	countries,	things	we	take	for	granted	are	missing.	A
friend	of	mine	visiting	India	sprained	her	ankle	falling	down	the
steps	in	a	railway	station.	When	she	turned	to	see	what	had
happened,	she	found	the	steps	were	all	different	heights.	In
industrialized	countries	we	walk	down	steps	our	whole	lives	and
never	think	about	this,	because	there's	an	infrastructure	that
prevents	such	a	staircase	from	being	built.

The	US	has	never	been	so	poor	as	some	countries	are	now.	There
have	never	been	swarms	of	beggars	in	the	streets	of	American
cities.	So	we	have	no	data	about	what	it	takes	to	get	from	the
swarms-of-beggars	stage	to	the	silicon-valley	stage.	Could	you
have	both	at	once,	or	does	there	have	to	be	some	baseline
prosperity	before	you	get	a	silicon	valley?

I	suspect	there	is	some	speed	limit	to	the	evolution	of	an
economy.	Economies	are	made	out	of	people,	and	attitudes	can
only	change	a	certain	amount	per	generation.	[1]

3.	The	US	Is	Not	(Yet)	a	Police	State.

Another	country	I	could	see	wanting	to	have	a	silicon	valley	is
China.	But	I	doubt	they	could	do	it	yet	either.	China	still	seems	to
be	a	police	state,	and	although	present	rulers	seem	enlightened
compared	to	the	last,	even	enlightened	despotism	can	probably
only	get	you	part	way	toward	being	a	great	economic	power.

#f1n

It	can	get	you	factories	for	building	things	designed	elsewhere.
Can	it	get	you	the	designers,	though?	Can	imagination	flourish
where	people	can't	criticize	the	government?	Imagination	means
having	odd	ideas,	and	it's	hard	to	have	odd	ideas	about
technology	without	also	having	odd	ideas	about	politics.	And	in
any	case,	many	technical	ideas	do	have	political	implications.	So
if	you	squash	dissent,	the	back	pressure	will	propagate	into
technical	fields.	[2]

Singapore	would	face	a	similar	problem.	Singapore	seems	very
aware	of	the	importance	of	encouraging	startups.	But	while
energetic	government	intervention	may	be	able	to	make	a	port
run	efficiently,	it	can't	coax	startups	into	existence.	A	state	that
bans	chewing	gum	has	a	long	way	to	go	before	it	could	create	a
San	Francisco.

Do	you	need	a	San	Francisco?	Might	there	not	be	an	alternate
route	to	innovation	that	goes	through	obedience	and	cooperation
instead	of	individualism?	Possibly,	but	I'd	bet	not.	Most
imaginative	people	seem	to	share	a	certain	prickly	independence,
whenever	and	wherever	they	lived.	You	see	it	in	Diogenes	telling
Alexander	to	get	out	of	his	light	and	two	thousand	years	later	in
Feynman	breaking	into	safes	at	Los	Alamos.	[3]	Imaginative
people	don't	want	to	follow	or	lead.	They're	most	productive
when	everyone	gets	to	do	what	they	want.

Ironically,	of	all	rich	countries	the	US	has	lost	the	most	civil
liberties	recently.	But	I'm	not	too	worried	yet.	I'm	hoping	once
the	present	administration	is	out,	the	natural	openness	of
American	culture	will	reassert	itself.

4.	American	Universities	Are	Better.

You	need	a	great	university	to	seed	a	silicon	valley,	and	so	far
there	are	few	outside	the	US.	I	asked	a	handful	of	American
computer	science	professors	which	universities	in	Europe	were
most	admired,	and	they	all	basically	said	"Cambridge"	followed
by	a	long	pause	while	they	tried	to	think	of	others.	There	don't
seem	to	be	many	universities	elsewhere	that	compare	with	the
best	in	America,	at	least	in	technology.

#f2n
gba.html
#f3n

In	some	countries	this	is	the	result	of	a	deliberate	policy.	The
German	and	Dutch	governments,	perhaps	from	fear	of	elitism,	try
to	ensure	that	all	universities	are	roughly	equal	in	quality.	The
downside	is	that	none	are	especially	good.	The	best	professors
are	spread	out,	instead	of	being	concentrated	as	they	are	in	the
US.	This	probably	makes	them	less	productive,	because	they
don't	have	good	colleagues	to	inspire	them.	It	also	means	no	one
university	will	be	good	enough	to	act	as	a	mecca,	attracting
talent	from	abroad	and	causing	startups	to	form	around	it.

The	case	of	Germany	is	a	strange	one.	The	Germans	invented	the
modern	university,	and	up	till	the	1930s	theirs	were	the	best	in
the	world.	Now	they	have	none	that	stand	out.	As	I	was	mulling
this	over,	I	found	myself	thinking:	"I	can	understand	why	German
universities	declined	in	the	1930s,	after	they	excluded	Jews.	But
surely	they	should	have	bounced	back	by	now."	Then	I	realized:
maybe	not.	There	are	few	Jews	left	in	Germany	and	most	Jews	I
know	would	not	want	to	move	there.	And	if	you	took	any	great
American	university	and	removed	the	Jews,	you'd	have	some
pretty	big	gaps.	So	maybe	it	would	be	a	lost	cause	trying	to
create	a	silicon	valley	in	Germany,	because	you	couldn't	establish
the	level	of	university	you'd	need	as	a	seed.	[4]

It's	natural	for	US	universities	to	compete	with	one	another
because	so	many	are	private.	To	reproduce	the	quality	of
American	universities	you	probably	also	have	to	reproduce	this.
If	universities	are	controlled	by	the	central	government,	log-
rolling	will	pull	them	all	toward	the	mean:	the	new	Institute	of	X
will	end	up	at	the	university	in	the	district	of	a	powerful
politician,	instead	of	where	it	should	be.

5.	You	Can	Fire	People	in	America.

I	think	one	of	the	biggest	obstacles	to	creating	startups	in
Europe	is	the	attitude	toward	employment.	The	famously	rigid
labor	laws	hurt	every	company,	but	startups	especially,	because
startups	have	the	least	time	to	spare	for	bureaucratic	hassles.

The	difficulty	of	firing	people	is	a	particular	problem	for	startups
because	they	have	no	redundancy.	Every	person	has	to	do	their

#f4n

job	well.

But	the	problem	is	more	than	just	that	some	startup	might	have	a
problem	firing	someone	they	needed	to.	Across	industries	and
countries,	there's	a	strong	inverse	correlation	between
performance	and	job	security.	Actors	and	directors	are	fired	at
the	end	of	each	film,	so	they	have	to	deliver	every	time.	Junior
professors	are	fired	by	default	after	a	few	years	unless	the
university	chooses	to	grant	them	tenure.	Professional	athletes
know	they'll	be	pulled	if	they	play	badly	for	just	a	couple	games.
At	the	other	end	of	the	scale	(at	least	in	the	US)	are	auto
workers,	New	York	City	schoolteachers,	and	civil	servants,	who
are	all	nearly	impossible	to	fire.	The	trend	is	so	clear	that	you'd
have	to	be	willfully	blind	not	to	see	it.

Performance	isn't	everything,	you	say?	Well,	are	auto	workers,
schoolteachers,	and	civil	servants	happier	than	actors,
professors,	and	professional	athletes?

European	public	opinion	will	apparently	tolerate	people	being
fired	in	industries	where	they	really	care	about	performance.
Unfortunately	the	only	industry	they	care	enough	about	so	far	is
soccer.	But	that	is	at	least	a	precedent.

6.	In	America	Work	Is	Less	Identified	with	Employment.

The	problem	in	more	traditional	places	like	Europe	and	Japan
goes	deeper	than	the	employment	laws.	More	dangerous	is	the
attitude	they	reflect:	that	an	employee	is	a	kind	of	servant,	whom
the	employer	has	a	duty	to	protect.	It	used	to	be	that	way	in
America	too.	In	1970	you	were	still	supposed	to	get	a	job	with	a
big	company,	for	whom	ideally	you'd	work	your	whole	career.	In
return	the	company	would	take	care	of	you:	they'd	try	not	to	fire
you,	cover	your	medical	expenses,	and	support	you	in	old	age.

Gradually	employment	has	been	shedding	such	paternalistic
overtones	and	becoming	simply	an	economic	exchange.	But	the
importance	of	the	new	model	is	not	just	that	it	makes	it	easier	for
startups	to	grow.	More	important,	I	think,	is	that	it	it	makes	it
easier	for	people	to	start	startups.

Even	in	the	US	most	kids	graduating	from	college	still	think
they're	supposed	to	get	jobs,	as	if	you	couldn't	be	productive
without	being	someone's	employee.	But	the	less	you	identify
work	with	employment,	the	easier	it	becomes	to	start	a	startup.
When	you	see	your	career	as	a	series	of	different	types	of	work,
instead	of	a	lifetime's	service	to	a	single	employer,	there's	less
risk	in	starting	your	own	company,	because	you're	only	replacing
one	segment	instead	of	discarding	the	whole	thing.

The	old	ideas	are	so	powerful	that	even	the	most	successful
startup	founders	have	had	to	struggle	against	them.	A	year	after
the	founding	of	Apple,	Steve	Wozniak	still	hadn't	quit	HP.	He	still
planned	to	work	there	for	life.	And	when	Jobs	found	someone	to
give	Apple	serious	venture	funding,	on	the	condition	that	Woz
quit,	he	initially	refused,	arguing	that	he'd	designed	both	the
Apple	I	and	the	Apple	II	while	working	at	HP,	and	there	was	no
reason	he	couldn't	continue.

7.	America	Is	Not	Too	Fussy.

If	there	are	any	laws	regulating	businesses,	you	can	assume
larval	startups	will	break	most	of	them,	because	they	don't	know
what	the	laws	are	and	don't	have	time	to	find	out.

For	example,	many	startups	in	America	begin	in	places	where	it's
not	really	legal	to	run	a	business.	Hewlett-Packard,	Apple,	and
Google	were	all	run	out	of	garages.	Many	more	startups,
including	ours,	were	initially	run	out	of	apartments.	If	the	laws
against	such	things	were	actually	enforced,	most	startups
wouldn't	happen.

That	could	be	a	problem	in	fussier	countries.	If	Hewlett	and
Packard	tried	running	an	electronics	company	out	of	their	garage
in	Switzerland,	the	old	lady	next	door	would	report	them	to	the
municipal	authorities.

But	the	worst	problem	in	other	countries	is	probably	the	effort
required	just	to	start	a	company.	A	friend	of	mine	started	a
company	in	Germany	in	the	early	90s,	and	was	shocked	to
discover,	among	many	other	regulations,	that	you	needed
$20,000	in	capital	to	incorporate.	That's	one	reason	I'm	not

typing	this	on	an	Apfel	laptop.	Jobs	and	Wozniak	couldn't	have
come	up	with	that	kind	of	money	in	a	company	financed	by
selling	a	VW	bus	and	an	HP	calculator.	We	couldn't	have	started
Viaweb	either.	[5]

Here's	a	tip	for	governments	that	want	to	encourage	startups:
read	the	stories	of	existing	startups,	and	then	try	to	simulate
what	would	have	happened	in	your	country.	When	you	hit
something	that	would	have	killed	Apple,	prune	it	off.

Startups	are	marginal.	They're	started	by	the	poor	and	the	timid;
they	begin	in	marginal	space	and	spare	time;	they're	started	by
people	who	are	supposed	to	be	doing	something	else;	and	though
businesses,	their	founders	often	know	nothing	about	business.
Young	startups	are	fragile.	A	society	that	trims	its	margins
sharply	will	kill	them	all.

8.	America	Has	a	Large	Domestic	Market.

What	sustains	a	startup	in	the	beginning	is	the	prospect	of
getting	their	initial	product	out.	The	successful	ones	therefore
make	the	first	version	as	simple	as	possible.	In	the	US	they
usually	begin	by	making	something	just	for	the	local	market.

This	works	in	America,	because	the	local	market	is	300	million
people.	It	wouldn't	work	so	well	in	Sweden.	In	a	small	country,	a
startup	has	a	harder	task:	they	have	to	sell	internationally	from
the	start.

The	EU	was	designed	partly	to	simulate	a	single,	large	domestic
market.	The	problem	is	that	the	inhabitants	still	speak	many
different	languages.	So	a	software	startup	in	Sweden	is	still	at	a
disadvantage	relative	to	one	in	the	US,	because	they	have	to	deal
with	internationalization	from	the	beginning.	It's	significant	that
the	most	famous	recent	startup	in	Europe,	Skype,	worked	on	a
problem	that	was	intrinsically	international.

However,	for	better	or	worse	it	looks	as	if	Europe	will	in	a	few
decades	speak	a	single	language.	When	I	was	a	student	in	Italy	in
1990,	few	Italians	spoke	English.	Now	all	educated	people	seem
to	be	expected	to--	and	Europeans	do	not	like	to	seem

#f5n
marginal.html

uneducated.	This	is	presumably	a	taboo	subject,	but	if	present
trends	continue,	French	and	German	will	eventually	go	the	way
of	Irish	and	Luxembourgish:	they'll	be	spoken	in	homes	and	by
eccentric	nationalists.

9.	America	Has	Venture	Funding.

Startups	are	easier	to	start	in	America	because	funding	is	easier
to	get.	There	are	now	a	few	VC	firms	outside	the	US,	but	startup
funding	doesn't	only	come	from	VC	firms.	A	more	important
source,	because	it's	more	personal	and	comes	earlier	in	the
process,	is	money	from	individual	angel	investors.	Google	might
never	have	got	to	the	point	where	they	could	raise	millions	from
VC	funds	if	they	hadn't	first	raised	a	hundred	thousand	from
Andy	Bechtolsheim.	And	he	could	help	them	because	he	was	one
of	the	founders	of	Sun.	This	pattern	is	repeated	constantly	in
startup	hubs.	It's	this	pattern	that	makes	them	startup	hubs.

The	good	news	is,	all	you	have	to	do	to	get	the	process	rolling	is
get	those	first	few	startups	successfully	launched.	If	they	stick
around	after	they	get	rich,	startup	founders	will	almost
automatically	fund	and	encourage	new	startups.

The	bad	news	is	that	the	cycle	is	slow.	It	probably	takes	five
years,	on	average,	before	a	startup	founder	can	make	angel
investments.	And	while	governments	might	be	able	to	set	up
local	VC	funds	by	supplying	the	money	themselves	and	recruiting
people	from	existing	firms	to	run	them,	only	organic	growth	can
produce	angel	investors.

Incidentally,	America's	private	universities	are	one	reason	there's
so	much	venture	capital.	A	lot	of	the	money	in	VC	funds	comes
from	their	endowments.	So	another	advantage	of	private
universities	is	that	a	good	chunk	of	the	country's	wealth	is
managed	by	enlightened	investors.

10.	America	Has	Dynamic	Typing	for	Careers.

Compared	to	other	industrialized	countries	the	US	is
disorganized	about	routing	people	into	careers.	For	example,	in
America	people	often	don't	decide	to	go	to	medical	school	till

they've	finished	college.	In	Europe	they	generally	decide	in	high
school.

The	European	approach	reflects	the	old	idea	that	each	person
has	a	single,	definite	occupation--	which	is	not	far	from	the	idea
that	each	person	has	a	natural	"station"	in	life.	If	this	were	true,
the	most	efficient	plan	would	be	to	discover	each	person's	station
as	early	as	possible,	so	they	could	receive	the	training
appropriate	to	it.

In	the	US	things	are	more	haphazard.	But	that	turns	out	to	be	an
advantage	as	an	economy	gets	more	liquid,	just	as	dynamic
typing	turns	out	to	work	better	than	static	for	ill-defined
problems.	This	is	particularly	true	with	startups.	"Startup
founder"	is	not	the	sort	of	career	a	high	school	student	would
choose.	If	you	ask	at	that	age,	people	will	choose	conservatively.
They'll	choose	well-understood	occupations	like	engineer,	or
doctor,	or	lawyer.

Startups	are	the	kind	of	thing	people	don't	plan,	so	you're	more
likely	to	get	them	in	a	society	where	it's	ok	to	make	career
decisions	on	the	fly.

For	example,	in	theory	the	purpose	of	a	PhD	program	is	to	train
you	to	do	research.	But	fortunately	in	the	US	this	is	another	rule
that	isn't	very	strictly	enforced.	In	the	US	most	people	in	CS	PhD
programs	are	there	simply	because	they	wanted	to	learn	more.
They	haven't	decided	what	they'll	do	afterward.	So	American
grad	schools	spawn	a	lot	of	startups,	because	students	don't	feel
they're	failing	if	they	don't	go	into	research.

Those	worried	about	America's	"competitiveness"	often	suggest
spending	more	on	public	schools.	But	perhaps	America's	lousy
public	schools	have	a	hidden	advantage.	Because	they're	so	bad,
the	kids	adopt	an	attitude	of	waiting	for	college.	I	did;	I	knew	I
was	learning	so	little	that	I	wasn't	even	learning	what	the	choices
were,	let	alone	which	to	choose.	This	is	demoralizing,	but	it	does
at	least	make	you	keep	an	open	mind.

Certainly	if	I	had	to	choose	between	bad	high	schools	and	good
universities,	like	the	US,	and	good	high	schools	and	bad

universities,	like	most	other	industrialized	countries,	I'd	take	the
US	system.	Better	to	make	everyone	feel	like	a	late	bloomer	than
a	failed	child	prodigy.

Attitudes

There's	one	item	conspicuously	missing	from	this	list:	American
attitudes.	Americans	are	said	to	be	more	entrepreneurial,	and
less	afraid	of	risk.	But	America	has	no	monopoly	on	this.	Indians
and	Chinese	seem	plenty	entrepreneurial,	perhaps	more	than
Americans.

Some	say	Europeans	are	less	energetic,	but	I	don't	believe	it.	I
think	the	problem	with	Europe	is	not	that	they	lack	balls,	but	that
they	lack	examples.

Even	in	the	US,	the	most	successful	startup	founders	are	often
technical	people	who	are	quite	timid,	initially,	about	the	idea	of
starting	their	own	company.	Few	are	the	sort	of	backslapping
extroverts	one	thinks	of	as	typically	American.	They	can	usually
only	summon	up	the	activation	energy	to	start	a	startup	when
they	meet	people	who've	done	it	and	realize	they	could	too.

I	think	what	holds	back	European	hackers	is	simply	that	they
don't	meet	so	many	people	who've	done	it.	You	see	that	variation
even	within	the	US.	Stanford	students	are	more	entrepreneurial
than	Yale	students,	but	not	because	of	some	difference	in	their
characters;	the	Yale	students	just	have	fewer	examples.

I	admit	there	seem	to	be	different	attitudes	toward	ambition	in
Europe	and	the	US.	In	the	US	it's	ok	to	be	overtly	ambitious,	and
in	most	of	Europe	it's	not.	But	this	can't	be	an	intrinsically
European	quality;	previous	generations	of	Europeans	were	as
ambitious	as	Americans.	What	happened?	My	hypothesis	is	that
ambition	was	discredited	by	the	terrible	things	ambitious	people
did	in	the	first	half	of	the	twentieth	century.	Now	swagger	is	out.
(Even	now	the	image	of	a	very	ambitious	German	presses	a
button	or	two,	doesn't	it?)

It	would	be	surprising	if	European	attitudes	weren't	affected	by
the	disasters	of	the	twentieth	century.	It	takes	a	while	to	be

optimistic	after	events	like	that.	But	ambition	is	human	nature.
Gradually	it	will	re-emerge.	[6]

How	To	Do	Better

I	don't	mean	to	suggest	by	this	list	that	America	is	the	perfect
place	for	startups.	It's	the	best	place	so	far,	but	the	sample	size	is
small,	and	"so	far"	is	not	very	long.	On	historical	time	scales,
what	we	have	now	is	just	a	prototype.

So	let's	look	at	Silicon	Valley	the	way	you'd	look	at	a	product
made	by	a	competitor.	What	weaknesses	could	you	exploit?	How
could	you	make	something	users	would	like	better?	The	users	in
this	case	are	those	critical	few	thousand	people	you'd	like	to
move	to	your	silicon	valley.

To	start	with,	Silicon	Valley	is	too	far	from	San	Francisco.	Palo
Alto,	the	original	ground	zero,	is	about	thirty	miles	away,	and	the
present	center	more	like	forty.	So	people	who	come	to	work	in
Silicon	Valley	face	an	unpleasant	choice:	either	live	in	the	boring
sprawl	of	the	valley	proper,	or	live	in	San	Francisco	and	endure
an	hour	commute	each	way.

The	best	thing	would	be	if	the	silicon	valley	were	not	merely
closer	to	the	interesting	city,	but	interesting	itself.	And	there	is	a
lot	of	room	for	improvement	here.	Palo	Alto	is	not	so	bad,	but
everything	built	since	is	the	worst	sort	of	strip	development.	You
can	measure	how	demoralizing	it	is	by	the	number	of	people	who
will	sacrifice	two	hours	a	day	commuting	rather	than	live	there.

Another	area	in	which	you	could	easily	surpass	Silicon	Valley	is
public	transportation.	There	is	a	train	running	the	length	of	it,
and	by	American	standards	it's	not	bad.	Which	is	to	say	that	to
Japanese	or	Europeans	it	would	seem	like	something	out	of	the
third	world.

The	kind	of	people	you	want	to	attract	to	your	silicon	valley	like
to	get	around	by	train,	bicycle,	and	on	foot.	So	if	you	want	to	beat
America,	design	a	town	that	puts	cars	last.	It	will	be	a	while
before	any	American	city	can	bring	itself	to	do	that.

#f6n

Capital	Gains

There	are	also	a	couple	things	you	could	do	to	beat	America	at
the	national	level.	One	would	be	to	have	lower	capital	gains
taxes.	It	doesn't	seem	critical	to	have	the	lowest	income	taxes,
because	to	take	advantage	of	those,	people	have	to	move.	[7]	But
if	capital	gains	rates	vary,	you	move	assets,	not	yourself,	so
changes	are	reflected	at	market	speeds.	The	lower	the	rate,	the
cheaper	it	is	to	buy	stock	in	growing	companies	as	opposed	to
real	estate,	or	bonds,	or	stocks	bought	for	the	dividends	they	pay.

So	if	you	want	to	encourage	startups	you	should	have	a	low	rate
on	capital	gains.	Politicians	are	caught	between	a	rock	and	a
hard	place	here,	however:	make	the	capital	gains	rate	low	and	be
accused	of	creating	"tax	breaks	for	the	rich,"	or	make	it	high	and
starve	growing	companies	of	investment	capital.	As	Galbraith
said,	politics	is	a	matter	of	choosing	between	the	unpalatable	and
the	disastrous.	A	lot	of	governments	experimented	with	the
disastrous	in	the	twentieth	century;	now	the	trend	seems	to	be
toward	the	merely	unpalatable.

Oddly	enough,	the	leaders	now	are	European	countries	like
Belgium,	which	has	a	capital	gains	tax	rate	of	zero.

Immigration

The	other	place	you	could	beat	the	US	would	be	with	smarter
immigration	policy.	There	are	huge	gains	to	be	made	here.
Silicon	valleys	are	made	of	people,	remember.

Like	a	company	whose	software	runs	on	Windows,	those	in	the
current	Silicon	Valley	are	all	too	aware	of	the	shortcomings	of	the
INS,	but	there's	little	they	can	do	about	it.	They're	hostages	of
the	platform.

America's	immigration	system	has	never	been	well	run,	and	since
2001	there	has	been	an	additional	admixture	of	paranoia.	What
fraction	of	the	smart	people	who	want	to	come	to	America	can
even	get	in?	I	doubt	even	half.	Which	means	if	you	made	a
competing	technology	hub	that	let	in	all	smart	people,	you'd
immediately	get	more	than	half	the	world's	top	talent,	for	free.

#f7n

US	immigration	policy	is	particularly	ill-suited	to	startups,
because	it	reflects	a	model	of	work	from	the	1970s.	It	assumes
good	technical	people	have	college	degrees,	and	that	work
means	working	for	a	big	company.

If	you	don't	have	a	college	degree	you	can't	get	an	H1B	visa,	the
type	usually	issued	to	programmers.	But	a	test	that	excludes
Steve	Jobs,	Bill	Gates,	and	Michael	Dell	can't	be	a	good	one.	Plus
you	can't	get	a	visa	for	working	on	your	own	company,	only	for
working	as	an	employee	of	someone	else's.	And	if	you	want	to
apply	for	citizenship	you	daren't	work	for	a	startup	at	all,
because	if	your	sponsor	goes	out	of	business,	you	have	to	start
over.

American	immigration	policy	keeps	out	most	smart	people,	and
channels	the	rest	into	unproductive	jobs.	It	would	be	easy	to	do
better.	Imagine	if,	instead,	you	treated	immigration	like
recruiting--	if	you	made	a	conscious	effort	to	seek	out	the
smartest	people	and	get	them	to	come	to	your	country.

A	country	that	got	immigration	right	would	have	a	huge
advantage.	At	this	point	you	could	become	a	mecca	for	smart
people	simply	by	having	an	immigration	system	that	let	them	in.

A	Good	Vector

If	you	look	at	the	kinds	of	things	you	have	to	do	to	create	an
environment	where	startups	condense,	none	are	great	sacrifices.
Great	universities?	Livable	towns?	Civil	liberties?	Flexible
employment	laws?	Immigration	policies	that	let	in	smart	people?
Tax	laws	that	encourage	growth?	It's	not	as	if	you	have	to	risk
destroying	your	country	to	get	a	silicon	valley;	these	are	all	good
things	in	their	own	right.

And	then	of	course	there's	the	question,	can	you	afford	not	to?	I
can	imagine	a	future	in	which	the	default	choice	of	ambitious
young	people	is	to	start	their	own	company	rather	than	work	for
someone	else's.	I'm	not	sure	that	will	happen,	but	it's	where	the
trend	points	now.	And	if	that	is	the	future,	places	that	don't	have
startups	will	be	a	whole	step	behind,	like	those	that	missed	the

hiring.html

Industrial	Revolution.

Notes

[1]	On	the	verge	of	the	Industrial	Revolution,	England	was
already	the	richest	country	in	the	world.	As	far	as	such	things
can	be	compared,	per	capita	income	in	England	in	1750	was
higher	than	India's	in	1960.

Deane,	Phyllis,	The	First	Industrial	Revolution,	Cambridge
University	Press,	1965.

[2]	This	has	already	happened	once	in	China,	during	the	Ming
Dynasty,	when	the	country	turned	its	back	on	industrialization	at
the	command	of	the	court.	One	of	Europe's	advantages	was	that
it	had	no	government	powerful	enough	to	do	that.

[3]	Of	course,	Feynman	and	Diogenes	were	from	adjacent
traditions,	but	Confucius,	though	more	polite,	was	no	more
willing	to	be	told	what	to	think.

[4]	For	similar	reasons	it	might	be	a	lost	cause	to	try	to	establish
a	silicon	valley	in	Israel.	Instead	of	no	Jews	moving	there,	only
Jews	would	move	there,	and	I	don't	think	you	could	build	a	silicon
valley	out	of	just	Jews	any	more	than	you	could	out	of	just
Japanese.

(This	is	not	a	remark	about	the	qualities	of	these	groups,	just
their	sizes.	Japanese	are	only	about	2%	of	the	world	population,
and	Jews	about	.2%.)

[5]	According	to	the	World	Bank,	the	initial	capital	requirement
for	German	companies	is	47.6%	of	the	per	capita	income.	Doh.

World	Bank,	Doing	Business	in	2006,	http://doingbusiness.org

[6]	For	most	of	the	twentieth	century,	Europeans	looked	back	on

the	summer	of	1914	as	if	they'd	been	living	in	a	dream	world.	It
seems	more	accurate	(or	at	least,	as	accurate)	to	call	the	years
after	1914	a	nightmare	than	to	call	those	before	a	dream.	A	lot	of
the	optimism	Europeans	consider	distinctly	American	is	simply
what	they	too	were	feeling	in	1914.

[7]	The	point	where	things	start	to	go	wrong	seems	to	be	about
50%.	Above	that	people	get	serious	about	tax	avoidance.	The
reason	is	that	the	payoff	for	avoiding	tax	grows
hyperexponentially	(x/1-x	for	0	<	x	<	1).	If	your	income	tax	rate
is	10%,	moving	to	Monaco	would	only	give	you	11%	more
income,	which	wouldn't	even	cover	the	extra	cost.	If	it's	90%,
you'd	get	ten	times	as	much	income.	And	at	98%,	as	it	was	briefly
in	Britain	in	the	70s,	moving	to	Monaco	would	give	you	fifty
times	as	much	income.	It	seems	quite	likely	that	European
governments	of	the	70s	never	drew	this	curve.

Thanks	to	Trevor	Blackwell,	Matthias	Felleisen,	Jessica
Livingston,	Robert	Morris,	Neil	Rimer,	Hugues	Steinier,	Brad
Templeton,	Fred	Wilson,	and	Stephen	Wolfram	for	reading	drafts
of	this,	and	to	Ed	Dumbill	for	inviting	me	to	speak.

	

The	Power	of	the	Marginal
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	Island	Test
July	2006

I've	discovered	a	handy	test	for	figuring	out	what	you're	addicted
to.	Imagine	you	were	going	to	spend	the	weekend	at	a	friend's
house	on	a	little	island	off	the	coast	of	Maine.	There	are	no	shops
on	the	island	and	you	won't	be	able	to	leave	while	you're	there.
Also,	you've	never	been	to	this	house	before,	so	you	can't	assume
it	will	have	more	than	any	house	might.

What,	besides	clothes	and	toiletries,	do	you	make	a	point	of
packing?	That's	what	you're	addicted	to.	For	example,	if	you	find
yourself	packing	a	bottle	of	vodka	(just	in	case),	you	may	want	to
stop	and	think	about	that.

For	me	the	list	is	four	things:	books,	earplugs,	a	notebook,	and	a
pen.

There	are	other	things	I	might	bring	if	I	thought	of	it,	like	music,
or	tea,	but	I	can	live	without	them.	I'm	not	so	addicted	to	caffeine
that	I	wouldn't	risk	the	house	not	having	any	tea,	just	for	a
weekend.

Quiet	is	another	matter.	I	realize	it	seems	a	bit	eccentric	to	take
earplugs	on	a	trip	to	an	island	off	the	coast	of	Maine.	If	anywhere
should	be	quiet,	that	should.	But	what	if	the	person	in	the	next
room	snored?	What	if	there	was	a	kid	playing	basketball?
(Thump,	thump,	thump...	thump.)	Why	risk	it?	Earplugs	are
small.

Sometimes	I	can	think	with	noise.	If	I	already	have	momentum	on
some	project,	I	can	work	in	noisy	places.	I	can	edit	an	essay	or
debug	code	in	an	airport.	But	airports	are	not	so	bad:	most	of	the
noise	is	whitish.	I	couldn't	work	with	the	sound	of	a	sitcom
coming	through	the	wall,	or	a	car	in	the	street	playing	thump-
thump	music.

And	of	course	there's	another	kind	of	thinking,	when	you're
starting	something	new,	that	requires	complete	quiet.	You	never
know	when	this	will	strike.	It's	just	as	well	to	carry	plugs.

The	notebook	and	pen	are	professional	equipment,	as	it	were.
Though	actually	there	is	something	druglike	about	them,	in	the
sense	that	their	main	purpose	is	to	make	me	feel	better.	I	hardly
ever	go	back	and	read	stuff	I	write	down	in	notebooks.	It's	just
that	if	I	can't	write	things	down,	worrying	about	remembering
one	idea	gets	in	the	way	of	having	the	next.	Pen	and	paper	wick
ideas.

The	best	notebooks	I've	found	are	made	by	a	company	called
Miquelrius.	I	use	their	smallest	size,	which	is	about	2.5	x	4	in.
The	secret	to	writing	on	such	narrow	pages	is	to	break	words
only	when	you	run	out	of	space,	like	a	Latin	inscription.	I	use	the
cheapest	plastic	Bic	ballpoints,	partly	because	their	gluey	ink
doesn't	seep	through	pages,	and	partly	so	I	don't	worry	about
losing	them.

I	only	started	carrying	a	notebook	about	three	years	ago.	Before
that	I	used	whatever	scraps	of	paper	I	could	find.	But	the
problem	with	scraps	of	paper	is	that	they're	not	ordered.	In	a
notebook	you	can	guess	what	a	scribble	means	by	looking	at	the
pages	around	it.	In	the	scrap	era	I	was	constantly	finding	notes
I'd	written	years	before	that	might	say	something	I	needed	to
remember,	if	I	could	only	figure	out	what.

As	for	books,	I	know	the	house	would	probably	have	something	to
read.	On	the	average	trip	I	bring	four	books	and	only	read	one	of
them,	because	I	find	new	books	to	read	en	route.	Really	bringing
books	is	insurance.

I	realize	this	dependence	on	books	is	not	entirely	good—that
what	I	need	them	for	is	distraction.	The	books	I	bring	on	trips	are
often	quite	virtuous,	the	sort	of	stuff	that	might	be	assigned
reading	in	a	college	class.	But	I	know	my	motives	aren't	virtuous.
I	bring	books	because	if	the	world	gets	boring	I	need	to	be	able
to	slip	into	another	distilled	by	some	writer.	It's	like	eating	jam
when	you	know	you	should	be	eating	fruit.

There	is	a	point	where	I'll	do	without	books.	I	was	walking	in
some	steep	mountains	once,	and	decided	I'd	rather	just	think,	if	I
was	bored,	rather	than	carry	a	single	unnecessary	ounce.	It
wasn't	so	bad.	I	found	I	could	entertain	myself	by	having	ideas
instead	of	reading	other	people's.	If	you	stop	eating	jam,	fruit
starts	to	taste	better.

So	maybe	I'll	try	not	bringing	books	on	some	future	trip.	They're
going	to	have	to	pry	the	plugs	out	of	my	cold,	dead	ears,
however.

	

Copy	What	You	Like
July	2006

When	I	was	in	high	school	I	spent	a	lot	of	time	imitating	bad
writers.	What	we	studied	in	English	classes	was	mostly	fiction,	so
I	assumed	that	was	the	highest	form	of	writing.	Mistake	number
one.	The	stories	that	seemed	to	be	most	admired	were	ones	in
which	people	suffered	in	complicated	ways.	Anything	funny	or
gripping	was	ipso	facto	suspect,	unless	it	was	old	enough	to	be
hard	to	understand,	like	Shakespeare	or	Chaucer.	Mistake
number	two.	The	ideal	medium	seemed	the	short	story,	which	I've
since	learned	had	quite	a	brief	life,	roughly	coincident	with	the
peak	of	magazine	publishing.	But	since	their	size	made	them
perfect	for	use	in	high	school	classes,	we	read	a	lot	of	them,
which	gave	us	the	impression	the	short	story	was	flourishing.
Mistake	number	three.	And	because	they	were	so	short,	nothing
really	had	to	happen;	you	could	just	show	a	randomly	truncated
slice	of	life,	and	that	was	considered	advanced.	Mistake	number
four.	The	result	was	that	I	wrote	a	lot	of	stories	in	which	nothing
happened	except	that	someone	was	unhappy	in	a	way	that
seemed	deep.

For	most	of	college	I	was	a	philosophy	major.	I	was	very
impressed	by	the	papers	published	in	philosophy	journals.	They
were	so	beautifully	typeset,	and	their	tone	was	just	captivating—
alternately	casual	and	buffer-overflowingly	technical.	A	fellow
would	be	walking	along	a	street	and	suddenly	modality	qua
modality	would	spring	upon	him.	I	didn't	ever	quite	understand
these	papers,	but	I	figured	I'd	get	around	to	that	later,	when	I
had	time	to	reread	them	more	closely.	In	the	meantime	I	tried	my
best	to	imitate	them.	This	was,	I	can	now	see,	a	doomed
undertaking,	because	they	weren't	really	saying	anything.	No
philosopher	ever	refuted	another,	for	example,	because	no	one
said	anything	definite	enough	to	refute.	Needless	to	say,	my
imitations	didn't	say	anything	either.

In	grad	school	I	was	still	wasting	time	imitating	the	wrong
things.	There	was	then	a	fashionable	type	of	program	called	an
expert	system,	at	the	core	of	which	was	something	called	an
inference	engine.	I	looked	at	what	these	things	did	and	thought
"I	could	write	that	in	a	thousand	lines	of	code."	And	yet	eminent
professors	were	writing	books	about	them,	and	startups	were
selling	them	for	a	year's	salary	a	copy.	What	an	opportunity,	I
thought;	these	impressive	things	seem	easy	to	me;	I	must	be
pretty	sharp.	Wrong.	It	was	simply	a	fad.	The	books	the
professors	wrote	about	expert	systems	are	now	ignored.	They
were	not	even	on	a	path	to	anything	interesting.	And	the
customers	paying	so	much	for	them	were	largely	the	same
government	agencies	that	paid	thousands	for	screwdrivers	and
toilet	seats.

How	do	you	avoid	copying	the	wrong	things?	Copy	only	what	you
genuinely	like.	That	would	have	saved	me	in	all	three	cases.	I
didn't	enjoy	the	short	stories	we	had	to	read	in	English	classes;	I
didn't	learn	anything	from	philosophy	papers;	I	didn't	use	expert
systems	myself.	I	believed	these	things	were	good	because	they
were	admired.

It	can	be	hard	to	separate	the	things	you	like	from	the	things
you're	impressed	with.	One	trick	is	to	ignore	presentation.
Whenever	I	see	a	painting	impressively	hung	in	a	museum,	I	ask
myself:	how	much	would	I	pay	for	this	if	I	found	it	at	a	garage
sale,	dirty	and	frameless,	and	with	no	idea	who	painted	it?	If	you
walk	around	a	museum	trying	this	experiment,	you'll	find	you	get
some	truly	startling	results.	Don't	ignore	this	data	point	just
because	it's	an	outlier.

Another	way	to	figure	out	what	you	like	is	to	look	at	what	you
enjoy	as	guilty	pleasures.	Many	things	people	like,	especially	if
they're	young	and	ambitious,	they	like	largely	for	the	feeling	of
virtue	in	liking	them.	99%	of	people	reading	Ulysses	are	thinking
"I'm	reading	Ulysses"	as	they	do	it.	A	guilty	pleasure	is	at	least	a
pure	one.	What	do	you	read	when	you	don't	feel	up	to	being
virtuous?	What	kind	of	book	do	you	read	and	feel	sad	that	there's
only	half	of	it	left,	instead	of	being	impressed	that	you're	half	way
through?	That's	what	you	really	like.

Even	when	you	find	genuinely	good	things	to	copy,	there's
another	pitfall	to	be	avoided.	Be	careful	to	copy	what	makes
them	good,	rather	than	their	flaws.	It's	easy	to	be	drawn	into
imitating	flaws,	because	they're	easier	to	see,	and	of	course
easier	to	copy	too.	For	example,	most	painters	in	the	eighteenth
and	nineteenth	centuries	used	brownish	colors.	They	were
imitating	the	great	painters	of	the	Renaissance,	whose	paintings
by	that	time	were	brown	with	dirt.	Those	paintings	have	since
been	cleaned,	revealing	brilliant	colors;	their	imitators	are	of
course	still	brown.

It	was	painting,	incidentally,	that	cured	me	of	copying	the	wrong
things.	Halfway	through	grad	school	I	decided	I	wanted	to	try
being	a	painter,	and	the	art	world	was	so	manifestly	corrupt	that
it	snapped	the	leash	of	credulity.	These	people	made	philosophy
professors	seem	as	scrupulous	as	mathematicians.	It	was	so
clearly	a	choice	of	doing	good	work	xor	being	an	insider	that	I
was	forced	to	see	the	distinction.	It's	there	to	some	degree	in
almost	every	field,	but	I	had	till	then	managed	to	avoid	facing	it.

That	was	one	of	the	most	valuable	things	I	learned	from	painting:
you	have	to	figure	out	for	yourself	what's	good.	You	can't	trust
authorities.	They'll	lie	to	you	on	this	one.

	Comment	on	this	essay.

taste.html
http://reddit.com/
http://reddit.com/info/9bm4/comments

	

How	to	Present	to	Investors
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

A	Student's	Guide	to	Startups
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

October	2006

(This	essay	is	derived	from	a	talk	at	MIT.)

Till	recently	graduating	seniors	had	two	choices:	get	a	job	or	go
to	grad	school.	I	think	there	will	increasingly	be	a	third	option:	to
start	your	own	startup.	But	how	common	will	that	be?

I'm	sure	the	default	will	always	be	to	get	a	job,	but	starting	a
startup	could	well	become	as	popular	as	grad	school.	In	the	late
90s	my	professor	friends	used	to	complain	that	they	couldn't	get
grad	students,	because	all	the	undergrads	were	going	to	work	for
startups.	I	wouldn't	be	surprised	if	that	situation	returns,	but
with	one	difference:	this	time	they'll	be	starting	their	own	instead
of	going	to	work	for	other	people's.

The	most	ambitious	students	will	at	this	point	be	asking:	Why
wait	till	you	graduate?	Why	not	start	a	startup	while	you're	in
college?	In	fact,	why	go	to	college	at	all?	Why	not	start	a	startup
instead?

A	year	and	a	half	ago	I	gave	a	talk	where	I	said	that	the	average
age	of	the	founders	of	Yahoo,	Google,	and	Microsoft	was	24,	and
that	if	grad	students	could	start	startups,	why	not	undergrads?
I'm	glad	I	phrased	that	as	a	question,	because	now	I	can	pretend
it	wasn't	merely	a	rhetorical	one.	At	the	time	I	couldn't	imagine
why	there	should	be	any	lower	limit	for	the	age	of	startup
founders.	Graduation	is	a	bureaucratic	change,	not	a	biological
one.	And	certainly	there	are	undergrads	as	competent	technically
as	most	grad	students.	So	why	shouldn't	undergrads	be	able	to
start	startups	as	well	as	grad	students?

I	now	realize	that	something	does	change	at	graduation:	you	lose

http://ycombinator.com/apply.html
hiring.html

a	huge	excuse	for	failing.	Regardless	of	how	complex	your	life	is,
you'll	find	that	everyone	else,	including	your	family	and	friends,
will	discard	all	the	low	bits	and	regard	you	as	having	a	single
occupation	at	any	given	time.	If	you're	in	college	and	have	a
summer	job	writing	software,	you	still	read	as	a	student.
Whereas	if	you	graduate	and	get	a	job	programming,	you'll	be
instantly	regarded	by	everyone	as	a	programmer.

The	problem	with	starting	a	startup	while	you're	still	in	school	is
that	there's	a	built-in	escape	hatch.	If	you	start	a	startup	in	the
summer	between	your	junior	and	senior	year,	it	reads	to
everyone	as	a	summer	job.	So	if	it	goes	nowhere,	big	deal;	you
return	to	school	in	the	fall	with	all	the	other	seniors;	no	one
regards	you	as	a	failure,	because	your	occupation	is	student,	and
you	didn't	fail	at	that.	Whereas	if	you	start	a	startup	just	one	year
later,	after	you	graduate,	as	long	as	you're	not	accepted	to	grad
school	in	the	fall	the	startup	reads	to	everyone	as	your
occupation.	You're	now	a	startup	founder,	so	you	have	to	do	well
at	that.

For	nearly	everyone,	the	opinion	of	one's	peers	is	the	most
powerful	motivator	of	all—more	powerful	even	than	the	nominal
goal	of	most	startup	founders,	getting	rich.	[1]	About	a	month
into	each	funding	cycle	we	have	an	event	called	Prototype	Day
where	each	startup	presents	to	the	others	what	they've	got	so
far.	You	might	think	they	wouldn't	need	any	more	motivation.
They're	working	on	their	cool	new	idea;	they	have	funding	for	the
immediate	future;	and	they're	playing	a	game	with	only	two
outcomes:	wealth	or	failure.	You'd	think	that	would	be	motivation
enough.	And	yet	the	prospect	of	a	demo	pushes	most	of	them	into
a	rush	of	activity.

Even	if	you	start	a	startup	explicitly	to	get	rich,	the	money	you
might	get	seems	pretty	theoretical	most	of	the	time.	What	drives
you	day	to	day	is	not	wanting	to	look	bad.

You	probably	can't	change	that.	Even	if	you	could,	I	don't	think
you'd	want	to;	someone	who	really,	truly	doesn't	care	what	his
peers	think	of	him	is	probably	a	psychopath.	So	the	best	you	can
do	is	consider	this	force	like	a	wind,	and	set	up	your	boat
accordingly.	If	you	know	your	peers	are	going	to	push	you	in

#f1n

some	direction,	choose	good	peers,	and	position	yourself	so	they
push	you	in	a	direction	you	like.

Graduation	changes	the	prevailing	winds,	and	those	make	a
difference.	Starting	a	startup	is	so	hard	that	it's	a	close	call	even
for	the	ones	that	succeed.	However	high	a	startup	may	be	flying
now,	it	probably	has	a	few	leaves	stuck	in	the	landing	gear	from
those	trees	it	barely	cleared	at	the	end	of	the	runway.	In	such	a
close	game,	the	smallest	increase	in	the	forces	against	you	can
be	enough	to	flick	you	over	the	edge	into	failure.

When	we	first	started	Y	Combinator	we	encouraged	people	to
start	startups	while	they	were	still	in	college.	That's	partly
because	Y	Combinator	began	as	a	kind	of	summer	program.
We've	kept	the	program	shape—all	of	us	having	dinner	together
once	a	week	turns	out	to	be	a	good	idea—but	we've	decided	now
that	the	party	line	should	be	to	tell	people	to	wait	till	they
graduate.

Does	that	mean	you	can't	start	a	startup	in	college?	Not	at	all.
Sam	Altman,	the	co-founder	of	Loopt,	had	just	finished	his
sophomore	year	when	we	funded	them,	and	Loopt	is	probably	the
most	promising	of	all	the	startups	we've	funded	so	far.	But	Sam
Altman	is	a	very	unusual	guy.	Within	about	three	minutes	of
meeting	him,	I	remember	thinking	"Ah,	so	this	is	what	Bill	Gates
must	have	been	like	when	he	was	19."

If	it	can	work	to	start	a	startup	during	college,	why	do	we	tell
people	not	to?	For	the	same	reason	that	the	probably	apocryphal
violinist,	whenever	he	was	asked	to	judge	someone's	playing,
would	always	say	they	didn't	have	enough	talent	to	make	it	as	a
pro.	Succeeding	as	a	musician	takes	determination	as	well	as
talent,	so	this	answer	works	out	to	be	the	right	advice	for
everyone.	The	ones	who	are	uncertain	believe	it	and	give	up,	and
the	ones	who	are	sufficiently	determined	think	"screw	that,	I'll
succeed	anyway."

So	our	official	policy	now	is	only	to	fund	undergrads	we	can't	talk
out	of	it.	And	frankly,	if	you're	not	certain,	you	should	wait.	It's
not	as	if	all	the	opportunities	to	start	companies	are	going	to	be
gone	if	you	don't	do	it	now.	Maybe	the	window	will	close	on	some

http://ycombinator.com/
http://loopt.com/

idea	you're	working	on,	but	that	won't	be	the	last	idea	you'll
have.	For	every	idea	that	times	out,	new	ones	become	feasible.
Historically	the	opportunities	to	start	startups	have	only
increased	with	time.

In	that	case,	you	might	ask,	why	not	wait	longer?	Why	not	go
work	for	a	while,	or	go	to	grad	school,	and	then	start	a	startup?
And	indeed,	that	might	be	a	good	idea.	If	I	had	to	pick	the	sweet
spot	for	startup	founders,	based	on	who	we're	most	excited	to
see	applications	from,	I'd	say	it's	probably	the	mid-twenties.
Why?	What	advantages	does	someone	in	their	mid-twenties	have
over	someone	who's	21?	And	why	isn't	it	older?	What	can	25	year
olds	do	that	32	year	olds	can't?	Those	turn	out	to	be	questions
worth	examining.

Plus

If	you	start	a	startup	soon	after	college,	you'll	be	a	young	founder
by	present	standards,	so	you	should	know	what	the	relative
advantages	of	young	founders	are.	They're	not	what	you	might
think.	As	a	young	founder	your	strengths	are:	stamina,	poverty,
rootlessness,	colleagues,	and	ignorance.

The	importance	of	stamina	shouldn't	be	surprising.	If	you've
heard	anything	about	startups	you've	probably	heard	about	the
long	hours.	As	far	as	I	can	tell	these	are	universal.	I	can't	think	of
any	successful	startups	whose	founders	worked	9	to	5.	And	it's
particularly	necessary	for	younger	founders	to	work	long	hours
because	they're	probably	not	as	efficient	as	they'll	be	later.

Your	second	advantage,	poverty,	might	not	sound	like	an
advantage,	but	it	is	a	huge	one.	Poverty	implies	you	can	live
cheaply,	and	this	is	critically	important	for	startups.	Nearly	every
startup	that	fails,	fails	by	running	out	of	money.	It's	a	little
misleading	to	put	it	this	way,	because	there's	usually	some	other
underlying	cause.	But	regardless	of	the	source	of	your	problems,
a	low	burn	rate	gives	you	more	opportunity	to	recover	from
them.	And	since	most	startups	make	all	kinds	of	mistakes	at	first,
room	to	recover	from	mistakes	is	a	valuable	thing	to	have.

Most	startups	end	up	doing	something	different	than	they

planned.	The	way	the	successful	ones	find	something	that	works
is	by	trying	things	that	don't.	So	the	worst	thing	you	can	do	in	a
startup	is	to	have	a	rigid,	pre-ordained	plan	and	then	start
spending	a	lot	of	money	to	implement	it.	Better	to	operate
cheaply	and	give	your	ideas	time	to	evolve.

Recent	grads	can	live	on	practically	nothing,	and	this	gives	you
an	edge	over	older	founders,	because	the	main	cost	in	software
startups	is	people.	The	guys	with	kids	and	mortgages	are	at	a
real	disadvantage.	This	is	one	reason	I'd	bet	on	the	25	year	old
over	the	32	year	old.	The	32	year	old	probably	is	a	better
programmer,	but	probably	also	has	a	much	more	expensive	life.
Whereas	a	25	year	old	has	some	work	experience	(more	on	that
later)	but	can	live	as	cheaply	as	an	undergrad.

Robert	Morris	and	I	were	29	and	30	respectively	when	we
started	Viaweb,	but	fortunately	we	still	lived	like	23	year	olds.	We
both	had	roughly	zero	assets.	I	would	have	loved	to	have	a
mortgage,	since	that	would	have	meant	I	had	a	house.	But	in
retrospect	having	nothing	turned	out	to	be	convenient.	I	wasn't
tied	down	and	I	was	used	to	living	cheaply.

Even	more	important	than	living	cheaply,	though,	is	thinking
cheaply.	One	reason	the	Apple	II	was	so	popular	was	that	it	was
cheap.	The	computer	itself	was	cheap,	and	it	used	cheap,	off-the-
shelf	peripherals	like	a	cassette	tape	recorder	for	data	storage
and	a	TV	as	a	monitor.	And	you	know	why?	Because	Woz
designed	this	computer	for	himself,	and	he	couldn't	afford
anything	more.

We	benefitted	from	the	same	phenomenon.	Our	prices	were
daringly	low	for	the	time.	The	top	level	of	service	was	$300	a
month,	which	was	an	order	of	magnitude	below	the	norm.	In
retrospect	this	was	a	smart	move,	but	we	didn't	do	it	because	we
were	smart.	$300	a	month	seemed	like	a	lot	of	money	to	us.	Like
Apple,	we	created	something	inexpensive,	and	therefore	popular,
simply	because	we	were	poor.

A	lot	of	startups	have	that	form:	someone	comes	along	and
makes	something	for	a	tenth	or	a	hundredth	of	what	it	used	to
cost,	and	the	existing	players	can't	follow	because	they	don't

even	want	to	think	about	a	world	in	which	that's	possible.
Traditional	long	distance	carriers,	for	example,	didn't	even	want
to	think	about	VoIP.	(It	was	coming,	all	the	same.)	Being	poor
helps	in	this	game,	because	your	own	personal	bias	points	in	the
same	direction	technology	evolves	in.

The	advantages	of	rootlessness	are	similar	to	those	of	poverty.
When	you're	young	you're	more	mobile—not	just	because	you
don't	have	a	house	or	much	stuff,	but	also	because	you're	less
likely	to	have	serious	relationships.	This	turns	out	to	be
important,	because	a	lot	of	startups	involve	someone	moving.

The	founders	of	Kiko,	for	example,	are	now	en	route	to	the	Bay
Area	to	start	their	next	startup.	It's	a	better	place	for	what	they
want	to	do.	And	it	was	easy	for	them	to	decide	to	go,	because
neither	as	far	as	I	know	has	a	serious	girlfriend,	and	everything
they	own	will	fit	in	one	car—or	more	precisely,	will	either	fit	in
one	car	or	is	crappy	enough	that	they	don't	mind	leaving	it
behind.

They	at	least	were	in	Boston.	What	if	they'd	been	in	Nebraska,
like	Evan	Williams	was	at	their	age?	Someone	wrote	recently	that
the	drawback	of	Y	Combinator	was	that	you	had	to	move	to
participate.	It	couldn't	be	any	other	way.	The	kind	of
conversations	we	have	with	founders,	we	have	to	have	in	person.
We	fund	a	dozen	startups	at	a	time,	and	we	can't	be	in	a	dozen
places	at	once.	But	even	if	we	could	somehow	magically	save
people	from	moving,	we	wouldn't.	We	wouldn't	be	doing	founders
a	favor	by	letting	them	stay	in	Nebraska.	Places	that	aren't
startup	hubs	are	toxic	to	startups.	You	can	tell	that	from	indirect
evidence.	You	can	tell	how	hard	it	must	be	to	start	a	startup	in
Houston	or	Chicago	or	Miami	from	the	microscopically	small
number,	per	capita,	that	succeed	there.	I	don't	know	exactly
what's	suppressing	all	the	startups	in	these	towns—probably	a
hundred	subtle	little	things—but	something	must	be.	[2]

Maybe	this	will	change.	Maybe	the	increasing	cheapness	of
startups	will	mean	they'll	be	able	to	survive	anywhere,	instead	of
only	in	the	most	hospitable	environments.	Maybe	37signals	is	the
pattern	for	the	future.	But	maybe	not.	Historically	there	have
always	been	certain	towns	that	were	centers	for	certain

siliconvalley.html
#f2n

industries,	and	if	you	weren't	in	one	of	them	you	were	at	a
disadvantage.	So	my	guess	is	that	37signals	is	an	anomaly.	We're
looking	at	a	pattern	much	older	than	"Web	2.0"	here.

Perhaps	the	reason	more	startups	per	capita	happen	in	the	Bay
Area	than	Miami	is	simply	that	there	are	more	founder-type
people	there.	Successful	startups	are	almost	never	started	by	one
person.	Usually	they	begin	with	a	conversation	in	which	someone
mentions	that	something	would	be	a	good	idea	for	a	company,
and	his	friend	says,	"Yeah,	that	is	a	good	idea,	let's	try	it."	If
you're	missing	that	second	person	who	says	"let's	try	it,"	the
startup	never	happens.	And	that	is	another	area	where
undergrads	have	an	edge.	They're	surrounded	by	people	willing
to	say	that.	At	a	good	college	you're	concentrated	together	with	a
lot	of	other	ambitious	and	technically	minded	people—probably
more	concentrated	than	you'll	ever	be	again.	If	your	nucleus	spits
out	a	neutron,	there's	a	good	chance	it	will	hit	another	nucleus.

The	number	one	question	people	ask	us	at	Y	Combinator	is:
Where	can	I	find	a	co-founder?	That's	the	biggest	problem	for
someone	starting	a	startup	at	30.	When	they	were	in	school	they
knew	a	lot	of	good	co-founders,	but	by	30	they've	either	lost
touch	with	them	or	these	people	are	tied	down	by	jobs	they	don't
want	to	leave.

Viaweb	was	an	anomaly	in	this	respect	too.	Though	we	were
comparatively	old,	we	weren't	tied	down	by	impressive	jobs.	I
was	trying	to	be	an	artist,	which	is	not	very	constraining,	and
Robert,	though	29,	was	still	in	grad	school	due	to	a	little
interruption	in	his	academic	career	back	in	1988.	So	arguably
the	Worm	made	Viaweb	possible.	Otherwise	Robert	would	have
been	a	junior	professor	at	that	age,	and	he	wouldn't	have	had
time	to	work	on	crazy	speculative	projects	with	me.

Most	of	the	questions	people	ask	Y	Combinator	we	have	some
kind	of	answer	for,	but	not	the	co-founder	question.	There	is	no
good	answer.	Co-founders	really	should	be	people	you	already
know.	And	by	far	the	best	place	to	meet	them	is	school.	You	have
a	large	sample	of	smart	people;	you	get	to	compare	how	they	all
perform	on	identical	tasks;	and	everyone's	life	is	pretty	fluid.	A
lot	of	startups	grow	out	of	schools	for	this	reason.	Google,	Yahoo,

and	Microsoft,	among	others,	were	all	founded	by	people	who
met	in	school.	(In	Microsoft's	case,	it	was	high	school.)

Many	students	feel	they	should	wait	and	get	a	little	more
experience	before	they	start	a	company.	All	other	things	being
equal,	they	should.	But	all	other	things	are	not	quite	as	equal	as
they	look.	Most	students	don't	realize	how	rich	they	are	in	the
scarcest	ingredient	in	startups,	co-founders.	If	you	wait	too	long,
you	may	find	that	your	friends	are	now	involved	in	some	project
they	don't	want	to	abandon.	The	better	they	are,	the	more	likely
this	is	to	happen.

One	way	to	mitigate	this	problem	might	be	to	actively	plan	your
startup	while	you're	getting	those	n	years	of	experience.	Sure,	go
off	and	get	jobs	or	go	to	grad	school	or	whatever,	but	get
together	regularly	to	scheme,	so	the	idea	of	starting	a	startup
stays	alive	in	everyone's	brain.	I	don't	know	if	this	works,	but	it
can't	hurt	to	try.

It	would	be	helpful	just	to	realize	what	an	advantage	you	have	as
students.	Some	of	your	classmates	are	probably	going	to	be
successful	startup	founders;	at	a	great	technical	university,	that
is	a	near	certainty.	So	which	ones?	If	I	were	you	I'd	look	for	the
people	who	are	not	just	smart,	but	incurable	builders.	Look	for
the	people	who	keep	starting	projects,	and	finish	at	least	some	of
them.	That's	what	we	look	for.	Above	all	else,	above	academic
credentials	and	even	the	idea	you	apply	with,	we	look	for	people
who	build	things.

The	other	place	co-founders	meet	is	at	work.	Fewer	do	than	at
school,	but	there	are	things	you	can	do	to	improve	the	odds.	The
most	important,	obviously,	is	to	work	somewhere	that	has	a	lot	of
smart,	young	people.	Another	is	to	work	for	a	company	located	in
a	startup	hub.	It	will	be	easier	to	talk	a	co-worker	into	quitting
with	you	in	a	place	where	startups	are	happening	all	around	you.

You	might	also	want	to	look	at	the	employment	agreement	you
sign	when	you	get	hired.	Most	will	say	that	any	ideas	you	think	of
while	you're	employed	by	the	company	belong	to	them.	In
practice	it's	hard	for	anyone	to	prove	what	ideas	you	had	when,
so	the	line	gets	drawn	at	code.	If	you're	going	to	start	a	startup,

http://my-computer.cruftlabs.com:8080/photos/motorcouch/0067.html

don't	write	any	of	the	code	while	you're	still	employed.	Or	at
least	discard	any	code	you	wrote	while	still	employed	and	start
over.	It's	not	so	much	that	your	employer	will	find	out	and	sue
you.	It	won't	come	to	that;	investors	or	acquirers	or	(if	you're	so
lucky)	underwriters	will	nail	you	first.	Between	t	=	0	and	when
you	buy	that	yacht,	someone	is	going	to	ask	if	any	of	your	code
legally	belongs	to	anyone	else,	and	you	need	to	be	able	to	say	no.
[3]

The	most	overreaching	employee	agreement	I've	seen	so	far	is
Amazon's.	In	addition	to	the	usual	clauses	about	owning	your
ideas,	you	also	can't	be	a	founder	of	a	startup	that	has	another
founder	who	worked	at	Amazon—even	if	you	didn't	know	them	or
even	work	there	at	the	same	time.	I	suspect	they'd	have	a	hard
time	enforcing	this,	but	it's	a	bad	sign	they	even	try.	There	are
plenty	of	other	places	to	work;	you	may	as	well	choose	one	that
keeps	more	of	your	options	open.

Speaking	of	cool	places	to	work,	there	is	of	course	Google.	But	I
notice	something	slightly	frightening	about	Google:	zero	startups
come	out	of	there.	In	that	respect	it's	a	black	hole.	People	seem
to	like	working	at	Google	too	much	to	leave.	So	if	you	hope	to
start	a	startup	one	day,	the	evidence	so	far	suggests	you
shouldn't	work	there.

I	realize	this	seems	odd	advice.	If	they	make	your	life	so	good
that	you	don't	want	to	leave,	why	not	work	there?	Because,	in
effect,	you're	probably	getting	a	local	maximum.	You	need	a
certain	activation	energy	to	start	a	startup.	So	an	employer	who's
fairly	pleasant	to	work	for	can	lull	you	into	staying	indefinitely,
even	if	it	would	be	a	net	win	for	you	to	leave.	[4]

The	best	place	to	work,	if	you	want	to	start	a	startup,	is	probably
a	startup.	In	addition	to	being	the	right	sort	of	experience,	one
way	or	another	it	will	be	over	quickly.	You'll	either	end	up	rich,	in
which	case	problem	solved,	or	the	startup	will	get	bought,	in
which	case	it	it	will	start	to	suck	to	work	there	and	it	will	be	easy
to	leave,	or	most	likely,	the	thing	will	blow	up	and	you'll	be	free
again.

Your	final	advantage,	ignorance,	may	not	sound	very	useful.	I

#f3n
#f4n

deliberately	used	a	controversial	word	for	it;	you	might	equally
call	it	innocence.	But	it	seems	to	be	a	powerful	force.	My	Y
Combinator	co-founder	Jessica	Livingston	is	just	about	to	publish
a	book	of	interviews	with	startup	founders,	and	I	noticed	a
remarkable	pattern	in	them.	One	after	another	said	that	if	they'd
known	how	hard	it	would	be,	they	would	have	been	too
intimidated	to	start.

Ignorance	can	be	useful	when	it's	a	counterweight	to	other	forms
of	stupidity.	It's	useful	in	starting	startups	because	you're
capable	of	more	than	you	realize.	Starting	startups	is	harder	than
you	expect,	but	you're	also	capable	of	more	than	you	expect,	so
they	balance	out.

Most	people	look	at	a	company	like	Apple	and	think,	how	could	I
ever	make	such	a	thing?	Apple	is	an	institution,	and	I'm	just	a
person.	But	every	institution	was	at	one	point	just	a	handful	of
people	in	a	room	deciding	to	start	something.	Institutions	are
made	up,	and	made	up	by	people	no	different	from	you.

I'm	not	saying	everyone	could	start	a	startup.	I'm	sure	most
people	couldn't;	I	don't	know	much	about	the	population	at	large.
When	you	get	to	groups	I	know	well,	like	hackers,	I	can	say	more
precisely.	At	the	top	schools,	I'd	guess	as	many	as	a	quarter	of
the	CS	majors	could	make	it	as	startup	founders	if	they	wanted.

That	"if	they	wanted"	is	an	important	qualification—so	important
that	it's	almost	cheating	to	append	it	like	that—because	once	you
get	over	a	certain	threshold	of	intelligence,	which	most	CS
majors	at	top	schools	are	past,	the	deciding	factor	in	whether	you
succeed	as	a	founder	is	how	much	you	want	to.	You	don't	have	to
be	that	smart.	If	you're	not	a	genius,	just	start	a	startup	in	some
unsexy	field	where	you'll	have	less	competition,	like	software	for
human	resources	departments.	I	picked	that	example	at	random,
but	I	feel	safe	in	predicting	that	whatever	they	have	now,	it
wouldn't	take	genius	to	do	better.	There	are	a	lot	of	people	out
there	working	on	boring	stuff	who	are	desperately	in	need	of
better	software,	so	however	short	you	think	you	fall	of	Larry	and
Sergey,	you	can	ratchet	down	the	coolness	of	the	idea	far	enough
to	compensate.

http://www.amazon.com/gp/product/1590597141

As	well	as	preventing	you	from	being	intimidated,	ignorance	can
sometimes	help	you	discover	new	ideas.	Steve	Wozniak	put	this
very	strongly:

All	the	best	things	that	I	did	at	Apple	came	from	(a)
not	having	money	and	(b)	not	having	done	it	before,
ever.	Every	single	thing	that	we	came	out	with	that
was	really	great,	I'd	never	once	done	that	thing	in	my
life.

When	you	know	nothing,	you	have	to	reinvent	stuff	for	yourself,
and	if	you're	smart	your	reinventions	may	be	better	than	what
preceded	them.	This	is	especially	true	in	fields	where	the	rules
change.	All	our	ideas	about	software	were	developed	in	a	time
when	processors	were	slow,	and	memories	and	disks	were	tiny.
Who	knows	what	obsolete	assumptions	are	embedded	in	the
conventional	wisdom?	And	the	way	these	assumptions	are	going
to	get	fixed	is	not	by	explicitly	deallocating	them,	but	by
something	more	akin	to	garbage	collection.	Someone	ignorant
but	smart	will	come	along	and	reinvent	everything,	and	in	the
process	simply	fail	to	reproduce	certain	existing	ideas.

Minus

So	much	for	the	advantages	of	young	founders.	What	about	the
disadvantages?	I'm	going	to	start	with	what	goes	wrong	and	try
to	trace	it	back	to	the	root	causes.

What	goes	wrong	with	young	founders	is	that	they	build	stuff
that	looks	like	class	projects.	It	was	only	recently	that	we	figured
this	out	ourselves.	We	noticed	a	lot	of	similarities	between	the
startups	that	seemed	to	be	falling	behind,	but	we	couldn't	figure
out	how	to	put	it	into	words.	Then	finally	we	realized	what	it	was:
they	were	building	class	projects.

But	what	does	that	really	mean?	What's	wrong	with	class
projects?	What's	the	difference	between	a	class	project	and	a
real	startup?	If	we	could	answer	that	question	it	would	be	useful
not	just	to	would-be	startup	founders	but	to	students	in	general,
because	we'd	be	a	long	way	toward	explaining	the	mystery	of	the
so-called	real	world.

http://foundersatwork.com/stevewozniak.html

There	seem	to	be	two	big	things	missing	in	class	projects:	(1)	an
iterative	definition	of	a	real	problem	and	(2)	intensity.

The	first	is	probably	unavoidable.	Class	projects	will	inevitably
solve	fake	problems.	For	one	thing,	real	problems	are	rare	and
valuable.	If	a	professor	wanted	to	have	students	solve	real
problems,	he'd	face	the	same	paradox	as	someone	trying	to	give
an	example	of	whatever	"paradigm"	might	succeed	the	Standard
Model	of	physics.	There	may	well	be	something	that	does,	but	if
you	could	think	of	an	example	you'd	be	entitled	to	the	Nobel
Prize.	Similarly,	good	new	problems	are	not	to	be	had	for	the
asking.

In	technology	the	difficulty	is	compounded	by	the	fact	that	real
startups	tend	to	discover	the	problem	they're	solving	by	a
process	of	evolution.	Someone	has	an	idea	for	something;	they
build	it;	and	in	doing	so	(and	probably	only	by	doing	so)	they
realize	the	problem	they	should	be	solving	is	another	one.	Even	if
the	professor	let	you	change	your	project	description	on	the	fly,
there	isn't	time	enough	to	do	that	in	a	college	class,	or	a	market
to	supply	evolutionary	pressures.	So	class	projects	are	mostly
about	implementation,	which	is	the	least	of	your	problems	in	a
startup.

It's	not	just	that	in	a	startup	you	work	on	the	idea	as	well	as
implementation.	The	very	implementation	is	different.	Its	main
purpose	is	to	refine	the	idea.	Often	the	only	value	of	most	of	the
stuff	you	build	in	the	first	six	months	is	that	it	proves	your	initial
idea	was	mistaken.	And	that's	extremely	valuable.	If	you're	free
of	a	misconception	that	everyone	else	still	shares,	you're	in	a
powerful	position.	But	you're	not	thinking	that	way	about	a	class
project.	Proving	your	initial	plan	was	mistaken	would	just	get	you
a	bad	grade.	Instead	of	building	stuff	to	throw	away,	you	tend	to
want	every	line	of	code	to	go	toward	that	final	goal	of	showing
you	did	a	lot	of	work.

That	leads	to	our	second	difference:	the	way	class	projects	are
measured.	Professors	will	tend	to	judge	you	by	the	distance
between	the	starting	point	and	where	you	are	now.	If	someone
has	achieved	a	lot,	they	should	get	a	good	grade.	But	customers

will	judge	you	from	the	other	direction:	the	distance	remaining
between	where	you	are	now	and	the	features	they	need.	The
market	doesn't	give	a	shit	how	hard	you	worked.	Users	just	want
your	software	to	do	what	they	need,	and	you	get	a	zero
otherwise.	That	is	one	of	the	most	distinctive	differences	between
school	and	the	real	world:	there	is	no	reward	for	putting	in	a
good	effort.	In	fact,	the	whole	concept	of	a	"good	effort"	is	a	fake
idea	adults	invented	to	encourage	kids.	It	is	not	found	in	nature.

Such	lies	seem	to	be	helpful	to	kids.	But	unfortunately	when	you
graduate	they	don't	give	you	a	list	of	all	the	lies	they	told	you
during	your	education.	You	have	to	get	them	beaten	out	of	you	by
contact	with	the	real	world.	And	this	is	why	so	many	jobs	want
work	experience.	I	couldn't	understand	that	when	I	was	in
college.	I	knew	how	to	program.	In	fact,	I	could	tell	I	knew	how
to	program	better	than	most	people	doing	it	for	a	living.	So	what
was	this	mysterious	"work	experience"	and	why	did	I	need	it?

Now	I	know	what	it	is,	and	part	of	the	confusion	is	grammatical.
Describing	it	as	"work	experience"	implies	it's	like	experience
operating	a	certain	kind	of	machine,	or	using	a	certain
programming	language.	But	really	what	work	experience	refers
to	is	not	some	specific	expertise,	but	the	elimination	of	certain
habits	left	over	from	childhood.

One	of	the	defining	qualities	of	kids	is	that	they	flake.	When
you're	a	kid	and	you	face	some	hard	test,	you	can	cry	and	say	"I
can't"	and	they	won't	make	you	do	it.	Of	course,	no	one	can	make
you	do	anything	in	the	grownup	world	either.	What	they	do
instead	is	fire	you.	And	when	motivated	by	that	you	find	you	can
do	a	lot	more	than	you	realized.	So	one	of	the	things	employers
expect	from	someone	with	"work	experience"	is	the	elimination
of	the	flake	reflex—the	ability	to	get	things	done,	with	no
excuses.

The	other	thing	you	get	from	work	experience	is	an
understanding	of	what	work	is,	and	in	particular,	how
intrinsically	horrible	it	is.	Fundamentally	the	equation	is	a	brutal
one:	you	have	to	spend	most	of	your	waking	hours	doing	stuff
someone	else	wants,	or	starve.	There	are	a	few	places	where	the
work	is	so	interesting	that	this	is	concealed,	because	what	other

people	want	done	happens	to	coincide	with	what	you	want	to
work	on.	But	you	only	have	to	imagine	what	would	happen	if	they
diverged	to	see	the	underlying	reality.

It's	not	so	much	that	adults	lie	to	kids	about	this	as	never	explain
it.	They	never	explain	what	the	deal	is	with	money.	You	know
from	an	early	age	that	you'll	have	some	sort	of	job,	because
everyone	asks	what	you're	going	to	"be"	when	you	grow	up.	What
they	don't	tell	you	is	that	as	a	kid	you're	sitting	on	the	shoulders
of	someone	else	who's	treading	water,	and	that	starting	working
means	you	get	thrown	into	the	water	on	your	own,	and	have	to
start	treading	water	yourself	or	sink.	"Being"	something	is
incidental;	the	immediate	problem	is	not	to	drown.

The	relationship	between	work	and	money	tends	to	dawn	on	you
only	gradually.	At	least	it	did	for	me.	One's	first	thought	tends	to
be	simply	"This	sucks.	I'm	in	debt.	Plus	I	have	to	get	up	on
monday	and	go	to	work."	Gradually	you	realize	that	these	two
things	are	as	tightly	connected	as	only	a	market	can	make	them.

So	the	most	important	advantage	24	year	old	founders	have	over
20	year	old	founders	is	that	they	know	what	they're	trying	to
avoid.	To	the	average	undergrad	the	idea	of	getting	rich
translates	into	buying	Ferraris,	or	being	admired.	To	someone
who	has	learned	from	experience	about	the	relationship	between
money	and	work,	it	translates	to	something	way	more	important:
it	means	you	get	to	opt	out	of	the	brutal	equation	that	governs
the	lives	of	99.9%	of	people.	Getting	rich	means	you	can	stop
treading	water.

Someone	who	gets	this	will	work	much	harder	at	making	a
startup	succeed—with	the	proverbial	energy	of	a	drowning	man,
in	fact.	But	understanding	the	relationship	between	money	and
work	also	changes	the	way	you	work.	You	don't	get	money	just
for	working,	but	for	doing	things	other	people	want.	Someone
who's	figured	that	out	will	automatically	focus	more	on	the	user.
And	that	cures	the	other	half	of	the	class-project	syndrome.	After
you've	been	working	for	a	while,	you	yourself	tend	to	measure
what	you've	done	the	same	way	the	market	does.

Of	course,	you	don't	have	to	spend	years	working	to	learn	this

stuff.	If	you're	sufficiently	perceptive	you	can	grasp	these	things
while	you're	still	in	school.	Sam	Altman	did.	He	must	have,
because	Loopt	is	no	class	project.	And	as	his	example	suggests,
this	can	be	valuable	knowledge.	At	a	minimum,	if	you	get	this
stuff,	you	already	have	most	of	what	you	gain	from	the	"work
experience"	employers	consider	so	desirable.	But	of	course	if	you
really	get	it,	you	can	use	this	information	in	a	way	that's	more
valuable	to	you	than	that.

Now

So	suppose	you	think	you	might	start	a	startup	at	some	point,
either	when	you	graduate	or	a	few	years	after.	What	should	you
do	now?	For	both	jobs	and	grad	school,	there	are	ways	to	prepare
while	you're	in	college.	If	you	want	to	get	a	job	when	you
graduate,	you	should	get	summer	jobs	at	places	you'd	like	to
work.	If	you	want	to	go	to	grad	school,	it	will	help	to	work	on
research	projects	as	an	undergrad.	What's	the	equivalent	for
startups?	How	do	you	keep	your	options	maximally	open?

One	thing	you	can	do	while	you're	still	in	school	is	to	learn	how
startups	work.	Unfortunately	that's	not	easy.	Few	if	any	colleges
have	classes	about	startups.	There	may	be	business	school
classes	on	entrepreneurship,	as	they	call	it	over	there,	but	these
are	likely	to	be	a	waste	of	time.	Business	schools	like	to	talk
about	startups,	but	philosophically	they're	at	the	opposite	end	of
the	spectrum.	Most	books	on	startups	also	seem	to	be	useless.
I've	looked	at	a	few	and	none	get	it	right.	Books	in	most	fields	are
written	by	people	who	know	the	subject	from	experience,	but	for
startups	there's	a	unique	problem:	by	definition	the	founders	of
successful	startups	don't	need	to	write	books	to	make	money.	As
a	result	most	books	on	the	subject	end	up	being	written	by
people	who	don't	understand	it.

So	I'd	be	skeptical	of	classes	and	books.	The	way	to	learn	about
startups	is	by	watching	them	in	action,	preferably	by	working	at
one.	How	do	you	do	that	as	an	undergrad?	Probably	by	sneaking
in	through	the	back	door.	Just	hang	around	a	lot	and	gradually
start	doing	things	for	them.	Most	startups	are	(or	should	be)	very
cautious	about	hiring.	Every	hire	increases	the	burn	rate,	and
bad	hires	early	on	are	hard	to	recover	from.	However,	startups

usually	have	a	fairly	informal	atmosphere,	and	there's	always	a
lot	that	needs	to	be	done.	If	you	just	start	doing	stuff	for	them,
many	will	be	too	busy	to	shoo	you	away.	You	can	thus	gradually
work	your	way	into	their	confidence,	and	maybe	turn	it	into	an
official	job	later,	or	not,	whichever	you	prefer.	This	won't	work	for
all	startups,	but	it	would	work	for	most	I've	known.

Number	two,	make	the	most	of	the	great	advantage	of	school:	the
wealth	of	co-founders.	Look	at	the	people	around	you	and	ask
yourself	which	you'd	like	to	work	with.	When	you	apply	that	test,
you	may	find	you	get	surprising	results.	You	may	find	you'd
prefer	the	quiet	guy	you've	mostly	ignored	to	someone	who
seems	impressive	but	has	an	attitude	to	match.	I'm	not
suggesting	you	suck	up	to	people	you	don't	really	like	because
you	think	one	day	they'll	be	successful.	Exactly	the	opposite,	in
fact:	you	should	only	start	a	startup	with	someone	you	like,
because	a	startup	will	put	your	friendship	through	a	stress	test.
I'm	just	saying	you	should	think	about	who	you	really	admire	and
hang	out	with	them,	instead	of	whoever	circumstances	throw	you
together	with.

Another	thing	you	can	do	is	learn	skills	that	will	be	useful	to	you
in	a	startup.	These	may	be	different	from	the	skills	you'd	learn	to
get	a	job.	For	example,	thinking	about	getting	a	job	will	make	you
want	to	learn	programming	languages	you	think	employers	want,
like	Java	and	C++.	Whereas	if	you	start	a	startup,	you	get	to	pick
the	language,	so	you	have	to	think	about	which	will	actually	let
you	get	the	most	done.	If	you	use	that	test	you	might	end	up
learning	Ruby	or	Python	instead.

But	the	most	important	skill	for	a	startup	founder	isn't	a
programming	technique.	It's	a	knack	for	understanding	users	and
figuring	out	how	to	give	them	what	they	want.	I	know	I	repeat
this,	but	that's	because	it's	so	important.	And	it's	a	skill	you	can
learn,	though	perhaps	habit	might	be	a	better	word.	Get	into	the
habit	of	thinking	of	software	as	having	users.	What	do	those
users	want?	What	would	make	them	say	wow?

This	is	particularly	valuable	for	undergrads,	because	the	concept
of	users	is	missing	from	most	college	programming	classes.	The
way	you	get	taught	programming	in	college	would	be	like

teaching	writing	as	grammar,	without	mentioning	that	its
purpose	is	to	communicate	something	to	an	audience.
Fortunately	an	audience	for	software	is	now	only	an	http	request
away.	So	in	addition	to	the	programming	you	do	for	your	classes,
why	not	build	some	kind	of	website	people	will	find	useful?	At	the
very	least	it	will	teach	you	how	to	write	software	with	users.	In
the	best	case,	it	might	not	just	be	preparation	for	a	startup,	but
the	startup	itself,	like	it	was	for	Yahoo	and	Google.

Notes

[1]	Even	the	desire	to	protect	one's	children	seems	weaker,
judging	from	things	people	have	historically	done	to	their	kids
rather	than	risk	their	community's	disapproval.	(I	assume	we	still
do	things	that	will	be	regarded	in	the	future	as	barbaric,	but
historical	abuses	are	easier	for	us	to	see.)

[2]	Worrying	that	Y	Combinator	makes	founders	move	for	3
months	also	suggests	one	underestimates	how	hard	it	is	to	start	a
startup.	You're	going	to	have	to	put	up	with	much	greater
inconveniences	than	that.

[3]	Most	employee	agreements	say	that	any	idea	relating	to	the
company's	present	or	potential	future	business	belongs	to	them.
Often	as	not	the	second	clause	could	include	any	possible
startup,	and	anyone	doing	due	diligence	for	an	investor	or
acquirer	will	assume	the	worst.

To	be	safe	either	(a)	don't	use	code	written	while	you	were	still
employed	in	your	previous	job,	or	(b)	get	your	employer	to
renounce,	in	writing,	any	claim	to	the	code	you	write	for	your
side	project.	Many	will	consent	to	(b)	rather	than	lose	a	prized
employee.	The	downside	is	that	you'll	have	to	tell	them	exactly
what	your	project	does.

[4]	Geshke	and	Warnock	only	founded	Adobe	because	Xerox
ignored	them.	If	Xerox	had	used	what	they	built,	they	would
probably	never	have	left	PARC.

Thanks	to	Jessica	Livingston	and	Robert	Morris	for	reading	drafts
of	this,	and	to	Jeff	Arnold	and	the	SIPB	for	inviting	me	to	speak.

	Comment	on	this	essay.

http://reddit.com/
http://reddit.com/info/l1xb/comments

	

The	18	Mistakes	That	Kill
Startups
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	Art	Can	Be	Good
December	2006

I	grew	up	believing	that	taste	is	just	a	matter	of	personal
preference.	Each	person	has	things	they	like,	but	no	one's
preferences	are	any	better	than	anyone	else's.	There	is	no	such
thing	as	good	taste.

Like	a	lot	of	things	I	grew	up	believing,	this	turns	out	to	be	false,
and	I'm	going	to	try	to	explain	why.

One	problem	with	saying	there's	no	such	thing	as	good	taste	is
that	it	also	means	there's	no	such	thing	as	good	art.	If	there	were
good	art,	then	people	who	liked	it	would	have	better	taste	than
people	who	didn't.	So	if	you	discard	taste,	you	also	have	to
discard	the	idea	of	art	being	good,	and	artists	being	good	at
making	it.

It	was	pulling	on	that	thread	that	unravelled	my	childhood	faith
in	relativism.	When	you're	trying	to	make	things,	taste	becomes	a
practical	matter.	You	have	to	decide	what	to	do	next.	Would	it
make	the	painting	better	if	I	changed	that	part?	If	there's	no	such
thing	as	better,	it	doesn't	matter	what	you	do.	In	fact,	it	doesn't
matter	if	you	paint	at	all.	You	could	just	go	out	and	buy	a	ready-
made	blank	canvas.	If	there's	no	such	thing	as	good,	that	would
be	just	as	great	an	achievement	as	the	ceiling	of	the	Sistine
Chapel.	Less	laborious,	certainly,	but	if	you	can	achieve	the	same
level	of	performance	with	less	effort,	surely	that's	more
impressive,	not	less.

Yet	that	doesn't	seem	quite	right,	does	it?

Audience

I	think	the	key	to	this	puzzle	is	to	remember	that	art	has	an
audience.	Art	has	a	purpose,	which	is	to	interest	its	audience.

Good	art	(like	good	anything)	is	art	that	achieves	its	purpose
particularly	well.	The	meaning	of	"interest"	can	vary.	Some	works
of	art	are	meant	to	shock,	and	others	to	please;	some	are	meant
to	jump	out	at	you,	and	others	to	sit	quietly	in	the	background.
But	all	art	has	to	work	on	an	audience,	and—here's	the	critical
point—members	of	the	audience	share	things	in	common.

For	example,	nearly	all	humans	find	human	faces	engaging.	It
seems	to	be	wired	into	us.	Babies	can	recognize	faces	practically
from	birth.	In	fact,	faces	seem	to	have	co-evolved	with	our
interest	in	them;	the	face	is	the	body's	billboard.	So	all	other
things	being	equal,	a	painting	with	faces	in	it	will	interest	people
more	than	one	without.	[1]

One	reason	it's	easy	to	believe	that	taste	is	merely	personal
preference	is	that,	if	it	isn't,	how	do	you	pick	out	the	people	with
better	taste?	There	are	billions	of	people,	each	with	their	own
opinion;	on	what	grounds	can	you	prefer	one	to	another?	[2]

But	if	audiences	have	a	lot	in	common,	you're	not	in	a	position	of
having	to	choose	one	out	of	a	random	set	of	individual	biases,
because	the	set	isn't	random.	All	humans	find	faces	engaging—
practically	by	definition:	face	recognition	is	in	our	DNA.	And	so
having	a	notion	of	good	art,	in	the	sense	of	art	that	does	its	job
well,	doesn't	require	you	to	pick	out	a	few	individuals	and	label
their	opinions	as	correct.	No	matter	who	you	pick,	they'll	find
faces	engaging.

Of	course,	space	aliens	probably	wouldn't	find	human	faces
engaging.	But	there	might	be	other	things	they	shared	in
common	with	us.	The	most	likely	source	of	examples	is	math.	I
expect	space	aliens	would	agree	with	us	most	of	the	time	about
which	of	two	proofs	was	better.	Erdos	thought	so.	He	called	a
maximally	elegant	proof	one	out	of	God's	book,	and	presumably
God's	book	is	universal.	[3]

Once	you	start	talking	about	audiences,	you	don't	have	to	argue
simply	that	there	are	or	aren't	standards	of	taste.	Instead	tastes
are	a	series	of	concentric	rings,	like	ripples	in	a	pond.	There	are
some	things	that	will	appeal	to	you	and	your	friends,	others	that
will	appeal	to	most	people	your	age,	others	that	will	appeal	to

#f1n
#f2n
#f3n

most	humans,	and	perhaps	others	that	would	appeal	to	most
sentient	beings	(whatever	that	means).

The	picture	is	slightly	more	complicated	than	that,	because	in	the
middle	of	the	pond	there	are	overlapping	sets	of	ripples.	For
example,	there	might	be	things	that	appealed	particularly	to
men,	or	to	people	from	a	certain	culture.

If	good	art	is	art	that	interests	its	audience,	then	when	you	talk
about	art	being	good,	you	also	have	to	say	for	what	audience.	So
is	it	meaningless	to	talk	about	art	simply	being	good	or	bad?	No,
because	one	audience	is	the	set	of	all	possible	humans.	I	think
that's	the	audience	people	are	implicitly	talking	about	when	they
say	a	work	of	art	is	good:	they	mean	it	would	engage	any	human.
[4]

And	that	is	a	meaningful	test,	because	although,	like	any
everyday	concept,	"human"	is	fuzzy	around	the	edges,	there	are	a
lot	of	things	practically	all	humans	have	in	common.	In	addition
to	our	interest	in	faces,	there's	something	special	about	primary
colors	for	nearly	all	of	us,	because	it's	an	artifact	of	the	way	our
eyes	work.	Most	humans	will	also	find	images	of	3D	objects
engaging,	because	that	also	seems	to	be	built	into	our	visual
perception.	[5]	And	beneath	that	there's	edge-finding,	which
makes	images	with	definite	shapes	more	engaging	than	mere
blur.

Humans	have	a	lot	more	in	common	than	this,	of	course.	My	goal
is	not	to	compile	a	complete	list,	just	to	show	that	there's	some
solid	ground	here.	People's	preferences	aren't	random.	So	an
artist	working	on	a	painting	and	trying	to	decide	whether	to
change	some	part	of	it	doesn't	have	to	think	"Why	bother?	I
might	as	well	flip	a	coin."	Instead	he	can	ask	"What	would	make
the	painting	more	interesting	to	people?"	And	the	reason	you
can't	equal	Michelangelo	by	going	out	and	buying	a	blank	canvas
is	that	the	ceiling	of	the	Sistine	Chapel	is	more	interesting	to
people.

A	lot	of	philosophers	have	had	a	hard	time	believing	it	was
possible	for	there	to	be	objective	standards	for	art.	It	seemed
obvious	that	beauty,	for	example,	was	something	that	happened

#f4n
#f5n

in	the	head	of	the	observer,	not	something	that	was	a	property	of
objects.	It	was	thus	"subjective"	rather	than	"objective."	But	in
fact	if	you	narrow	the	definition	of	beauty	to	something	that
works	a	certain	way	on	humans,	and	you	observe	how	much
humans	have	in	common,	it	turns	out	to	be	a	property	of	objects
after	all.	You	don't	have	to	choose	between	something	being	a
property	of	the	subject	or	the	object	if	subjects	all	react	similarly.
Being	good	art	is	thus	a	property	of	objects	as	much	as,	say,
being	toxic	to	humans	is:	it's	good	art	if	it	consistently	affects
humans	in	a	certain	way.

Error

So	could	we	figure	out	what	the	best	art	is	by	taking	a	vote?	After
all,	if	appealing	to	humans	is	the	test,	we	should	be	able	to	just
ask	them,	right?

Well,	not	quite.	For	products	of	nature	that	might	work.	I'd	be
willing	to	eat	the	apple	the	world's	population	had	voted	most
delicious,	and	I'd	probably	be	willing	to	visit	the	beach	they	voted
most	beautiful,	but	having	to	look	at	the	painting	they	voted	the
best	would	be	a	crapshoot.

Man-made	stuff	is	different.	For	one	thing,	artists,	unlike	apple
trees,	often	deliberately	try	to	trick	us.	Some	tricks	are	quite
subtle.	For	example,	any	work	of	art	sets	expectations	by	its	level
of	finish.	You	don't	expect	photographic	accuracy	in	something
that	looks	like	a	quick	sketch.	So	one	widely	used	trick,
especially	among	illustrators,	is	to	intentionally	make	a	painting
or	drawing	look	like	it	was	done	faster	than	it	was.	The	average
person	looks	at	it	and	thinks:	how	amazingly	skillful.	It's	like
saying	something	clever	in	a	conversation	as	if	you'd	thought	of	it
on	the	spur	of	the	moment,	when	in	fact	you'd	worked	it	out	the
day	before.

Another	much	less	subtle	influence	is	brand.	If	you	go	to	see	the
Mona	Lisa,	you'll	probably	be	disappointed,	because	it's	hidden
behind	a	thick	glass	wall	and	surrounded	by	a	frenzied	crowd
taking	pictures	of	themselves	in	front	of	it.	At	best	you	can	see	it
the	way	you	see	a	friend	across	the	room	at	a	crowded	party.	The
Louvre	might	as	well	replace	it	with	copy;	no	one	would	be	able

to	tell.	And	yet	the	Mona	Lisa	is	a	small,	dark	painting.	If	you
found	people	who'd	never	seen	an	image	of	it	and	sent	them	to	a
museum	in	which	it	was	hanging	among	other	paintings	with	a
tag	labelling	it	as	a	portrait	by	an	unknown	fifteenth	century
artist,	most	would	walk	by	without	giving	it	a	second	look.

For	the	average	person,	brand	dominates	all	other	factors	in	the
judgement	of	art.	Seeing	a	painting	they	recognize	from
reproductions	is	so	overwhelming	that	their	response	to	it	as	a
painting	is	drowned	out.

And	then	of	course	there	are	the	tricks	people	play	on
themselves.	Most	adults	looking	at	art	worry	that	if	they	don't
like	what	they're	supposed	to,	they'll	be	thought	uncultured.	This
doesn't	just	affect	what	they	claim	to	like;	they	actually	make
themselves	like	things	they're	supposed	to.

That's	why	you	can't	just	take	a	vote.	Though	appeal	to	people	is
a	meaningful	test,	in	practice	you	can't	measure	it,	just	as	you
can't	find	north	using	a	compass	with	a	magnet	sitting	next	to	it.
There	are	sources	of	error	so	powerful	that	if	you	take	a	vote,	all
you're	measuring	is	the	error.

We	can,	however,	approach	our	goal	from	another	direction,	by
using	ourselves	as	guinea	pigs.	You're	human.	If	you	want	to
know	what	the	basic	human	reaction	to	a	piece	of	art	would	be,
you	can	at	least	approach	that	by	getting	rid	of	the	sources	of
error	in	your	own	judgements.

For	example,	while	anyone's	reaction	to	a	famous	painting	will	be
warped	at	first	by	its	fame,	there	are	ways	to	decrease	its	effects.
One	is	to	come	back	to	the	painting	over	and	over.	After	a	few
days	the	fame	wears	off,	and	you	can	start	to	see	it	as	a	painting.
Another	is	to	stand	close.	A	painting	familiar	from	reproductions
looks	more	familiar	from	ten	feet	away;	close	in	you	see	details
that	get	lost	in	reproductions,	and	which	you're	therefore	seeing
for	the	first	time.

There	are	two	main	kinds	of	error	that	get	in	the	way	of	seeing	a
work	of	art:	biases	you	bring	from	your	own	circumstances,	and
tricks	played	by	the	artist.	Tricks	are	straightforward	to	correct

for.	Merely	being	aware	of	them	usually	prevents	them	from
working.	For	example,	when	I	was	ten	I	used	to	be	very
impressed	by	airbrushed	lettering	that	looked	like	shiny	metal.
But	once	you	study	how	it's	done,	you	see	that	it's	a	pretty	cheesy
trick—one	of	the	sort	that	relies	on	pushing	a	few	visual	buttons
really	hard	to	temporarily	overwhelm	the	viewer.	It's	like	trying
to	convince	someone	by	shouting	at	them.

The	way	not	to	be	vulnerable	to	tricks	is	to	explicitly	seek	out	and
catalog	them.	When	you	notice	a	whiff	of	dishonesty	coming	from
some	kind	of	art,	stop	and	figure	out	what's	going	on.	When
someone	is	obviously	pandering	to	an	audience	that's	easily
fooled,	whether	it's	someone	making	shiny	stuff	to	impress	ten
year	olds,	or	someone	making	conspicuously	avant-garde	stuff	to
impress	would-be	intellectuals,	learn	how	they	do	it.	Once	you've
seen	enough	examples	of	specific	types	of	tricks,	you	start	to
become	a	connoisseur	of	trickery	in	general,	just	as	professional
magicians	are.

What	counts	as	a	trick?	Roughly,	it's	something	done	with
contempt	for	the	audience.	For	example,	the	guys	designing
Ferraris	in	the	1950s	were	probably	designing	cars	that	they
themselves	admired.	Whereas	I	suspect	over	at	General	Motors
the	marketing	people	are	telling	the	designers,	"Most	people	who
buy	SUVs	do	it	to	seem	manly,	not	to	drive	off-road.	So	don't
worry	about	the	suspension;	just	make	that	sucker	as	big	and
tough-looking	as	you	can."	[6]

I	think	with	some	effort	you	can	make	yourself	nearly	immune	to
tricks.	It's	harder	to	escape	the	influence	of	your	own
circumstances,	but	you	can	at	least	move	in	that	direction.	The
way	to	do	it	is	to	travel	widely,	in	both	time	and	space.	If	you	go
and	see	all	the	different	kinds	of	things	people	like	in	other
cultures,	and	learn	about	all	the	different	things	people	have
liked	in	the	past,	you'll	probably	find	it	changes	what	you	like.	I
doubt	you	could	ever	make	yourself	into	a	completely	universal
person,	if	only	because	you	can	only	travel	in	one	direction	in
time.	But	if	you	find	a	work	of	art	that	would	appeal	equally	to
your	friends,	to	people	in	Nepal,	and	to	the	ancient	Greeks,
you're	probably	onto	something.

#f6n

My	main	point	here	is	not	how	to	have	good	taste,	but	that	there
can	even	be	such	a	thing.	And	I	think	I've	shown	that.	There	is
such	a	thing	as	good	art.	It's	art	that	interests	its	human
audience,	and	since	humans	have	a	lot	in	common,	what	interests
them	is	not	random.	Since	there's	such	a	thing	as	good	art,
there's	also	such	a	thing	as	good	taste,	which	is	the	ability	to
recognize	it.

If	we	were	talking	about	the	taste	of	apples,	I'd	agree	that	taste
is	just	personal	preference.	Some	people	like	certain	kinds	of
apples	and	others	like	other	kinds,	but	how	can	you	say	that	one
is	right	and	the	other	wrong?	[7]

The	thing	is,	art	isn't	apples.	Art	is	man-made.	It	comes	with	a	lot
of	cultural	baggage,	and	in	addition	the	people	who	make	it	often
try	to	trick	us.	Most	people's	judgement	of	art	is	dominated	by
these	extraneous	factors;	they're	like	someone	trying	to	judge	the
taste	of	apples	in	a	dish	made	of	equal	parts	apples	and	jalapeno
peppers.	All	they're	tasting	is	the	peppers.	So	it	turns	out	you	can
pick	out	some	people	and	say	that	they	have	better	taste	than
others:	they're	the	ones	who	actually	taste	art	like	apples.

Or	to	put	it	more	prosaically,	they're	the	people	who	(a)	are	hard
to	trick,	and	(b)	don't	just	like	whatever	they	grew	up	with.	If	you
could	find	people	who'd	eliminated	all	such	influences	on	their
judgement,	you'd	probably	still	see	variation	in	what	they	liked.
But	because	humans	have	so	much	in	common,	you'd	also	find
they	agreed	on	a	lot.	They'd	nearly	all	prefer	the	ceiling	of	the
Sistine	Chapel	to	a	blank	canvas.

Making	It

I	wrote	this	essay	because	I	was	tired	of	hearing	"taste	is
subjective"	and	wanted	to	kill	it	once	and	for	all.	Anyone	who
makes	things	knows	intuitively	that's	not	true.	When	you're
trying	to	make	art,	the	temptation	to	be	lazy	is	as	great	as	in	any
other	kind	of	work.	Of	course	it	matters	to	do	a	good	job.	And	yet
you	can	see	how	great	a	hold	"taste	is	subjective"	has	even	in	the
art	world	by	how	nervous	it	makes	people	to	talk	about	art	being
good	or	bad.	Those	whose	jobs	require	them	to	judge	art,	like
curators,	mostly	resort	to	euphemisms	like	"significant"	or

#f7n

"important"	or	(getting	dangerously	close)	"realized."	[8]

I	don't	have	any	illusions	that	being	able	to	talk	about	art	being
good	or	bad	will	cause	the	people	who	talk	about	it	to	have
anything	more	useful	to	say.	Indeed,	one	of	the	reasons	"taste	is
subjective"	found	such	a	receptive	audience	is	that,	historically,
the	things	people	have	said	about	good	taste	have	generally	been
such	nonsense.

It's	not	for	the	people	who	talk	about	art	that	I	want	to	free	the
idea	of	good	art,	but	for	those	who	make	it.	Right	now,	ambitious
kids	going	to	art	school	run	smack	into	a	brick	wall.	They	arrive
hoping	one	day	to	be	as	good	as	the	famous	artists	they've	seen
in	books,	and	the	first	thing	they	learn	is	that	the	concept	of	good
has	been	retired.	Instead	everyone	is	just	supposed	to	explore
their	own	personal	vision.	[9]

When	I	was	in	art	school,	we	were	looking	one	day	at	a	slide	of
some	great	fifteenth	century	painting,	and	one	of	the	students
asked	"Why	don't	artists	paint	like	that	now?"	The	room	suddenly
got	quiet.	Though	rarely	asked	out	loud,	this	question	lurks
uncomfortably	in	the	back	of	every	art	student's	mind.	It	was	as	if
someone	had	brought	up	the	topic	of	lung	cancer	in	a	meeting
within	Philip	Morris.

"Well,"	the	professor	replied,	"we're	interested	in	different
questions	now."	He	was	a	pretty	nice	guy,	but	at	the	time	I
couldn't	help	wishing	I	could	send	him	back	to	fifteenth	century
Florence	to	explain	in	person	to	Leonardo	&	Co.	how	we	had
moved	beyond	their	early,	limited	concept	of	art.	Just	imagine
that	conversation.

In	fact,	one	of	the	reasons	artists	in	fifteenth	century	Florence
made	such	great	things	was	that	they	believed	you	could	make
great	things.	[10]	They	were	intensely	competitive	and	were
always	trying	to	outdo	one	another,	like	mathematicians	or
physicists	today—maybe	like	anyone	who	has	ever	done	anything
really	well.

The	idea	that	you	could	make	great	things	was	not	just	a	useful
illusion.	They	were	actually	right.	So	the	most	important

#f8n
taste.html
#f9n
#f10n

consequence	of	realizing	there	can	be	good	art	is	that	it	frees
artists	to	try	to	make	it.	To	the	ambitious	kids	arriving	at	art
school	this	year	hoping	one	day	to	make	great	things,	I	say:	don't
believe	it	when	they	tell	you	this	is	a	naive	and	outdated
ambition.	There	is	such	a	thing	as	good	art,	and	if	you	try	to
make	it,	there	are	people	who	will	notice.

Notes

[1]	This	is	not	to	say,	of	course,	that	good	paintings	must	have
faces	in	them,	just	that	everyone's	visual	piano	has	that	key	on	it.
There	are	situations	in	which	you	want	to	avoid	faces,	precisely
because	they	attract	so	much	attention.	But	you	can	see	how
universally	faces	work	by	their	prevalence	in	advertising.

[2]	The	other	reason	it's	easy	to	believe	is	that	it	makes	people
feel	good.	To	a	kid,	this	idea	is	crack.	In	every	other	respect
they're	constantly	being	told	that	they	have	a	lot	to	learn.	But	in
this	they're	perfect.	Their	opinion	carries	the	same	weight	as	any
adult's.	You	should	probably	question	anything	you	believed	as	a
kid	that	you'd	want	to	believe	this	much.

[3]	It's	conceivable	that	the	elegance	of	proofs	is	quantifiable,	in
the	sense	that	there	may	be	some	formal	measure	that	turns	out
to	coincide	with	mathematicians'	judgements.	Perhaps	it	would
be	worth	trying	to	make	a	formal	language	for	proofs	in	which
those	considered	more	elegant	consistently	came	out	shorter
(perhaps	after	being	macroexpanded	or	compiled).

[4]	Maybe	it	would	be	possible	to	make	art	that	would	appeal	to
space	aliens,	but	I'm	not	going	to	get	into	that	because	(a)	it's	too
hard	to	answer,	and	(b)	I'm	satisfied	if	I	can	establish	that	good
art	is	a	meaningful	idea	for	human	audiences.

[5]	If	early	abstract	paintings	seem	more	interesting	than	later
ones,	it	may	be	because	the	first	abstract	painters	were	trained
to	paint	from	life,	and	their	hands	thus	tended	to	make	the	kind

of	gestures	you	use	in	representing	physical	things.	In	effect	they
were	saying	"scaramara"	instead	of	"uebfgbsb."

[6]	It's	a	bit	more	complicated,	because	sometimes	artists
unconsciously	use	tricks	by	imitating	art	that	does.

[7]	I	phrased	this	in	terms	of	the	taste	of	apples	because	if	people
can	see	the	apples,	they	can	be	fooled.	When	I	was	a	kid	most
apples	were	a	variety	called	Red	Delicious	that	had	been	bred	to
look	appealing	in	stores,	but	which	didn't	taste	very	good.

[8]	To	be	fair,	curators	are	in	a	difficult	position.	If	they're	dealing
with	recent	art,	they	have	to	include	things	in	shows	that	they
think	are	bad.	That's	because	the	test	for	what	gets	included	in
shows	is	basically	the	market	price,	and	for	recent	art	that	is
largely	determined	by	successful	businessmen	and	their	wives.
So	it's	not	always	intellectual	dishonesty	that	makes	curators	and
dealers	use	neutral-sounding	language.

[9]	What	happens	in	practice	is	that	everyone	gets	really	good	at
talking	about	art.	As	the	art	itself	gets	more	random,	the	effort
that	would	have	gone	into	the	work	goes	instead	into	the
intellectual	sounding	theory	behind	it.	"My	work	represents	an
exploration	of	gender	and	sexuality	in	an	urban	context,"	etc.
Different	people	win	at	that	game.

[10]	There	were	several	other	reasons,	including	that	Florence
was	then	the	richest	and	most	sophisticated	city	in	the	world,
and	that	they	lived	in	a	time	before	photography	had	(a)	killed
portraiture	as	a	source	of	income	and	(b)	made	brand	the
dominant	factor	in	the	sale	of	art.

Incidentally,	I'm	not	saying	that	good	art	=	fifteenth	century
European	art.	I'm	not	saying	we	should	make	what	they	made,
but	that	we	should	work	like	they	worked.	There	are	fields	now	in
which	many	people	work	with	the	same	energy	and	honesty	that
fifteenth	century	artists	did,	but	art	is	not	one	of	them.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Robert
Morris	for	reading	drafts	of	this,	and	to	Paul	Watson	for
permission	to	use	the	image	at	the	top.

	

Learning	from	Founders
January	2007

(Foreword	to	Jessica	Livingston's	Founders	at	Work.)

Apparently	sprinters	reach	their	highest	speed	right	out	of	the
blocks,	and	spend	the	rest	of	the	race	slowing	down.	The	winners
slow	down	the	least.	It's	that	way	with	most	startups	too.	The
earliest	phase	is	usually	the	most	productive.	That's	when	they
have	the	really	big	ideas.	Imagine	what	Apple	was	like	when
100%	of	its	employees	were	either	Steve	Jobs	or	Steve	Wozniak.

The	striking	thing	about	this	phase	is	that	it's	completely
different	from	most	people's	idea	of	what	business	is	like.	If	you
looked	in	people's	heads	(or	stock	photo	collections)	for	images
representing	"business,"	you'd	get	images	of	people	dressed	up
in	suits,	groups	sitting	around	conference	tables	looking	serious,
Powerpoint	presentations,	people	producing	thick	reports	for	one
another	to	read.	Early	stage	startups	are	the	exact	opposite	of
this.	And	yet	they're	probably	the	most	productive	part	of	the
whole	economy.

Why	the	disconnect?	I	think	there's	a	general	principle	at	work
here:	the	less	energy	people	expend	on	performance,	the	more
they	expend	on	appearances	to	compensate.	More	often	than	not
the	energy	they	expend	on	seeming	impressive	makes	their
actual	performance	worse.	A	few	years	ago	I	read	an	article	in
which	a	car	magazine	modified	the	"sports"	model	of	some
production	car	to	get	the	fastest	possible	standing	quarter	mile.
You	know	how	they	did	it?	They	cut	off	all	the	crap	the
manufacturer	had	bolted	onto	the	car	to	make	it	look	fast.

Business	is	broken	the	same	way	that	car	was.	The	effort	that
goes	into	looking	productive	is	not	merely	wasted,	but	actually
makes	organizations	less	productive.	Suits,	for	example.	Suits	do
not	help	people	to	think	better.	I	bet	most	executives	at	big

http://www.amazon.com/gp/product/1590597141

companies	do	their	best	thinking	when	they	wake	up	on	Sunday
morning	and	go	downstairs	in	their	bathrobe	to	make	a	cup	of
coffee.	That's	when	you	have	ideas.	Just	imagine	what	a	company
would	be	like	if	people	could	think	that	well	at	work.	People	do	in
startups,	at	least	some	of	the	time.	(Half	the	time	you're	in	a
panic	because	your	servers	are	on	fire,	but	the	other	half	you're
thinking	as	deeply	as	most	people	only	get	to	sitting	alone	on	a
Sunday	morning.)

Ditto	for	most	of	the	other	differences	between	startups	and	what
passes	for	productivity	in	big	companies.	And	yet	conventional
ideas	of	professionalism	have	such	an	iron	grip	on	our	minds	that
even	startup	founders	are	affected	by	them.	In	our	startup,	when
outsiders	came	to	visit	we	tried	hard	to	seem	"professional."	We'd
clean	up	our	offices,	wear	better	clothes,	try	to	arrange	that	a	lot
of	people	were	there	during	conventional	office	hours.	In	fact,
programming	didn't	get	done	by	well-dressed	people	at	clean
desks	during	office	hours.	It	got	done	by	badly	dressed	people	(I
was	notorious	for	programmming	wearing	just	a	towel)	in	offices
strewn	with	junk	at	2	in	the	morning.	But	no	visitor	would
understand	that.	Not	even	investors,	who	are	supposed	to	be	able
to	recognize	real	productivity	when	they	see	it.	Even	we	were
affected	by	the	conventional	wisdom.	We	thought	of	ourselves	as
impostors,	succeeding	despite	being	totally	unprofessional.	It
was	as	if	we'd	created	a	Formula	1	car	but	felt	sheepish	because
it	didn't	look	like	a	car	was	supposed	to	look.

In	the	car	world,	there	are	at	least	some	people	who	know	that	a
high	performance	car	looks	like	a	Formula	1	racecar,	not	a	sedan
with	giant	rims	and	a	fake	spoiler	bolted	to	the	trunk.	Why	not	in
business?	Probably	because	startups	are	so	small.	The	really
dramatic	growth	happens	when	a	startup	only	has	three	or	four
people,	so	only	three	or	four	people	see	that,	whereas	tens	of
thousands	see	business	as	it's	practiced	by	Boeing	or	Philip
Morris.

This	book	can	help	fix	that	problem,	by	showing	everyone	what,
till	now,	only	a	handful	people	got	to	see:	what	happens	in	the
first	year	of	a	startup.	This	is	what	real	productivity	looks	like.
This	is	the	Formula	1	racecar.	It	looks	weird,	but	it	goes	fast.

Of	course,	big	companies	won't	be	able	to	do	everything	these
startups	do.	In	big	companies	there's	always	going	to	be	more
politics,	and	less	scope	for	individual	decisions.	But	seeing	what
startups	are	really	like	will	at	least	show	other	organizations
what	to	aim	for.	The	time	may	soon	be	coming	when	instead	of
startups	trying	to	seem	more	corporate,	corporations	will	try	to
seem	more	like	startups.	That	would	be	a	good	thing.

Japanese	Translation	

http://www.aoky.net/articles/paul_graham/foundersatwork.htm

	

Is	It	Worth	Being	Wise?
February	2007

A	few	days	ago	I	finally	figured	out	something	I've	wondered
about	for	25	years:	the	relationship	between	wisdom	and
intelligence.	Anyone	can	see	they're	not	the	same	by	the	number
of	people	who	are	smart,	but	not	very	wise.	And	yet	intelligence
and	wisdom	do	seem	related.	How?

What	is	wisdom?	I'd	say	it's	knowing	what	to	do	in	a	lot	of
situations.	I'm	not	trying	to	make	a	deep	point	here	about	the
true	nature	of	wisdom,	just	to	figure	out	how	we	use	the	word.	A
wise	person	is	someone	who	usually	knows	the	right	thing	to	do.

And	yet	isn't	being	smart	also	knowing	what	to	do	in	certain
situations?	For	example,	knowing	what	to	do	when	the	teacher
tells	your	elementary	school	class	to	add	all	the	numbers	from	1
to	100?	[1]

Some	say	wisdom	and	intelligence	apply	to	different	types	of
problems—wisdom	to	human	problems	and	intelligence	to
abstract	ones.	But	that	isn't	true.	Some	wisdom	has	nothing	to	do
with	people:	for	example,	the	wisdom	of	the	engineer	who	knows
certain	structures	are	less	prone	to	failure	than	others.	And
certainly	smart	people	can	find	clever	solutions	to	human
problems	as	well	as	abstract	ones.	[2]

Another	popular	explanation	is	that	wisdom	comes	from
experience	while	intelligence	is	innate.	But	people	are	not	simply
wise	in	proportion	to	how	much	experience	they	have.	Other
things	must	contribute	to	wisdom	besides	experience,	and	some
may	be	innate:	a	reflective	disposition,	for	example.

Neither	of	the	conventional	explanations	of	the	difference
between	wisdom	and	intelligence	stands	up	to	scrutiny.	So	what
is	the	difference?	If	we	look	at	how	people	use	the	words	"wise"

#f1n
#f2n

and	"smart,"	what	they	seem	to	mean	is	different	shapes	of
performance.

Curve

"Wise"	and	"smart"	are	both	ways	of	saying	someone	knows	what
to	do.	The	difference	is	that	"wise"	means	one	has	a	high	average
outcome	across	all	situations,	and	"smart"	means	one	does
spectacularly	well	in	a	few.	That	is,	if	you	had	a	graph	in	which
the	x	axis	represented	situations	and	the	y	axis	the	outcome,	the
graph	of	the	wise	person	would	be	high	overall,	and	the	graph	of
the	smart	person	would	have	high	peaks.

The	distinction	is	similar	to	the	rule	that	one	should	judge	talent
at	its	best	and	character	at	its	worst.	Except	you	judge
intelligence	at	its	best,	and	wisdom	by	its	average.	That's	how
the	two	are	related:	they're	the	two	different	senses	in	which	the
same	curve	can	be	high.

So	a	wise	person	knows	what	to	do	in	most	situations,	while	a
smart	person	knows	what	to	do	in	situations	where	few	others
could.	We	need	to	add	one	more	qualification:	we	should	ignore
cases	where	someone	knows	what	to	do	because	they	have	inside
information.	[3]	But	aside	from	that,	I	don't	think	we	can	get
much	more	specific	without	starting	to	be	mistaken.

Nor	do	we	need	to.	Simple	as	it	is,	this	explanation	predicts,	or	at
least	accords	with,	both	of	the	conventional	stories	about	the
distinction	between	wisdom	and	intelligence.	Human	problems
are	the	most	common	type,	so	being	good	at	solving	those	is	key
in	achieving	a	high	average	outcome.	And	it	seems	natural	that	a
high	average	outcome	depends	mostly	on	experience,	but	that
dramatic	peaks	can	only	be	achieved	by	people	with	certain	rare,
innate	qualities;	nearly	anyone	can	learn	to	be	a	good	swimmer,
but	to	be	an	Olympic	swimmer	you	need	a	certain	body	type.

This	explanation	also	suggests	why	wisdom	is	such	an	elusive
concept:	there's	no	such	thing.	"Wise"	means	something—that
one	is	on	average	good	at	making	the	right	choice.	But	giving	the
name	"wisdom"	to	the	supposed	quality	that	enables	one	to	do
that	doesn't	mean	such	a	thing	exists.	To	the	extent	"wisdom"

#f3n

means	anything,	it	refers	to	a	grab-bag	of	qualities	as	various	as
self-discipline,	experience,	and	empathy.	[4]

Likewise,	though	"intelligent"	means	something,	we're	asking	for
trouble	if	we	insist	on	looking	for	a	single	thing	called
"intelligence."	And	whatever	its	components,	they're	not	all
innate.	We	use	the	word	"intelligent"	as	an	indication	of	ability:	a
smart	person	can	grasp	things	few	others	could.	It	does	seem
likely	there's	some	inborn	predisposition	to	intelligence	(and
wisdom	too),	but	this	predisposition	is	not	itself	intelligence.

One	reason	we	tend	to	think	of	intelligence	as	inborn	is	that
people	trying	to	measure	it	have	concentrated	on	the	aspects	of
it	that	are	most	measurable.	A	quality	that's	inborn	will	obviously
be	more	convenient	to	work	with	than	one	that's	influenced	by
experience,	and	thus	might	vary	in	the	course	of	a	study.	The
problem	comes	when	we	drag	the	word	"intelligence"	over	onto
what	they're	measuring.	If	they're	measuring	something	inborn,
they	can't	be	measuring	intelligence.	Three	year	olds	aren't
smart.	When	we	describe	one	as	smart,	it's	shorthand	for
"smarter	than	other	three	year	olds."

Split

Perhaps	it's	a	technicality	to	point	out	that	a	predisposition	to
intelligence	is	not	the	same	as	intelligence.	But	it's	an	important
technicality,	because	it	reminds	us	that	we	can	become	smarter,
just	as	we	can	become	wiser.

The	alarming	thing	is	that	we	may	have	to	choose	between	the
two.

If	wisdom	and	intelligence	are	the	average	and	peaks	of	the	same
curve,	then	they	converge	as	the	number	of	points	on	the	curve
decreases.	If	there's	just	one	point,	they're	identical:	the	average
and	maximum	are	the	same.	But	as	the	number	of	points
increases,	wisdom	and	intelligence	diverge.	And	historically	the
number	of	points	on	the	curve	seems	to	have	been	increasing:
our	ability	is	tested	in	an	ever	wider	range	of	situations.

In	the	time	of	Confucius	and	Socrates,	people	seem	to	have

#f4n

regarded	wisdom,	learning,	and	intelligence	as	more	closely
related	than	we	do.	Distinguishing	between	"wise"	and	"smart"	is
a	modern	habit.	[5]	And	the	reason	we	do	is	that	they've	been
diverging.	As	knowledge	gets	more	specialized,	there	are	more
points	on	the	curve,	and	the	distinction	between	the	spikes	and
the	average	becomes	sharper,	like	a	digital	image	rendered	with
more	pixels.

One	consequence	is	that	some	old	recipes	may	have	become
obsolete.	At	the	very	least	we	have	to	go	back	and	figure	out	if
they	were	really	recipes	for	wisdom	or	intelligence.	But	the	really
striking	change,	as	intelligence	and	wisdom	drift	apart,	is	that	we
may	have	to	decide	which	we	prefer.	We	may	not	be	able	to
optimize	for	both	simultaneously.

Society	seems	to	have	voted	for	intelligence.	We	no	longer
admire	the	sage—not	the	way	people	did	two	thousand	years	ago.
Now	we	admire	the	genius.	Because	in	fact	the	distinction	we
began	with	has	a	rather	brutal	converse:	just	as	you	can	be	smart
without	being	very	wise,	you	can	be	wise	without	being	very
smart.	That	doesn't	sound	especially	admirable.	That	gets	you
James	Bond,	who	knows	what	to	do	in	a	lot	of	situations,	but	has
to	rely	on	Q	for	the	ones	involving	math.

Intelligence	and	wisdom	are	obviously	not	mutually	exclusive.	In
fact,	a	high	average	may	help	support	high	peaks.	But	there	are
reasons	to	believe	that	at	some	point	you	have	to	choose	between
them.	One	is	the	example	of	very	smart	people,	who	are	so	often
unwise	that	in	popular	culture	this	now	seems	to	be	regarded	as
the	rule	rather	than	the	exception.	Perhaps	the	absent-minded
professor	is	wise	in	his	way,	or	wiser	than	he	seems,	but	he's	not
wise	in	the	way	Confucius	or	Socrates	wanted	people	to	be.	[6]

New

For	both	Confucius	and	Socrates,	wisdom,	virtue,	and	happiness
were	necessarily	related.	The	wise	man	was	someone	who	knew
what	the	right	choice	was	and	always	made	it;	to	be	the	right
choice,	it	had	to	be	morally	right;	he	was	therefore	always	happy,
knowing	he'd	done	the	best	he	could.	I	can't	think	of	many
ancient	philosophers	who	would	have	disagreed	with	that,	so	far

#f5n
#f6n

as	it	goes.

"The	superior	man	is	always	happy;	the	small	man	sad,"	said
Confucius.	[7]

Whereas	a	few	years	ago	I	read	an	interview	with	a
mathematician	who	said	that	most	nights	he	went	to	bed
discontented,	feeling	he	hadn't	made	enough	progress.	[8]	The
Chinese	and	Greek	words	we	translate	as	"happy"	didn't	mean
exactly	what	we	do	by	it,	but	there's	enough	overlap	that	this
remark	contradicts	them.

Is	the	mathematician	a	small	man	because	he's	discontented?
No;	he's	just	doing	a	kind	of	work	that	wasn't	very	common	in
Confucius's	day.

Human	knowledge	seems	to	grow	fractally.	Time	after	time,
something	that	seemed	a	small	and	uninteresting	area—
experimental	error,	even—turns	out,	when	examined	up	close,	to
have	as	much	in	it	as	all	knowledge	up	to	that	point.	Several	of
the	fractal	buds	that	have	exploded	since	ancient	times	involve
inventing	and	discovering	new	things.	Math,	for	example,	used	to
be	something	a	handful	of	people	did	part-time.	Now	it's	the
career	of	thousands.	And	in	work	that	involves	making	new
things,	some	old	rules	don't	apply.

Recently	I've	spent	some	time	advising	people,	and	there	I	find
the	ancient	rule	still	works:	try	to	understand	the	situation	as
well	as	you	can,	give	the	best	advice	you	can	based	on	your
experience,	and	then	don't	worry	about	it,	knowing	you	did	all
you	could.	But	I	don't	have	anything	like	this	serenity	when	I'm
writing	an	essay.	Then	I'm	worried.	What	if	I	run	out	of	ideas?
And	when	I'm	writing,	four	nights	out	of	five	I	go	to	bed
discontented,	feeling	I	didn't	get	enough	done.

Advising	people	and	writing	are	fundamentally	different	types	of
work.	When	people	come	to	you	with	a	problem	and	you	have	to
figure	out	the	right	thing	to	do,	you	don't	(usually)	have	to	invent
anything.	You	just	weigh	the	alternatives	and	try	to	judge	which
is	the	prudent	choice.	But	prudence	can't	tell	me	what	sentence
to	write	next.	The	search	space	is	too	big.

#f7n
#f8n

Someone	like	a	judge	or	a	military	officer	can	in	much	of	his
work	be	guided	by	duty,	but	duty	is	no	guide	in	making	things.
Makers	depend	on	something	more	precarious:	inspiration.	And
like	most	people	who	lead	a	precarious	existence,	they	tend	to	be
worried,	not	contented.	In	that	respect	they're	more	like	the
small	man	of	Confucius's	day,	always	one	bad	harvest	(or	ruler)
away	from	starvation.	Except	instead	of	being	at	the	mercy	of
weather	and	officials,	they're	at	the	mercy	of	their	own
imagination.

Limits

To	me	it	was	a	relief	just	to	realize	it	might	be	ok	to	be
discontented.	The	idea	that	a	successful	person	should	be	happy
has	thousands	of	years	of	momentum	behind	it.	If	I	was	any	good,
why	didn't	I	have	the	easy	confidence	winners	are	supposed	to
have?	But	that,	I	now	believe,	is	like	a	runner	asking	"If	I'm	such
a	good	athlete,	why	do	I	feel	so	tired?"	Good	runners	still	get
tired;	they	just	get	tired	at	higher	speeds.

People	whose	work	is	to	invent	or	discover	things	are	in	the	same
position	as	the	runner.	There's	no	way	for	them	to	do	the	best
they	can,	because	there's	no	limit	to	what	they	could	do.	The
closest	you	can	come	is	to	compare	yourself	to	other	people.	But
the	better	you	do,	the	less	this	matters.	An	undergrad	who	gets
something	published	feels	like	a	star.	But	for	someone	at	the	top
of	the	field,	what's	the	test	of	doing	well?	Runners	can	at	least
compare	themselves	to	others	doing	exactly	the	same	thing;	if
you	win	an	Olympic	gold	medal,	you	can	be	fairly	content,	even	if
you	think	you	could	have	run	a	bit	faster.	But	what	is	a	novelist	to
do?

Whereas	if	you're	doing	the	kind	of	work	in	which	problems	are
presented	to	you	and	you	have	to	choose	between	several
alternatives,	there's	an	upper	bound	on	your	performance:
choosing	the	best	every	time.	In	ancient	societies,	nearly	all	work
seems	to	have	been	of	this	type.	The	peasant	had	to	decide
whether	a	garment	was	worth	mending,	and	the	king	whether	or
not	to	invade	his	neighbor,	but	neither	was	expected	to	invent
anything.	In	principle	they	could	have;	the	king	could	have

invented	firearms,	then	invaded	his	neighbor.	But	in	practice
innovations	were	so	rare	that	they	weren't	expected	of	you,	any
more	than	goalkeepers	are	expected	to	score	goals.	[9]	In
practice,	it	seemed	as	if	there	was	a	correct	decision	in	every
situation,	and	if	you	made	it	you'd	done	your	job	perfectly,	just	as
a	goalkeeper	who	prevents	the	other	team	from	scoring	is
considered	to	have	played	a	perfect	game.

In	this	world,	wisdom	seemed	paramount.	[10]	Even	now,	most
people	do	work	in	which	problems	are	put	before	them	and	they
have	to	choose	the	best	alternative.	But	as	knowledge	has	grown
more	specialized,	there	are	more	and	more	types	of	work	in
which	people	have	to	make	up	new	things,	and	in	which
performance	is	therefore	unbounded.	Intelligence	has	become
increasingly	important	relative	to	wisdom	because	there	is	more
room	for	spikes.

Recipes

Another	sign	we	may	have	to	choose	between	intelligence	and
wisdom	is	how	different	their	recipes	are.	Wisdom	seems	to	come
largely	from	curing	childish	qualities,	and	intelligence	largely
from	cultivating	them.

Recipes	for	wisdom,	particularly	ancient	ones,	tend	to	have	a
remedial	character.	To	achieve	wisdom	one	must	cut	away	all	the
debris	that	fills	one's	head	on	emergence	from	childhood,	leaving
only	the	important	stuff.	Both	self-control	and	experience	have
this	effect:	to	eliminate	the	random	biases	that	come	from	your
own	nature	and	from	the	circumstances	of	your	upbringing
respectively.	That's	not	all	wisdom	is,	but	it's	a	large	part	of	it.
Much	of	what's	in	the	sage's	head	is	also	in	the	head	of	every
twelve	year	old.	The	difference	is	that	in	the	head	of	the	twelve
year	old	it's	mixed	together	with	a	lot	of	random	junk.

The	path	to	intelligence	seems	to	be	through	working	on	hard
problems.	You	develop	intelligence	as	you	might	develop
muscles,	through	exercise.	But	there	can't	be	too	much
compulsion	here.	No	amount	of	discipline	can	replace	genuine
curiosity.	So	cultivating	intelligence	seems	to	be	a	matter	of
identifying	some	bias	in	one's	character—some	tendency	to	be

#f9n
#f10n

interested	in	certain	types	of	things—and	nurturing	it.	Instead	of
obliterating	your	idiosyncrasies	in	an	effort	to	make	yourself	a
neutral	vessel	for	the	truth,	you	select	one	and	try	to	grow	it
from	a	seedling	into	a	tree.

The	wise	are	all	much	alike	in	their	wisdom,	but	very	smart
people	tend	to	be	smart	in	distinctive	ways.

Most	of	our	educational	traditions	aim	at	wisdom.	So	perhaps
one	reason	schools	work	badly	is	that	they're	trying	to	make
intelligence	using	recipes	for	wisdom.	Most	recipes	for	wisdom
have	an	element	of	subjection.	At	the	very	least,	you're	supposed
to	do	what	the	teacher	says.	The	more	extreme	recipes	aim	to
break	down	your	individuality	the	way	basic	training	does.	But
that's	not	the	route	to	intelligence.	Whereas	wisdom	comes
through	humility,	it	may	actually	help,	in	cultivating	intelligence,
to	have	a	mistakenly	high	opinion	of	your	abilities,	because	that
encourages	you	to	keep	working.	Ideally	till	you	realize	how
mistaken	you	were.

(The	reason	it's	hard	to	learn	new	skills	late	in	life	is	not	just	that
one's	brain	is	less	malleable.	Another	probably	even	worse
obstacle	is	that	one	has	higher	standards.)

I	realize	we're	on	dangerous	ground	here.	I'm	not	proposing	the
primary	goal	of	education	should	be	to	increase	students'	"self-
esteem."	That	just	breeds	laziness.	And	in	any	case,	it	doesn't
really	fool	the	kids,	not	the	smart	ones.	They	can	tell	at	a	young
age	that	a	contest	where	everyone	wins	is	a	fraud.

A	teacher	has	to	walk	a	narrow	path:	you	want	to	encourage	kids
to	come	up	with	things	on	their	own,	but	you	can't	simply
applaud	everything	they	produce.	You	have	to	be	a	good
audience:	appreciative,	but	not	too	easily	impressed.	And	that's	a
lot	of	work.	You	have	to	have	a	good	enough	grasp	of	kids'
capacities	at	different	ages	to	know	when	to	be	surprised.

That's	the	opposite	of	traditional	recipes	for	education.
Traditionally	the	student	is	the	audience,	not	the	teacher;	the
student's	job	is	not	to	invent,	but	to	absorb	some	prescribed	body
of	material.	(The	use	of	the	term	"recitation"	for	sections	in	some

colleges	is	a	fossil	of	this.)	The	problem	with	these	old	traditions
is	that	they're	too	much	influenced	by	recipes	for	wisdom.

Different

I	deliberately	gave	this	essay	a	provocative	title;	of	course	it's
worth	being	wise.	But	I	think	it's	important	to	understand	the
relationship	between	intelligence	and	wisdom,	and	particularly
what	seems	to	be	the	growing	gap	between	them.	That	way	we
can	avoid	applying	rules	and	standards	to	intelligence	that	are
really	meant	for	wisdom.	These	two	senses	of	"knowing	what	to
do"	are	more	different	than	most	people	realize.	The	path	to
wisdom	is	through	discipline,	and	the	path	to	intelligence
through	carefully	selected	self-indulgence.	Wisdom	is	universal,
and	intelligence	idiosyncratic.	And	while	wisdom	yields	calmness,
intelligence	much	of	the	time	leads	to	discontentment.

That's	particularly	worth	remembering.	A	physicist	friend
recently	told	me	half	his	department	was	on	Prozac.	Perhaps	if
we	acknowledge	that	some	amount	of	frustration	is	inevitable	in
certain	kinds	of	work,	we	can	mitigate	its	effects.	Perhaps	we	can
box	it	up	and	put	it	away	some	of	the	time,	instead	of	letting	it
flow	together	with	everyday	sadness	to	produce	what	seems	an
alarmingly	large	pool.	At	the	very	least,	we	can	avoid	being
discontented	about	being	discontented.

If	you	feel	exhausted,	it's	not	necessarily	because	there's
something	wrong	with	you.	Maybe	you're	just	running	fast.

Notes

[1]	Gauss	was	supposedly	asked	this	when	he	was	10.	Instead	of
laboriously	adding	together	the	numbers	like	the	other	students,
he	saw	that	they	consisted	of	50	pairs	that	each	summed	to	101
(100	+	1,	99	+	2,	etc),	and	that	he	could	just	multiply	101	by	50
to	get	the	answer,	5050.

[2]	A	variant	is	that	intelligence	is	the	ability	to	solve	problems,
and	wisdom	the	judgement	to	know	how	to	use	those	solutions.
But	while	this	is	certainly	an	important	relationship	between
wisdom	and	intelligence,	it's	not	the	distinction	between	them.
Wisdom	is	useful	in	solving	problems	too,	and	intelligence	can
help	in	deciding	what	to	do	with	the	solutions.

[3]	In	judging	both	intelligence	and	wisdom	we	have	to	factor	out
some	knowledge.	People	who	know	the	combination	of	a	safe	will
be	better	at	opening	it	than	people	who	don't,	but	no	one	would
say	that	was	a	test	of	intelligence	or	wisdom.

But	knowledge	overlaps	with	wisdom	and	probably	also
intelligence.	A	knowledge	of	human	nature	is	certainly	part	of
wisdom.	So	where	do	we	draw	the	line?

Perhaps	the	solution	is	to	discount	knowledge	that	at	some	point
has	a	sharp	drop	in	utility.	For	example,	understanding	French
will	help	you	in	a	large	number	of	situations,	but	its	value	drops
sharply	as	soon	as	no	one	else	involved	knows	French.	Whereas
the	value	of	understanding	vanity	would	decline	more	gradually.

The	knowledge	whose	utility	drops	sharply	is	the	kind	that	has
little	relation	to	other	knowledge.	This	includes	mere
conventions,	like	languages	and	safe	combinations,	and	also	what
we'd	call	"random"	facts,	like	movie	stars'	birthdays,	or	how	to
distinguish	1956	from	1957	Studebakers.

[4]	People	seeking	some	single	thing	called	"wisdom"	have	been
fooled	by	grammar.	Wisdom	is	just	knowing	the	right	thing	to	do,
and	there	are	a	hundred	and	one	different	qualities	that	help	in
that.	Some,	like	selflessness,	might	come	from	meditating	in	an
empty	room,	and	others,	like	a	knowledge	of	human	nature,
might	come	from	going	to	drunken	parties.

Perhaps	realizing	this	will	help	dispel	the	cloud	of	semi-sacred
mystery	that	surrounds	wisdom	in	so	many	people's	eyes.	The
mystery	comes	mostly	from	looking	for	something	that	doesn't
exist.	And	the	reason	there	have	historically	been	so	many
different	schools	of	thought	about	how	to	achieve	wisdom	is	that
they've	focused	on	different	components	of	it.

When	I	use	the	word	"wisdom"	in	this	essay,	I	mean	no	more	than
whatever	collection	of	qualities	helps	people	make	the	right
choice	in	a	wide	variety	of	situations.

[5]	Even	in	English,	our	sense	of	the	word	"intelligence"	is
surprisingly	recent.	Predecessors	like	"understanding"	seem	to
have	had	a	broader	meaning.

[6]	There	is	of	course	some	uncertainty	about	how	closely	the
remarks	attributed	to	Confucius	and	Socrates	resemble	their
actual	opinions.	I'm	using	these	names	as	we	use	the	name
"Homer,"	to	mean	the	hypothetical	people	who	said	the	things
attributed	to	them.

[7]	Analects	VII:36,	Fung	trans.

Some	translators	use	"calm"	instead	of	"happy."	One	source	of
difficulty	here	is	that	present-day	English	speakers	have	a
different	idea	of	happiness	from	many	older	societies.	Every
language	probably	has	a	word	meaning	"how	one	feels	when
things	are	going	well,"	but	different	cultures	react	differently
when	things	go	well.	We	react	like	children,	with	smiles	and
laughter.	But	in	a	more	reserved	society,	or	in	one	where	life	was
tougher,	the	reaction	might	be	a	quiet	contentment.

[8]	It	may	have	been	Andrew	Wiles,	but	I'm	not	sure.	If	anyone
remembers	such	an	interview,	I'd	appreciate	hearing	from	you.

[9]	Confucius	claimed	proudly	that	he	had	never	invented
anything—that	he	had	simply	passed	on	an	accurate	account	of
ancient	traditions.	[Analects	VII:1]	It's	hard	for	us	now	to
appreciate	how	important	a	duty	it	must	have	been	in	preliterate
societies	to	remember	and	pass	on	the	group's	accumulated
knowledge.	Even	in	Confucius's	time	it	still	seems	to	have	been
the	first	duty	of	the	scholar.

[10]	The	bias	toward	wisdom	in	ancient	philosophy	may	be
exaggerated	by	the	fact	that,	in	both	Greece	and	China,	many	of
the	first	philosophers	(including	Confucius	and	Plato)	saw
themselves	as	teachers	of	administrators,	and	so	thought

disproportionately	about	such	matters.	The	few	people	who	did
invent	things,	like	storytellers,	must	have	seemed	an	outlying
data	point	that	could	be	ignored.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,	and
Robert	Morris	for	reading	drafts	of	this.

	

Why	to	Not	Not	Start	a
Startup
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Microsoft	is	Dead
April	2007

A	few	days	ago	I	suddenly	realized	Microsoft	was	dead.	I	was
talking	to	a	young	startup	founder	about	how	Google	was
different	from	Yahoo.	I	said	that	Yahoo	had	been	warped	from	the
start	by	their	fear	of	Microsoft.	That	was	why	they'd	positioned
themselves	as	a	"media	company"	instead	of	a	technology
company.	Then	I	looked	at	his	face	and	realized	he	didn't
understand.	It	was	as	if	I'd	told	him	how	much	girls	liked	Barry
Manilow	in	the	mid	80s.	Barry	who?

Microsoft?	He	didn't	say	anything,	but	I	could	tell	he	didn't	quite
believe	anyone	would	be	frightened	of	them.

Microsoft	cast	a	shadow	over	the	software	world	for	almost	20
years	starting	in	the	late	80s.	I	can	remember	when	it	was	IBM
before	them.	I	mostly	ignored	this	shadow.	I	never	used	Microsoft
software,	so	it	only	affected	me	indirectly—for	example,	in	the
spam	I	got	from	botnets.	And	because	I	wasn't	paying	attention,	I
didn't	notice	when	the	shadow	disappeared.

But	it's	gone	now.	I	can	sense	that.	No	one	is	even	afraid	of
Microsoft	anymore.	They	still	make	a	lot	of	money—so	does	IBM,
for	that	matter.	But	they're	not	dangerous.

When	did	Microsoft	die,	and	of	what?	I	know	they	seemed
dangerous	as	late	as	2001,	because	I	wrote	an	essay	then	about
how	they	were	less	dangerous	than	they	seemed.	I'd	guess	they
were	dead	by	2005.	I	know	when	we	started	Y	Combinator	we
didn't	worry	about	Microsoft	as	competition	for	the	startups	we
funded.	In	fact,	we've	never	even	invited	them	to	the	demo	days
we	organize	for	startups	to	present	to	investors.	We	invite	Yahoo
and	Google	and	some	other	Internet	companies,	but	we've	never
bothered	to	invite	Microsoft.	Nor	has	anyone	there	ever	even
sent	us	an	email.	They're	in	a	different	world.

road.html

What	killed	them?	Four	things,	I	think,	all	of	them	occurring
simultaneously	in	the	mid	2000s.

The	most	obvious	is	Google.	There	can	only	be	one	big	man	in
town,	and	they're	clearly	it.	Google	is	the	most	dangerous
company	now	by	far,	in	both	the	good	and	bad	senses	of	the
word.	Microsoft	can	at	best	limp	along	afterward.

When	did	Google	take	the	lead?	There	will	be	a	tendency	to	push
it	back	to	their	IPO	in	August	2004,	but	they	weren't	setting	the
terms	of	the	debate	then.	I'd	say	they	took	the	lead	in	2005.
Gmail	was	one	of	the	things	that	put	them	over	the	edge.	Gmail
showed	they	could	do	more	than	search.

Gmail	also	showed	how	much	you	could	do	with	web-based
software,	if	you	took	advantage	of	what	later	came	to	be	called
"Ajax."	And	that	was	the	second	cause	of	Microsoft's	death:
everyone	can	see	the	desktop	is	over.	It	now	seems	inevitable
that	applications	will	live	on	the	web—not	just	email,	but
everything,	right	up	to	Photoshop.	Even	Microsoft	sees	that	now.

Ironically,	Microsoft	unintentionally	helped	create	Ajax.	The	x	in
Ajax	is	from	the	XMLHttpRequest	object,	which	lets	the	browser
communicate	with	the	server	in	the	background	while	displaying
a	page.	(Originally	the	only	way	to	communicate	with	the	server
was	to	ask	for	a	new	page.)	XMLHttpRequest	was	created	by
Microsoft	in	the	late	90s	because	they	needed	it	for	Outlook.
What	they	didn't	realize	was	that	it	would	be	useful	to	a	lot	of
other	people	too—in	fact,	to	anyone	who	wanted	to	make	web
apps	work	like	desktop	ones.

The	other	critical	component	of	Ajax	is	Javascript,	the
programming	language	that	runs	in	the	browser.	Microsoft	saw
the	danger	of	Javascript	and	tried	to	keep	it	broken	for	as	long	as
they	could.	[1]	But	eventually	the	open	source	world	won,	by
producing	Javascript	libraries	that	grew	over	the	brokenness	of
Explorer	the	way	a	tree	grows	over	barbed	wire.

The	third	cause	of	Microsoft's	death	was	broadband	Internet.
Anyone	who	cares	can	have	fast	Internet	access	now.	And	the

http://live.com/
http://snipshot.com/
#f1n

bigger	the	pipe	to	the	server,	the	less	you	need	the	desktop.

The	last	nail	in	the	coffin	came,	of	all	places,	from	Apple.	Thanks
to	OS	X,	Apple	has	come	back	from	the	dead	in	a	way	that	is
extremely	rare	in	technology.	[2]	Their	victory	is	so	complete	that
I'm	now	surprised	when	I	come	across	a	computer	running
Windows.	Nearly	all	the	people	we	fund	at	Y	Combinator	use
Apple	laptops.	It	was	the	same	in	the	audience	at	startup	school.
All	the	computer	people	use	Macs	or	Linux	now.	Windows	is	for
grandmas,	like	Macs	used	to	be	in	the	90s.	So	not	only	does	the
desktop	no	longer	matter,	no	one	who	cares	about	computers
uses	Microsoft's	anyway.

And	of	course	Apple	has	Microsoft	on	the	run	in	music	too,	with
TV	and	phones	on	the	way.

I'm	glad	Microsoft	is	dead.	They	were	like	Nero	or	Commodus—
evil	in	the	way	only	inherited	power	can	make	you.	Because
remember,	the	Microsoft	monopoly	didn't	begin	with	Microsoft.
They	got	it	from	IBM.	The	software	business	was	overhung	by	a
monopoly	from	about	the	mid-1950s	to	about	2005.	For
practically	its	whole	existence,	that	is.	One	of	the	reasons	"Web
2.0"	has	such	an	air	of	euphoria	about	it	is	the	feeling,	conscious
or	not,	that	this	era	of	monopoly	may	finally	be	over.

Of	course,	as	a	hacker	I	can't	help	thinking	about	how	something
broken	could	be	fixed.	Is	there	some	way	Microsoft	could	come
back?	In	principle,	yes.	To	see	how,	envision	two	things:	(a)	the
amount	of	cash	Microsoft	now	has	on	hand,	and	(b)	Larry	and
Sergey	making	the	rounds	of	all	the	search	engines	ten	years	ago
trying	to	sell	the	idea	for	Google	for	a	million	dollars,	and	being
turned	down	by	everyone.

The	surprising	fact	is,	brilliant	hackers—dangerously	brilliant
hackers—can	be	had	very	cheaply,	by	the	standards	of	a	company
as	rich	as	Microsoft.	They	can't	hire	smart	people	anymore,	but
they	could	buy	as	many	as	they	wanted	for	only	an	order	of
magnitude	more.	So	if	they	wanted	to	be	a	contender	again,	this
is	how	they	could	do	it:

1.	 Buy	all	the	good	"Web	2.0"	startups.	They	could	get

#f2n
http://www.bosstalks.com/StartupSchool2007/all_macs_and_all_writing.jpg
hiring.html

substantially	all	of	them	for	less	than	they'd	have	to	pay	for
Facebook.

2.	 Put	them	all	in	a	building	in	Silicon	Valley,	surrounded	by
lead	shielding	to	protect	them	from	any	contact	with
Redmond.

I	feel	safe	suggesting	this,	because	they'd	never	do	it.	Microsoft's
biggest	weakness	is	that	they	still	don't	realize	how	much	they
suck.	They	still	think	they	can	write	software	in	house.	Maybe
they	can,	by	the	standards	of	the	desktop	world.	But	that	world
ended	a	few	years	ago.

I	already	know	what	the	reaction	to	this	essay	will	be.	Half	the
readers	will	say	that	Microsoft	is	still	an	enormously	profitable
company,	and	that	I	should	be	more	careful	about	drawing
conclusions	based	on	what	a	few	people	think	in	our	insular	little
"Web	2.0"	bubble.	The	other	half,	the	younger	half,	will	complain
that	this	is	old	news.

See	also:	Microsoft	is	Dead:	the	Cliffs	Notes

Notes

[1]	It	doesn't	take	a	conscious	effort	to	make	software
incompatible.	All	you	have	to	do	is	not	work	too	hard	at	fixing
bugs—which,	if	you're	a	big	company,	you	produce	in	copious
quantities.	The	situation	is	analogous	to	the	writing	of	"literary
theorists."	Most	don't	try	to	be	obscure;	they	just	don't	make	an
effort	to	be	clear.	It	wouldn't	pay.

[2]	In	part	because	Steve	Jobs	got	pushed	out	by	John	Sculley	in
a	way	that's	rare	among	technology	companies.	If	Apple's	board
hadn't	made	that	blunder,	they	wouldn't	have	had	to	bounce
back.

cliffsnotes.html

	

Two	Kinds	of	Judgement
April	2007

There	are	two	different	ways	people	judge	you.	Sometimes
judging	you	correctly	is	the	end	goal.	But	there's	a	second	much
more	common	type	of	judgement	where	it	isn't.	We	tend	to
regard	all	judgements	of	us	as	the	first	type.	We'd	probably	be
happier	if	we	realized	which	are	and	which	aren't.

The	first	type	of	judgement,	the	type	where	judging	you	is	the
end	goal,	include	court	cases,	grades	in	classes,	and	most
competitions.	Such	judgements	can	of	course	be	mistaken,	but
because	the	goal	is	to	judge	you	correctly,	there's	usually	some
kind	of	appeals	process.	If	you	feel	you've	been	misjudged,	you
can	protest	that	you've	been	treated	unfairly.

Nearly	all	the	judgements	made	on	children	are	of	this	type,	so
we	get	into	the	habit	early	in	life	of	thinking	that	all	judgements
are.

But	in	fact	there	is	a	second	much	larger	class	of	judgements
where	judging	you	is	only	a	means	to	something	else.	These
include	college	admissions,	hiring	and	investment	decisions,	and
of	course	the	judgements	made	in	dating.	This	kind	of	judgement
is	not	really	about	you.

Put	yourself	in	the	position	of	someone	selecting	players	for	a
national	team.	Suppose	for	the	sake	of	simplicity	that	this	is	a
game	with	no	positions,	and	that	you	have	to	select	20	players.
There	will	be	a	few	stars	who	clearly	should	make	the	team,	and
many	players	who	clearly	shouldn't.	The	only	place	your
judgement	makes	a	difference	is	in	the	borderline	cases.	Suppose
you	screw	up	and	underestimate	the	20th	best	player,	causing
him	not	to	make	the	team,	and	his	place	to	be	taken	by	the	21st
best.	You've	still	picked	a	good	team.	If	the	players	have	the
usual	distribution	of	ability,	the	21st	best	player	will	be	only

slightly	worse	than	the	20th	best.	Probably	the	difference
between	them	will	be	less	than	the	measurement	error.

The	20th	best	player	may	feel	he	has	been	misjudged.	But	your
goal	here	wasn't	to	provide	a	service	estimating	people's	ability.
It	was	to	pick	a	team,	and	if	the	difference	between	the	20th	and
21st	best	players	is	less	than	the	measurement	error,	you've	still
done	that	optimally.

It's	a	false	analogy	even	to	use	the	word	unfair	to	describe	this
kind	of	misjudgement.	It's	not	aimed	at	producing	a	correct
estimate	of	any	given	individual,	but	at	selecting	a	reasonably
optimal	set.

One	thing	that	leads	us	astray	here	is	that	the	selector	seems	to
be	in	a	position	of	power.	That	makes	him	seem	like	a	judge.	If
you	regard	someone	judging	you	as	a	customer	instead	of	a
judge,	the	expectation	of	fairness	goes	away.	The	author	of	a
good	novel	wouldn't	complain	that	readers	were	unfair	for
preferring	a	potboiler	with	a	racy	cover.	Stupid,	perhaps,	but	not
unfair.

Our	early	training	and	our	self-centeredness	combine	to	make	us
believe	that	every	judgement	of	us	is	about	us.	In	fact	most
aren't.	This	is	a	rare	case	where	being	less	self-centered	will
make	people	more	confident.	Once	you	realize	how	little	most
people	judging	you	care	about	judging	you	accurately—once	you
realize	that	because	of	the	normal	distribution	of	most	applicant
pools,	it	matters	least	to	judge	accurately	in	precisely	the	cases
where	judgement	has	the	most	effect—you	won't	take	rejection
so	personally.

And	curiously	enough,	taking	rejection	less	personally	may	help
you	to	get	rejected	less	often.	If	you	think	someone	judging	you
will	work	hard	to	judge	you	correctly,	you	can	afford	to	be
passive.	But	the	more	you	realize	that	most	judgements	are
greatly	influenced	by	random,	extraneous	factors—that	most
people	judging	you	are	more	like	a	fickle	novel	buyer	than	a	wise
and	perceptive	magistrate—the	more	you	realize	you	can	do
things	to	influence	the	outcome.

One	good	place	to	apply	this	principle	is	in	college	applications.
Most	high	school	students	applying	to	college	do	it	with	the	usual
child's	mix	of	inferiority	and	self-centeredness:	inferiority	in	that
they	assume	that	admissions	committees	must	be	all-seeing;	self-
centeredness	in	that	they	assume	admissions	committees	care
enough	about	them	to	dig	down	into	their	application	and	figure
out	whether	they're	good	or	not.	These	combine	to	make
applicants	passive	in	applying	and	hurt	when	they're	rejected.	If
college	applicants	realized	how	quick	and	impersonal	most
selection	processes	are,	they'd	make	more	effort	to	sell
themselves,	and	take	the	outcome	less	personally.

	

The	Hacker's	Guide	to
Investors
April	2007

(This	essay	is	derived	from	a	keynote	talk	at	the	2007	ASES
Summit	at	Stanford.)

The	world	of	investors	is	a	foreign	one	to	most	hackers—partly
because	investors	are	so	unlike	hackers,	and	partly	because	they
tend	to	operate	in	secret.	I've	been	dealing	with	this	world	for
many	years,	both	as	a	founder	and	an	investor,	and	I	still	don't
fully	understand	it.

In	this	essay	I'm	going	to	list	some	of	the	more	surprising	things
I've	learned	about	investors.	Some	I	only	learned	in	the	past	year.

Teaching	hackers	how	to	deal	with	investors	is	probably	the
second	most	important	thing	we	do	at	Y	Combinator.	The	most
important	thing	for	a	startup	is	to	make	something	good.	But
everyone	knows	that's	important.	The	dangerous	thing	about
investors	is	that	hackers	don't	know	how	little	they	know	about
this	strange	world.

1.	The	investors	are	what	make	a	startup	hub.

About	a	year	ago	I	tried	to	figure	out	what	you'd	need	to
reproduce	Silicon	Valley.	I	decided	the	critical	ingredients	were
rich	people	and	nerds—investors	and	founders.	People	are	all	you
need	to	make	technology,	and	all	the	other	people	will	move.

If	I	had	to	narrow	that	down,	I'd	say	investors	are	the	limiting
factor.	Not	because	they	contribute	more	to	the	startup,	but
simply	because	they're	least	willing	to	move.	They're	rich.
They're	not	going	to	move	to	Albuquerque	just	because	there	are
some	smart	hackers	there	they	could	invest	in.	Whereas	hackers

siliconvalley.html

will	move	to	the	Bay	Area	to	find	investors.

2.	Angel	investors	are	the	most	critical.

There	are	several	types	of	investors.	The	two	main	categories	are
angels	and	VCs:	VCs	invest	other	people's	money,	and	angels
invest	their	own.

Though	they're	less	well	known,	the	angel	investors	are	probably
the	more	critical	ingredient	in	creating	a	silicon	valley.	Most
companies	that	VCs	invest	in	would	never	have	made	it	that	far	if
angels	hadn't	invested	first.	VCs	say	between	half	and	three
quarters	of	companies	that	raise	series	A	rounds	have	taken
some	outside	investment	already.	[1]

Angels	are	willing	to	fund	riskier	projects	than	VCs.	They	also
give	valuable	advice,	because	(unlike	VCs)	many	have	been
startup	founders	themselves.

Google's	story	shows	the	key	role	angels	play.	A	lot	of	people
know	Google	raised	money	from	Kleiner	and	Sequoia.	What	most
don't	realize	is	how	late.	That	VC	round	was	a	series	B	round;	the
premoney	valuation	was	$75	million.	Google	was	already	a
successful	company	at	that	point.	Really,	Google	was	funded	with
angel	money.

It	may	seem	odd	that	the	canonical	Silicon	Valley	startup	was
funded	by	angels,	but	this	is	not	so	surprising.	Risk	is	always
proportionate	to	reward.	So	the	most	successful	startup	of	all	is
likely	to	have	seemed	an	extremely	risky	bet	at	first,	and	that	is
exactly	the	kind	VCs	won't	touch.

Where	do	angel	investors	come	from?	From	other	startups.	So
startup	hubs	like	Silicon	Valley	benefit	from	something	like	the
marketplace	effect,	but	shifted	in	time:	startups	are	there
because	startups	were	there.

3.	Angels	don't	like	publicity.

If	angels	are	so	important,	why	do	we	hear	more	about	VCs?
Because	VCs	like	publicity.	They	need	to	market	themselves	to

#f1n

the	investors	who	are	their	"customers"—the	endowments	and
pension	funds	and	rich	families	whose	money	they	invest—and
also	to	founders	who	might	come	to	them	for	funding.

Angels	don't	need	to	market	themselves	to	investors	because
they	invest	their	own	money.	Nor	do	they	want	to	market
themselves	to	founders:	they	don't	want	random	people	pestering
them	with	business	plans.	Actually,	neither	do	VCs.	Both	angels
and	VCs	get	deals	almost	exclusively	through	personal
introductions.	[2]

The	reason	VCs	want	a	strong	brand	is	not	to	draw	in	more
business	plans	over	the	transom,	but	so	they	win	deals	when
competing	against	other	VCs.	Whereas	angels	are	rarely	in	direct
competition,	because	(a)	they	do	fewer	deals,	(b)	they're	happy	to
split	them,	and	(c)	they	invest	at	a	point	where	the	stream	is
broader.

4.	Most	investors,	especially	VCs,	are	not	like	founders.

Some	angels	are,	or	were,	hackers.	But	most	VCs	are	a	different
type	of	people:	they're	dealmakers.

If	you're	a	hacker,	here's	a	thought	experiment	you	can	run	to
understand	why	there	are	basically	no	hacker	VCs:	How	would
you	like	a	job	where	you	never	got	to	make	anything,	but	instead
spent	all	your	time	listening	to	other	people	pitch	(mostly
terrible)	projects,	deciding	whether	to	fund	them,	and	sitting	on
their	boards	if	you	did?	That	would	not	be	fun	for	most	hackers.
Hackers	like	to	make	things.	This	would	be	like	being	an
administrator.

Because	most	VCs	are	a	different	species	of	people	from
founders,	it's	hard	to	know	what	they're	thinking.	If	you're	a
hacker,	the	last	time	you	had	to	deal	with	these	guys	was	in	high
school.	Maybe	in	college	you	walked	past	their	fraternity	on	your
way	to	the	lab.	But	don't	underestimate	them.	They're	as	expert
in	their	world	as	you	are	in	yours.	What	they're	good	at	is
reading	people,	and	making	deals	work	to	their	advantage.	Think
twice	before	you	try	to	beat	them	at	that.

#f2n

5.	Most	investors	are	momentum	investors.

Because	most	investors	are	dealmakers	rather	than	technology
people,	they	generally	don't	understand	what	you're	doing.	I
knew	as	a	founder	that	most	VCs	didn't	get	technology.	I	also
knew	some	made	a	lot	of	money.	And	yet	it	never	occurred	to	me
till	recently	to	put	those	two	ideas	together	and	ask	"How	can
VCs	make	money	by	investing	in	stuff	they	don't	understand?"

The	answer	is	that	they're	like	momentum	investors.	You	can	(or
could	once)	make	a	lot	of	money	by	noticing	sudden	changes	in
stock	prices.	When	a	stock	jumps	upward,	you	buy,	and	when	it
suddenly	drops,	you	sell.	In	effect	you're	insider	trading,	without
knowing	what	you	know.	You	just	know	someone	knows
something,	and	that's	making	the	stock	move.

This	is	how	most	venture	investors	operate.	They	don't	try	to	look
at	something	and	predict	whether	it	will	take	off.	They	win	by
noticing	that	something	is	taking	off	a	little	sooner	than	everyone
else.	That	generates	almost	as	good	returns	as	actually	being
able	to	pick	winners.	They	may	have	to	pay	a	little	more	than
they	would	if	they	got	in	at	the	very	beginning,	but	only	a	little.

Investors	always	say	what	they	really	care	about	is	the	team.
Actually	what	they	care	most	about	is	your	traffic,	then	what
other	investors	think,	then	the	team.	If	you	don't	yet	have	any
traffic,	they	fall	back	on	number	2,	what	other	investors	think.
And	this,	as	you	can	imagine,	produces	wild	oscillations	in	the
"stock	price"	of	a	startup.	One	week	everyone	wants	you,	and
they're	begging	not	to	be	cut	out	of	the	deal.	But	all	it	takes	is	for
one	big	investor	to	cool	on	you,	and	the	next	week	no	one	will
return	your	phone	calls.	We	regularly	have	startups	go	from	hot
to	cold	or	cold	to	hot	in	a	matter	of	days,	and	literally	nothing	has
changed.

There	are	two	ways	to	deal	with	this	phenomenon.	If	you're
feeling	really	confident,	you	can	try	to	ride	it.	You	can	start	by
asking	a	comparatively	lowly	VC	for	a	small	amount	of	money,
and	then	after	generating	interest	there,	ask	more	prestigious
VCs	for	larger	amounts,	stirring	up	a	crescendo	of	buzz,	and	then
"sell"	at	the	top.	This	is	extremely	risky,	and	takes	months	even	if

you	succeed.	I	wouldn't	try	it	myself.	My	advice	is	to	err	on	the
side	of	safety:	when	someone	offers	you	a	decent	deal,	just	take	it
and	get	on	with	building	the	company.	Startups	win	or	lose	based
on	the	quality	of	their	product,	not	the	quality	of	their	funding
deals.

6.	Most	investors	are	looking	for	big	hits.

Venture	investors	like	companies	that	could	go	public.	That's
where	the	big	returns	are.	They	know	the	odds	of	any	individual
startup	going	public	are	small,	but	they	want	to	invest	in	those
that	at	least	have	a	chance	of	going	public.

Currently	the	way	VCs	seem	to	operate	is	to	invest	in	a	bunch	of
companies,	most	of	which	fail,	and	one	of	which	is	Google.	Those
few	big	wins	compensate	for	losses	on	their	other	investments.
What	this	means	is	that	most	VCs	will	only	invest	in	you	if	you're
a	potential	Google.	They	don't	care	about	companies	that	are	a
safe	bet	to	be	acquired	for	$20	million.	There	needs	to	be	a
chance,	however	small,	of	the	company	becoming	really	big.

Angels	are	different	in	this	respect.	They're	happy	to	invest	in	a
company	where	the	most	likely	outcome	is	a	$20	million
acquisition	if	they	can	do	it	at	a	low	enough	valuation.	But	of
course	they	like	companies	that	could	go	public	too.	So	having	an
ambitious	long-term	plan	pleases	everyone.

If	you	take	VC	money,	you	have	to	mean	it,	because	the	structure
of	VC	deals	prevents	early	acquisitions.	If	you	take	VC	money,
they	won't	let	you	sell	early.

7.	VCs	want	to	invest	large	amounts.

The	fact	that	they're	running	investment	funds	makes	VCs	want
to	invest	large	amounts.	A	typical	VC	fund	is	now	hundreds	of
millions	of	dollars.	If	$400	million	has	to	be	invested	by	10
partners,	they	have	to	invest	$40	million	each.	VCs	usually	sit	on
the	boards	of	companies	they	fund.	If	the	average	deal	size	was
$1	million,	each	partner	would	have	to	sit	on	40	boards,	which
would	not	be	fun.	So	they	prefer	bigger	deals,	where	they	can
put	a	lot	of	money	to	work	at	once.

VCs	don't	regard	you	as	a	bargain	if	you	don't	need	a	lot	of
money.	That	may	even	make	you	less	attractive,	because	it	means
their	investment	creates	less	of	a	barrier	to	entry	for
competitors.

Angels	are	in	a	different	position	because	they're	investing	their
own	money.	They're	happy	to	invest	small	amounts—sometimes
as	little	as	$20,000—as	long	as	the	potential	returns	look	good
enough.	So	if	you're	doing	something	inexpensive,	go	to	angels.

8.	Valuations	are	fiction.

VCs	admit	that	valuations	are	an	artifact.	They	decide	how	much
money	you	need	and	how	much	of	the	company	they	want,	and
those	two	constraints	yield	a	valuation.

Valuations	increase	as	the	size	of	the	investment	does.	A
company	that	an	angel	is	willing	to	put	$50,000	into	at	a
valuation	of	a	million	can't	take	$6	million	from	VCs	at	that
valuation.	That	would	leave	the	founders	less	than	a	seventh	of
the	company	between	them	(since	the	option	pool	would	also
come	out	of	that	seventh).	Most	VCs	wouldn't	want	that,	which	is
why	you	never	hear	of	deals	where	a	VC	invests	$6	million	at	a
premoney	valuation	of	$1	million.

If	valuations	change	depending	on	the	amount	invested,	that
shows	how	far	they	are	from	reflecting	any	kind	of	value	of	the
company.

Since	valuations	are	made	up,	founders	shouldn't	care	too	much
about	them.	That's	not	the	part	to	focus	on.	In	fact,	a	high
valuation	can	be	a	bad	thing.	If	you	take	funding	at	a	premoney
valuation	of	$10	million,	you	won't	be	selling	the	company	for	20.
You'll	have	to	sell	for	over	50	for	the	VCs	to	get	even	a	5x	return,
which	is	low	to	them.	More	likely	they'll	want	you	to	hold	out	for
100.	But	needing	to	get	a	high	price	decreases	the	chance	of
getting	bought	at	all;	many	companies	can	buy	you	for	$10
million,	but	only	a	handful	for	100.	And	since	a	startup	is	like	a
pass/fail	course	for	the	founders,	what	you	want	to	optimize	is
your	chance	of	a	good	outcome,	not	the	percentage	of	the

company	you	keep.

So	why	do	founders	chase	high	valuations?	They're	tricked	by
misplaced	ambition.	They	feel	they've	achieved	more	if	they	get	a
higher	valuation.	They	usually	know	other	founders,	and	if	they
get	a	higher	valuation	they	can	say	"mine	is	bigger	than	yours."
But	funding	is	not	the	real	test.	The	real	test	is	the	final	outcome
for	the	founder,	and	getting	too	high	a	valuation	may	just	make	a
good	outcome	less	likely.

The	one	advantage	of	a	high	valuation	is	that	you	get	less
dilution.	But	there	is	another	less	sexy	way	to	achieve	that:	just
take	less	money.

9.	Investors	look	for	founders	like	the	current	stars.

Ten	years	ago	investors	were	looking	for	the	next	Bill	Gates.	This
was	a	mistake,	because	Microsoft	was	a	very	anomalous	startup.
They	started	almost	as	a	contract	programming	operation,	and
the	reason	they	became	huge	was	that	IBM	happened	to	drop	the
PC	standard	in	their	lap.

Now	all	the	VCs	are	looking	for	the	next	Larry	and	Sergey.	This	is
a	good	trend,	because	Larry	and	Sergey	are	closer	to	the	ideal
startup	founders.

Historically	investors	thought	it	was	important	for	a	founder	to
be	an	expert	in	business.	So	they	were	willing	to	fund	teams	of
MBAs	who	planned	to	use	the	money	to	pay	programmers	to
build	their	product	for	them.	This	is	like	funding	Steve	Ballmer	in
the	hope	that	the	programmer	he'll	hire	is	Bill	Gates—kind	of
backward,	as	the	events	of	the	Bubble	showed.	Now	most	VCs
know	they	should	be	funding	technical	guys.	This	is	more
pronounced	among	the	very	top	funds;	the	lamer	ones	still	want
to	fund	MBAs.

If	you're	a	hacker,	it's	good	news	that	investors	are	looking	for
Larry	and	Sergey.	The	bad	news	is,	the	only	investors	who	can	do
it	right	are	the	ones	who	knew	them	when	they	were	a	couple	of
CS	grad	students,	not	the	confident	media	stars	they	are	today.
What	investors	still	don't	get	is	how	clueless	and	tentative	great

founders	can	seem	at	the	very	beginning.

10.	The	contribution	of	investors	tends	to	be	underestimated.

Investors	do	more	for	startups	than	give	them	money.	They're
helpful	in	doing	deals	and	arranging	introductions,	and	some	of
the	smarter	ones,	particularly	angels,	can	give	good	advice	about
the	product.

In	fact,	I'd	say	what	separates	the	great	investors	from	the
mediocre	ones	is	the	quality	of	their	advice.	Most	investors	give
advice,	but	the	top	ones	give	good	advice.

Whatever	help	investors	give	a	startup	tends	to	be
underestimated.	It's	to	everyone's	advantage	to	let	the	world
think	the	founders	thought	of	everything.	The	goal	of	the
investors	is	for	the	company	to	become	valuable,	and	the
company	seems	more	valuable	if	it	seems	like	all	the	good	ideas
came	from	within.

This	trend	is	compounded	by	the	obsession	that	the	press	has
with	founders.	In	a	company	founded	by	two	people,	10%	of	the
ideas	might	come	from	the	first	guy	they	hire.	Arguably	they've
done	a	bad	job	of	hiring	otherwise.	And	yet	this	guy	will	be
almost	entirely	overlooked	by	the	press.

I	say	this	as	a	founder:	the	contribution	of	founders	is	always
overestimated.	The	danger	here	is	that	new	founders,	looking	at
existing	founders,	will	think	that	they're	supermen	that	one
couldn't	possibly	equal	oneself.	Actually	they	have	a	hundred
different	types	of	support	people	just	offscreen	making	the	whole
show	possible.	[3]

11.	VCs	are	afraid	of	looking	bad.

I've	been	very	surprised	to	discover	how	timid	most	VCs	are.
They	seem	to	be	afraid	of	looking	bad	to	their	partners,	and
perhaps	also	to	the	limited	partners—the	people	whose	money
they	invest.

You	can	measure	this	fear	in	how	much	less	risk	VCs	are	willing

#f3n

to	take.	You	can	tell	they	won't	make	investments	for	their	fund
that	they	might	be	willing	to	make	themselves	as	angels.	Though
it's	not	quite	accurate	to	say	that	VCs	are	less	willing	to	take
risks.	They're	less	willing	to	do	things	that	might	look	bad.	That's
not	the	same	thing.

For	example,	most	VCs	would	be	very	reluctant	to	invest	in	a
startup	founded	by	a	pair	of	18	year	old	hackers,	no	matter	how
brilliant,	because	if	the	startup	failed	their	partners	could	turn	on
them	and	say	"What,	you	invested	$x	million	of	our	money	in	a
pair	of	18	year	olds?"	Whereas	if	a	VC	invested	in	a	startup
founded	by	three	former	banking	executives	in	their	40s	who
planned	to	outsource	their	product	development—which	to	my
mind	is	actually	a	lot	riskier	than	investing	in	a	pair	of	really
smart	18	year	olds—he	couldn't	be	faulted,	if	it	failed,	for	making
such	an	apparently	prudent	investment.

As	a	friend	of	mine	said,	"Most	VCs	can't	do	anything	that	would
sound	bad	to	the	kind	of	doofuses	who	run	pension	funds."
Angels	can	take	greater	risks	because	they	don't	have	to	answer
to	anyone.

12.	Being	turned	down	by	investors	doesn't	mean	much.

Some	founders	are	quite	dejected	when	they	get	turned	down	by
investors.	They	shouldn't	take	it	so	much	to	heart.	To	start	with,
investors	are	often	wrong.	It's	hard	to	think	of	a	successful
startup	that	wasn't	turned	down	by	investors	at	some	point.	Lots
of	VCs	rejected	Google.	So	obviously	the	reaction	of	investors	is
not	a	very	meaningful	test.

Investors	will	often	reject	you	for	what	seem	to	be	superficial
reasons.	I	read	of	one	VC	who	turned	down	a	startup	simply
because	they'd	given	away	so	many	little	bits	of	stock	that	the
deal	required	too	many	signatures	to	close.	[4]	The	reason
investors	can	get	away	with	this	is	that	they	see	so	many	deals.	It
doesn't	matter	if	they	underestimate	you	because	of	some
surface	imperfection,	because	the	next	best	deal	will	be	almost
as	good.	Imagine	picking	out	apples	at	a	grocery	store.	You	grab
one	with	a	little	bruise.	Maybe	it's	just	a	surface	bruise,	but	why
even	bother	checking	when	there	are	so	many	other	unbruised

http://ricksegal.typepad.com/pmv/2007/02/a_fatal_paper_c.html
#f4n
judgement.html

apples	to	choose	from?

Investors	would	be	the	first	to	admit	they're	often	wrong.	So
when	you	get	rejected	by	investors,	don't	think	"we	suck,"	but
instead	ask	"do	we	suck?"	Rejection	is	a	question,	not	an	answer.

13.	Investors	are	emotional.

I've	been	surprised	to	discover	how	emotional	investors	can	be.
You'd	expect	them	to	be	cold	and	calculating,	or	at	least
businesslike,	but	often	they're	not.	I'm	not	sure	if	it's	their
position	of	power	that	makes	them	this	way,	or	the	large	sums	of
money	involved,	but	investment	negotiations	can	easily	turn
personal.	If	you	offend	investors,	they'll	leave	in	a	huff.

A	while	ago	an	eminent	VC	firm	offered	a	series	A	round	to	a
startup	we'd	seed	funded.	Then	they	heard	a	rival	VC	firm	was
also	interested.	They	were	so	afraid	that	they'd	be	rejected	in
favor	of	this	other	firm	that	they	gave	the	startup	what's	known
as	an	"exploding	termsheet."	They	had,	I	think,	24	hours	to	say
yes	or	no,	or	the	deal	was	off.	Exploding	termsheets	are	a
somewhat	dubious	device,	but	not	uncommon.	What	surprised
me	was	their	reaction	when	I	called	to	talk	about	it.	I	asked	if
they'd	still	be	interested	in	the	startup	if	the	rival	VC	didn't	end
up	making	an	offer,	and	they	said	no.	What	rational	basis	could
they	have	had	for	saying	that?	If	they	thought	the	startup	was
worth	investing	in,	what	difference	should	it	make	what	some
other	VC	thought?	Surely	it	was	their	duty	to	their	limited
partners	simply	to	invest	in	the	best	opportunities	they	found;
they	should	be	delighted	if	the	other	VC	said	no,	because	it	would
mean	they'd	overlooked	a	good	opportunity.	But	of	course	there
was	no	rational	basis	for	their	decision.	They	just	couldn't	stand
the	idea	of	taking	this	rival	firm's	rejects.

In	this	case	the	exploding	termsheet	was	not	(or	not	only)	a	tactic
to	pressure	the	startup.	It	was	more	like	the	high	school	trick	of
breaking	up	with	someone	before	they	can	break	up	with	you.	In
an	earlier	essay	I	said	that	VCs	were	a	lot	like	high	school	girls.	A
few	VCs	have	joked	about	that	characterization,	but	none	have
disputed	it.

startupfunding.html

14.	The	negotiation	never	stops	till	the	closing.

Most	deals,	for	investment	or	acquisition,	happen	in	two	phases.
There's	an	initial	phase	of	negotiation	about	the	big	questions.	If
this	succeeds	you	get	a	termsheet,	so	called	because	it	outlines
the	key	terms	of	a	deal.	A	termsheet	is	not	legally	binding,	but	it
is	a	definite	step.	It's	supposed	to	mean	that	a	deal	is	going	to
happen,	once	the	lawyers	work	out	all	the	details.	In	theory	these
details	are	minor	ones;	by	definition	all	the	important	points	are
supposed	to	be	covered	in	the	termsheet.

Inexperience	and	wishful	thinking	combine	to	make	founders	feel
that	when	they	have	a	termsheet,	they	have	a	deal.	They	want
there	to	be	a	deal;	everyone	acts	like	they	have	a	deal;	so	there
must	be	a	deal.	But	there	isn't	and	may	not	be	for	several
months.	A	lot	can	change	for	a	startup	in	several	months.	It's	not
uncommon	for	investors	and	acquirers	to	get	buyer's	remorse.	So
you	have	to	keep	pushing,	keep	selling,	all	the	way	to	the	close.
Otherwise	all	the	"minor"	details	left	unspecified	in	the
termsheet	will	be	interpreted	to	your	disadvantage.	The	other
side	may	even	break	the	deal;	if	they	do	that,	they'll	usually	seize
on	some	technicality	or	claim	you	misled	them,	rather	than
admitting	they	changed	their	minds.

It	can	be	hard	to	keep	the	pressure	on	an	investor	or	acquirer	all
the	way	to	the	closing,	because	the	most	effective	pressure	is
competition	from	other	investors	or	acquirers,	and	these	tend	to
drop	away	when	you	get	a	termsheet.	You	should	try	to	stay	as
close	friends	as	you	can	with	these	rivals,	but	the	most	important
thing	is	just	to	keep	up	the	momentum	in	your	startup.	The
investors	or	acquirers	chose	you	because	you	seemed	hot.	Keep
doing	whatever	made	you	seem	hot.	Keep	releasing	new	features;
keep	getting	new	users;	keep	getting	mentioned	in	the	press	and
in	blogs.

15.	Investors	like	to	co-invest.

I've	been	surprised	how	willing	investors	are	to	split	deals.	You
might	think	that	if	they	found	a	good	deal	they'd	want	it	all	to
themselves,	but	they	seem	positively	eager	to	syndicate.	This	is
understandable	with	angels;	they	invest	on	a	smaller	scale	and

don't	like	to	have	too	much	money	tied	up	in	any	one	deal.	But
VCs	also	share	deals	a	lot.	Why?

Partly	I	think	this	is	an	artifact	of	the	rule	I	quoted	earlier:	after
traffic,	VCs	care	most	what	other	VCs	think.	A	deal	that	has
multiple	VCs	interested	in	it	is	more	likely	to	close,	so	of	deals
that	close,	more	will	have	multiple	investors.

There	is	one	rational	reason	to	want	multiple	VCs	in	a	deal:	Any
investor	who	co-invests	with	you	is	one	less	investor	who	could
fund	a	competitor.	Apparently	Kleiner	and	Sequoia	didn't	like
splitting	the	Google	deal,	but	it	did	at	least	have	the	advantage,
from	each	one's	point	of	view,	that	there	probably	wouldn't	be	a
competitor	funded	by	the	other.	Splitting	deals	thus	has	similar
advantages	to	confusing	paternity.

But	I	think	the	main	reason	VCs	like	splitting	deals	is	the	fear	of
looking	bad.	If	another	firm	shares	the	deal,	then	in	the	event	of
failure	it	will	seem	to	have	been	a	prudent	choice—a	consensus
decision,	rather	than	just	the	whim	of	an	individual	partner.

16.	Investors	collude.

Investing	is	not	covered	by	antitrust	law.	At	least,	it	better	not	be,
because	investors	regularly	do	things	that	would	be	illegal
otherwise.	I	know	personally	of	cases	where	one	investor	has
talked	another	out	of	making	a	competitive	offer,	using	the
promise	of	sharing	future	deals.

In	principle	investors	are	all	competing	for	the	same	deals,	but
the	spirit	of	cooperation	is	stronger	than	the	spirit	of
competition.	The	reason,	again,	is	that	there	are	so	many	deals.
Though	a	professional	investor	may	have	a	closer	relationship
with	a	founder	he	invests	in	than	with	other	investors,	his
relationship	with	the	founder	is	only	going	to	last	a	couple	years,
whereas	his	relationship	with	other	firms	will	last	his	whole
career.	There	isn't	so	much	at	stake	in	his	interactions	with	other
investors,	but	there	will	be	a	lot	of	them.	Professional	investors
are	constantly	trading	little	favors.

Another	reason	investors	stick	together	is	to	preserve	the	power

of	investors	as	a	whole.	So	you	will	not,	as	of	this	writing,	be	able
to	get	investors	into	an	auction	for	your	series	A	round.	They'd
rather	lose	the	deal	than	establish	a	precedent	of	VCs
competitively	bidding	against	one	another.	An	efficient	startup
funding	market	may	be	coming	in	the	distant	future;	things	tend
to	move	in	that	direction;	but	it's	certainly	not	here	now.	

17.	Large-scale	investors	care	about	their	portfolio,	not	any
individual	company.

The	reason	startups	work	so	well	is	that	everyone	with	power
also	has	equity.	The	only	way	any	of	them	can	succeed	is	if	they
all	do.	This	makes	everyone	naturally	pull	in	the	same	direction,
subject	to	differences	of	opinion	about	tactics.

The	problem	is,	larger	scale	investors	don't	have	exactly	the
same	motivation.	Close,	but	not	identical.	They	don't	need	any
given	startup	to	succeed,	like	founders	do,	just	their	portfolio	as
a	whole	to.	So	in	borderline	cases	the	rational	thing	for	them	to
do	is	to	sacrifice	unpromising	startups.

Large-scale	investors	tend	to	put	startups	in	three	categories:
successes,	failures,	and	the	"living	dead"—companies	that	are
plugging	along	but	don't	seem	likely	in	the	immediate	future	to
get	bought	or	go	public.	To	the	founders,	"living	dead"	sounds
harsh.	These	companies	may	be	far	from	failures	by	ordinary
standards.	But	they	might	as	well	be	from	a	venture	investor's
point	of	view,	and	they	suck	up	just	as	much	time	and	attention
as	the	successes.	So	if	such	a	company	has	two	possible
strategies,	a	conservative	one	that's	slightly	more	likely	to	work
in	the	end,	or	a	risky	one	that	within	a	short	time	will	either	yield
a	giant	success	or	kill	the	company,	VCs	will	push	for	the	kill-or-
cure	option.	To	them	the	company	is	already	a	write-off.	Better	to
have	resolution,	one	way	or	the	other,	as	soon	as	possible.

If	a	startup	gets	into	real	trouble,	instead	of	trying	to	save	it	VCs
may	just	sell	it	at	a	low	price	to	another	of	their	portfolio
companies.	Philip	Greenspun	said	in	Founders	at	Work	that	Ars
Digita's	VCs	did	this	to	them.

18.	Investors	have	different	risk	profiles	from	founders.

http://www.amazon.com/gp/product/1590597141

Most	people	would	rather	a	100%	chance	of	$1	million	than	a
20%	chance	of	$10	million.	Investors	are	rich	enough	to	be
rational	and	prefer	the	latter.	So	they'll	always	tend	to	encourage
founders	to	keep	rolling	the	dice.	If	a	company	is	doing	well,
investors	will	want	founders	to	turn	down	most	acquisition	offers.
And	indeed,	most	startups	that	turn	down	acquisition	offers
ultimately	do	better.	But	it's	still	hair-raising	for	the	founders,
because	they	might	end	up	with	nothing.	When	someone's
offering	to	buy	you	for	a	price	at	which	your	stock	is	worth	$5
million,	saying	no	is	equivalent	to	having	$5	million	and	betting	it
all	on	one	spin	of	the	roulette	wheel.

Investors	will	tell	you	the	company	is	worth	more.	And	they	may
be	right.	But	that	doesn't	mean	it's	wrong	to	sell.	Any	financial
advisor	who	put	all	his	client's	assets	in	the	stock	of	a	single,
private	company	would	probably	lose	his	license	for	it.

More	and	more,	investors	are	letting	founders	cash	out	partially.
That	should	correct	the	problem.	Most	founders	have	such	low
standards	that	they'll	feel	rich	with	a	sum	that	doesn't	seem	huge
to	investors.	But	this	custom	is	spreading	too	slowly,	because	VCs
are	afraid	of	seeming	irresponsible.	No	one	wants	to	be	the	first
VC	to	give	someone	fuck-you	money	and	then	actually	get	told
"fuck	you."	But	until	this	does	start	to	happen,	we	know	VCs	are
being	too	conservative.

19.	Investors	vary	greatly.

Back	when	I	was	a	founder	I	used	to	think	all	VCs	were	the	same.
And	in	fact	they	do	all	look	the	same.	They're	all	what	hackers
call	"suits."	But	since	I've	been	dealing	with	VCs	more	I've
learned	that	some	suits	are	smarter	than	others.

They're	also	in	a	business	where	winners	tend	to	keep	winning
and	losers	to	keep	losing.	When	a	VC	firm	has	been	successful	in
the	past,	everyone	wants	funding	from	them,	so	they	get	the	pick
of	all	the	new	deals.	The	self-reinforcing	nature	of	the	venture
funding	market	means	that	the	top	ten	firms	live	in	a	completely
different	world	from,	say,	the	hundredth.	As	well	as	being
smarter,	they	tend	to	be	calmer	and	more	upstanding;	they	don't

http://www.redpoint.com/team/

need	to	do	iffy	things	to	get	an	edge,	and	don't	want	to	because
they	have	more	brand	to	protect.

There	are	only	two	kinds	of	VCs	you	want	to	take	money	from,	if
you	have	the	luxury	of	choosing:	the	"top	tier"	VCs,	meaning
about	the	top	20	or	so	firms,	plus	a	few	new	ones	that	are	not
among	the	top	20	only	because	they	haven't	been	around	long
enough.

It's	particularly	important	to	raise	money	from	a	top	firm	if	you're
a	hacker,	because	they're	more	confident.	That	means	they're
less	likely	to	stick	you	with	a	business	guy	as	CEO,	like	VCs	used
to	do	in	the	90s.	If	you	seem	smart	and	want	to	do	it,	they'll	let
you	run	the	company.

20.	Investors	don't	realize	how	much	it	costs	to	raise	money	from
them.

Raising	money	is	a	huge	time	suck	at	just	the	point	where
startups	can	least	afford	it.	It's	not	unusual	for	it	to	take	five	or
six	months	to	close	a	funding	round.	Six	weeks	is	fast.	And
raising	money	is	not	just	something	you	can	leave	running	as	a
background	process.	When	you're	raising	money,	it's	inevitably
the	main	focus	of	the	company.	Which	means	building	the
product	isn't.

Suppose	a	Y	Combinator	company	starts	talking	to	VCs	after
demo	day,	and	is	successful	in	raising	money	from	them,	closing
the	deal	after	a	comparatively	short	8	weeks.	Since	demo	day
occurs	after	10	weeks,	the	company	is	now	18	weeks	old.	Raising
money,	rather	than	working	on	the	product,	has	been	the
company's	main	focus	for	44%	of	its	existence.	And	mind	you,
this	an	example	where	things	turned	out	well.

When	a	startup	does	return	to	working	on	the	product	after	a
funding	round	finally	closes,	it's	as	if	they	were	returning	to	work
after	a	months-long	illness.	They've	lost	most	of	their	momentum.

Investors	have	no	idea	how	much	they	damage	the	companies
they	invest	in	by	taking	so	long	to	do	it.	But	companies	do.	So
there	is	a	big	opportunity	here	for	a	new	kind	of	venture	fund

that	invests	smaller	amounts	at	lower	valuations,	but	promises	to
either	close	or	say	no	very	quickly.	If	there	were	such	a	firm,	I'd
recommend	it	to	startups	in	preference	to	any	other,	no	matter
how	prestigious.	Startups	live	on	speed	and	momentum.

21.	Investors	don't	like	to	say	no.

The	reason	funding	deals	take	so	long	to	close	is	mainly	that
investors	can't	make	up	their	minds.	VCs	are	not	big	companies;
they	can	do	a	deal	in	24	hours	if	they	need	to.	But	they	usually	let
the	initial	meetings	stretch	out	over	a	couple	weeks.	The	reason
is	the	selection	algorithm	I	mentioned	earlier.	Most	don't	try	to
predict	whether	a	startup	will	win,	but	to	notice	quickly	that	it
already	is	winning.	They	care	what	the	market	thinks	of	you	and
what	other	VCs	think	of	you,	and	they	can't	judge	those	just	from
meeting	you.

Because	they're	investing	in	things	that	(a)	change	fast	and	(b)
they	don't	understand,	a	lot	of	investors	will	reject	you	in	a	way
that	can	later	be	claimed	not	to	have	been	a	rejection.	Unless	you
know	this	world,	you	may	not	even	realize	you've	been	rejected.
Here's	a	VC	saying	no:

We're	really	excited	about	your	project,	and	we	want
to	keep	in	close	touch	as	you	develop	it	further.

Translated	into	more	straightforward	language,	this	means:
We're	not	investing	in	you,	but	we	may	change	our	minds	if	it
looks	like	you're	taking	off.	Sometimes	they're	more	candid	and
say	explicitly	that	they	need	to	"see	some	traction."	They'll	invest
in	you	if	you	start	to	get	lots	of	users.	But	so	would	any	VC.	So	all
they're	saying	is	that	you're	still	at	square	1.

Here's	a	test	for	deciding	whether	a	VC's	response	was	yes	or	no.
Look	down	at	your	hands.	Are	you	holding	a	termsheet?

22.	You	need	investors.

Some	founders	say	"Who	needs	investors?"	Empirically	the
answer	seems	to	be:	everyone	who	wants	to	succeed.	Practically
every	successful	startup	takes	outside	investment	at	some	point.

Why?	What	the	people	who	think	they	don't	need	investors	forget
is	that	they	will	have	competitors.	The	question	is	not	whether
you	need	outside	investment,	but	whether	it	could	help	you	at	all.
If	the	answer	is	yes,	and	you	don't	take	investment,	then
competitors	who	do	will	have	an	advantage	over	you.	And	in	the
startup	world	a	little	advantage	can	expand	into	a	lot.

Mike	Moritz	famously	said	that	he	invested	in	Yahoo	because	he
thought	they	had	a	few	weeks'	lead	over	their	competitors.	That
may	not	have	mattered	quite	so	much	as	he	thought,	because
Google	came	along	three	years	later	and	kicked	Yahoo's	ass.	But
there	is	something	in	what	he	said.	Sometimes	a	small	lead	can
grow	into	the	yes	half	of	a	binary	choice.

Maybe	as	it	gets	cheaper	to	start	a	startup,	it	will	start	to	be
possible	to	succeed	in	a	competitive	market	without	outside
funding.	There	are	certainly	costs	to	raising	money.	But	as	of	this
writing	the	empirical	evidence	says	it's	a	net	win.

23.	Investors	like	it	when	you	don't	need	them.

A	lot	of	founders	approach	investors	as	if	they	needed	their
permission	to	start	a	company—as	if	it	were	like	getting	into
college.	But	you	don't	need	investors	to	start	most	companies;
they	just	make	it	easier.

And	in	fact,	investors	greatly	prefer	it	if	you	don't	need	them.
What	excites	them,	both	consciously	and	unconsciously,	is	the
sort	of	startup	that	approaches	them	saying	"the	train's	leaving
the	station;	are	you	in	or	out?"	not	the	one	saying	"please	can	we
have	some	money	to	start	a	company?"

Most	investors	are	"bottoms"	in	the	sense	that	the	startups	they
like	most	are	those	that	are	rough	with	them.	When	Google	stuck
Kleiner	and	Sequoia	with	a	$75	million	premoney	valuation,	their
reaction	was	probably	"Ouch!	That	feels	so	good."	And	they	were
right,	weren't	they?	That	deal	probably	made	them	more	than
any	other	they've	done.

The	thing	is,	VCs	are	pretty	good	at	reading	people.	So	don't	try

to	act	tough	with	them	unless	you	really	are	the	next	Google,	or
they'll	see	through	you	in	a	second.	Instead	of	acting	tough,	what
most	startups	should	do	is	simply	always	have	a	backup	plan.
Always	have	some	alternative	plan	for	getting	started	if	any	given
investor	says	no.	Having	one	is	the	best	insurance	against
needing	one.

So	you	shouldn't	start	a	startup	that's	expensive	to	start,	because
then	you'll	be	at	the	mercy	of	investors.	If	you	ultimately	want	to
do	something	that	will	cost	a	lot,	start	by	doing	a	cheaper	subset
of	it,	and	expand	your	ambitions	when	and	if	you	raise	more
money.

Apparently	the	most	likely	animals	to	be	left	alive	after	a	nuclear
war	are	cockroaches,	because	they're	so	hard	to	kill.	That's	what
you	want	to	be	as	a	startup,	initially.	Instead	of	a	beautiful	but
fragile	flower	that	needs	to	have	its	stem	in	a	plastic	tube	to
support	itself,	better	to	be	small,	ugly,	and	indestructible.

Notes

[1]	I	may	be	underestimating	VCs.	They	may	play	some	behind
the	scenes	role	in	IPOs,	which	you	ultimately	need	if	you	want	to
create	a	silicon	valley.

[2]	A	few	VCs	have	an	email	address	you	can	send	your	business
plan	to,	but	the	number	of	startups	that	get	funded	this	way	is
basically	zero.	You	should	always	get	a	personal	introduction—
and	to	a	partner,	not	an	associate.

[3]	Several	people	have	told	us	that	the	most	valuable	thing
about	startup	school	was	that	they	got	to	see	famous	startup
founders	and	realized	they	were	just	ordinary	guys.	Though
we're	happy	to	provide	this	service,	this	is	not	generally	the	way
we	pitch	startup	school	to	potential	speakers.

[4]	Actually	this	sounds	to	me	like	a	VC	who	got	buyer's	remorse,

http://startupschool.org/

then	used	a	technicality	to	get	out	of	the	deal.	But	it's	telling	that
it	even	seemed	a	plausible	excuse.

Thanks	to	Sam	Altman,	Paul	Buchheit,	Hutch	Fishman,	and
Robert	Morris	for	reading	drafts	of	this,	and	to	Kenneth	King	of
ASES	for	inviting	me	to	speak.

	Comment	on	this	essay.

http://news.ycombinator.com/item?id=17947

	

An	Alternative	Theory	of
Unions
May	2007

People	who	worry	about	the	increasing	gap	between	rich	and
poor	generally	look	back	on	the	mid	twentieth	century	as	a
golden	age.	In	those	days	we	had	a	large	number	of	high-paying
union	manufacturing	jobs	that	boosted	the	median	income.	I
wouldn't	quite	call	the	high-paying	union	job	a	myth,	but	I	think
people	who	dwell	on	it	are	reading	too	much	into	it.

Oddly	enough,	it	was	working	with	startups	that	made	me	realize
where	the	high-paying	union	job	came	from.	In	a	rapidly	growing
market,	you	don't	worry	too	much	about	efficiency.	It's	more
important	to	grow	fast.	If	there's	some	mundane	problem	getting
in	your	way,	and	there's	a	simple	solution	that's	somewhat
expensive,	just	take	it	and	get	on	with	more	important	things.
EBay	didn't	win	by	paying	less	for	servers	than	their	competitors.

Difficult	though	it	may	be	to	imagine	now,	manufacturing	was	a
growth	industry	in	the	mid	twentieth	century.	This	was	an	era
when	small	firms	making	everything	from	cars	to	candy	were
getting	consolidated	into	a	new	kind	of	corporation	with	national
reach	and	huge	economies	of	scale.	You	had	to	grow	fast	or	die.
Workers	were	for	these	companies	what	servers	are	for	an
Internet	startup.	A	reliable	supply	was	more	important	than	low
cost.

If	you	looked	in	the	head	of	a	1950s	auto	executive,	the	attitude
must	have	been:	sure,	give	'em	whatever	they	ask	for,	so	long	as
the	new	model	isn't	delayed.

In	other	words,	those	workers	were	not	paid	what	their	work	was
worth.	Circumstances	being	what	they	were,	companies	would
have	been	stupid	to	insist	on	paying	them	so	little.

If	you	want	a	less	controversial	example	of	this	phenomenon,	ask
anyone	who	worked	as	a	consultant	building	web	sites	during	the
Internet	Bubble.	In	the	late	nineties	you	could	get	paid	huge
sums	of	money	for	building	the	most	trivial	things.	And	yet	does
anyone	who	was	there	have	any	expectation	those	days	will	ever
return?	I	doubt	it.	Surely	everyone	realizes	that	was	just	a
temporary	aberration.

The	era	of	labor	unions	seems	to	have	been	the	same	kind	of
aberration,	just	spread	over	a	longer	period,	and	mixed	together
with	a	lot	of	ideology	that	prevents	people	from	viewing	it	with	as
cold	an	eye	as	they	would	something	like	consulting	during	the
Bubble.

Basically,	unions	were	just	Razorfish.

People	who	think	the	labor	movement	was	the	creation	of	heroic
union	organizers	have	a	problem	to	explain:	why	are	unions
shrinking	now?	The	best	they	can	do	is	fall	back	on	the	default
explanation	of	people	living	in	fallen	civilizations.	Our	ancestors
were	giants.	The	workers	of	the	early	twentieth	century	must
have	had	a	moral	courage	that's	lacking	today.

In	fact	there's	a	simpler	explanation.	The	early	twentieth	century
was	just	a	fast-growing	startup	overpaying	for	infrastructure.
And	we	in	the	present	are	not	a	fallen	people,	who	have
abandoned	whatever	mysterious	high-minded	principles
produced	the	high-paying	union	job.	We	simply	live	in	a	time
when	the	fast-growing	companies	overspend	on	different	things.

	

The	Equity	Equation
July	2007

An	investor	wants	to	give	you	money	for	a	certain	percentage	of
your	startup.	Should	you	take	it?	You're	about	to	hire	your	first
employee.	How	much	stock	should	you	give	him?

These	are	some	of	the	hardest	questions	founders	face.	And	yet
both	have	the	same	answer:

1/(1	-	n)

Whenever	you're	trading	stock	in	your	company	for	anything,
whether	it's	money	or	an	employee	or	a	deal	with	another
company,	the	test	for	whether	to	do	it	is	the	same.	You	should
give	up	n%	of	your	company	if	what	you	trade	it	for	improves
your	average	outcome	enough	that	the	(100	-	n)%	you	have	left	is
worth	more	than	the	whole	company	was	before.

For	example,	if	an	investor	wants	to	buy	half	your	company,	how
much	does	that	investment	have	to	improve	your	average
outcome	for	you	to	break	even?	Obviously	it	has	to	double:	if	you
trade	half	your	company	for	something	that	more	than	doubles
the	company's	average	outcome,	you're	net	ahead.	You	have	half
as	big	a	share	of	something	worth	more	than	twice	as	much.

In	the	general	case,	if	n	is	the	fraction	of	the	company	you're
giving	up,	the	deal	is	a	good	one	if	it	makes	the	company	worth
more	than	1/(1	-	n).

For	example,	suppose	Y	Combinator	offers	to	fund	you	in	return
for	7%	of	your	company.	In	this	case,	n	is	.07	and	1/(1	-	n)	is
1.075.	So	you	should	take	the	deal	if	you	believe	we	can	improve
your	average	outcome	by	more	than	7.5%.	If	we	improve	your
outcome	by	10%,	you're	net	ahead,	because	the	remaining	.93
you	hold	is	worth	.93	x	1.1	=	1.023.	[1]

#f1n

One	of	the	things	the	equity	equation	shows	us	is	that,	financially
at	least,	taking	money	from	a	top	VC	firm	can	be	a	really	good
deal.	Greg	Mcadoo	from	Sequoia	recently	said	at	a	YC	dinner
that	when	Sequoia	invests	alone	they	like	to	take	about	30%	of	a
company.	1/.7	=	1.43,	meaning	that	deal	is	worth	taking	if	they
can	improve	your	outcome	by	more	than	43%.	For	the	average
startup,	that	would	be	an	extraordinary	bargain.	It	would
improve	the	average	startup's	prospects	by	more	than	43%	just
to	be	able	to	say	they	were	funded	by	Sequoia,	even	if	they	never
actually	got	the	money.

The	reason	Sequoia	is	such	a	good	deal	is	that	the	percentage	of
the	company	they	take	is	artificially	low.	They	don't	even	try	to
get	market	price	for	their	investment;	they	limit	their	holdings	to
leave	the	founders	enough	stock	to	feel	the	company	is	still
theirs.

The	catch	is	that	Sequoia	gets	about	6000	business	plans	a	year
and	funds	about	20	of	them,	so	the	odds	of	getting	this	great	deal
are	1	in	300.	The	companies	that	make	it	through	are	not
average	startups.

Of	course,	there	are	other	factors	to	consider	in	a	VC	deal.	It's
never	just	a	straight	trade	of	money	for	stock.	But	if	it	were,
taking	money	from	a	top	firm	would	generally	be	a	bargain.

You	can	use	the	same	formula	when	giving	stock	to	employees,
but	it	works	in	the	other	direction.	If	i	is	the	average	outcome	for
the	company	with	the	addition	of	some	new	person,	then	they're
worth	n	such	that	i	=	1/(1	-	n).	Which	means	n	=	(i	-	1)/i.

For	example,	suppose	you're	just	two	founders	and	you	want	to
hire	an	additional	hacker	who's	so	good	you	feel	he'll	increase
the	average	outcome	of	the	whole	company	by	20%.	n	=	(1.2	-
1)/1.2	=	.167.	So	you'll	break	even	if	you	trade	16.7%	of	the
company	for	him.

That	doesn't	mean	16.7%	is	the	right	amount	of	stock	to	give
him.	Stock	is	not	the	only	cost	of	hiring	someone:	there's	usually
salary	and	overhead	as	well.	And	if	the	company	merely	breaks

even	on	the	deal,	there's	no	reason	to	do	it.

I	think	to	translate	salary	and	overhead	into	stock	you	should
multiply	the	annual	rate	by	about	1.5.	Most	startups	grow	fast	or
die;	if	you	die	you	don't	have	to	pay	the	guy,	and	if	you	grow	fast
you'll	be	paying	next	year's	salary	out	of	next	year's	valuation,
which	should	be	3x	this	year's.	If	your	valuation	grows	3x	a	year,
the	total	cost	in	stock	of	a	new	hire's	salary	and	overhead	is	1.5
years'	cost	at	the	present	valuation.	[2]

How	much	of	an	additional	margin	should	the	company	need	as
the	"activation	energy"	for	the	deal?	Since	this	is	in	effect	the
company's	profit	on	a	hire,	the	market	will	determine	that:	if
you're	a	hot	opportunity,	you	can	charge	more.

Let's	run	through	an	example.	Suppose	the	company	wants	to
make	a	"profit"	of	50%	on	the	new	hire	mentioned	above.	So
subtract	a	third	from	16.7%	and	we	have	11.1%	as	his	"retail"
price.	Suppose	further	that	he's	going	to	cost	$60k	a	year	in
salary	and	overhead,	x	1.5	=	$90k	total.	If	the	company's
valuation	is	$2	million,	$90k	is	4.5%.	11.1%	-	4.5%	=	an	offer	of
6.6%.

Incidentally,	notice	how	important	it	is	for	early	employees	to
take	little	salary.	It	comes	right	out	of	stock	that	could	otherwise
be	given	to	them.

Obviously	there	is	a	great	deal	of	play	in	these	numbers.	I'm	not
claiming	that	stock	grants	can	now	be	reduced	to	a	formula.
Ultimately	you	always	have	to	guess.	But	at	least	know	what
you're	guessing.	If	you	choose	a	number	based	on	your	gut	feel,
or	a	table	of	typical	grant	sizes	supplied	by	a	VC	firm,	understand
what	those	are	estimates	of.

And	more	generally,	when	you	make	any	decision	involving
equity,	run	it	through	1/(1	-	n)	to	see	if	it	makes	sense.	You	should
always	feel	richer	after	trading	equity.	If	the	trade	didn't	increase
the	value	of	your	remaining	shares	enough	to	put	you	net	ahead,
you	wouldn't	have	(or	shouldn't	have)	done	it.

#f2n

Notes

[1]	This	is	why	we	can't	believe	anyone	would	think	Y	Combinator
was	a	bad	deal.	Does	anyone	really	think	we're	so	useless	that	in
three	months	we	can't	improve	a	startup's	prospects	by	7.5%?	

[2]	The	obvious	choice	for	your	present	valuation	is	the	post-
money	valuation	of	your	last	funding	round.	This	probably
undervalues	the	company,	though,	because	(a)	unless	your	last
round	just	happened,	the	company	is	presumably	worth	more,
and	(b)	the	valuation	of	an	early	funding	round	usually	reflects
some	other	contribution	by	the	investors.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Paul	Buchheit,	Hutch
Fishman,	David	Hornik,	Paul	Kedrosky,	Jessica	Livingston,	Gary
Sabot,	and	Joshua	Schachter	for	reading	drafts	of	this.

	

Stuff
July	2007

I	have	too	much	stuff.	Most	people	in	America	do.	In	fact,	the
poorer	people	are,	the	more	stuff	they	seem	to	have.	Hardly
anyone	is	so	poor	that	they	can't	afford	a	front	yard	full	of	old
cars.

It	wasn't	always	this	way.	Stuff	used	to	be	rare	and	valuable.	You
can	still	see	evidence	of	that	if	you	look	for	it.	For	example,	in	my
house	in	Cambridge,	which	was	built	in	1876,	the	bedrooms	don't
have	closets.	In	those	days	people's	stuff	fit	in	a	chest	of	drawers.
Even	as	recently	as	a	few	decades	ago	there	was	a	lot	less	stuff.
When	I	look	back	at	photos	from	the	1970s,	I'm	surprised	how
empty	houses	look.	As	a	kid	I	had	what	I	thought	was	a	huge	fleet
of	toy	cars,	but	they'd	be	dwarfed	by	the	number	of	toys	my
nephews	have.	All	together	my	Matchboxes	and	Corgis	took	up
about	a	third	of	the	surface	of	my	bed.	In	my	nephews'	rooms	the
bed	is	the	only	clear	space.

Stuff	has	gotten	a	lot	cheaper,	but	our	attitudes	toward	it	haven't
changed	correspondingly.	We	overvalue	stuff.

That	was	a	big	problem	for	me	when	I	had	no	money.	I	felt	poor,
and	stuff	seemed	valuable,	so	almost	instinctively	I	accumulated
it.	Friends	would	leave	something	behind	when	they	moved,	or
I'd	see	something	as	I	was	walking	down	the	street	on	trash	night
(beware	of	anything	you	find	yourself	describing	as	"perfectly
good"),	or	I'd	find	something	in	almost	new	condition	for	a	tenth
its	retail	price	at	a	garage	sale.	And	pow,	more	stuff.

In	fact	these	free	or	nearly	free	things	weren't	bargains,	because
they	were	worth	even	less	than	they	cost.	Most	of	the	stuff	I
accumulated	was	worthless,	because	I	didn't	need	it.

What	I	didn't	understand	was	that	the	value	of	some	new

acquisition	wasn't	the	difference	between	its	retail	price	and
what	I	paid	for	it.	It	was	the	value	I	derived	from	it.	Stuff	is	an
extremely	illiquid	asset.	Unless	you	have	some	plan	for	selling
that	valuable	thing	you	got	so	cheaply,	what	difference	does	it
make	what	it's	"worth?"	The	only	way	you're	ever	going	to
extract	any	value	from	it	is	to	use	it.	And	if	you	don't	have	any
immediate	use	for	it,	you	probably	never	will.

Companies	that	sell	stuff	have	spent	huge	sums	training	us	to
think	stuff	is	still	valuable.	But	it	would	be	closer	to	the	truth	to
treat	stuff	as	worthless.

In	fact,	worse	than	worthless,	because	once	you've	accumulated
a	certain	amount	of	stuff,	it	starts	to	own	you	rather	than	the
other	way	around.	I	know	of	one	couple	who	couldn't	retire	to	the
town	they	preferred	because	they	couldn't	afford	a	place	there
big	enough	for	all	their	stuff.	Their	house	isn't	theirs;	it's	their
stuff's.

And	unless	you're	extremely	organized,	a	house	full	of	stuff	can
be	very	depressing.	A	cluttered	room	saps	one's	spirits.	One
reason,	obviously,	is	that	there's	less	room	for	people	in	a	room
full	of	stuff.	But	there's	more	going	on	than	that.	I	think	humans
constantly	scan	their	environment	to	build	a	mental	model	of
what's	around	them.	And	the	harder	a	scene	is	to	parse,	the	less
energy	you	have	left	for	conscious	thoughts.	A	cluttered	room	is
literally	exhausting.

(This	could	explain	why	clutter	doesn't	seem	to	bother	kids	as
much	as	adults.	Kids	are	less	perceptive.	They	build	a	coarser
model	of	their	surroundings,	and	this	consumes	less	energy.)

I	first	realized	the	worthlessness	of	stuff	when	I	lived	in	Italy	for
a	year.	All	I	took	with	me	was	one	large	backpack	of	stuff.	The
rest	of	my	stuff	I	left	in	my	landlady's	attic	back	in	the	US.	And
you	know	what?	All	I	missed	were	some	of	the	books.	By	the	end
of	the	year	I	couldn't	even	remember	what	else	I	had	stored	in
that	attic.

And	yet	when	I	got	back	I	didn't	discard	so	much	as	a	box	of	it.
Throw	away	a	perfectly	good	rotary	telephone?	I	might	need	that

one	day.

The	really	painful	thing	to	recall	is	not	just	that	I	accumulated	all
this	useless	stuff,	but	that	I	often	spent	money	I	desperately
needed	on	stuff	that	I	didn't.

Why	would	I	do	that?	Because	the	people	whose	job	is	to	sell	you
stuff	are	really,	really	good	at	it.	The	average	25	year	old	is	no
match	for	companies	that	have	spent	years	figuring	out	how	to
get	you	to	spend	money	on	stuff.	They	make	the	experience	of
buying	stuff	so	pleasant	that	"shopping"	becomes	a	leisure
activity.

How	do	you	protect	yourself	from	these	people?	It	can't	be	easy.
I'm	a	fairly	skeptical	person,	and	their	tricks	worked	on	me	well
into	my	thirties.	But	one	thing	that	might	work	is	to	ask	yourself,
before	buying	something,	"is	this	going	to	make	my	life
noticeably	better?"

A	friend	of	mine	cured	herself	of	a	clothes	buying	habit	by	asking
herself	before	she	bought	anything	"Am	I	going	to	wear	this	all
the	time?"	If	she	couldn't	convince	herself	that	something	she
was	thinking	of	buying	would	become	one	of	those	few	things	she
wore	all	the	time,	she	wouldn't	buy	it.	I	think	that	would	work	for
any	kind	of	purchase.	Before	you	buy	anything,	ask	yourself:	will
this	be	something	I	use	constantly?	Or	is	it	just	something	nice?
Or	worse	still,	a	mere	bargain?

The	worst	stuff	in	this	respect	may	be	stuff	you	don't	use	much
because	it's	too	good.	Nothing	owns	you	like	fragile	stuff.	For
example,	the	"good	china"	so	many	households	have,	and	whose
defining	quality	is	not	so	much	that	it's	fun	to	use,	but	that	one
must	be	especially	careful	not	to	break	it.

Another	way	to	resist	acquiring	stuff	is	to	think	of	the	overall	cost
of	owning	it.	The	purchase	price	is	just	the	beginning.	You're
going	to	have	to	think	about	that	thing	for	years—perhaps	for	the
rest	of	your	life.	Every	thing	you	own	takes	energy	away	from
you.	Some	give	more	than	they	take.	Those	are	the	only	things
worth	having.

I've	now	stopped	accumulating	stuff.	Except	books—but	books
are	different.	Books	are	more	like	a	fluid	than	individual	objects.
It's	not	especially	inconvenient	to	own	several	thousand	books,
whereas	if	you	owned	several	thousand	random	possessions
you'd	be	a	local	celebrity.	But	except	for	books,	I	now	actively
avoid	stuff.	If	I	want	to	spend	money	on	some	kind	of	treat,	I'll
take	services	over	goods	any	day.

I'm	not	claiming	this	is	because	I've	achieved	some	kind	of
zenlike	detachment	from	material	things.	I'm	talking	about
something	more	mundane.	A	historical	change	has	taken	place,
and	I've	now	realized	it.	Stuff	used	to	be	valuable,	and	now	it's
not.

In	industrialized	countries	the	same	thing	happened	with	food	in
the	middle	of	the	twentieth	century.	As	food	got	cheaper	(or	we
got	richer;	they're	indistinguishable),	eating	too	much	started	to
be	a	bigger	danger	than	eating	too	little.	We've	now	reached	that
point	with	stuff.	For	most	people,	rich	or	poor,	stuff	has	become	a
burden.

The	good	news	is,	if	you're	carrying	a	burden	without	knowing	it,
your	life	could	be	better	than	you	realize.	Imagine	walking
around	for	years	with	five	pound	ankle	weights,	then	suddenly
having	them	removed.

	

Holding	a	Program	in	One's
Head
August	2007

A	good	programmer	working	intensively	on	his	own	code	can
hold	it	in	his	mind	the	way	a	mathematician	holds	a	problem	he's
working	on.	Mathematicians	don't	answer	questions	by	working
them	out	on	paper	the	way	schoolchildren	are	taught	to.	They	do
more	in	their	heads:	they	try	to	understand	a	problem	space	well
enough	that	they	can	walk	around	it	the	way	you	can	walk
around	the	memory	of	the	house	you	grew	up	in.	At	its	best
programming	is	the	same.	You	hold	the	whole	program	in	your
head,	and	you	can	manipulate	it	at	will.

That's	particularly	valuable	at	the	start	of	a	project,	because
initially	the	most	important	thing	is	to	be	able	to	change	what
you're	doing.	Not	just	to	solve	the	problem	in	a	different	way,	but
to	change	the	problem	you're	solving.

Your	code	is	your	understanding	of	the	problem	you're	exploring.
So	it's	only	when	you	have	your	code	in	your	head	that	you	really
understand	the	problem.

It's	not	easy	to	get	a	program	into	your	head.	If	you	leave	a
project	for	a	few	months,	it	can	take	days	to	really	understand	it
again	when	you	return	to	it.	Even	when	you're	actively	working
on	a	program	it	can	take	half	an	hour	to	load	into	your	head
when	you	start	work	each	day.	And	that's	in	the	best	case.
Ordinary	programmers	working	in	typical	office	conditions	never
enter	this	mode.	Or	to	put	it	more	dramatically,	ordinary
programmers	working	in	typical	office	conditions	never	really
understand	the	problems	they're	solving.

Even	the	best	programmers	don't	always	have	the	whole
program	they're	working	on	loaded	into	their	heads.	But	there

are	things	you	can	do	to	help:

1.	 Avoid	distractions.	Distractions	are	bad	for	many	types	of
work,	but	especially	bad	for	programming,	because
programmers	tend	to	operate	at	the	limit	of	the	detail	they
can	handle.

The	danger	of	a	distraction	depends	not	on	how	long	it	is,
but	on	how	much	it	scrambles	your	brain.	A	programmer
can	leave	the	office	and	go	and	get	a	sandwich	without
losing	the	code	in	his	head.	But	the	wrong	kind	of
interruption	can	wipe	your	brain	in	30	seconds.

Oddly	enough,	scheduled	distractions	may	be	worse	than
unscheduled	ones.	If	you	know	you	have	a	meeting	in	an
hour,	you	don't	even	start	working	on	something	hard.

2.	 Work	in	long	stretches.	Since	there's	a	fixed	cost	each	time
you	start	working	on	a	program,	it's	more	efficient	to	work
in	a	few	long	sessions	than	many	short	ones.	There	will	of
course	come	a	point	where	you	get	stupid	because	you're
tired.	This	varies	from	person	to	person.	I've	heard	of
people	hacking	for	36	hours	straight,	but	the	most	I've	ever
been	able	to	manage	is	about	18,	and	I	work	best	in	chunks
of	no	more	than	12.

The	optimum	is	not	the	limit	you	can	physically	endure.
There's	an	advantage	as	well	as	a	cost	of	breaking	up	a
project.	Sometimes	when	you	return	to	a	problem	after	a
rest,	you	find	your	unconscious	mind	has	left	an	answer
waiting	for	you.

3.	 Use	succinct	languages.	More	powerful	programming
languages	make	programs	shorter.	And	programmers	seem
to	think	of	programs	at	least	partially	in	the	language
they're	using	to	write	them.	The	more	succinct	the
language,	the	shorter	the	program,	and	the	easier	it	is	to
load	and	keep	in	your	head.

You	can	magnify	the	effect	of	a	powerful	language	by	using

power.html

a	style	called	bottom-up	programming,	where	you	write
programs	in	multiple	layers,	the	lower	ones	acting	as
programming	languages	for	those	above.	If	you	do	this
right,	you	only	have	to	keep	the	topmost	layer	in	your	head.

4.	 Keep	rewriting	your	program.	Rewriting	a	program	often
yields	a	cleaner	design.	But	it	would	have	advantages	even
if	it	didn't:	you	have	to	understand	a	program	completely	to
rewrite	it,	so	there	is	no	better	way	to	get	one	loaded	into
your	head.

5.	 Write	rereadable	code.	All	programmers	know	it's	good	to
write	readable	code.	But	you	yourself	are	the	most
important	reader.	Especially	in	the	beginning;	a	prototype
is	a	conversation	with	yourself.	And	when	writing	for
yourself	you	have	different	priorities.	If	you're	writing	for
other	people,	you	may	not	want	to	make	code	too	dense.
Some	parts	of	a	program	may	be	easiest	to	read	if	you
spread	things	out,	like	an	introductory	textbook.	Whereas	if
you're	writing	code	to	make	it	easy	to	reload	into	your
head,	it	may	be	best	to	go	for	brevity.

6.	 Work	in	small	groups.	When	you	manipulate	a	program	in
your	head,	your	vision	tends	to	stop	at	the	edge	of	the	code
you	own.	Other	parts	you	don't	understand	as	well,	and
more	importantly,	can't	take	liberties	with.	So	the	smaller
the	number	of	programmers,	the	more	completely	a	project
can	mutate.	If	there's	just	one	programmer,	as	there	often
is	at	first,	you	can	do	all-encompassing	redesigns.

7.	 Don't	have	multiple	people	editing	the	same	piece	of	code.
You	never	understand	other	people's	code	as	well	as	your
own.	No	matter	how	thoroughly	you've	read	it,	you've	only
read	it,	not	written	it.	So	if	a	piece	of	code	is	written	by
multiple	authors,	none	of	them	understand	it	as	well	as	a
single	author	would.

And	of	course	you	can't	safely	redesign	something	other
people	are	working	on.	It's	not	just	that	you'd	have	to	ask
permission.	You	don't	even	let	yourself	think	of	such	things.
Redesigning	code	with	several	authors	is	like	changing

laws;	redesigning	code	you	alone	control	is	like	seeing	the
other	interpretation	of	an	ambiguous	image.

If	you	want	to	put	several	people	to	work	on	a	project,
divide	it	into	components	and	give	each	to	one	person.

8.	 Start	small.	A	program	gets	easier	to	hold	in	your	head	as
you	become	familiar	with	it.	You	can	start	to	treat	parts	as
black	boxes	once	you	feel	confident	you've	fully	explored
them.	But	when	you	first	start	working	on	a	project,	you're
forced	to	see	everything.	If	you	start	with	too	big	a
problem,	you	may	never	quite	be	able	to	encompass	it.	So
if	you	need	to	write	a	big,	complex	program,	the	best	way
to	begin	may	not	be	to	write	a	spec	for	it,	but	to	write	a
prototype	that	solves	a	subset	of	the	problem.	Whatever
the	advantages	of	planning,	they're	often	outweighed	by
the	advantages	of	being	able	to	keep	a	program	in	your
head.

It's	striking	how	often	programmers	manage	to	hit	all	eight
points	by	accident.	Someone	has	an	idea	for	a	new	project,	but
because	it's	not	officially	sanctioned,	he	has	to	do	it	in	off	hours—
which	turn	out	to	be	more	productive	because	there	are	no
distractions.	Driven	by	his	enthusiasm	for	the	new	project	he
works	on	it	for	many	hours	at	a	stretch.	Because	it's	initially	just
an	experiment,	instead	of	a	"production"	language	he	uses	a
mere	"scripting"	language—which	is	in	fact	far	more	powerful.
He	completely	rewrites	the	program	several	times;	that	wouldn't
be	justifiable	for	an	official	project,	but	this	is	a	labor	of	love	and
he	wants	it	to	be	perfect.	And	since	no	one	is	going	to	see	it
except	him,	he	omits	any	comments	except	the	note-to-self
variety.	He	works	in	a	small	group	perforce,	because	he	either
hasn't	told	anyone	else	about	the	idea	yet,	or	it	seems	so
unpromising	that	no	one	else	is	allowed	to	work	on	it.	Even	if
there	is	a	group,	they	couldn't	have	multiple	people	editing	the
same	code,	because	it	changes	too	fast	for	that	to	be	possible.
And	the	project	starts	small	because	the	idea	is	small	at	first;	he
just	has	some	cool	hack	he	wants	to	try	out.

Even	more	striking	are	the	number	of	officially	sanctioned
projects	that	manage	to	do	all	eight	things	wrong.	In	fact,	if	you

look	at	the	way	software	gets	written	in	most	organizations,	it's
almost	as	if	they	were	deliberately	trying	to	do	things	wrong.	In	a
sense,	they	are.	One	of	the	defining	qualities	of	organizations
since	there	have	been	such	a	thing	is	to	treat	individuals	as
interchangeable	parts.	This	works	well	for	more	parallelizable
tasks,	like	fighting	wars.	For	most	of	history	a	well-drilled	army
of	professional	soldiers	could	be	counted	on	to	beat	an	army	of
individual	warriors,	no	matter	how	valorous.	But	having	ideas	is
not	very	parallelizable.	And	that's	what	programs	are:	ideas.

It's	not	merely	true	that	organizations	dislike	the	idea	of
depending	on	individual	genius,	it's	a	tautology.	It's	part	of	the
definition	of	an	organization	not	to.	Of	our	current	concept	of	an
organization,	at	least.

Maybe	we	could	define	a	new	kind	of	organization	that	combined
the	efforts	of	individuals	without	requiring	them	to	be
interchangeable.	Arguably	a	market	is	such	a	form	of
organization,	though	it	may	be	more	accurate	to	describe	a
market	as	a	degenerate	case—as	what	you	get	by	default	when
organization	isn't	possible.

Probably	the	best	we'll	do	is	some	kind	of	hack,	like	making	the
programming	parts	of	an	organization	work	differently	from	the
rest.	Perhaps	the	optimal	solution	is	for	big	companies	not	even
to	try	to	develop	ideas	in	house,	but	simply	to	buy	them.	But
regardless	of	what	the	solution	turns	out	to	be,	the	first	step	is	to
realize	there's	a	problem.	There	is	a	contradiction	in	the	very
phrase	"software	company."	The	two	words	are	pulling	in
opposite	directions.	Any	good	programmer	in	a	large
organization	is	going	to	be	at	odds	with	it,	because	organizations
are	designed	to	prevent	what	programmers	strive	for.

Good	programmers	manage	to	get	a	lot	done	anyway.	But	often	it
requires	practically	an	act	of	rebellion	against	the	organizations
that	employ	them.	Perhaps	it	will	help	if	more	people	understand
that	the	way	programmers	behave	is	driven	by	the	demands	of
the	work	they	do.	It's	not	because	they're	irresponsible	that	they
work	in	long	binges	during	which	they	blow	off	all	other
obligations,	plunge	straight	into	programming	instead	of	writing
specs	first,	and	rewrite	code	that	already	works.	It's	not	because

hiring.html

they're	unfriendly	that	they	prefer	to	work	alone,	or	growl	at
people	who	pop	their	head	in	the	door	to	say	hello.	This
apparently	random	collection	of	annoying	habits	has	a	single
explanation:	the	power	of	holding	a	program	in	one's	head.

Whether	or	not	understanding	this	can	help	large	organizations,
it	can	certainly	help	their	competitors.	The	weakest	point	in	big
companies	is	that	they	don't	let	individual	programmers	do	great
work.	So	if	you're	a	little	startup,	this	is	the	place	to	attack	them.
Take	on	the	kind	of	problems	that	have	to	be	solved	in	one	big
brain.

Thanks	to	Sam	Altman,	David	Greenspan,	Aaron	Iba,	Jessica
Livingston,	Robert	Morris,	Peter	Norvig,	Lisa	Randall,	Emmett
Shear,	Sergei	Tsarev,	and	Stephen	Wolfram	for	reading	drafts	of
this.

	

How	Not	to	Die
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

News	from	the	Front
September	2007

A	few	weeks	ago	I	had	a	thought	so	heretical	that	it	really
surprised	me.	It	may	not	matter	all	that	much	where	you	go	to
college.

For	me,	as	for	a	lot	of	middle	class	kids,	getting	into	a	good
college	was	more	or	less	the	meaning	of	life	when	I	was	growing
up.	What	was	I?	A	student.	To	do	that	well	meant	to	get	good
grades.	Why	did	one	have	to	get	good	grades?	To	get	into	a	good
college.	And	why	did	one	want	to	do	that?	There	seemed	to	be
several	reasons:	you'd	learn	more,	get	better	jobs,	make	more
money.	But	it	didn't	matter	exactly	what	the	benefits	would	be.
College	was	a	bottleneck	through	which	all	your	future	prospects
passed;	everything	would	be	better	if	you	went	to	a	better
college.

A	few	weeks	ago	I	realized	that	somewhere	along	the	line	I	had
stopped	believing	that.

What	first	set	me	thinking	about	this	was	the	new	trend	of
worrying	obsessively	about	what	kindergarten	your	kids	go	to.	It
seemed	to	me	this	couldn't	possibly	matter.	Either	it	won't	help
your	kid	get	into	Harvard,	or	if	it	does,	getting	into	Harvard
won't	mean	much	anymore.	And	then	I	thought:	how	much	does
it	mean	even	now?

It	turns	out	I	have	a	lot	of	data	about	that.	My	three	partners	and
I	run	a	seed	stage	investment	firm	called	Y	Combinator.	We
invest	when	the	company	is	just	a	couple	guys	and	an	idea.	The
idea	doesn't	matter	much;	it	will	change	anyway.	Most	of	our
decision	is	based	on	the	founders.	The	average	founder	is	three
years	out	of	college.	Many	have	just	graduated;	a	few	are	still	in
school.	So	we're	in	much	the	same	position	as	a	graduate
program,	or	a	company	hiring	people	right	out	of	college.	Except

http://nymag.com/nymetro/urban/education/features/15141/
http://ycombinator.com/

our	choices	are	immediately	and	visibly	tested.	There	are	two
possible	outcomes	for	a	startup:	success	or	failure—and	usually
you	know	within	a	year	which	it	will	be.

The	test	applied	to	a	startup	is	among	the	purest	of	real	world
tests.	A	startup	succeeds	or	fails	depending	almost	entirely	on
the	efforts	of	the	founders.	Success	is	decided	by	the	market:	you
only	succeed	if	users	like	what	you've	built.	And	users	don't	care
where	you	went	to	college.

As	well	as	having	precisely	measurable	results,	we	have	a	lot	of
them.	Instead	of	doing	a	small	number	of	large	deals	like	a
traditional	venture	capital	fund,	we	do	a	large	number	of	small
ones.	We	currently	fund	about	40	companies	a	year,	selected
from	about	900	applications	representing	a	total	of	about	2000
people.	[1]

Between	the	volume	of	people	we	judge	and	the	rapid,
unequivocal	test	that's	applied	to	our	choices,	Y	Combinator	has
been	an	unprecedented	opportunity	for	learning	how	to	pick
winners.	One	of	the	most	surprising	things	we've	learned	is	how
little	it	matters	where	people	went	to	college.

I	thought	I'd	already	been	cured	of	caring	about	that.	There's
nothing	like	going	to	grad	school	at	Harvard	to	cure	you	of	any
illusions	you	might	have	about	the	average	Harvard	undergrad.
And	yet	Y	Combinator	showed	us	we	were	still	overestimating
people	who'd	been	to	elite	colleges.	We'd	interview	people	from
MIT	or	Harvard	or	Stanford	and	sometimes	find	ourselves
thinking:	they	must	be	smarter	than	they	seem.	It	took	us	a	few
iterations	to	learn	to	trust	our	senses.

Practically	everyone	thinks	that	someone	who	went	to	MIT	or
Harvard	or	Stanford	must	be	smart.	Even	people	who	hate	you
for	it	believe	it.

But	when	you	think	about	what	it	means	to	have	gone	to	an	elite
college,	how	could	this	be	true?	We're	talking	about	a	decision
made	by	admissions	officers—basically,	HR	people—based	on	a
cursory	examination	of	a	huge	pile	of	depressingly	similar
applications	submitted	by	seventeen	year	olds.	And	what	do	they

#f1n

have	to	go	on?	An	easily	gamed	standardized	test;	a	short	essay
telling	you	what	the	kid	thinks	you	want	to	hear;	an	interview
with	a	random	alum;	a	high	school	record	that's	largely	an	index
of	obedience.	Who	would	rely	on	such	a	test?

And	yet	a	lot	of	companies	do.	A	lot	of	companies	are	very	much
influenced	by	where	applicants	went	to	college.	How	could	they
be?	I	think	I	know	the	answer	to	that.

There	used	to	be	a	saying	in	the	corporate	world:	"No	one	ever
got	fired	for	buying	IBM."	You	no	longer	hear	this	about	IBM
specifically,	but	the	idea	is	very	much	alive;	there	is	a	whole
category	of	"enterprise"	software	companies	that	exist	to	take
advantage	of	it.	People	buying	technology	for	large	organizations
don't	care	if	they	pay	a	fortune	for	mediocre	software.	It's	not
their	money.	They	just	want	to	buy	from	a	supplier	who	seems
safe—a	company	with	an	established	name,	confident	salesmen,
impressive	offices,	and	software	that	conforms	to	all	the	current
fashions.	Not	necessarily	a	company	that	will	deliver	so	much	as
one	that,	if	they	do	let	you	down,	will	still	seem	to	have	been	a
prudent	choice.	So	companies	have	evolved	to	fill	that	niche.

A	recruiter	at	a	big	company	is	in	much	the	same	position	as
someone	buying	technology	for	one.	If	someone	went	to	Stanford
and	is	not	obviously	insane,	they're	probably	a	safe	bet.	And	a
safe	bet	is	enough.	No	one	ever	measures	recruiters	by	the	later
performance	of	people	they	turn	down.	[2]

I'm	not	saying,	of	course,	that	elite	colleges	have	evolved	to	prey
upon	the	weaknesses	of	large	organizations	the	way	enterprise
software	companies	have.	But	they	work	as	if	they	had.	In
addition	to	the	power	of	the	brand	name,	graduates	of	elite
colleges	have	two	critical	qualities	that	plug	right	into	the	way
large	organizations	work.	They're	good	at	doing	what	they're
asked,	since	that's	what	it	takes	to	please	the	adults	who	judge
you	at	seventeen.	And	having	been	to	an	elite	college	makes
them	more	confident.

Back	in	the	days	when	people	might	spend	their	whole	career	at
one	big	company,	these	qualities	must	have	been	very	valuable.
Graduates	of	elite	colleges	would	have	been	capable,	yet

#f2n

amenable	to	authority.	And	since	individual	performance	is	so
hard	to	measure	in	large	organizations,	their	own	confidence
would	have	been	the	starting	point	for	their	reputation.

Things	are	very	different	in	the	new	world	of	startups.	We
couldn't	save	someone	from	the	market's	judgement	even	if	we
wanted	to.	And	being	charming	and	confident	counts	for	nothing
with	users.	All	users	care	about	is	whether	you	make	something
they	like.	If	you	don't,	you're	dead.

Knowing	that	test	is	coming	makes	us	work	a	lot	harder	to	get
the	right	answers	than	anyone	would	if	they	were	merely	hiring
people.	We	can't	afford	to	have	any	illusions	about	the	predictors
of	success.	And	what	we've	found	is	that	the	variation	between
schools	is	so	much	smaller	than	the	variation	between	individuals
that	it's	negligible	by	comparison.	We	can	learn	more	about
someone	in	the	first	minute	of	talking	to	them	than	by	knowing
where	they	went	to	school.

It	seems	obvious	when	you	put	it	that	way.	Look	at	the	individual,
not	where	they	went	to	college.	But	that's	a	weaker	statement
than	the	idea	I	began	with,	that	it	doesn't	matter	much	where	a
given	individual	goes	to	college.	Don't	you	learn	things	at	the
best	schools	that	you	wouldn't	learn	at	lesser	places?

Apparently	not.	Obviously	you	can't	prove	this	in	the	case	of	a
single	individual,	but	you	can	tell	from	aggregate	evidence:	you
can't,	without	asking	them,	distinguish	people	who	went	to	one
school	from	those	who	went	to	another	three	times	as	far	down
the	US	News	list.	[3]	Try	it	and	see.

How	can	this	be?	Because	how	much	you	learn	in	college
depends	a	lot	more	on	you	than	the	college.	A	determined	party
animal	can	get	through	the	best	school	without	learning
anything.	And	someone	with	a	real	thirst	for	knowledge	will	be
able	to	find	a	few	smart	people	to	learn	from	at	a	school	that	isn't
prestigious	at	all.

The	other	students	are	the	biggest	advantage	of	going	to	an	elite
college;	you	learn	more	from	them	than	the	professors.	But	you
should	be	able	to	reproduce	this	at	most	colleges	if	you	make	a

#f3n

conscious	effort	to	find	smart	friends.	At	most	colleges	you	can
find	at	least	a	handful	of	other	smart	students,	and	most	people
have	only	a	handful	of	close	friends	in	college	anyway.	[4]	The
odds	of	finding	smart	professors	are	even	better.	The	curve	for
faculty	is	a	lot	flatter	than	for	students,	especially	in	math	and
the	hard	sciences;	you	have	to	go	pretty	far	down	the	list	of
colleges	before	you	stop	finding	smart	professors	in	the	math
department.

So	it's	not	surprising	that	we've	found	the	relative	prestige	of
different	colleges	useless	in	judging	individuals.	There's	a	lot	of
randomness	in	how	colleges	select	people,	and	what	they	learn
there	depends	much	more	on	them	than	the	college.	Between
these	two	sources	of	variation,	the	college	someone	went	to
doesn't	mean	a	lot.	It	is	to	some	degree	a	predictor	of	ability,	but
so	weak	that	we	regard	it	mainly	as	a	source	of	error	and	try
consciously	to	ignore	it.

I	doubt	what	we've	discovered	is	an	anomaly	specific	to	startups.
Probably	people	have	always	overestimated	the	importance	of
where	one	goes	to	college.	We're	just	finally	able	to	measure	it.

The	unfortunate	thing	is	not	just	that	people	are	judged	by	such	a
superficial	test,	but	that	so	many	judge	themselves	by	it.	A	lot	of
people,	probably	the	majority	of	people	in	America,	have	some
amount	of	insecurity	about	where,	or	whether,	they	went	to
college.	The	tragedy	of	the	situation	is	that	by	far	the	greatest
liability	of	not	having	gone	to	the	college	you'd	have	liked	is	your
own	feeling	that	you're	thereby	lacking	something.	Colleges	are	a
bit	like	exclusive	clubs	in	this	respect.	There	is	only	one	real
advantage	to	being	a	member	of	most	exclusive	clubs:	you	know
you	wouldn't	be	missing	much	if	you	weren't.	When	you're
excluded,	you	can	only	imagine	the	advantages	of	being	an
insider.	But	invariably	they're	larger	in	your	imagination	than	in
real	life.

So	it	is	with	colleges.	Colleges	differ,	but	they're	nothing	like	the
stamp	of	destiny	so	many	imagine	them	to	be.	People	aren't	what
some	admissions	officer	decides	about	them	at	seventeen.
They're	what	they	make	themselves.

#f4n

Indeed,	the	great	advantage	of	not	caring	where	people	went	to
college	is	not	just	that	you	can	stop	judging	them	(and	yourself)
by	superficial	measures,	but	that	you	can	focus	instead	on	what
really	matters.	What	matters	is	what	you	make	of	yourself.	I	think
that's	what	we	should	tell	kids.	Their	job	isn't	to	get	good	grades
so	they	can	get	into	a	good	college,	but	to	learn	and	do.	And	not
just	because	that's	more	rewarding	than	worldly	success.	That
will	increasingly	be	the	route	to	worldly	success.

Notes

[1]	Is	what	we	measure	worth	measuring?	I	think	so.	You	can	get
rich	simply	by	being	energetic	and	unscrupulous,	but	getting	rich
from	a	technology	startup	takes	some	amount	of	brains.	It	is	just
the	kind	of	work	the	upper	middle	class	values;	it	has	about	the
same	intellectual	component	as	being	a	doctor.

[2]	Actually,	someone	did,	once.	Mitch	Kapor's	wife	Freada	was	in
charge	of	HR	at	Lotus	in	the	early	years.	(As	he	is	at	pains	to
point	out,	they	did	not	become	romantically	involved	till
afterward.)	At	one	point	they	worried	Lotus	was	losing	its	startup
edge	and	turning	into	a	big	company.	So	as	an	experiment	she
sent	their	recruiters	the	resumes	of	the	first	40	employees,	with
identifying	details	changed.	These	were	the	people	who	had
made	Lotus	into	the	star	it	was.	Not	one	got	an	interview.

[3]	The	US	News	list?	Surely	no	one	trusts	that.	Even	if	the
statistics	they	consider	are	useful,	how	do	they	decide	on	the
relative	weights?	The	reason	the	US	News	list	is	meaningful	is
precisely	because	they	are	so	intellectually	dishonest	in	that
respect.	There	is	no	external	source	they	can	use	to	calibrate	the
weighting	of	the	statistics	they	use;	if	there	were,	we	could	just
use	that	instead.	What	they	must	do	is	adjust	the	weights	till	the
top	schools	are	the	usual	suspects	in	about	the	right	order.	So	in
effect	what	the	US	News	list	tells	us	is	what	the	editors	think	the
top	schools	are,	which	is	probably	not	far	from	the	conventional
wisdom	on	the	matter.	The	amusing	thing	is,	because	some

schools	work	hard	to	game	the	system,	the	editors	will	have	to
keep	tweaking	their	algorithm	to	get	the	rankings	they	want.

[4]	Possible	doesn't	mean	easy,	of	course.	A	smart	student	at	a
party	school	will	inevitably	be	something	of	an	outcast,	just	as	he
or	she	would	be	in	most	high	schools.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,
Jackie	McDonough,	Peter	Norvig,	and	Robert	Morris	for	reading
drafts	of	this.

nerds.html

	

How	to	Do	Philosophy
September	2007

In	high	school	I	decided	I	was	going	to	study	philosophy	in
college.	I	had	several	motives,	some	more	honorable	than	others.
One	of	the	less	honorable	was	to	shock	people.	College	was
regarded	as	job	training	where	I	grew	up,	so	studying	philosophy
seemed	an	impressively	impractical	thing	to	do.	Sort	of	like
slashing	holes	in	your	clothes	or	putting	a	safety	pin	through
your	ear,	which	were	other	forms	of	impressive	impracticality
then	just	coming	into	fashion.

But	I	had	some	more	honest	motives	as	well.	I	thought	studying
philosophy	would	be	a	shortcut	straight	to	wisdom.	All	the	people
majoring	in	other	things	would	just	end	up	with	a	bunch	of
domain	knowledge.	I	would	be	learning	what	was	really	what.

I'd	tried	to	read	a	few	philosophy	books.	Not	recent	ones;	you
wouldn't	find	those	in	our	high	school	library.	But	I	tried	to	read
Plato	and	Aristotle.	I	doubt	I	believed	I	understood	them,	but
they	sounded	like	they	were	talking	about	something	important.	I
assumed	I'd	learn	what	in	college.

The	summer	before	senior	year	I	took	some	college	classes.	I
learned	a	lot	in	the	calculus	class,	but	I	didn't	learn	much	in
Philosophy	101.	And	yet	my	plan	to	study	philosophy	remained
intact.	It	was	my	fault	I	hadn't	learned	anything.	I	hadn't	read	the
books	we	were	assigned	carefully	enough.	I'd	give	Berkeley's
Principles	of	Human	Knowledge	another	shot	in	college.
Anything	so	admired	and	so	difficult	to	read	must	have
something	in	it,	if	one	could	only	figure	out	what.

Twenty-six	years	later,	I	still	don't	understand	Berkeley.	I	have	a
nice	edition	of	his	collected	works.	Will	I	ever	read	it?	Seems
unlikely.

The	difference	between	then	and	now	is	that	now	I	understand
why	Berkeley	is	probably	not	worth	trying	to	understand.	I	think
I	see	now	what	went	wrong	with	philosophy,	and	how	we	might
fix	it.

Words

I	did	end	up	being	a	philosophy	major	for	most	of	college.	It
didn't	work	out	as	I'd	hoped.	I	didn't	learn	any	magical	truths
compared	to	which	everything	else	was	mere	domain	knowledge.
But	I	do	at	least	know	now	why	I	didn't.	Philosophy	doesn't	really
have	a	subject	matter	in	the	way	math	or	history	or	most	other
university	subjects	do.	There	is	no	core	of	knowledge	one	must
master.	The	closest	you	come	to	that	is	a	knowledge	of	what
various	individual	philosophers	have	said	about	different	topics
over	the	years.	Few	were	sufficiently	correct	that	people	have
forgotten	who	discovered	what	they	discovered.

Formal	logic	has	some	subject	matter.	I	took	several	classes	in
logic.	I	don't	know	if	I	learned	anything	from	them.	[1]	It	does
seem	to	me	very	important	to	be	able	to	flip	ideas	around	in	one's
head:	to	see	when	two	ideas	don't	fully	cover	the	space	of
possibilities,	or	when	one	idea	is	the	same	as	another	but	with	a
couple	things	changed.	But	did	studying	logic	teach	me	the
importance	of	thinking	this	way,	or	make	me	any	better	at	it?	I
don't	know.

There	are	things	I	know	I	learned	from	studying	philosophy.	The
most	dramatic	I	learned	immediately,	in	the	first	semester	of
freshman	year,	in	a	class	taught	by	Sydney	Shoemaker.	I	learned
that	I	don't	exist.	I	am	(and	you	are)	a	collection	of	cells	that
lurches	around	driven	by	various	forces,	and	calls	itself	I.	But
there's	no	central,	indivisible	thing	that	your	identity	goes	with.
You	could	conceivably	lose	half	your	brain	and	live.	Which	means
your	brain	could	conceivably	be	split	into	two	halves	and	each
transplanted	into	different	bodies.	Imagine	waking	up	after	such
an	operation.	You	have	to	imagine	being	two	people.

The	real	lesson	here	is	that	the	concepts	we	use	in	everyday	life
are	fuzzy,	and	break	down	if	pushed	too	hard.	Even	a	concept	as
dear	to	us	as	I.	It	took	me	a	while	to	grasp	this,	but	when	I	did	it

#f1n

was	fairly	sudden,	like	someone	in	the	nineteenth	century
grasping	evolution	and	realizing	the	story	of	creation	they'd	been
told	as	a	child	was	all	wrong.	[2]	Outside	of	math	there's	a	limit
to	how	far	you	can	push	words;	in	fact,	it	would	not	be	a	bad
definition	of	math	to	call	it	the	study	of	terms	that	have	precise
meanings.	Everyday	words	are	inherently	imprecise.	They	work
well	enough	in	everyday	life	that	you	don't	notice.	Words	seem	to
work,	just	as	Newtonian	physics	seems	to.	But	you	can	always
make	them	break	if	you	push	them	far	enough.

I	would	say	that	this	has	been,	unfortunately	for	philosophy,	the
central	fact	of	philosophy.	Most	philosophical	debates	are	not
merely	afflicted	by	but	driven	by	confusions	over	words.	Do	we
have	free	will?	Depends	what	you	mean	by	"free."	Do	abstract
ideas	exist?	Depends	what	you	mean	by	"exist."

Wittgenstein	is	popularly	credited	with	the	idea	that	most
philosophical	controversies	are	due	to	confusions	over	language.
I'm	not	sure	how	much	credit	to	give	him.	I	suspect	a	lot	of
people	realized	this,	but	reacted	simply	by	not	studying
philosophy,	rather	than	becoming	philosophy	professors.

How	did	things	get	this	way?	Can	something	people	have	spent
thousands	of	years	studying	really	be	a	waste	of	time?	Those	are
interesting	questions.	In	fact,	some	of	the	most	interesting
questions	you	can	ask	about	philosophy.	The	most	valuable	way
to	approach	the	current	philosophical	tradition	may	be	neither	to
get	lost	in	pointless	speculations	like	Berkeley,	nor	to	shut	them
down	like	Wittgenstein,	but	to	study	it	as	an	example	of	reason
gone	wrong.

History

Western	philosophy	really	begins	with	Socrates,	Plato,	and
Aristotle.	What	we	know	of	their	predecessors	comes	from
fragments	and	references	in	later	works;	their	doctrines	could	be
described	as	speculative	cosmology	that	occasionally	strays	into
analysis.	Presumably	they	were	driven	by	whatever	makes	people
in	every	other	society	invent	cosmologies.	[3]

With	Socrates,	Plato,	and	particularly	Aristotle,	this	tradition

#f2n
#f3n

turned	a	corner.	There	started	to	be	a	lot	more	analysis.	I	suspect
Plato	and	Aristotle	were	encouraged	in	this	by	progress	in	math.
Mathematicians	had	by	then	shown	that	you	could	figure	things
out	in	a	much	more	conclusive	way	than	by	making	up	fine
sounding	stories	about	them.	[4]

People	talk	so	much	about	abstractions	now	that	we	don't	realize
what	a	leap	it	must	have	been	when	they	first	started	to.	It	was
presumably	many	thousands	of	years	between	when	people	first
started	describing	things	as	hot	or	cold	and	when	someone	asked
"what	is	heat?"	No	doubt	it	was	a	very	gradual	process.	We	don't
know	if	Plato	or	Aristotle	were	the	first	to	ask	any	of	the
questions	they	did.	But	their	works	are	the	oldest	we	have	that
do	this	on	a	large	scale,	and	there	is	a	freshness	(not	to	say
naivete)	about	them	that	suggests	some	of	the	questions	they
asked	were	new	to	them,	at	least.

Aristotle	in	particular	reminds	me	of	the	phenomenon	that
happens	when	people	discover	something	new,	and	are	so	excited
by	it	that	they	race	through	a	huge	percentage	of	the	newly
discovered	territory	in	one	lifetime.	If	so,	that's	evidence	of	how
new	this	kind	of	thinking	was.	[5]

This	is	all	to	explain	how	Plato	and	Aristotle	can	be	very
impressive	and	yet	naive	and	mistaken.	It	was	impressive	even	to
ask	the	questions	they	did.	That	doesn't	mean	they	always	came
up	with	good	answers.	It's	not	considered	insulting	to	say	that
ancient	Greek	mathematicians	were	naive	in	some	respects,	or	at
least	lacked	some	concepts	that	would	have	made	their	lives
easier.	So	I	hope	people	will	not	be	too	offended	if	I	propose	that
ancient	philosophers	were	similarly	naive.	In	particular,	they
don't	seem	to	have	fully	grasped	what	I	earlier	called	the	central
fact	of	philosophy:	that	words	break	if	you	push	them	too	far.

"Much	to	the	surprise	of	the	builders	of	the	first	digital
computers,"	Rod	Brooks	wrote,	"programs	written	for	them
usually	did	not	work."	[6]	Something	similar	happened	when
people	first	started	trying	to	talk	about	abstractions.	Much	to
their	surprise,	they	didn't	arrive	at	answers	they	agreed	upon.	In
fact,	they	rarely	seemed	to	arrive	at	answers	at	all.

#f4n
#f5n
#f6n

They	were	in	effect	arguing	about	artifacts	induced	by	sampling
at	too	low	a	resolution.

The	proof	of	how	useless	some	of	their	answers	turned	out	to	be
is	how	little	effect	they	have.	No	one	after	reading	Aristotle's
Metaphysics	does	anything	differently	as	a	result.	[7]

Surely	I'm	not	claiming	that	ideas	have	to	have	practical
applications	to	be	interesting?	No,	they	may	not	have	to.	Hardy's
boast	that	number	theory	had	no	use	whatsoever	wouldn't
disqualify	it.	But	he	turned	out	to	be	mistaken.	In	fact,	it's
suspiciously	hard	to	find	a	field	of	math	that	truly	has	no
practical	use.	And	Aristotle's	explanation	of	the	ultimate	goal	of
philosophy	in	Book	A	of	the	Metaphysics	implies	that	philosophy
should	be	useful	too.

Theoretical	Knowledge

Aristotle's	goal	was	to	find	the	most	general	of	general
principles.	The	examples	he	gives	are	convincing:	an	ordinary
worker	builds	things	a	certain	way	out	of	habit;	a	master
craftsman	can	do	more	because	he	grasps	the	underlying
principles.	The	trend	is	clear:	the	more	general	the	knowledge,
the	more	admirable	it	is.	But	then	he	makes	a	mistake—possibly
the	most	important	mistake	in	the	history	of	philosophy.	He	has
noticed	that	theoretical	knowledge	is	often	acquired	for	its	own
sake,	out	of	curiosity,	rather	than	for	any	practical	need.	So	he
proposes	there	are	two	kinds	of	theoretical	knowledge:	some
that's	useful	in	practical	matters	and	some	that	isn't.	Since
people	interested	in	the	latter	are	interested	in	it	for	its	own
sake,	it	must	be	more	noble.	So	he	sets	as	his	goal	in	the
Metaphysics	the	exploration	of	knowledge	that	has	no	practical
use.	Which	means	no	alarms	go	off	when	he	takes	on	grand	but
vaguely	understood	questions	and	ends	up	getting	lost	in	a	sea	of
words.

His	mistake	was	to	confuse	motive	and	result.	Certainly,	people
who	want	a	deep	understanding	of	something	are	often	driven	by
curiosity	rather	than	any	practical	need.	But	that	doesn't	mean
what	they	end	up	learning	is	useless.	It's	very	valuable	in
practice	to	have	a	deep	understanding	of	what	you're	doing;	even

#f7n

if	you're	never	called	on	to	solve	advanced	problems,	you	can	see
shortcuts	in	the	solution	of	simple	ones,	and	your	knowledge
won't	break	down	in	edge	cases,	as	it	would	if	you	were	relying
on	formulas	you	didn't	understand.	Knowledge	is	power.	That's
what	makes	theoretical	knowledge	prestigious.	It's	also	what
causes	smart	people	to	be	curious	about	certain	things	and	not
others;	our	DNA	is	not	so	disinterested	as	we	might	think.

So	while	ideas	don't	have	to	have	immediate	practical
applications	to	be	interesting,	the	kinds	of	things	we	find
interesting	will	surprisingly	often	turn	out	to	have	practical
applications.

The	reason	Aristotle	didn't	get	anywhere	in	the	Metaphysics	was
partly	that	he	set	off	with	contradictory	aims:	to	explore	the	most
abstract	ideas,	guided	by	the	assumption	that	they	were	useless.
He	was	like	an	explorer	looking	for	a	territory	to	the	north	of
him,	starting	with	the	assumption	that	it	was	located	to	the
south.

And	since	his	work	became	the	map	used	by	generations	of
future	explorers,	he	sent	them	off	in	the	wrong	direction	as	well.
[8]	Perhaps	worst	of	all,	he	protected	them	from	both	the
criticism	of	outsiders	and	the	promptings	of	their	own	inner
compass	by	establishing	the	principle	that	the	most	noble	sort	of
theoretical	knowledge	had	to	be	useless.

The	Metaphysics	is	mostly	a	failed	experiment.	A	few	ideas	from
it	turned	out	to	be	worth	keeping;	the	bulk	of	it	has	had	no	effect
at	all.	The	Metaphysics	is	among	the	least	read	of	all	famous
books.	It's	not	hard	to	understand	the	way	Newton's	Principia	is,
but	the	way	a	garbled	message	is.

Arguably	it's	an	interesting	failed	experiment.	But	unfortunately
that	was	not	the	conclusion	Aristotle's	successors	derived	from
works	like	the	Metaphysics.	[9]	Soon	after,	the	western	world	fell
on	intellectual	hard	times.	Instead	of	version	1s	to	be
superseded,	the	works	of	Plato	and	Aristotle	became	revered
texts	to	be	mastered	and	discussed.	And	so	things	remained	for	a
shockingly	long	time.	It	was	not	till	around	1600	(in	Europe,
where	the	center	of	gravity	had	shifted	by	then)	that	one	found

#f8n
#f9n

people	confident	enough	to	treat	Aristotle's	work	as	a	catalog	of
mistakes.	And	even	then	they	rarely	said	so	outright.

If	it	seems	surprising	that	the	gap	was	so	long,	consider	how
little	progress	there	was	in	math	between	Hellenistic	times	and
the	Renaissance.

In	the	intervening	years	an	unfortunate	idea	took	hold:	that	it
was	not	only	acceptable	to	produce	works	like	the	Metaphysics,
but	that	it	was	a	particularly	prestigious	line	of	work,	done	by	a
class	of	people	called	philosophers.	No	one	thought	to	go	back
and	debug	Aristotle's	motivating	argument.	And	so	instead	of
correcting	the	problem	Aristotle	discovered	by	falling	into	it—
that	you	can	easily	get	lost	if	you	talk	too	loosely	about	very
abstract	ideas—they	continued	to	fall	into	it.

The	Singularity

Curiously,	however,	the	works	they	produced	continued	to	attract
new	readers.	Traditional	philosophy	occupies	a	kind	of
singularity	in	this	respect.	If	you	write	in	an	unclear	way	about
big	ideas,	you	produce	something	that	seems	tantalizingly
attractive	to	inexperienced	but	intellectually	ambitious	students.
Till	one	knows	better,	it's	hard	to	distinguish	something	that's
hard	to	understand	because	the	writer	was	unclear	in	his	own
mind	from	something	like	a	mathematical	proof	that's	hard	to
understand	because	the	ideas	it	represents	are	hard	to
understand.	To	someone	who	hasn't	learned	the	difference,
traditional	philosophy	seems	extremely	attractive:	as	hard	(and
therefore	impressive)	as	math,	yet	broader	in	scope.	That	was
what	lured	me	in	as	a	high	school	student.

This	singularity	is	even	more	singular	in	having	its	own	defense
built	in.	When	things	are	hard	to	understand,	people	who	suspect
they're	nonsense	generally	keep	quiet.	There's	no	way	to	prove	a
text	is	meaningless.	The	closest	you	can	get	is	to	show	that	the
official	judges	of	some	class	of	texts	can't	distinguish	them	from
placebos.	[10]

And	so	instead	of	denouncing	philosophy,	most	people	who
suspected	it	was	a	waste	of	time	just	studied	other	things.	That

#f10n

alone	is	fairly	damning	evidence,	considering	philosophy's
claims.	It's	supposed	to	be	about	the	ultimate	truths.	Surely	all
smart	people	would	be	interested	in	it,	if	it	delivered	on	that
promise.

Because	philosophy's	flaws	turned	away	the	sort	of	people	who
might	have	corrected	them,	they	tended	to	be	self-perpetuating.
Bertrand	Russell	wrote	in	a	letter	in	1912:

Hitherto	the	people	attracted	to	philosophy	have
been	mostly	those	who	loved	the	big	generalizations,
which	were	all	wrong,	so	that	few	people	with	exact
minds	have	taken	up	the	subject.	[11]

His	response	was	to	launch	Wittgenstein	at	it,	with	dramatic
results.

I	think	Wittgenstein	deserves	to	be	famous	not	for	the	discovery
that	most	previous	philosophy	was	a	waste	of	time,	which	judging
from	the	circumstantial	evidence	must	have	been	made	by	every
smart	person	who	studied	a	little	philosophy	and	declined	to
pursue	it	further,	but	for	how	he	acted	in	response.	[12]	Instead
of	quietly	switching	to	another	field,	he	made	a	fuss,	from	inside.
He	was	Gorbachev.

The	field	of	philosophy	is	still	shaken	from	the	fright	Wittgenstein
gave	it.	[13]	Later	in	life	he	spent	a	lot	of	time	talking	about	how
words	worked.	Since	that	seems	to	be	allowed,	that's	what	a	lot
of	philosophers	do	now.	Meanwhile,	sensing	a	vacuum	in	the
metaphysical	speculation	department,	the	people	who	used	to	do
literary	criticism	have	been	edging	Kantward,	under	new	names
like	"literary	theory,"	"critical	theory,"	and	when	they're	feeling
ambitious,	plain	"theory."	The	writing	is	the	familiar	word	salad:

Gender	is	not	like	some	of	the	other	grammatical
modes	which	express	precisely	a	mode	of	conception
without	any	reality	that	corresponds	to	the
conceptual	mode,	and	consequently	do	not	express
precisely	something	in	reality	by	which	the	intellect
could	be	moved	to	conceive	a	thing	the	way	it	does,
even	where	that	motive	is	not	something	in	the	thing

#f11n
#f12n
#f13n

as	such.	[14]

The	singularity	I've	described	is	not	going	away.	There's	a	market
for	writing	that	sounds	impressive	and	can't	be	disproven.	There
will	always	be	both	supply	and	demand.	So	if	one	group
abandons	this	territory,	there	will	always	be	others	ready	to
occupy	it.

A	Proposal

We	may	be	able	to	do	better.	Here's	an	intriguing	possibility.
Perhaps	we	should	do	what	Aristotle	meant	to	do,	instead	of	what
he	did.	The	goal	he	announces	in	the	Metaphysics	seems	one
worth	pursuing:	to	discover	the	most	general	truths.	That	sounds
good.	But	instead	of	trying	to	discover	them	because	they're
useless,	let's	try	to	discover	them	because	they're	useful.

I	propose	we	try	again,	but	that	we	use	that	heretofore	despised
criterion,	applicability,	as	a	guide	to	keep	us	from	wondering	off
into	a	swamp	of	abstractions.	Instead	of	trying	to	answer	the
question:

What	are	the	most	general	truths?

let's	try	to	answer	the	question

Of	all	the	useful	things	we	can	say,	which	are	the
most	general?

The	test	of	utility	I	propose	is	whether	we	cause	people	who	read
what	we've	written	to	do	anything	differently	afterward.	Knowing
we	have	to	give	definite	(if	implicit)	advice	will	keep	us	from
straying	beyond	the	resolution	of	the	words	we're	using.

The	goal	is	the	same	as	Aristotle's;	we	just	approach	it	from	a
different	direction.

As	an	example	of	a	useful,	general	idea,	consider	that	of	the
controlled	experiment.	There's	an	idea	that	has	turned	out	to	be
widely	applicable.	Some	might	say	it's	part	of	science,	but	it's	not
part	of	any	specific	science;	it's	literally	meta-physics	(in	our
sense	of	"meta").	The	idea	of	evolution	is	another.	It	turns	out	to

#f14n

have	quite	broad	applications—for	example,	in	genetic
algorithms	and	even	product	design.	Frankfurt's	distinction
between	lying	and	bullshitting	seems	a	promising	recent
example.	[15]

These	seem	to	me	what	philosophy	should	look	like:	quite	general
observations	that	would	cause	someone	who	understood	them	to
do	something	differently.

Such	observations	will	necessarily	be	about	things	that	are
imprecisely	defined.	Once	you	start	using	words	with	precise
meanings,	you're	doing	math.	So	starting	from	utility	won't
entirely	solve	the	problem	I	described	above—it	won't	flush	out
the	metaphysical	singularity.	But	it	should	help.	It	gives	people
with	good	intentions	a	new	roadmap	into	abstraction.	And	they
may	thereby	produce	things	that	make	the	writing	of	the	people
with	bad	intentions	look	bad	by	comparison.

One	drawback	of	this	approach	is	that	it	won't	produce	the	sort
of	writing	that	gets	you	tenure.	And	not	just	because	it's	not
currently	the	fashion.	In	order	to	get	tenure	in	any	field	you	must
not	arrive	at	conclusions	that	members	of	tenure	committees	can
disagree	with.	In	practice	there	are	two	kinds	of	solutions	to	this
problem.	In	math	and	the	sciences,	you	can	prove	what	you're
saying,	or	at	any	rate	adjust	your	conclusions	so	you're	not
claiming	anything	false	("6	of	8	subjects	had	lower	blood
pressure	after	the	treatment").	In	the	humanities	you	can	either
avoid	drawing	any	definite	conclusions	(e.g.	conclude	that	an
issue	is	a	complex	one),	or	draw	conclusions	so	narrow	that	no
one	cares	enough	to	disagree	with	you.

The	kind	of	philosophy	I'm	advocating	won't	be	able	to	take
either	of	these	routes.	At	best	you'll	be	able	to	achieve	the
essayist's	standard	of	proof,	not	the	mathematician's	or	the
experimentalist's.	And	yet	you	won't	be	able	to	meet	the
usefulness	test	without	implying	definite	and	fairly	broadly
applicable	conclusions.	Worse	still,	the	usefulness	test	will	tend
to	produce	results	that	annoy	people:	there's	no	use	in	telling
people	things	they	already	believe,	and	people	are	often	upset	to
be	told	things	they	don't.

#f15n

Here's	the	exciting	thing,	though.	Anyone	can	do	this.	Getting	to
general	plus	useful	by	starting	with	useful	and	cranking	up	the
generality	may	be	unsuitable	for	junior	professors	trying	to	get
tenure,	but	it's	better	for	everyone	else,	including	professors	who
already	have	it.	This	side	of	the	mountain	is	a	nice	gradual	slope.
You	can	start	by	writing	things	that	are	useful	but	very	specific,
and	then	gradually	make	them	more	general.	Joe's	has	good
burritos.	What	makes	a	good	burrito?	What	makes	good	food?
What	makes	anything	good?	You	can	take	as	long	as	you	want.
You	don't	have	to	get	all	the	way	to	the	top	of	the	mountain.	You
don't	have	to	tell	anyone	you're	doing	philosophy.

If	it	seems	like	a	daunting	task	to	do	philosophy,	here's	an
encouraging	thought.	The	field	is	a	lot	younger	than	it	seems.
Though	the	first	philosophers	in	the	western	tradition	lived	about
2500	years	ago,	it	would	be	misleading	to	say	the	field	is	2500
years	old,	because	for	most	of	that	time	the	leading	practitioners
weren't	doing	much	more	than	writing	commentaries	on	Plato	or
Aristotle	while	watching	over	their	shoulders	for	the	next
invading	army.	In	the	times	when	they	weren't,	philosophy	was
hopelessly	intermingled	with	religion.	It	didn't	shake	itself	free
till	a	couple	hundred	years	ago,	and	even	then	was	afflicted	by
the	structural	problems	I've	described	above.	If	I	say	this,	some
will	say	it's	a	ridiculously	overbroad	and	uncharitable
generalization,	and	others	will	say	it's	old	news,	but	here	goes:
judging	from	their	works,	most	philosophers	up	to	the	present
have	been	wasting	their	time.	So	in	a	sense	the	field	is	still	at	the
first	step.	[16]

That	sounds	a	preposterous	claim	to	make.	It	won't	seem	so
preposterous	in	10,000	years.	Civilization	always	seems	old,
because	it's	always	the	oldest	it's	ever	been.	The	only	way	to	say
whether	something	is	really	old	or	not	is	by	looking	at	structural
evidence,	and	structurally	philosophy	is	young;	it's	still	reeling
from	the	unexpected	breakdown	of	words.

Philosophy	is	as	young	now	as	math	was	in	1500.	There	is	a	lot
more	to	discover.

#f16n

Notes

[1]	In	practice	formal	logic	is	not	much	use,	because	despite
some	progress	in	the	last	150	years	we're	still	only	able	to
formalize	a	small	percentage	of	statements.	We	may	never	do
that	much	better,	for	the	same	reason	1980s-style	"knowledge
representation"	could	never	have	worked;	many	statements	may
have	no	representation	more	concise	than	a	huge,	analog	brain
state.

[2]	It	was	harder	for	Darwin's	contemporaries	to	grasp	this	than
we	can	easily	imagine.	The	story	of	creation	in	the	Bible	is	not
just	a	Judeo-Christian	concept;	it's	roughly	what	everyone	must
have	believed	since	before	people	were	people.	The	hard	part	of
grasping	evolution	was	to	realize	that	species	weren't,	as	they
seem	to	be,	unchanging,	but	had	instead	evolved	from	different,
simpler	organisms	over	unimaginably	long	periods	of	time.

Now	we	don't	have	to	make	that	leap.	No	one	in	an	industrialized
country	encounters	the	idea	of	evolution	for	the	first	time	as	an
adult.	Everyone's	taught	about	it	as	a	child,	either	as	truth	or
heresy.

[3]	Greek	philosophers	before	Plato	wrote	in	verse.	This	must
have	affected	what	they	said.	If	you	try	to	write	about	the	nature
of	the	world	in	verse,	it	inevitably	turns	into	incantation.	Prose
lets	you	be	more	precise,	and	more	tentative.

[4]	Philosophy	is	like	math's	ne'er-do-well	brother.	It	was	born
when	Plato	and	Aristotle	looked	at	the	works	of	their
predecessors	and	said	in	effect	"why	can't	you	be	more	like	your
brother?"	Russell	was	still	saying	the	same	thing	2300	years
later.

Math	is	the	precise	half	of	the	most	abstract	ideas,	and
philosophy	the	imprecise	half.	It's	probably	inevitable	that
philosophy	will	suffer	by	comparison,	because	there's	no	lower

bound	to	its	precision.	Bad	math	is	merely	boring,	whereas	bad
philosophy	is	nonsense.	And	yet	there	are	some	good	ideas	in	the
imprecise	half.

[5]	Aristotle's	best	work	was	in	logic	and	zoology,	both	of	which
he	can	be	said	to	have	invented.	But	the	most	dramatic	departure
from	his	predecessors	was	a	new,	much	more	analytical	style	of
thinking.	He	was	arguably	the	first	scientist.

[6]	Brooks,	Rodney,	Programming	in	Common	Lisp,	Wiley,	1985,
p.	94.

[7]	Some	would	say	we	depend	on	Aristotle	more	than	we	realize,
because	his	ideas	were	one	of	the	ingredients	in	our	common
culture.	Certainly	a	lot	of	the	words	we	use	have	a	connection
with	Aristotle,	but	it	seems	a	bit	much	to	suggest	that	we
wouldn't	have	the	concept	of	the	essence	of	something	or	the
distinction	between	matter	and	form	if	Aristotle	hadn't	written
about	them.

One	way	to	see	how	much	we	really	depend	on	Aristotle	would	be
to	diff	European	culture	with	Chinese:	what	ideas	did	European
culture	have	in	1800	that	Chinese	culture	didn't,	in	virtue	of
Aristotle's	contribution?

[8]	The	meaning	of	the	word	"philosophy"	has	changed	over	time.
In	ancient	times	it	covered	a	broad	range	of	topics,	comparable
in	scope	to	our	"scholarship"	(though	without	the	methodological
implications).	Even	as	late	as	Newton's	time	it	included	what	we
now	call	"science."	But	core	of	the	subject	today	is	still	what
seemed	to	Aristotle	the	core:	the	attempt	to	discover	the	most
general	truths.

Aristotle	didn't	call	this	"metaphysics."	That	name	got	assigned
to	it	because	the	books	we	now	call	the	Metaphysics	came	after
(meta	=	after)	the	Physics	in	the	standard	edition	of	Aristotle's
works	compiled	by	Andronicus	of	Rhodes	three	centuries	later.
What	we	call	"metaphysics"	Aristotle	called	"first	philosophy."

[9]	Some	of	Aristotle's	immediate	successors	may	have	realized
this,	but	it's	hard	to	say	because	most	of	their	works	are	lost.

[10]	Sokal,	Alan,	"Transgressing	the	Boundaries:	Toward	a
Transformative	Hermeneutics	of	Quantum	Gravity,"	Social	Text
46/47,	pp.	217-252.

Abstract-sounding	nonsense	seems	to	be	most	attractive	when
it's	aligned	with	some	axe	the	audience	already	has	to	grind.	If
this	is	so	we	should	find	it's	most	popular	with	groups	that	are
(or	feel)	weak.	The	powerful	don't	need	its	reassurance.

[11]	Letter	to	Ottoline	Morrell,	December	1912.	Quoted	in:

Monk,	Ray,	Ludwig	Wittgenstein:	The	Duty	of	Genius,	Penguin,
1991,	p.	75.

[12]	A	preliminary	result,	that	all	metaphysics	between	Aristotle
and	1783	had	been	a	waste	of	time,	is	due	to	I.	Kant.

[13]	Wittgenstein	asserted	a	sort	of	mastery	to	which	the
inhabitants	of	early	20th	century	Cambridge	seem	to	have	been
peculiarly	vulnerable—perhaps	partly	because	so	many	had	been
raised	religious	and	then	stopped	believing,	so	had	a	vacant
space	in	their	heads	for	someone	to	tell	them	what	to	do	(others
chose	Marx	or	Cardinal	Newman),	and	partly	because	a	quiet,
earnest	place	like	Cambridge	in	that	era	had	no	natural	immunity
to	messianic	figures,	just	as	European	politics	then	had	no
natural	immunity	to	dictators.

[14]	This	is	actually	from	the	Ordinatio	of	Duns	Scotus	(ca.	1300),
with	"number"	replaced	by	"gender."	Plus	ca	change.

Wolter,	Allan	(trans),	Duns	Scotus:	Philosophical	Writings,
Nelson,	1963,	p.	92.

[15]	Frankfurt,	Harry,	On	Bullshit,	Princeton	University	Press,
2005.

[16]	Some	introductions	to	philosophy	now	take	the	line	that
philosophy	is	worth	studying	as	a	process	rather	than	for	any
particular	truths	you'll	learn.	The	philosophers	whose	works	they
cover	would	be	rolling	in	their	graves	at	that.	They	hoped	they

were	doing	more	than	serving	as	examples	of	how	to	argue:	they
hoped	they	were	getting	results.	Most	were	wrong,	but	it	doesn't
seem	an	impossible	hope.

This	argument	seems	to	me	like	someone	in	1500	looking	at	the
lack	of	results	achieved	by	alchemy	and	saying	its	value	was	as	a
process.	No,	they	were	going	about	it	wrong.	It	turns	out	it	is
possible	to	transmute	lead	into	gold	(though	not	economically	at
current	energy	prices),	but	the	route	to	that	knowledge	was	to
backtrack	and	try	another	approach.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Jessica	Livingston,
Robert	Morris,	Mark	Nitzberg,	and	Peter	Norvig	for	reading
drafts	of	this.

	

The	Future	of	Web	Startups
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Why	to	Move	to	a	Startup	Hub
October	2007

After	the	last	talk	I	gave,	one	of	the	organizers	got	up	on	the
stage	to	deliver	an	impromptu	rebuttal.	That	never	happened
before.	I	only	heard	the	first	few	sentences,	but	that	was	enough
to	tell	what	I	said	that	upset	him:	that	startups	would	do	better	if
they	moved	to	Silicon	Valley.

This	conference	was	in	London,	and	most	of	the	audience	seemed
to	be	from	the	UK.	So	saying	startups	should	move	to	Silicon
Valley	seemed	like	a	nationalistic	remark:	an	obnoxious	American
telling	them	that	if	they	wanted	to	do	things	right	they	should	all
just	move	to	America.

Actually	I'm	less	American	than	I	seem.	I	didn't	say	so,	but	I'm
British	by	birth.	And	just	as	Jews	are	ex	officio	allowed	to	tell
Jewish	jokes,	I	don't	feel	like	I	have	to	bother	being	diplomatic
with	a	British	audience.

The	idea	that	startups	would	do	better	to	move	to	Silicon	Valley
is	not	even	a	nationalistic	one.	[1]	It's	the	same	thing	I	say	to
startups	in	the	US.	Y	Combinator	alternates	between	coasts
every	6	months.	Every	other	funding	cycle	is	in	Boston.	And	even
though	Boston	is	the	second	biggest	startup	hub	in	the	US	(and
the	world),	we	tell	the	startups	from	those	cycles	that	their	best
bet	is	to	move	to	Silicon	Valley.	If	that's	true	of	Boston,	it's	even
more	true	of	every	other	city.

This	is	about	cities,	not	countries.

And	I	think	I	can	prove	I'm	right.	You	can	easily	reduce	the
opposing	argument	ad	what	most	people	would	agree	was
absurdum.	Few	would	be	willing	to	claim	that	it	doesn't	matter	at
all	where	a	startup	is—that	a	startup	operating	out	of	a	small
agricultural	town	wouldn't	benefit	from	moving	to	a	startup	hub.

webstartups.html
#f1n

Most	people	could	see	how	it	might	be	helpful	to	be	in	a	place
where	there	was	infrastructure	for	startups,	accumulated
knowledge	about	how	to	make	them	work,	and	other	people
trying	to	do	it.	And	yet	whatever	argument	you	use	to	prove	that
startups	don't	need	to	move	from	London	to	Silicon	Valley	could
equally	well	be	used	to	prove	startups	don't	need	to	move	from
smaller	towns	to	London.

The	difference	between	cities	is	a	matter	of	degree.	And	if,	as
nearly	everyone	who	knows	agrees,	startups	are	better	off	in
Silicon	Valley	than	Boston,	then	they're	better	off	in	Silicon	Valley
than	everywhere	else	too.

I	realize	I	might	seem	to	have	a	vested	interest	in	this	conclusion,
because	startups	that	move	to	the	US	might	do	it	through	Y
Combinator.	But	the	American	startups	we've	funded	will	attest
that	I	say	the	same	thing	to	them.

I'm	not	claiming	of	course	that	every	startup	has	to	go	to	Silicon
Valley	to	succeed.	Just	that	all	other	things	being	equal,	the	more
of	a	startup	hub	a	place	is,	the	better	startups	will	do	there.	But
other	considerations	can	outweigh	the	advantages	of	moving.	I'm
not	saying	founders	with	families	should	uproot	them	to	move
halfway	around	the	world;	that	might	be	too	much	of	a
distraction.

Immigration	difficulties	might	be	another	reason	to	stay	put.
Dealing	with	immigration	problems	is	like	raising	money:	for
some	reason	it	seems	to	consume	all	your	attention.	A	startup
can't	afford	much	of	that.	One	Canadian	startup	we	funded	spent
about	6	months	working	on	moving	to	the	US.	Eventually	they
just	gave	up,	because	they	couldn't	afford	to	take	so	much	time
away	from	working	on	their	software.

(If	another	country	wanted	to	establish	a	rival	to	Silicon	Valley,
the	single	best	thing	they	could	do	might	be	to	create	a	special
visa	for	startup	founders.	US	immigration	policy	is	one	of	Silicon
Valley's	biggest	weaknesses.)

If	your	startup	is	connected	to	a	specific	industry,	you	may	be
better	off	in	one	of	its	centers.	A	startup	doing	something	related

to	entertainment	might	want	to	be	in	New	York	or	LA.

And	finally,	if	a	good	investor	has	committed	to	fund	you	if	you
stay	where	you	are,	you	should	probably	stay.	Finding	investors	is
hard.	You	generally	shouldn't	pass	up	a	definite	funding	offer	to
move.	[2]

In	fact,	the	quality	of	the	investors	may	be	the	main	advantage	of
startup	hubs.	Silicon	Valley	investors	are	noticeably	more
aggressive	than	Boston	ones.	Over	and	over,	I've	seen	startups
we've	funded	snatched	by	west	coast	investors	out	from	under
the	noses	of	Boston	investors	who	saw	them	first	but	acted	too
slowly.	At	this	year's	Boston	Demo	Day,	I	told	the	audience	that
this	happened	every	year,	so	if	they	saw	a	startup	they	liked,	they
should	make	them	an	offer.	And	yet	within	a	month	it	had
happened	again:	an	aggressive	west	coast	VC	who	had	met	the
founder	of	a	YC-funded	startup	a	week	before	beat	out	a	Boston
VC	who	had	known	him	for	years.	By	the	time	the	Boston	VC
grasped	what	was	happening,	the	deal	was	already	gone.

Boston	investors	will	admit	they're	more	conservative.	Some
want	to	believe	this	comes	from	the	city's	prudent	Yankee
character.	But	Occam's	razor	suggests	the	truth	is	less	flattering.
Boston	investors	are	probably	more	conservative	than	Silicon
Valley	investors	for	the	same	reason	Chicago	investors	are	more
conservative	than	Boston	ones.	They	don't	understand	startups
as	well.

West	coast	investors	aren't	bolder	because	they're	irresponsible
cowboys,	or	because	the	good	weather	makes	them	optimistic.
They're	bolder	because	they	know	what	they're	doing.	They're
the	skiers	who	ski	on	the	diamond	slopes.	Boldness	is	the	essence
of	venture	investing.	The	way	you	get	big	returns	is	not	by	trying
to	avoid	losses,	but	by	trying	to	ensure	you	get	some	of	the	big
hits.	And	the	big	hits	often	look	risky	at	first.

Like	Facebook.	Facebook	was	started	in	Boston.	Boston	VCs	had
the	first	shot	at	them.	But	they	said	no,	so	Facebook	moved	to
Silicon	Valley	and	raised	money	there.	The	partner	who	turned
them	down	now	says	that	"may	turn	out	to	have	been	a	mistake."

#f2n

Empirically,	boldness	wins.	If	the	aggressive	ways	of	west	coast
investors	are	going	to	come	back	to	bite	them,	it	has	been	a	long
time	coming.	Silicon	Valley	has	been	pulling	ahead	of	Boston
since	the	1970s.	If	there	was	going	to	be	a	comeuppance	for	the
west	coast	investors,	the	bursting	of	the	Bubble	would	have	been
it.	But	since	then	the	west	coast	has	just	pulled	further	ahead.

West	coast	investors	are	confident	enough	of	their	judgement	to
act	boldly;	east	coast	investors,	not	so	much;	but	anyone	who
thinks	east	coast	investors	act	that	way	out	of	prudence	should
see	the	frantic	reactions	of	an	east	coast	VC	in	the	process	of
losing	a	deal	to	a	west	coast	one.

In	addition	to	the	concentration	that	comes	from	specialization,
startup	hubs	are	also	markets.	And	markets	are	usually
centralized.	Even	now,	when	traders	could	be	anywhere,	they
cluster	in	a	few	cities.	It's	hard	to	say	exactly	what	it	is	about
face	to	face	contact	that	makes	deals	happen,	but	whatever	it	is,
it	hasn't	yet	been	duplicated	by	technology.

Walk	down	University	Ave	at	the	right	time,	and	you	might
overhear	five	different	people	talking	on	the	phone	about	deals.
In	fact,	this	is	part	of	the	reason	Y	Combinator	is	in	Boston	half
the	time:	it's	hard	to	stand	that	year	round.	But	though	it	can
sometimes	be	annoying	to	be	surrounded	by	people	who	only
think	about	one	thing,	it's	the	place	to	be	if	that	one	thing	is	what
you're	trying	to	do.

I	was	talking	recently	to	someone	who	works	on	search	at
Google.	He	knew	a	lot	of	people	at	Yahoo,	so	he	was	in	a	good
position	to	compare	the	two	companies.	I	asked	him	why	Google
was	better	at	search.	He	said	it	wasn't	anything	specific	Google
did,	but	simply	that	they	understood	search	so	much	better.

And	that's	why	startups	thrive	in	startup	hubs	like	Silicon	Valley.
Startups	are	a	very	specialized	business,	as	specialized	as
diamond	cutting.	And	in	startup	hubs	they	understand	it.

Notes

[1]	The	nationalistic	idea	is	the	converse:	that	startups	should
stay	in	a	certain	city	because	of	the	country	it's	in.	If	you	really
have	a	"one	world"	viewpoint,	deciding	to	move	from	London	to
Silicon	Valley	is	no	different	from	deciding	to	move	from	Chicago
to	Silicon	Valley.

[2]	An	investor	who	merely	seems	like	he	will	fund	you,	however,
you	can	ignore.	Seeming	like	they	will	fund	you	one	day	is	the
way	investors	say	No.

Thanks	to	Sam	Altman,	Jessica	Livingston,	Harjeet	Taggar,	and
Kulveer	Taggar	for	reading	drafts	of	this.

	Comment	on	this	essay.

http://news.ycombinator.com/item?id=65815

	

Six	Principles	for	Making	New
Things
February	2008

The	fiery	reaction	to	the	release	of	Arc	had	an	unexpected
consequence:	it	made	me	realize	I	had	a	design	philosophy.	The
main	complaint	of	the	more	articulate	critics	was	that	Arc
seemed	so	flimsy.	After	years	of	working	on	it,	all	I	had	to	show
for	myself	were	a	few	thousand	lines	of	macros?	Why	hadn't	I
worked	on	more	substantial	problems?

As	I	was	mulling	over	these	remarks	it	struck	me	how	familiar
they	seemed.	This	was	exactly	the	kind	of	thing	people	said	at
first	about	Viaweb,	and	Y	Combinator,	and	most	of	my	essays.

When	we	launched	Viaweb,	it	seemed	laughable	to	VCs	and	e-
commerce	"experts."	We	were	just	a	couple	guys	in	an
apartment,	which	did	not	seem	cool	in	1995	the	way	it	does	now.
And	the	thing	we'd	built,	as	far	as	they	could	tell,	wasn't	even
software.	Software,	to	them,	equalled	big,	honking	Windows
apps.	Since	Viaweb	was	the	first	web-based	app	they'd	seen,	it
seemed	to	be	nothing	more	than	a	website.	They	were	even	more
contemptuous	when	they	discovered	that	Viaweb	didn't	process
credit	card	transactions	(we	didn't	for	the	whole	first	year).
Transaction	processing	seemed	to	them	what	e-commerce	was	all
about.	It	sounded	serious	and	difficult.

And	yet,	mysteriously,	Viaweb	ended	up	crushing	all	its
competitors.

The	initial	reaction	to	Y	Combinator	was	almost	identical.	It
seemed	laughably	lightweight.	Startup	funding	meant	series	A
rounds:	millions	of	dollars	given	to	a	small	number	of	startups
founded	by	people	with	established	credentials	after	months	of
serious,	businesslike	meetings,	on	terms	described	in	a	document

arc.html
http://ycombinator.com/

a	foot	thick.	Y	Combinator	seemed	inconsequential.	It's	too	early
to	say	yet	whether	Y	Combinator	will	turn	out	like	Viaweb,	but
judging	from	the	number	of	imitations,	a	lot	of	people	seem	to
think	we're	on	to	something.

I	can't	measure	whether	my	essays	are	successful,	except	in	page
views,	but	the	reaction	to	them	is	at	least	different	from	when	I
started.	At	first	the	default	reaction	of	the	Slashdot	trolls	was
(translated	into	articulate	terms):	"Who	is	this	guy	and	what
authority	does	he	have	to	write	about	these	topics?	I	haven't	read
the	essay,	but	there's	no	way	anything	so	short	and	written	in
such	an	informal	style	could	have	anything	useful	to	say	about
such	and	such	topic,	when	people	with	degrees	in	the	subject
have	already	written	many	thick	books	about	it."	Now	there's	a
new	generation	of	trolls	on	a	new	generation	of	sites,	but	they
have	at	least	started	to	omit	the	initial	"Who	is	this	guy?"

Now	people	are	saying	the	same	things	about	Arc	that	they	said
at	first	about	Viaweb	and	Y	Combinator	and	most	of	my	essays.
Why	the	pattern?	The	answer,	I	realized,	is	that	my	m.o.	for	all
four	has	been	the	same.

Here	it	is:	I	like	to	find	(a)	simple	solutions	(b)	to	overlooked
problems	(c)	that	actually	need	to	be	solved,	and	(d)	deliver	them
as	informally	as	possible,	(e)	starting	with	a	very	crude	version	1,
then	(f)	iterating	rapidly.

When	I	first	laid	out	these	principles	explicitly,	I	noticed
something	striking:	this	is	practically	a	recipe	for	generating	a
contemptuous	initial	reaction.	Though	simple	solutions	are
better,	they	don't	seem	as	impressive	as	complex	ones.
Overlooked	problems	are	by	definition	problems	that	most	people
think	don't	matter.	Delivering	solutions	in	an	informal	way	means
that	instead	of	judging	something	by	the	way	it's	presented,
people	have	to	actually	understand	it,	which	is	more	work.	And
starting	with	a	crude	version	1	means	your	initial	effort	is	always
small	and	incomplete.

I'd	noticed,	of	course,	that	people	never	seemed	to	grasp	new
ideas	at	first.	I	thought	it	was	just	because	most	people	were
stupid.	Now	I	see	there's	more	to	it	than	that.	Like	a	contrarian

investment	fund,	someone	following	this	strategy	will	almost
always	be	doing	things	that	seem	wrong	to	the	average	person.

As	with	contrarian	investment	strategies,	that's	exactly	the	point.
This	technique	is	successful	(in	the	long	term)	because	it	gives
you	all	the	advantages	other	people	forgo	by	trying	to	seem	legit.
If	you	work	on	overlooked	problems,	you're	more	likely	to
discover	new	things,	because	you	have	less	competition.	If	you
deliver	solutions	informally,	you	(a)	save	all	the	effort	you	would
have	had	to	expend	to	make	them	look	impressive,	and	(b)	avoid
the	danger	of	fooling	yourself	as	well	as	your	audience.	And	if
you	release	a	crude	version	1	then	iterate,	your	solution	can
benefit	from	the	imagination	of	nature,	which,	as	Feynman
pointed	out,	is	more	powerful	than	your	own.

In	the	case	of	Viaweb,	the	simple	solution	was	to	make	the
software	run	on	the	server.	The	overlooked	problem	was	to
generate	web	sites	automatically;	in	1995,	online	stores	were	all
made	by	hand	by	human	designers,	but	we	knew	this	wouldn't
scale.	The	part	that	actually	mattered	was	graphic	design,	not
transaction	processing.	The	informal	delivery	mechanism	was
me,	showing	up	in	jeans	and	a	t-shirt	at	some	retailer's	office.
And	the	crude	version	1	was,	if	I	remember	correctly,	less	than
10,000	lines	of	code	when	we	launched.

The	power	of	this	technique	extends	beyond	startups	and
programming	languages	and	essays.	It	probably	extends	to	any
kind	of	creative	work.	Certainly	it	can	be	used	in	painting:	this	is
exactly	what	Cezanne	and	Klee	did.

At	Y	Combinator	we	bet	money	on	it,	in	the	sense	that	we
encourage	the	startups	we	fund	to	work	this	way.	There	are
always	new	ideas	right	under	your	nose.	So	look	for	simple	things
that	other	people	have	overlooked—things	people	will	later	claim
were	"obvious"—especially	when	they've	been	led	astray	by
obsolete	conventions,	or	by	trying	to	do	things	that	are
superficially	impressive.	Figure	out	what	the	real	problem	is,	and
make	sure	you	solve	that.	Don't	worry	about	trying	to	look
corporate;	the	product	is	what	wins	in	the	long	term.	And	launch
as	soon	as	you	can,	so	you	start	learning	from	users	what	you
should	have	been	making.

Reddit	is	a	classic	example	of	this	approach.	When	Reddit	first
launched,	it	seemed	like	there	was	nothing	to	it.	To	the
graphically	unsophisticated	its	deliberately	minimal	design
seemed	like	no	design	at	all.	But	Reddit	solved	the	real	problem,
which	was	to	tell	people	what	was	new	and	otherwise	stay	out	of
the	way.	As	a	result	it	became	massively	successful.	Now	that
conventional	ideas	have	caught	up	with	it,	it	seems	obvious.
People	look	at	Reddit	and	think	the	founders	were	lucky.	Like	all
such	things,	it	was	harder	than	it	looked.	The	Reddits	pushed	so
hard	against	the	current	that	they	reversed	it;	now	it	looks	like
they're	merely	floating	downstream.

So	when	you	look	at	something	like	Reddit	and	think	"I	wish	I
could	think	of	an	idea	like	that,"	remember:	ideas	like	that	are	all
around	you.	But	you	ignore	them	because	they	look	wrong.

http://reddit.com/

	

Trolls
February	2008

A	user	on	Hacker	News	recently	posted	a	comment	that	set	me
thinking:

Something	about	hacker	culture	that	never	really	set
well	with	me	was	this	�	the	nastiness.	...	I	just	don't
understand	why	people	troll	like	they	do.

I've	thought	a	lot	over	the	last	couple	years	about	the	problem	of
trolls.	It's	an	old	one,	as	old	as	forums,	but	we're	still	just
learning	what	the	causes	are	and	how	to	address	them.

There	are	two	senses	of	the	word	"troll."	In	the	original	sense	it
meant	someone,	usually	an	outsider,	who	deliberately	stirred	up
fights	in	a	forum	by	saying	controversial	things.	[1]	For	example,
someone	who	didn't	use	a	certain	programming	language	might
go	to	a	forum	for	users	of	that	language	and	make	disparaging
remarks	about	it,	then	sit	back	and	watch	as	people	rose	to	the
bait.	This	sort	of	trolling	was	in	the	nature	of	a	practical	joke,	like
letting	a	bat	loose	in	a	room	full	of	people.

The	definition	then	spread	to	people	who	behaved	like	assholes
in	forums,	whether	intentionally	or	not.	Now	when	people	talk
about	trolls	they	usually	mean	this	broader	sense	of	the	word.
Though	in	a	sense	this	is	historically	inaccurate,	it	is	in	other
ways	more	accurate,	because	when	someone	is	being	an	asshole
it's	usually	uncertain	even	in	their	own	mind	how	much	is
deliberate.	That	is	arguably	one	of	the	defining	qualities	of	an
asshole.

I	think	trolling	in	the	broader	sense	has	four	causes.	The	most
important	is	distance.	People	will	say	things	in	anonymous
forums	that	they'd	never	dare	say	to	someone's	face,	just	as
they'll	do	things	in	cars	that	they'd	never	do	as	pedestrians	�
like	tailgate	people,	or	honk	at	them,	or	cut	them	off.

http://news.ycombinator.com/item?id=116938
#f1n

Trolling	tends	to	be	particularly	bad	in	forums	related	to
computers,	and	I	think	that's	due	to	the	kind	of	people	you	find
there.	Most	of	them	(myself	included)	are	more	comfortable
dealing	with	abstract	ideas	than	with	people.	Hackers	can	be
abrupt	even	in	person.	Put	them	on	an	anonymous	forum,	and	the
problem	gets	worse.

The	third	cause	of	trolling	is	incompetence.	If	you	disagree	with
something,	it's	easier	to	say	"you	suck"	than	to	figure	out	and
explain	exactly	what	you	disagree	with.	You're	also	safe	that	way
from	refutation.	In	this	respect	trolling	is	a	lot	like	graffiti.
Graffiti	happens	at	the	intersection	of	ambition	and
incompetence:	people	want	to	make	their	mark	on	the	world,	but
have	no	other	way	to	do	it	than	literally	making	a	mark	on	the
world.	[2]

The	final	contributing	factor	is	the	culture	of	the	forum.	Trolls
are	like	children	(many	are	children)	in	that	they're	capable	of	a
wide	range	of	behavior	depending	on	what	they	think	will	be
tolerated.	In	a	place	where	rudeness	isn't	tolerated,	most	can	be
polite.	But	vice	versa	as	well.

There's	a	sort	of	Gresham's	Law	of	trolls:	trolls	are	willing	to	use
a	forum	with	a	lot	of	thoughtful	people	in	it,	but	thoughtful
people	aren't	willing	to	use	a	forum	with	a	lot	of	trolls	in	it.
Which	means	that	once	trolling	takes	hold,	it	tends	to	become	the
dominant	culture.	That	had	already	happened	to	Slashdot	and
Digg	by	the	time	I	paid	attention	to	comment	threads	there,	but	I
watched	it	happen	to	Reddit.

News.YC	is,	among	other	things,	an	experiment	to	see	if	this	fate
can	be	avoided.	The	sites's	guidelines	explicitly	ask	people	not	to
say	things	they	wouldn't	say	face	to	face.	If	someone	starts	being
rude,	other	users	will	step	in	and	tell	them	to	stop.	And	when
people	seem	to	be	deliberately	trolling,	we	ban	them	ruthlessly.

Technical	tweaks	may	also	help.	On	Reddit,	votes	on	your
comments	don't	affect	your	karma	score,	but	they	do	on
News.YC.	And	it	does	seem	to	influence	people	when	they	can
see	their	reputation	in	the	eyes	of	their	peers	drain	away	after

#f2n
http://ycombinator.com/newsguidelines.html

making	an	asshole	remark.	Often	users	have	second	thoughts
and	delete	such	comments.

One	might	worry	this	would	prevent	people	from	expressing
controversial	ideas,	but	empirically	that	doesn't	seem	to	be	what
happens.	When	people	say	something	substantial	that	gets
modded	down,	they	stubbornly	leave	it	up.	What	people	delete
are	wisecracks,	because	they	have	less	invested	in	them.

So	far	the	experiment	seems	to	be	working.	The	level	of
conversation	on	News.YC	is	as	high	as	on	any	forum	I've	seen.
But	we	still	only	have	about	8,000	uniques	a	day.	The
conversations	on	Reddit	were	good	when	it	was	that	small.	The
challenge	is	whether	we	can	keep	things	this	way.

I'm	optimistic	we	will.	We're	not	depending	just	on	technical
tricks.	The	core	users	of	News.YC	are	mostly	refugees	from	other
sites	that	were	overrun	by	trolls.	They	feel	about	trolls	roughly
the	way	refugees	from	Cuba	or	Eastern	Europe	feel	about
dictatorships.	So	there	are	a	lot	of	people	working	to	keep	this
from	happening	again.

Notes

[1]	I	mean	forum	in	the	general	sense	of	a	place	to	exchange
views.	The	original	Internet	forums	were	not	web	sites	but
Usenet	newsgroups.

[2]	I'm	talking	here	about	everyday	tagging.	Some	graffiti	is	quite
impressive	(anything	becomes	art	if	you	do	it	well	enough)	but
the	median	tag	is	just	visual	spam.

	

A	New	Venture	Animal
March	2008,	rev	May	2013

(This	essay	grew	out	of	something	I	wrote	for	myself	to	figure	out
what	we	do.	Even	though	Y	Combinator	is	now	3	years	old,	we're
still	trying	to	understand	its	implications.)

I	was	annoyed	recently	to	read	a	description	of	Y	Combinator
that	said	"Y	Combinator	does	seed	funding	for	startups."	What
was	especially	annoying	about	it	was	that	I	wrote	it.	This	doesn't
really	convey	what	we	do.	And	the	reason	it's	inaccurate	is	that,
paradoxically,	funding	very	early	stage	startups	is	not	mainly
about	funding.

Saying	YC	does	seed	funding	for	startups	is	a	description	in
terms	of	earlier	models.	It's	like	calling	a	car	a	horseless
carriage.

When	you	scale	animals	you	can't	just	keep	everything	in
proportion.	For	example,	volume	grows	as	the	cube	of	linear
dimension,	but	surface	area	only	as	the	square.	So	as	animals	get
bigger	they	have	trouble	radiating	heat.	That's	why	mice	and
rabbits	are	furry	and	elephants	and	hippos	aren't.	You	can't	make
a	mouse	by	scaling	down	an	elephant.

YC	represents	a	new,	smaller	kind	of	animal—so	much	smaller
that	all	the	rules	are	different.

Before	us,	most	companies	in	the	startup	funding	business	were
venture	capital	funds.	VCs	generally	fund	later	stage	companies
than	we	do.	And	they	supply	so	much	money	that,	even	though
the	other	things	they	do	may	be	very	valuable,	it's	not	that
inaccurate	to	regard	VCs	as	sources	of	money.	Good	VCs	are
"smart	money,"	but	they're	still	money.

All	good	investors	supply	a	combination	of	money	and	help.	But

these	scale	differently,	just	as	volume	and	surface	area	do.	Late
stage	investors	supply	huge	amounts	of	money	and	comparatively
little	help:	when	a	company	about	to	go	public	gets	a	mezzanine
round	of	$50	million,	the	deal	tends	to	be	almost	entirely	about
money.	As	you	move	earlier	in	the	venture	funding	process,	the
ratio	of	help	to	money	increases,	because	earlier	stage
companies	have	different	needs.	Early	stage	companies	need	less
money	because	they're	smaller	and	cheaper	to	run,	but	they	need
more	help	because	life	is	so	precarious	for	them.	So	when	VCs	do
a	series	A	round	for,	say,	$2	million,	they	generally	expect	to	offer
a	significant	amount	of	help	along	with	the	money.

Y	Combinator	occupies	the	earliest	end	of	the	spectrum.	We're	at
least	one	and	generally	two	steps	before	VC	funding.	(Though
some	startups	go	straight	from	YC	to	VC,	the	most	common
trajectory	is	to	do	an	angel	round	first.)	And	what	happens	at	Y
Combinator	is	as	different	from	what	happens	in	a	series	A	round
as	a	series	A	round	is	from	a	mezzanine	financing.

At	our	end,	money	is	almost	a	negligible	factor.	The	startup
usually	consists	of	just	the	founders.	Their	living	expenses	are
the	company's	main	expense,	and	since	most	founders	are	under
30,	their	living	expenses	are	low.	But	at	this	early	stage
companies	need	a	lot	of	help.	Practically	every	question	is	still
unanswered.	Some	companies	we've	funded	have	been	working
on	their	software	for	a	year	or	more,	but	others	haven't	decided
what	to	work	on,	or	even	who	the	founders	should	be.

When	PR	people	and	journalists	recount	the	histories	of	startups
after	they've	become	big,	they	always	underestimate	how
uncertain	things	were	at	first.	They're	not	being	deliberately
misleading.	When	you	look	at	a	company	like	Google,	it's	hard	to
imagine	they	could	once	have	been	small	and	helpless.	Sure,	at
one	point	they	were	a	just	a	couple	guys	in	a	garage—but	even
then	their	greatness	was	assured,	and	all	they	had	to	do	was	roll
forward	along	the	railroad	tracks	of	destiny.

Far	from	it.	A	lot	of	startups	with	just	as	promising	beginnings
end	up	failing.	Google	has	such	momentum	now	that	it	would	be
hard	for	anyone	to	stop	them.	But	all	it	would	have	taken	in	the
beginning	would	have	been	for	two	Google	employees	to	focus	on

the	wrong	things	for	six	months,	and	the	company	could	have
died.

We	know,	because	we've	been	there,	just	how	vulnerable	startups
are	in	the	earliest	phases.	Curiously	enough,	that's	why	founders
tend	to	get	so	rich	from	them.	Reward	is	always	proportionate	to
risk,	and	very	early	stage	startups	are	insanely	risky.

What	we	really	do	at	Y	Combinator	is	get	startups	launched
straight.	One	of	many	metaphors	you	could	use	for	YC	is	a	steam
catapult	on	an	aircraft	carrier.	We	get	startups	airborne.	Barely
airborne,	but	enough	that	they	can	accelerate	fast.

When	you're	launching	planes	they	have	to	be	set	up	properly	or
you're	just	launching	projectiles.	They	have	to	be	pointed	straight
down	the	deck;	the	wings	have	to	be	trimmed	properly;	the
engines	have	to	be	at	full	power;	the	pilot	has	to	be	ready.	These
are	the	kind	of	problems	we	deal	with.	After	we	fund	startups	we
work	closely	with	them	for	three	months—so	closely	in	fact	that
we	insist	they	move	to	where	we	are.	And	what	we	do	in	those
three	months	is	make	sure	everything	is	set	up	for	launch.	If
there	are	tensions	between	cofounders	we	help	sort	them	out.	We
get	all	the	paperwork	set	up	properly	so	there	are	no	nasty
surprises	later.	If	the	founders	aren't	sure	what	to	focus	on	first,
we	try	to	figure	that	out.	If	there	is	some	obstacle	right	in	front	of
them,	we	either	try	to	remove	it,	or	shift	the	startup	sideways.
The	goal	is	to	get	every	distraction	out	of	the	way	so	the	founders
can	use	that	time	to	build	(or	finish	building)	something
impressive.	And	then	near	the	end	of	the	three	months	we	push
the	button	on	the	steam	catapult	in	the	form	of	Demo	Day,	where
the	current	group	of	startups	present	to	pretty	much	every
investor	in	Silicon	Valley.

Launching	companies	isn't	identical	with	launching	products.
Though	we	do	spend	a	lot	of	time	on	launch	strategies	for
products,	there	are	some	things	that	take	too	long	to	build	for	a
startup	to	launch	them	before	raising	their	next	round	of	funding.
Several	of	the	most	promising	startups	we've	funded	haven't
launched	their	products	yet,	but	are	definitely	launched	as
companies.

In	the	earliest	stage,	startups	not	only	have	more	questions	to
answer,	but	they	tend	to	be	different	kinds	of	questions.	In	later
stage	startups	the	questions	are	about	deals,	or	hiring,	or
organization.	In	the	earliest	phase	they	tend	to	be	about
technology	and	design.	What	do	you	make?	That's	the	first
problem	to	solve.	That's	why	our	motto	is	"Make	something
people	want."	This	is	always	a	good	thing	for	companies	to	do,
but	it's	even	more	important	early	on,	because	it	sets	the	bounds
for	every	other	question.	Who	you	hire,	how	much	money	you
raise,	how	you	market	yourself—they	all	depend	on	what	you're
making.

Because	the	early	problems	are	so	much	about	technology	and
design,	you	probably	need	to	be	hackers	to	do	what	we	do.	While
some	VCs	have	technical	backgrounds,	I	don't	know	any	who	still
write	code.	Their	expertise	is	mostly	in	business—as	it	should	be,
because	that's	the	kind	of	expertise	you	need	in	the	phase
between	series	A	and	(if	you're	lucky)	IPO.

We're	so	different	from	VCs	that	we're	really	a	different	kind	of
animal.	Can	we	claim	founders	are	better	off	as	a	result	of	this
new	type	of	venture	firm?	I'm	pretty	sure	the	answer	is	yes,
because	YC	is	an	improved	version	of	what	happened	to	our
startup,	and	our	case	was	not	atypical.	We	started	Viaweb	with
$10,000	in	seed	money	from	our	friend	Julian.	He	was	a	lawyer
and	arranged	all	our	paperwork,	so	we	could	just	code.	We	spent
three	months	building	a	version	1,	which	we	then	presented	to
investors	to	raise	more	money.	Sounds	familiar,	doesn't	it?	But	YC
improves	on	that	significantly.	Julian	knew	a	lot	about	law	and
business,	but	his	advice	ended	there;	he	was	not	a	startup	guy.
So	we	made	some	basic	mistakes	early	on.	And	when	we
presented	to	investors,	we	presented	to	only	2,	because	that	was
all	we	knew.	If	we'd	had	our	later	selves	to	encourage	and	advise
us,	and	Demo	Day	to	present	at,	we	would	have	been	in	much
better	shape.	We	probably	could	have	raised	money	at	3	to	5
times	the	valuation	we	did.

If	we	take	7%	of	a	company	we	fund,	the	founders	only	have	to
do	7.5%	better	in	their	next	round	of	funding	to	end	up	net
ahead.	We	certainly	manage	that.

equity.html

So	who	is	our	7%	coming	out	of?	If	the	founders	end	up	net
ahead	it's	not	coming	out	of	them.	So	is	it	coming	out	of	later
stage	investors?	Well,	they	do	end	up	paying	more.	But	I	think
they	pay	more	because	the	company	is	actually	more	valuable.
And	later	stage	investors	have	no	problem	with	that.	The	returns
of	a	VC	fund	depend	on	the	quality	of	the	companies	they	invest
in,	not	how	cheaply	they	can	buy	stock	in	them.

If	what	we	do	is	useful,	why	wasn't	anyone	doing	it	before?	There
are	two	answers	to	that.	One	is	that	people	were	doing	it	before,
just	haphazardly	on	a	smaller	scale.	Before	us,	seed	funding
came	primarily	from	individual	angel	investors.	Larry	and	Sergey,
for	example,	got	their	seed	funding	from	Andy	Bechtolsheim,	one
of	the	founders	of	Sun.	And	because	he	was	a	startup	guy	he
probably	gave	them	useful	advice.	But	raising	money	from	angel
investors	is	a	hit	or	miss	thing.	It's	a	sideline	for	most	of	them,	so
they	only	do	a	handful	of	deals	a	year	and	they	don't	spend	a	lot
of	time	on	the	startups	they	invest	in.	And	they're	hard	to	reach,
because	they	don't	want	random	startups	pestering	them	with
business	plans.	The	Google	guys	were	lucky	because	they	knew
someone	who	knew	Bechtolsheim.	It	generally	takes	a	personal
introduction	with	angels.

The	other	reason	no	one	was	doing	quite	what	we	do	is	that	till
recently	it	was	a	lot	more	expensive	to	start	a	startup.	You'll
notice	we	haven't	funded	any	biotech	startups.	That's	still
expensive.	But	advancing	technology	has	made	web	startups	so
cheap	that	you	really	can	get	a	company	airborne	for	$15,000.	If
you	understand	how	to	operate	a	steam	catapult,	at	least.

So	in	effect	what's	happened	is	that	a	new	ecological	niche	has
opened	up,	and	Y	Combinator	is	the	new	kind	of	animal	that	has
moved	into	it.	We're	not	a	replacement	for	venture	capital	funds.
We	occupy	a	new,	adjacent	niche.	And	conditions	in	our	niche	are
really	quite	different.	It's	not	just	that	the	problems	we	face	are
different;	the	whole	structure	of	the	business	is	different.	VCs	are
playing	a	zero-sum	game.	They're	all	competing	for	a	slice	of	a
fixed	amount	of	"deal	flow,"	and	that	explains	a	lot	of	their
behavior.	Whereas	our	m.o.	is	to	create	new	deal	flow,	by
encouraging	hackers	who	would	have	gotten	jobs	to	start	their
own	startups	instead.	We	compete	more	with	employers	than

VCs.

It's	not	surprising	something	like	this	would	happen.	Most	fields
become	more	specialized—more	articulated—as	they	develop,
and	startups	are	certainly	an	area	in	which	there	has	been	a	lot
of	development	over	the	past	couple	decades.	The	venture
business	in	its	present	form	is	only	about	forty	years	old.	It
stands	to	reason	it	would	evolve.

And	it's	natural	that	the	new	niche	would	at	first	be	described,
even	by	its	inhabitants,	in	terms	of	the	old	one.	But	really	Y
Combinator	is	not	in	the	startup	funding	business.	Really	we're
more	of	a	small,	furry	steam	catapult.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Robert
Morris	for	reading	drafts	of	this.

	Comment	on	this	essay.

http://news.ycombinator.com/item?id=133430

	

You	Weren't	Meant	to	Have	a
Boss
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	to	Disagree
March	2008

The	web	is	turning	writing	into	a	conversation.	Twenty	years	ago,
writers	wrote	and	readers	read.	The	web	lets	readers	respond,
and	increasingly	they	do—in	comment	threads,	on	forums,	and	in
their	own	blog	posts.

Many	who	respond	to	something	disagree	with	it.	That's	to	be
expected.	Agreeing	tends	to	motivate	people	less	than
disagreeing.	And	when	you	agree	there's	less	to	say.	You	could
expand	on	something	the	author	said,	but	he	has	probably
already	explored	the	most	interesting	implications.	When	you
disagree	you're	entering	territory	he	may	not	have	explored.

The	result	is	there's	a	lot	more	disagreeing	going	on,	especially
measured	by	the	word.	That	doesn't	mean	people	are	getting
angrier.	The	structural	change	in	the	way	we	communicate	is
enough	to	account	for	it.	But	though	it's	not	anger	that's	driving
the	increase	in	disagreement,	there's	a	danger	that	the	increase
in	disagreement	will	make	people	angrier.	Particularly	online,
where	it's	easy	to	say	things	you'd	never	say	face	to	face.

If	we're	all	going	to	be	disagreeing	more,	we	should	be	careful	to
do	it	well.	What	does	it	mean	to	disagree	well?	Most	readers	can
tell	the	difference	between	mere	name-calling	and	a	carefully
reasoned	refutation,	but	I	think	it	would	help	to	put	names	on	the
intermediate	stages.	So	here's	an	attempt	at	a	disagreement
hierarchy:

DH0.	Name-calling.

This	is	the	lowest	form	of	disagreement,	and	probably	also	the
most	common.	We've	all	seen	comments	like	this:

u	r	a	fag!!!!!!!!!!

But	it's	important	to	realize	that	more	articulate	name-calling	has
just	as	little	weight.	A	comment	like

The	author	is	a	self-important	dilettante.

is	really	nothing	more	than	a	pretentious	version	of	"u	r	a	fag."

DH1.	Ad	Hominem.

An	ad	hominem	attack	is	not	quite	as	weak	as	mere	name-calling.
It	might	actually	carry	some	weight.	For	example,	if	a	senator
wrote	an	article	saying	senators'	salaries	should	be	increased,
one	could	respond:

Of	course	he	would	say	that.	He's	a	senator.

This	wouldn't	refute	the	author's	argument,	but	it	may	at	least	be
relevant	to	the	case.	It's	still	a	very	weak	form	of	disagreement,
though.	If	there's	something	wrong	with	the	senator's	argument,
you	should	say	what	it	is;	and	if	there	isn't,	what	difference	does
it	make	that	he's	a	senator?

Saying	that	an	author	lacks	the	authority	to	write	about	a	topic	is
a	variant	of	ad	hominem—and	a	particularly	useless	sort,	because
good	ideas	often	come	from	outsiders.	The	question	is	whether
the	author	is	correct	or	not.	If	his	lack	of	authority	caused	him	to
make	mistakes,	point	those	out.	And	if	it	didn't,	it's	not	a
problem.

DH2.	Responding	to	Tone.

The	next	level	up	we	start	to	see	responses	to	the	writing,	rather
than	the	writer.	The	lowest	form	of	these	is	to	disagree	with	the
author's	tone.	E.g.

I	can't	believe	the	author	dismisses	intelligent	design
in	such	a	cavalier	fashion.

Though	better	than	attacking	the	author,	this	is	still	a	weak	form
of	disagreement.	It	matters	much	more	whether	the	author	is
wrong	or	right	than	what	his	tone	is.	Especially	since	tone	is	so
hard	to	judge.	Someone	who	has	a	chip	on	their	shoulder	about

some	topic	might	be	offended	by	a	tone	that	to	other	readers
seemed	neutral.

So	if	the	worst	thing	you	can	say	about	something	is	to	criticize
its	tone,	you're	not	saying	much.	Is	the	author	flippant,	but
correct?	Better	that	than	grave	and	wrong.	And	if	the	author	is
incorrect	somewhere,	say	where.

DH3.	Contradiction.

In	this	stage	we	finally	get	responses	to	what	was	said,	rather
than	how	or	by	whom.	The	lowest	form	of	response	to	an
argument	is	simply	to	state	the	opposing	case,	with	little	or	no
supporting	evidence.

This	is	often	combined	with	DH2	statements,	as	in:

I	can't	believe	the	author	dismisses	intelligent	design
in	such	a	cavalier	fashion.	Intelligent	design	is	a
legitimate	scientific	theory.

Contradiction	can	sometimes	have	some	weight.	Sometimes
merely	seeing	the	opposing	case	stated	explicitly	is	enough	to
see	that	it's	right.	But	usually	evidence	will	help.

DH4.	Counterargument.

At	level	4	we	reach	the	first	form	of	convincing	disagreement:
counterargument.	Forms	up	to	this	point	can	usually	be	ignored
as	proving	nothing.	Counterargument	might	prove	something.
The	problem	is,	it's	hard	to	say	exactly	what.

Counterargument	is	contradiction	plus	reasoning	and/or
evidence.	When	aimed	squarely	at	the	original	argument,	it	can
be	convincing.	But	unfortunately	it's	common	for
counterarguments	to	be	aimed	at	something	slightly	different.
More	often	than	not,	two	people	arguing	passionately	about
something	are	actually	arguing	about	two	different	things.
Sometimes	they	even	agree	with	one	another,	but	are	so	caught
up	in	their	squabble	they	don't	realize	it.

There	could	be	a	legitimate	reason	for	arguing	against	something
slightly	different	from	what	the	original	author	said:	when	you
feel	they	missed	the	heart	of	the	matter.	But	when	you	do	that,
you	should	say	explicitly	you're	doing	it.

DH5.	Refutation.

The	most	convincing	form	of	disagreement	is	refutation.	It's	also
the	rarest,	because	it's	the	most	work.	Indeed,	the	disagreement
hierarchy	forms	a	kind	of	pyramid,	in	the	sense	that	the	higher
you	go	the	fewer	instances	you	find.

To	refute	someone	you	probably	have	to	quote	them.	You	have	to
find	a	"smoking	gun,"	a	passage	in	whatever	you	disagree	with
that	you	feel	is	mistaken,	and	then	explain	why	it's	mistaken.	If
you	can't	find	an	actual	quote	to	disagree	with,	you	may	be
arguing	with	a	straw	man.

While	refutation	generally	entails	quoting,	quoting	doesn't
necessarily	imply	refutation.	Some	writers	quote	parts	of	things
they	disagree	with	to	give	the	appearance	of	legitimate
refutation,	then	follow	with	a	response	as	low	as	DH3	or	even
DH0.

DH6.	Refuting	the	Central	Point.

The	force	of	a	refutation	depends	on	what	you	refute.	The	most
powerful	form	of	disagreement	is	to	refute	someone's	central
point.

Even	as	high	as	DH5	we	still	sometimes	see	deliberate
dishonesty,	as	when	someone	picks	out	minor	points	of	an
argument	and	refutes	those.	Sometimes	the	spirit	in	which	this	is
done	makes	it	more	of	a	sophisticated	form	of	ad	hominem	than
actual	refutation.	For	example,	correcting	someone's	grammar,
or	harping	on	minor	mistakes	in	names	or	numbers.	Unless	the
opposing	argument	actually	depends	on	such	things,	the	only
purpose	of	correcting	them	is	to	discredit	one's	opponent.

Truly	refuting	something	requires	one	to	refute	its	central	point,
or	at	least	one	of	them.	And	that	means	one	has	to	commit

explicitly	to	what	the	central	point	is.	So	a	truly	effective
refutation	would	look	like:

The	author's	main	point	seems	to	be	x.	As	he	says:

<quotation>

But	this	is	wrong	for	the	following	reasons...

The	quotation	you	point	out	as	mistaken	need	not	be	the	actual
statement	of	the	author's	main	point.	It's	enough	to	refute
something	it	depends	upon.

What	It	Means

Now	we	have	a	way	of	classifying	forms	of	disagreement.	What
good	is	it?	One	thing	the	disagreement	hierarchy	doesn't	give	us
is	a	way	of	picking	a	winner.	DH	levels	merely	describe	the	form
of	a	statement,	not	whether	it's	correct.	A	DH6	response	could
still	be	completely	mistaken.

But	while	DH	levels	don't	set	a	lower	bound	on	the
convincingness	of	a	reply,	they	do	set	an	upper	bound.	A	DH6
response	might	be	unconvincing,	but	a	DH2	or	lower	response	is
always	unconvincing.

The	most	obvious	advantage	of	classifying	the	forms	of
disagreement	is	that	it	will	help	people	to	evaluate	what	they
read.	In	particular,	it	will	help	them	to	see	through	intellectually
dishonest	arguments.	An	eloquent	speaker	or	writer	can	give	the
impression	of	vanquishing	an	opponent	merely	by	using	forceful
words.	In	fact	that	is	probably	the	defining	quality	of	a
demagogue.	By	giving	names	to	the	different	forms	of
disagreement,	we	give	critical	readers	a	pin	for	popping	such
balloons.

Such	labels	may	help	writers	too.	Most	intellectual	dishonesty	is
unintentional.	Someone	arguing	against	the	tone	of	something	he
disagrees	with	may	believe	he's	really	saying	something.
Zooming	out	and	seeing	his	current	position	on	the	disagreement
hierarchy	may	inspire	him	to	try	moving	up	to	counterargument

or	refutation.

But	the	greatest	benefit	of	disagreeing	well	is	not	just	that	it	will
make	conversations	better,	but	that	it	will	make	the	people	who
have	them	happier.	If	you	study	conversations,	you	find	there	is	a
lot	more	meanness	down	in	DH1	than	up	in	DH6.	You	don't	have
to	be	mean	when	you	have	a	real	point	to	make.	In	fact,	you	don't
want	to.	If	you	have	something	real	to	say,	being	mean	just	gets
in	the	way.

If	moving	up	the	disagreement	hierarchy	makes	people	less
mean,	that	will	make	most	of	them	happier.	Most	people	don't
really	enjoy	being	mean;	they	do	it	because	they	can't	help	it.

Thanks	to	Trevor	Blackwell	and	Jessica	Livingston	for	reading
drafts	of	this.

Related:

	

Some	Heroes
April	2008

There	are	some	topics	I	save	up	because	they'll	be	so	much	fun	to
write	about.	This	is	one	of	them:	a	list	of	my	heroes.

I'm	not	claiming	this	is	a	list	of	the	n	most	admirable	people.	Who
could	make	such	a	list,	even	if	they	wanted	to?

Einstein	isn't	on	the	list,	for	example,	even	though	he	probably
deserves	to	be	on	any	shortlist	of	admirable	people.	I	once	asked
a	physicist	friend	if	Einstein	was	really	as	smart	as	his	fame
implies,	and	she	said	that	yes,	he	was.	So	why	isn't	he	on	the	list?
Because	I	had	to	ask.	This	is	a	list	of	people	who've	influenced
me,	not	people	who	would	have	if	I	understood	their	work.

My	test	was	to	think	of	someone	and	ask	"is	this	person	my
hero?"	It	often	returned	surprising	answers.	For	example,	it
returned	false	for	Montaigne,	who	was	arguably	the	inventor	of
the	essay.	Why?	When	I	thought	about	what	it	meant	to	call
someone	a	hero,	it	meant	I'd	decide	what	to	do	by	asking	what
they'd	do	in	the	same	situation.	That's	a	stricter	standard	than
admiration.

After	I	made	the	list,	I	looked	to	see	if	there	was	a	pattern,	and
there	was,	a	very	clear	one.	Everyone	on	the	list	had	two
qualities:	they	cared	almost	excessively	about	their	work,	and
they	were	absolutely	honest.	By	honest	I	don't	mean	trustworthy
so	much	as	that	they	never	pander:	they	never	say	or	do
something	because	that's	what	the	audience	wants.	They	are	all
fundamentally	subversive	for	this	reason,	though	they	conceal	it
to	varying	degrees.

Jack	Lambert

I	grew	up	in	Pittsburgh	in	the	1970s.	Unless	you	were	there	it's

hard	to	imagine	how	that	town	felt	about	the	Steelers.	Locally,	all
the	news	was	bad.	The	steel	industry	was	dying.	But	the	Steelers
were	the	best	team	in	football	—	and	moreover,	in	a	way	that
seemed	to	reflect	the	personality	of	the	city.	They	didn't	do
anything	fancy.	They	just	got	the	job	done.

Other	players	were	more	famous:	Terry	Bradshaw,	Franco	Harris,
Lynn	Swann.	But	they	played	offense,	and	you	always	get	more
attention	for	that.	It	seemed	to	me	as	a	twelve	year	old	football
expert	that	the	best	of	them	all	was	Jack	Lambert.	And	what
made	him	so	good	was	that	he	was	utterly	relentless.	He	didn't
just	care	about	playing	well;	he	cared	almost	too	much.	He
seemed	to	regard	it	as	a	personal	insult	when	someone	from	the
other	team	had	possession	of	the	ball	on	his	side	of	the	line	of
scrimmage.

The	suburbs	of	Pittsburgh	in	the	1970s	were	a	pretty	dull	place.
School	was	boring.	All	the	adults	around	were	bored	with	their
jobs	working	for	big	companies.	Everything	that	came	to	us
through	the	mass	media	was	(a)	blandly	uniform	and	(b)
produced	elsewhere.	Jack	Lambert	was	the	exception.	He	was
like	nothing	else	I'd	seen.

Kenneth	Clark

Kenneth	Clark	is	the	best	nonfiction	writer	I	know	of,	on	any
subject.	Most	people	who	write	about	art	history	don't	really	like
art;	you	can	tell	from	a	thousand	little	signs.	But	Clark	did,	and
not	just	intellectually,	but	the	way	one	anticipates	a	delicious
dinner.

What	really	makes	him	stand	out,	though,	is	the	quality	of	his
ideas.	His	style	is	deceptively	casual,	but	there	is	more	in	his
books	than	in	a	library	of	art	monographs.	Reading	The	Nude	is
like	a	ride	in	a	Ferrari.	Just	as	you're	getting	settled,	you're
slammed	back	in	your	seat	by	the	acceleration.	Before	you	can
adjust,	you're	thrown	sideways	as	the	car	screeches	into	the	first
turn.	His	brain	throws	off	ideas	almost	too	fast	to	grasp	them.
Finally	at	the	end	of	the	chapter	you	come	to	a	halt,	with	your
eyes	wide	and	a	big	smile	on	your	face.

http://en.wikipedia.org/wiki/Jack_Lambert_(American_football_player)
http://www.amazon.com/Nude-Study-Ideal-Form/dp/0691017883

Kenneth	Clark	was	a	star	in	his	day,	thanks	to	the	documentary
series	Civilisation.	And	if	you	read	only	one	book	about	art
history,	Civilisation	is	the	one	I'd	recommend.	It's	much	better
than	the	drab	Sears	Catalogs	of	art	that	undergraduates	are
forced	to	buy	for	Art	History	101.

Larry	Mihalko

A	lot	of	people	have	a	great	teacher	at	some	point	in	their
childhood.	Larry	Mihalko	was	mine.	When	I	look	back	it's	like
there's	a	line	drawn	between	third	and	fourth	grade.	After	Mr.
Mihalko,	everything	was	different.

Why?	First	of	all,	he	was	intellectually	curious.	I	had	a	few	other
teachers	who	were	smart,	but	I	wouldn't	describe	them	as
intellectually	curious.	In	retrospect,	he	was	out	of	place	as	an
elementary	school	teacher,	and	I	think	he	knew	it.	That	must
have	been	hard	for	him,	but	it	was	wonderful	for	us,	his	students.
His	class	was	a	constant	adventure.	I	used	to	like	going	to	school
every	day.

The	other	thing	that	made	him	different	was	that	he	liked	us.
Kids	are	good	at	telling	that.	The	other	teachers	were	at	best
benevolently	indifferent.	But	Mr.	Mihalko	seemed	like	he	actually
wanted	to	be	our	friend.	On	the	last	day	of	fourth	grade,	he	got
out	one	of	the	heavy	school	record	players	and	played	James
Taylor's	"You've	Got	a	Friend"	to	us.	Just	call	out	my	name,	and
you	know	wherever	I	am,	I'll	come	running.	He	died	at	59	of	lung
cancer.	I've	never	cried	like	I	cried	at	his	funeral.

Leonardo

One	of	the	things	I've	learned	about	making	things	that	I	didn't
realize	when	I	was	a	kid	is	that	much	of	the	best	stuff	isn't	made
for	audiences,	but	for	oneself.	You	see	paintings	and	drawings	in
museums	and	imagine	they	were	made	for	you	to	look	at.
Actually	a	lot	of	the	best	ones	were	made	as	a	way	of	exploring
the	world,	not	as	a	way	to	please	other	people.	The	best	of	these
explorations	are	sometimes	more	pleasing	than	stuff	made
explicitly	to	please.

http://www.amazon.com/dp/B000F0UUKA
http://www.abebooks.com/servlet/SearchResults?an=clark&sts=t&tn=civilisation

Leonardo	did	a	lot	of	things.	One	of	his	most	admirable	qualities
was	that	he	did	so	many	different	things	that	were	admirable.
What	people	know	of	him	now	is	his	paintings	and	his	more
flamboyant	inventions,	like	flying	machines.	That	makes	him
seem	like	some	kind	of	dreamer	who	sketched	artists'
conceptions	of	rocket	ships	on	the	side.	In	fact	he	made	a	large
number	of	far	more	practical	technical	discoveries.	He	was	as
good	an	engineer	as	a	painter.

His	most	impressive	work,	to	me,	is	his	drawings.	They're	clearly
made	more	as	a	way	of	studying	the	world	than	producing
something	beautiful.	And	yet	they	can	hold	their	own	with	any
work	of	art	ever	made.	No	one	else,	before	or	since,	was	that
good	when	no	one	was	looking.

Robert	Morris

Robert	Morris	has	a	very	unusual	quality:	he's	never	wrong.	It
might	seem	this	would	require	you	to	be	omniscient,	but	actually
it's	surprisingly	easy.	Don't	say	anything	unless	you're	fairly	sure
of	it.	If	you're	not	omniscient,	you	just	don't	end	up	saying	much.

More	precisely,	the	trick	is	to	pay	careful	attention	to	how	you
qualify	what	you	say.	By	using	this	trick,	Robert	has,	as	far	as	I
know,	managed	to	be	mistaken	only	once,	and	that	was	when	he
was	an	undergrad.	When	the	Mac	came	out,	he	said	that	little
desktop	computers	would	never	be	suitable	for	real	hacking.

It's	wrong	to	call	it	a	trick	in	his	case,	though.	If	it	were	a
conscious	trick,	he	would	have	slipped	in	a	moment	of
excitement.	With	Robert	this	quality	is	wired-in.	He	has	an	almost
superhuman	integrity.	He's	not	just	generally	correct,	but	also
correct	about	how	correct	he	is.

You'd	think	it	would	be	such	a	great	thing	never	to	be	wrong	that
everyone	would	do	this.	It	doesn't	seem	like	that	much	extra
work	to	pay	as	much	attention	to	the	error	on	an	idea	as	to	the
idea	itself.	And	yet	practically	no	one	does.	I	know	how	hard	it	is,
because	since	meeting	Robert	I've	tried	to	do	in	software	what	he
seems	to	do	in	hardware.

https://sep.turbifycdn.com/ty/cdn/paulgraham/leonardo-skull.jpg?t=1688221954&

P.	G.	Wodehouse

People	are	finally	starting	to	admit	that	Wodehouse	was	a	great
writer.	If	you	want	to	be	thought	a	great	novelist	in	your	own
time,	you	have	to	sound	intellectual.	If	what	you	write	is	popular,
or	entertaining,	or	funny,	you're	ipso	facto	suspect.	That	makes
Wodehouse	doubly	impressive,	because	it	meant	that	to	write	as
he	wanted	to,	he	had	to	commit	to	being	despised	in	his	own
lifetime.

Evelyn	Waugh	called	him	a	great	writer,	but	to	most	people	at	the
time	that	would	have	read	as	a	chivalrous	or	deliberately
perverse	gesture.	At	the	time	any	random	autobiographical	novel
by	a	recent	college	grad	could	count	on	more	respectful
treatment	from	the	literary	establishment.

Wodehouse	may	have	begun	with	simple	atoms,	but	the	way	he
composed	them	into	molecules	was	near	faultless.	His	rhythm	in
particular.	It	makes	me	self-conscious	to	write	about	it.	I	can
think	of	only	two	other	writers	who	came	near	him	for	style:
Evelyn	Waugh	and	Nancy	Mitford.	Those	three	used	the	English
language	like	they	owned	it.

But	Wodehouse	has	something	neither	of	them	did.	He's	at	ease.
Evelyn	Waugh	and	Nancy	Mitford	cared	what	other	people
thought	of	them:	he	wanted	to	seem	aristocratic;	she	was	afraid
she	wasn't	smart	enough.	But	Wodehouse	didn't	give	a	damn
what	anyone	thought	of	him.	He	wrote	exactly	what	he	wanted.

Alexander	Calder

Calder's	on	this	list	because	he	makes	me	happy.	Can	his	work
stand	up	to	Leonardo's?	Probably	not.	There	might	not	be
anything	from	the	20th	Century	that	can.	But	what	was	good
about	Modernism,	Calder	had,	and	had	in	a	way	that	he	made
seem	effortless.

What	was	good	about	Modernism	was	its	freshness.	Art	became
stuffy	in	the	nineteenth	century.	The	paintings	that	were	popular
at	the	time	were	mostly	the	art	equivalent	of	McMansions—big,
pretentious,	and	fake.	Modernism	meant	starting	over,	making

things	with	the	same	earnest	motives	that	children	might.	The
artists	who	benefited	most	from	this	were	the	ones	who	had
preserved	a	child's	confidence,	like	Klee	and	Calder.

Klee	was	impressive	because	he	could	work	in	so	many	different
styles.	But	between	the	two	I	like	Calder	better,	because	his	work
seemed	happier.	Ultimately	the	point	of	art	is	to	engage	the
viewer.	It's	hard	to	predict	what	will;	often	something	that	seems
interesting	at	first	will	bore	you	after	a	month.	Calder's
sculptures	never	get	boring.	They	just	sit	there	quietly	radiating
optimism,	like	a	battery	that	never	runs	out.	As	far	as	I	can	tell
from	books	and	photographs,	the	happiness	of	Calder's	work	is
his	own	happiness	showing	through.

Jane	Austen

Everyone	admires	Jane	Austen.	Add	my	name	to	the	list.	To	me
she	seems	the	best	novelist	of	all	time.

I'm	interested	in	how	things	work.	When	I	read	most	novels,	I
pay	as	much	attention	to	the	author's	choices	as	to	the	story.	But
in	her	novels	I	can't	see	the	gears	at	work.	Though	I'd	really	like
to	know	how	she	does	what	she	does,	I	can't	figure	it	out,
because	she's	so	good	that	her	stories	don't	seem	made	up.	I	feel
like	I'm	reading	a	description	of	something	that	actually
happened.

I	used	to	read	a	lot	of	novels	when	I	was	younger.	I	can't	read
most	anymore,	because	they	don't	have	enough	information	in
them.	Novels	seem	so	impoverished	compared	to	history	and
biography.	But	reading	Austen	is	like	reading	nonfiction.	She
writes	so	well	you	don't	even	notice	her.

John	McCarthy

John	McCarthy	invented	Lisp,	the	field	of	(or	at	least	the	term)
artificial	intelligence,	and	was	an	early	member	of	both	of	the	top
two	computer	science	departments,	MIT	and	Stanford.	No	one
would	dispute	that	he's	one	of	the	greats,	but	he's	an	especial
hero	to	me	because	of	Lisp.

https://www.flickr.com/photos/uergevich/7029234689/
rootsoflisp.html

It's	hard	for	us	now	to	understand	what	a	conceptual	leap	that
was	at	the	time.	Paradoxically,	one	of	the	reasons	his
achievement	is	hard	to	appreciate	is	that	it	was	so	successful.
Practically	every	programming	language	invented	in	the	last	20
years	includes	ideas	from	Lisp,	and	each	year	the	median
language	gets	more	Lisplike.

In	1958	these	ideas	were	anything	but	obvious.	In	1958	there
seem	to	have	been	two	ways	of	thinking	about	programming.
Some	people	thought	of	it	as	math,	and	proved	things	about
Turing	Machines.	Others	thought	of	it	as	a	way	to	get	things
done,	and	designed	languages	all	too	influenced	by	the
technology	of	the	day.	McCarthy	alone	bridged	the	gap.	He
designed	a	language	that	was	math.	But	designed	is	not	really
the	word;	discovered	is	more	like	it.

The	Spitfire

As	I	was	making	this	list	I	found	myself	thinking	of	people	like
Douglas	Bader	and	R.J.	Mitchell	and	Jeffrey	Quill	and	I	realized
that	though	all	of	them	had	done	many	things	in	their	lives,	there
was	one	factor	above	all	that	connected	them:	the	Spitfire.

This	is	supposed	to	be	a	list	of	heroes.	How	can	a	machine	be	on
it?	Because	that	machine	was	not	just	a	machine.	It	was	a	lens	of
heroes.	Extraordinary	devotion	went	into	it,	and	extraordinary
courage	came	out.

It's	a	cliche	to	call	World	War	II	a	contest	between	good	and	evil,
but	between	fighter	designs,	it	really	was.	The	Spitfire's	original
nemesis,	the	ME	109,	was	a	brutally	practical	plane.	It	was	a
killing	machine.	The	Spitfire	was	optimism	embodied.	And	not
just	in	its	beautiful	lines:	it	was	at	the	edge	of	what	could	be
manufactured.	But	taking	the	high	road	worked.	In	the	air,
beauty	had	the	edge,	just.

Steve	Jobs

People	alive	when	Kennedy	was	killed	usually	remember	exactly
where	they	were	when	they	heard	about	it.	I	remember	exactly
where	I	was	when	a	friend	asked	if	I'd	heard	Steve	Jobs	had

http://en.wikipedia.org/wiki/Douglas_Bader
http://en.wikipedia.org/wiki/R._J._Mitchell
http://www.amazon.com/Spitfire-Pilots-Story-Crecy-Cover/dp/0947554726

cancer.	It	was	like	the	floor	dropped	out.	A	few	seconds	later	she
told	me	that	it	was	a	rare	operable	type,	and	that	he'd	be	ok.	But
those	seconds	seemed	long.

I	wasn't	sure	whether	to	include	Jobs	on	this	list.	A	lot	of	people
at	Apple	seem	to	be	afraid	of	him,	which	is	a	bad	sign.	But	he
compels	admiration.

There's	no	name	for	what	Steve	Jobs	is,	because	there	hasn't
been	anyone	quite	like	him	before.	He	doesn't	design	Apple's
products	himself.	Historically	the	closest	analogy	to	what	he	does
are	the	great	Renaissance	patrons	of	the	arts.	As	the	CEO	of	a
company,	that	makes	him	unique.

Most	CEOs	delegate	taste	to	a	subordinate.	The	design	paradox
means	they're	choosing	more	or	less	at	random.	But	Steve	Jobs
actually	has	taste	himself	—	such	good	taste	that	he's	shown	the
world	how	much	more	important	taste	is	than	they	realized.

Isaac	Newton

Newton	has	a	strange	role	in	my	pantheon	of	heroes:	he's	the	one
I	reproach	myself	with.	He	worked	on	big	things,	at	least	for	part
of	his	life.	It's	so	easy	to	get	distracted	working	on	small	stuff.
The	questions	you're	answering	are	pleasantly	familiar.	You	get
immediate	rewards	—	in	fact,	you	get	bigger	rewards	in	your
time	if	you	work	on	matters	of	passing	importance.	But	I'm
uncomfortably	aware	that	this	is	the	route	to	well-deserved
obscurity.

To	do	really	great	things,	you	have	to	seek	out	questions	people
didn't	even	realize	were	questions.	There	have	probably	been
other	people	who	did	this	as	well	as	Newton,	for	their	time,	but
Newton	is	my	model	of	this	kind	of	thought.	I	can	just	begin	to
understand	what	it	must	have	felt	like	for	him.

You	only	get	one	life.	Why	not	do	something	huge?	The	phrase
"paradigm	shift"	is	overused	now,	but	Kuhn	was	onto	something.
And	you	know	more	are	out	there,	separated	from	us	by	what	will
later	seem	a	surprisingly	thin	wall	of	laziness	and	stupidity.	If	we
work	like	Newton.

taste.html
gh.html

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Jackie
McDonough	for	reading	drafts	of	this.

	

Why	There	Aren't	More
Googles
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

April	2008

Umair	Haque	wrote	recently	that	the	reason	there	aren't	more
Googles	is	that	most	startups	get	bought	before	they	can	change
the	world.

Google,	despite	serious	interest	from	Microsoft	and
Yahoo—what	must	have	seemed	like	lucrative
interest	at	the	time—didn't	sell	out.	Google	might
simply	have	been	nothing	but	Yahoo's	or	MSN's
search	box.

Why	isn't	it?	Because	Google	had	a	deeply	felt	sense
of	purpose:	a	conviction	to	change	the	world	for	the
better.

This	has	a	nice	sound	to	it,	but	it	isn't	true.	Google's	founders
were	willing	to	sell	early	on.	They	just	wanted	more	than
acquirers	were	willing	to	pay.

It	was	the	same	with	Facebook.	They	would	have	sold,	but	Yahoo
blew	it	by	offering	too	little.

Tip	for	acquirers:	when	a	startup	turns	you	down,	consider
raising	your	offer,	because	there's	a	good	chance	the	outrageous
price	they	want	will	later	seem	a	bargain.	[1]

From	the	evidence	I've	seen	so	far,	startups	that	turn	down
acquisition	offers	usually	end	up	doing	better.	Not	always,	but
usually	there's	a	bigger	offer	coming,	or	perhaps	even	an	IPO.

Of	course,	the	reason	startups	do	better	when	they	turn	down

http://ycombinator.com/apply.html
http://discussionleader.hbsp.com/haque/2008/04/i_agree_and_i.html
#f1n

acquisition	offers	is	not	necessarily	that	all	such	offers
undervalue	startups.	More	likely	the	reason	is	that	the	kind	of
founders	who	have	the	balls	to	turn	down	a	big	offer	also	tend	to
be	very	successful.	That	spirit	is	exactly	what	you	want	in	a
startup.

While	I'm	sure	Larry	and	Sergey	do	want	to	change	the	world,	at
least	now,	the	reason	Google	survived	to	become	a	big,
independent	company	is	the	same	reason	Facebook	has	so	far
remained	independent:	acquirers	underestimated	them.

Corporate	M&A	is	a	strange	business	in	that	respect.	They
consistently	lose	the	best	deals,	because	turning	down
reasonable	offers	is	the	most	reliable	test	you	could	invent	for
whether	a	startup	will	make	it	big.

VCs

So	what's	the	real	reason	there	aren't	more	Googles?	Curiously
enough,	it's	the	same	reason	Google	and	Facebook	have
remained	independent:	money	guys	undervalue	the	most
innovative	startups.

The	reason	there	aren't	more	Googles	is	not	that	investors
encourage	innovative	startups	to	sell	out,	but	that	they	won't
even	fund	them.	I've	learned	a	lot	about	VCs	during	the	3	years
we've	been	doing	Y	Combinator,	because	we	often	have	to	work
quite	closely	with	them.	The	most	surprising	thing	I've	learned	is
how	conservative	they	are.	VC	firms	present	an	image	of	boldly
encouraging	innovation.	Only	a	handful	actually	do,	and	even
they	are	more	conservative	in	reality	than	you'd	guess	from
reading	their	sites.

I	used	to	think	of	VCs	as	piratical:	bold	but	unscrupulous.	On
closer	acquaintance	they	turn	out	to	be	more	like	bureaucrats.
They're	more	upstanding	than	I	used	to	think	(the	good	ones,	at
least),	but	less	bold.	Maybe	the	VC	industry	has	changed.	Maybe
they	used	to	be	bolder.	But	I	suspect	it's	the	startup	world	that
has	changed,	not	them.	The	low	cost	of	starting	a	startup	means
the	average	good	bet	is	a	riskier	one,	but	most	existing	VC	firms
still	operate	as	if	they	were	investing	in	hardware	startups	in

1985.

Howard	Aiken	said	"Don't	worry	about	people	stealing	your
ideas.	If	your	ideas	are	any	good,	you'll	have	to	ram	them	down
people's	throats."	I	have	a	similar	feeling	when	I'm	trying	to
convince	VCs	to	invest	in	startups	Y	Combinator	has	funded.
They're	terrified	of	really	novel	ideas,	unless	the	founders	are
good	enough	salesmen	to	compensate.

But	it's	the	bold	ideas	that	generate	the	biggest	returns.	Any
really	good	new	idea	will	seem	bad	to	most	people;	otherwise
someone	would	already	be	doing	it.	And	yet	most	VCs	are	driven
by	consensus,	not	just	within	their	firms,	but	within	the	VC
community.	The	biggest	factor	determining	how	a	VC	will	feel
about	your	startup	is	how	other	VCs	feel	about	it.	I	doubt	they
realize	it,	but	this	algorithm	guarantees	they'll	miss	all	the	very
best	ideas.	The	more	people	who	have	to	like	a	new	idea,	the
more	outliers	you	lose.

Whoever	the	next	Google	is,	they're	probably	being	told	right
now	by	VCs	to	come	back	when	they	have	more	"traction."

Why	are	VCs	so	conservative?	It's	probably	a	combination	of
factors.	The	large	size	of	their	investments	makes	them
conservative.	Plus	they're	investing	other	people's	money,	which
makes	them	worry	they'll	get	in	trouble	if	they	do	something
risky	and	it	fails.	Plus	most	of	them	are	money	guys	rather	than
technical	guys,	so	they	don't	understand	what	the	startups
they're	investing	in	do.

What's	Next

The	exciting	thing	about	market	economies	is	that	stupidity
equals	opportunity.	And	so	it	is	in	this	case.	There	is	a	huge,
unexploited	opportunity	in	startup	investing.	Y	Combinator	funds
startups	at	the	very	beginning.	VCs	will	fund	them	once	they're
already	starting	to	succeed.	But	between	the	two	there	is	a
substantial	gap.

There	are	companies	that	will	give	$20k	to	a	startup	that	has
nothing	more	than	the	founders,	and	there	are	companies	that

will	give	$2	million	to	a	startup	that's	already	taking	off,	but
there	aren't	enough	investors	who	will	give	$200k	to	a	startup
that	seems	very	promising	but	still	has	some	things	to	figure	out.
This	territory	is	occupied	mostly	by	individual	angel	investors—
people	like	Andy	Bechtolsheim,	who	gave	Google	$100k	when
they	seemed	promising	but	still	had	some	things	to	figure	out.	I
like	angels,	but	there	just	aren't	enough	of	them,	and	investing	is
for	most	of	them	a	part	time	job.

And	yet	as	it	gets	cheaper	to	start	startups,	this	sparsely
occupied	territory	is	becoming	more	and	more	valuable.
Nowadays	a	lot	of	startups	don't	want	to	raise	multi-million	dollar
series	A	rounds.	They	don't	need	that	much	money,	and	they
don't	want	the	hassles	that	come	with	it.	The	median	startup
coming	out	of	Y	Combinator	wants	to	raise	$250-500k.	When
they	go	to	VC	firms	they	have	to	ask	for	more	because	they	know
VCs	aren't	interested	in	such	small	deals.

VCs	are	money	managers.	They're	looking	for	ways	to	put	large
sums	to	work.	But	the	startup	world	is	evolving	away	from	their
current	model.

Startups	have	gotten	cheaper.	That	means	they	want	less	money,
but	also	that	there	are	more	of	them.	So	you	can	still	get	large
returns	on	large	amounts	of	money;	you	just	have	to	spread	it
more	broadly.

I've	tried	to	explain	this	to	VC	firms.	Instead	of	making	one	$2
million	investment,	make	five	$400k	investments.	Would	that
mean	sitting	on	too	many	boards?	Don't	sit	on	their	boards.
Would	that	mean	too	much	due	diligence?	Do	less.	If	you're
investing	at	a	tenth	the	valuation,	you	only	have	to	be	a	tenth	as
sure.

It	seems	obvious.	But	I've	proposed	to	several	VC	firms	that	they
set	aside	some	money	and	designate	one	partner	to	make	more,
smaller	bets,	and	they	react	as	if	I'd	proposed	the	partners	all	get
nose	rings.	It's	remarkable	how	wedded	they	are	to	their
standard	m.o.

But	there	is	a	big	opportunity	here,	and	one	way	or	the	other	it's

going	to	get	filled.	Either	VCs	will	evolve	down	into	this	gap	or,
more	likely,	new	investors	will	appear	to	fill	it.	That	will	be	a
good	thing	when	it	happens,	because	these	new	investors	will	be
compelled	by	the	structure	of	the	investments	they	make	to	be
ten	times	bolder	than	present	day	VCs.	And	that	will	get	us	a	lot
more	Googles.	At	least,	as	long	as	acquirers	remain	stupid.

Notes

[1]	Another	tip:	If	you	want	to	get	all	that	value,	don't	destroy	the
startup	after	you	buy	it.	Give	the	founders	enough	autonomy	that
they	can	grow	the	acquisition	into	what	it	would	have	become.

Thanks	to	Sam	Altman,	Paul	Buchheit,	David	Hornik,	Jessica
Livingston,	Robert	Morris,	and	Fred	Wilson	for	reading	drafts	of
this.

	

Be	Good
April	2008

(This	essay	is	derived	from	a	talk	at	the	2008	Startup	School.)

About	a	month	after	we	started	Y	Combinator	we	came	up	with
the	phrase	that	became	our	motto:	Make	something	people	want.
We've	learned	a	lot	since	then,	but	if	I	were	choosing	now	that's
still	the	one	I'd	pick.

Another	thing	we	tell	founders	is	not	to	worry	too	much	about	the
business	model,	at	least	at	first.	Not	because	making	money	is
unimportant,	but	because	it's	so	much	easier	than	building
something	great.

A	couple	weeks	ago	I	realized	that	if	you	put	those	two	ideas
together,	you	get	something	surprising.	Make	something	people
want.	Don't	worry	too	much	about	making	money.	What	you've
got	is	a	description	of	a	charity.

When	you	get	an	unexpected	result	like	this,	it	could	either	be	a
bug	or	a	new	discovery.	Either	businesses	aren't	supposed	to	be
like	charities,	and	we've	proven	by	reductio	ad	absurdum	that
one	or	both	of	the	principles	we	began	with	is	false.	Or	we	have	a
new	idea.

I	suspect	it's	the	latter,	because	as	soon	as	this	thought	occurred
to	me,	a	whole	bunch	of	other	things	fell	into	place.

Examples

For	example,	Craigslist.	It's	not	a	charity,	but	they	run	it	like	one.
And	they're	astoundingly	successful.	When	you	scan	down	the	list
of	most	popular	web	sites,	the	number	of	employees	at	Craigslist
looks	like	a	misprint.	Their	revenues	aren't	as	high	as	they	could
be,	but	most	startups	would	be	happy	to	trade	places	with	them.

In	Patrick	O'Brian's	novels,	his	captains	always	try	to	get	upwind
of	their	opponents.	If	you're	upwind,	you	decide	when	and	if	to
engage	the	other	ship.	Craigslist	is	effectively	upwind	of
enormous	revenues.	They'd	face	some	challenges	if	they	wanted
to	make	more,	but	not	the	sort	you	face	when	you're	tacking
upwind,	trying	to	force	a	crappy	product	on	ambivalent	users	by
spending	ten	times	as	much	on	sales	as	on	development.	[1]

I'm	not	saying	startups	should	aim	to	end	up	like	Craigslist.
They're	a	product	of	unusual	circumstances.	But	they're	a	good
model	for	the	early	phases.

Google	looked	a	lot	like	a	charity	in	the	beginning.	They	didn't
have	ads	for	over	a	year.	At	year	1,	Google	was	indistinguishable
from	a	nonprofit.	If	a	nonprofit	or	government	organization	had
started	a	project	to	index	the	web,	Google	at	year	1	is	the	limit	of
what	they'd	have	produced.

Back	when	I	was	working	on	spam	filters	I	thought	it	would	be	a
good	idea	to	have	a	web-based	email	service	with	good	spam
filtering.	I	wasn't	thinking	of	it	as	a	company.	I	just	wanted	to
keep	people	from	getting	spammed.	But	as	I	thought	more	about
this	project,	I	realized	it	would	probably	have	to	be	a	company.	It
would	cost	something	to	run,	and	it	would	be	a	pain	to	fund	with
grants	and	donations.

That	was	a	surprising	realization.	Companies	often	claim	to	be
benevolent,	but	it	was	surprising	to	realize	there	were	purely
benevolent	projects	that	had	to	be	embodied	as	companies	to
work.

I	didn't	want	to	start	another	company,	so	I	didn't	do	it.	But	if
someone	had,	they'd	probably	be	quite	rich	now.	There	was	a
window	of	about	two	years	when	spam	was	increasing	rapidly
but	all	the	big	email	services	had	terrible	filters.	If	someone	had
launched	a	new,	spam-free	mail	service,	users	would	have	flocked
to	it.

Notice	the	pattern	here?	From	either	direction	we	get	to	the
same	spot.	If	you	start	from	successful	startups,	you	find	they

#f1n

often	behaved	like	nonprofits.	And	if	you	start	from	ideas	for
nonprofits,	you	find	they'd	often	make	good	startups.

Power

How	wide	is	this	territory?	Would	all	good	nonprofits	be	good
companies?	Possibly	not.	What	makes	Google	so	valuable	is	that
their	users	have	money.	If	you	make	people	with	money	love	you,
you	can	probably	get	some	of	it.	But	could	you	also	base	a
successful	startup	on	behaving	like	a	nonprofit	to	people	who
don't	have	money?	Could	you,	for	example,	grow	a	successful
startup	out	of	curing	an	unfashionable	but	deadly	disease	like
malaria?

I'm	not	sure,	but	I	suspect	that	if	you	pushed	this	idea,	you'd	be
surprised	how	far	it	would	go.	For	example,	people	who	apply	to
Y	Combinator	don't	generally	have	much	money,	and	yet	we	can
profit	by	helping	them,	because	with	our	help	they	could	make
money.	Maybe	the	situation	is	similar	with	malaria.	Maybe	an
organization	that	helped	lift	its	weight	off	a	country	could	benefit
from	the	resulting	growth.

I'm	not	proposing	this	is	a	serious	idea.	I	don't	know	anything
about	malaria.	But	I've	been	kicking	ideas	around	long	enough	to
know	when	I	come	across	a	powerful	one.

One	way	to	guess	how	far	an	idea	extends	is	to	ask	yourself	at
what	point	you'd	bet	against	it.	The	thought	of	betting	against
benevolence	is	alarming	in	the	same	way	as	saying	that
something	is	technically	impossible.	You're	just	asking	to	be
made	a	fool	of,	because	these	are	such	powerful	forces.	[2]

For	example,	initially	I	thought	maybe	this	principle	only	applied
to	Internet	startups.	Obviously	it	worked	for	Google,	but	what
about	Microsoft?	Surely	Microsoft	isn't	benevolent?	But	when	I
think	back	to	the	beginning,	they	were.	Compared	to	IBM	they
were	like	Robin	Hood.	When	IBM	introduced	the	PC,	they
thought	they	were	going	to	make	money	selling	hardware	at	high
prices.	But	by	gaining	control	of	the	PC	standard,	Microsoft
opened	up	the	market	to	any	manufacturer.	Hardware	prices
plummeted,	and	lots	of	people	got	to	have	computers	who

#f2n

couldn't	otherwise	have	afforded	them.	It's	the	sort	of	thing	you'd
expect	Google	to	do.

Microsoft	isn't	so	benevolent	now.	Now	when	one	thinks	of	what
Microsoft	does	to	users,	all	the	verbs	that	come	to	mind	begin
with	F.	[3]	And	yet	it	doesn't	seem	to	pay.	Their	stock	price	has
been	flat	for	years.	Back	when	they	were	Robin	Hood,	their	stock
price	rose	like	Google's.	Could	there	be	a	connection?

You	can	see	how	there	would	be.	When	you're	small,	you	can't
bully	customers,	so	you	have	to	charm	them.	Whereas	when
you're	big	you	can	maltreat	them	at	will,	and	you	tend	to,
because	it's	easier	than	satisfying	them.	You	grow	big	by	being
nice,	but	you	can	stay	big	by	being	mean.

You	get	away	with	it	till	the	underlying	conditions	change,	and
then	all	your	victims	escape.	So	"Don't	be	evil"	may	be	the	most
valuable	thing	Paul	Buchheit	made	for	Google,	because	it	may
turn	out	to	be	an	elixir	of	corporate	youth.	I'm	sure	they	find	it
constraining,	but	think	how	valuable	it	will	be	if	it	saves	them
from	lapsing	into	the	fatal	laziness	that	afflicted	Microsoft	and
IBM.

The	curious	thing	is,	this	elixir	is	freely	available	to	any	other
company.	Anyone	can	adopt	"Don't	be	evil."	The	catch	is	that
people	will	hold	you	to	it.	So	I	don't	think	you're	going	to	see
record	labels	or	tobacco	companies	using	this	discovery.

Morale

There's	a	lot	of	external	evidence	that	benevolence	works.	But
how	does	it	work?	One	advantage	of	investing	in	a	large	number
of	startups	is	that	you	get	a	lot	of	data	about	how	they	work.
From	what	we've	seen,	being	good	seems	to	help	startups	in
three	ways:	it	improves	their	morale,	it	makes	other	people	want
to	help	them,	and	above	all,	it	helps	them	be	decisive.

Morale	is	tremendously	important	to	a	startup—so	important	that
morale	alone	is	almost	enough	to	determine	success.	Startups
are	often	described	as	emotional	roller-coasters.	One	minute
you're	going	to	take	over	the	world,	and	the	next	you're	doomed.

#f3n

The	problem	with	feeling	you're	doomed	is	not	just	that	it	makes
you	unhappy,	but	that	it	makes	you	stop	working.	So	the
downhills	of	the	roller-coaster	are	more	of	a	self	fulfilling
prophecy	than	the	uphills.	If	feeling	you're	going	to	succeed
makes	you	work	harder,	that	probably	improves	your	chances	of
succeeding,	but	if	feeling	you're	going	to	fail	makes	you	stop
working,	that	practically	guarantees	you'll	fail.

Here's	where	benevolence	comes	in.	If	you	feel	you're	really
helping	people,	you'll	keep	working	even	when	it	seems	like	your
startup	is	doomed.	Most	of	us	have	some	amount	of	natural
benevolence.	The	mere	fact	that	someone	needs	you	makes	you
want	to	help	them.	So	if	you	start	the	kind	of	startup	where	users
come	back	each	day,	you've	basically	built	yourself	a	giant
tamagotchi.	You've	made	something	you	need	to	take	care	of.

Blogger	is	a	famous	example	of	a	startup	that	went	through
really	low	lows	and	survived.	At	one	point	they	ran	out	of	money
and	everyone	left.	Evan	Williams	came	in	to	work	the	next	day,
and	there	was	no	one	but	him.	What	kept	him	going?	Partly	that
users	needed	him.	He	was	hosting	thousands	of	people's	blogs.
He	couldn't	just	let	the	site	die.

There	are	many	advantages	of	launching	quickly,	but	the	most
important	may	be	that	once	you	have	users,	the	tamagotchi	effect
kicks	in.	Once	you	have	users	to	take	care	of,	you're	forced	to
figure	out	what	will	make	them	happy,	and	that's	actually	very
valuable	information.

The	added	confidence	that	comes	from	trying	to	help	people	can
also	help	you	with	investors.	One	of	the	founders	of	Chatterous
told	me	recently	that	he	and	his	cofounder	had	decided	that	this
service	was	something	the	world	needed,	so	they	were	going	to
keep	working	on	it	no	matter	what,	even	if	they	had	to	move	back
to	Canada	and	live	in	their	parents'	basements.

Once	they	realized	this,	they	stopped	caring	so	much	what
investors	thought	about	them.	They	still	met	with	them,	but	they
weren't	going	to	die	if	they	didn't	get	their	money.	And	you	know
what?	The	investors	got	a	lot	more	interested.	They	could	sense
that	the	Chatterouses	were	going	to	do	this	startup	with	or

http://chatterous.com/

without	them.

If	you're	really	committed	and	your	startup	is	cheap	to	run,	you
become	very	hard	to	kill.	And	practically	all	startups,	even	the
most	successful,	come	close	to	death	at	some	point.	So	if	doing
good	for	people	gives	you	a	sense	of	mission	that	makes	you
harder	to	kill,	that	alone	more	than	compensates	for	whatever
you	lose	by	not	choosing	a	more	selfish	project.

Help

Another	advantage	of	being	good	is	that	it	makes	other	people
want	to	help	you.	This	too	seems	to	be	an	inborn	trait	in	humans.

One	of	the	startups	we've	funded,	Octopart,	is	currently	locked	in
a	classic	battle	of	good	versus	evil.	They're	a	search	site	for
industrial	components.	A	lot	of	people	need	to	search	for
components,	and	before	Octopart	there	was	no	good	way	to	do	it.
That,	it	turned	out,	was	no	coincidence.

Octopart	built	the	right	way	to	search	for	components.	Users	like
it	and	they've	been	growing	rapidly.	And	yet	for	most	of
Octopart's	life,	the	biggest	distributor,	Digi-Key,	has	been	trying
to	force	them	take	their	prices	off	the	site.	Octopart	is	sending
them	customers	for	free,	and	yet	Digi-Key	is	trying	to	make	that
traffic	stop.	Why?	Because	their	current	business	model	depends
on	overcharging	people	who	have	incomplete	information	about
prices.	They	don't	want	search	to	work.

The	Octoparts	are	the	nicest	guys	in	the	world.	They	dropped	out
of	the	PhD	program	in	physics	at	Berkeley	to	do	this.	They	just
wanted	to	fix	a	problem	they	encountered	in	their	research.
Imagine	how	much	time	you	could	save	the	world's	engineers	if
they	could	do	searches	online.	So	when	I	hear	that	a	big,	evil
company	is	trying	to	stop	them	in	order	to	keep	search	broken,	it
makes	me	really	want	to	help	them.	It	makes	me	spend	more
time	on	the	Octoparts	than	I	do	with	most	of	the	other	startups
we've	funded.	It	just	made	me	spend	several	minutes	telling	you
how	great	they	are.	Why?	Because	they're	good	guys	and	they're
trying	to	help	the	world.

http://octopart.com/

If	you're	benevolent,	people	will	rally	around	you:	investors,
customers,	other	companies,	and	potential	employees.	In	the
long	term	the	most	important	may	be	the	potential	employees.	I
think	everyone	knows	now	that	good	hackers	are	much	better
than	mediocre	ones.	If	you	can	attract	the	best	hackers	to	work
for	you,	as	Google	has,	you	have	a	big	advantage.	And	the	very
best	hackers	tend	to	be	idealistic.	They're	not	desperate	for	a	job.
They	can	work	wherever	they	want.	So	most	want	to	work	on
things	that	will	make	the	world	better.

Compass

But	the	most	important	advantage	of	being	good	is	that	it	acts	as
a	compass.	One	of	the	hardest	parts	of	doing	a	startup	is	that	you
have	so	many	choices.	There	are	just	two	or	three	of	you,	and	a
thousand	things	you	could	do.	How	do	you	decide?

Here's	the	answer:	Do	whatever's	best	for	your	users.	You	can
hold	onto	this	like	a	rope	in	a	hurricane,	and	it	will	save	you	if
anything	can.	Follow	it	and	it	will	take	you	through	everything
you	need	to	do.

It's	even	the	answer	to	questions	that	seem	unrelated,	like	how
to	convince	investors	to	give	you	money.	If	you're	a	good
salesman,	you	could	try	to	just	talk	them	into	it.	But	the	more
reliable	route	is	to	convince	them	through	your	users:	if	you
make	something	users	love	enough	to	tell	their	friends,	you	grow
exponentially,	and	that	will	convince	any	investor.

Being	good	is	a	particularly	useful	strategy	for	making	decisions
in	complex	situations	because	it's	stateless.	It's	like	telling	the
truth.	The	trouble	with	lying	is	that	you	have	to	remember
everything	you've	said	in	the	past	to	make	sure	you	don't
contradict	yourself.	If	you	tell	the	truth	you	don't	have	to
remember	anything,	and	that's	a	really	useful	property	in
domains	where	things	happen	fast.

For	example,	Y	Combinator	has	now	invested	in	80	startups,	57
of	which	are	still	alive.	(The	rest	have	died	or	merged	or	been
acquired.)	When	you're	trying	to	advise	57	startups,	it	turns	out
you	have	to	have	a	stateless	algorithm.	You	can't	have	ulterior

gh.html

motives	when	you	have	57	things	going	on	at	once,	because	you
can't	remember	them.	So	our	rule	is	just	to	do	whatever's	best
for	the	founders.	Not	because	we're	particularly	benevolent,	but
because	it's	the	only	algorithm	that	works	on	that	scale.

When	you	write	something	telling	people	to	be	good,	you	seem	to
be	claiming	to	be	good	yourself.	So	I	want	to	say	explicitly	that	I
am	not	a	particularly	good	person.	When	I	was	a	kid	I	was	firmly
in	the	camp	of	bad.	The	way	adults	used	the	word	good,	it
seemed	to	be	synonymous	with	quiet,	so	I	grew	up	very
suspicious	of	it.

You	know	how	there	are	some	people	whose	names	come	up	in
conversation	and	everyone	says	"He's	such	a	great	guy?"	People
never	say	that	about	me.	The	best	I	get	is	"he	means	well."	I	am
not	claiming	to	be	good.	At	best	I	speak	good	as	a	second
language.

So	I'm	not	suggesting	you	be	good	in	the	usual	sanctimonious
way.	I'm	suggesting	it	because	it	works.	It	will	work	not	just	as	a
statement	of	"values,"	but	as	a	guide	to	strategy,	and	even	a
design	spec	for	software.	Don't	just	not	be	evil.	Be	good.

Notes

[1]	Fifty	years	ago	it	would	have	seemed	shocking	for	a	public
company	not	to	pay	dividends.	Now	many	tech	companies	don't.
The	markets	seem	to	have	figured	out	how	to	value	potential
dividends.	Maybe	that	isn't	the	last	step	in	this	evolution.	Maybe
markets	will	eventually	get	comfortable	with	potential	earnings.
(VCs	already	are,	and	at	least	some	of	them	consistently	make
money.)

I	realize	this	sounds	like	the	stuff	one	used	to	hear	about	the
"new	economy"	during	the	Bubble.	Believe	me,	I	was	not	drinking
that	kool-aid	at	the	time.	But	I'm	convinced	there	were	some
good	ideas	buried	in	Bubble	thinking.	For	example,	it's	ok	to

bubble.html

focus	on	growth	instead	of	profits—but	only	if	the	growth	is
genuine.	You	can't	be	buying	users;	that's	a	pyramid	scheme.	But
a	company	with	rapid,	genuine	growth	is	valuable,	and	eventually
markets	learn	how	to	value	valuable	things.

[2]	The	idea	of	starting	a	company	with	benevolent	aims	is
currently	undervalued,	because	the	kind	of	people	who	currently
make	that	their	explicit	goal	don't	usually	do	a	very	good	job.

It's	one	of	the	standard	career	paths	of	trustafarians	to	start
some	vaguely	benevolent	business.	The	problem	with	most	of
them	is	that	they	either	have	a	bogus	political	agenda	or	are
feebly	executed.	The	trustafarians'	ancestors	didn't	get	rich	by
preserving	their	traditional	culture;	maybe	people	in	Bolivia	don't
want	to	either.	And	starting	an	organic	farm,	though	it's	at	least
straightforwardly	benevolent,	doesn't	help	people	on	the	scale
that	Google	does.

Most	explicitly	benevolent	projects	don't	hold	themselves
sufficiently	accountable.	They	act	as	if	having	good	intentions
were	enough	to	guarantee	good	effects.

[3]	Users	dislike	their	new	operating	system	so	much	that	they're
starting	petitions	to	save	the	old	one.	And	the	old	one	was
nothing	special.	The	hackers	within	Microsoft	must	know	in	their
hearts	that	if	the	company	really	cared	about	users	they'd	just
advise	them	to	switch	to	OSX.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Jessica	Livingston,
and	Robert	Morris	for	reading	drafts	of	this.

	

Lies	We	Tell	Kids
May	2008

Adults	lie	constantly	to	kids.	I'm	not	saying	we	should	stop,	but	I
think	we	should	at	least	examine	which	lies	we	tell	and	why.

There	may	also	be	a	benefit	to	us.	We	were	all	lied	to	as	kids,	and
some	of	the	lies	we	were	told	still	affect	us.	So	by	studying	the
ways	adults	lie	to	kids,	we	may	be	able	to	clear	our	heads	of	lies
we	were	told.

I'm	using	the	word	"lie"	in	a	very	general	sense:	not	just	overt
falsehoods,	but	also	all	the	more	subtle	ways	we	mislead	kids.
Though	"lie"	has	negative	connotations,	I	don't	mean	to	suggest
we	should	never	do	this—just	that	we	should	pay	attention	when
we	do.	[1]

One	of	the	most	remarkable	things	about	the	way	we	lie	to	kids	is
how	broad	the	conspiracy	is.	All	adults	know	what	their	culture
lies	to	kids	about:	they're	the	questions	you	answer	"Ask	your
parents."	If	a	kid	asked	who	won	the	World	Series	in	1982	or
what	the	atomic	weight	of	carbon	was,	you	could	just	tell	him.
But	if	a	kid	asks	you	"Is	there	a	God?"	or	"What's	a	prostitute?"
you'll	probably	say	"Ask	your	parents."

Since	we	all	agree,	kids	see	few	cracks	in	the	view	of	the	world
presented	to	them.	The	biggest	disagreements	are	between
parents	and	schools,	but	even	those	are	small.	Schools	are
careful	what	they	say	about	controversial	topics,	and	if	they	do
contradict	what	parents	want	their	kids	to	believe,	parents	either
pressure	the	school	into	keeping	quiet	or	move	their	kids	to	a
new	school.

The	conspiracy	is	so	thorough	that	most	kids	who	discover	it	do
so	only	by	discovering	internal	contradictions	in	what	they're
told.	It	can	be	traumatic	for	the	ones	who	wake	up	during	the

#f1n
http://www.google.com/search?q=parents+complain+inappropriate+book

operation.	Here's	what	happened	to	Einstein:

Through	the	reading	of	popular	scientific	books	I
soon	reached	the	conviction	that	much	in	the	stories
of	the	Bible	could	not	be	true.	The	consequence	was
a	positively	fanatic	freethinking	coupled	with	the
impression	that	youth	is	intentionally	being	deceived
by	the	state	through	lies:	it	was	a	crushing
impression.	[2]

I	remember	that	feeling.	By	15	I	was	convinced	the	world	was
corrupt	from	end	to	end.	That's	why	movies	like	The	Matrix	have
such	resonance.	Every	kid	grows	up	in	a	fake	world.	In	a	way	it
would	be	easier	if	the	forces	behind	it	were	as	clearly
differentiated	as	a	bunch	of	evil	machines,	and	one	could	make	a
clean	break	just	by	taking	a	pill.

Protection

If	you	ask	adults	why	they	lie	to	kids,	the	most	common	reason
they	give	is	to	protect	them.	And	kids	do	need	protecting.	The
environment	you	want	to	create	for	a	newborn	child	will	be	quite
unlike	the	streets	of	a	big	city.

That	seems	so	obvious	it	seems	wrong	to	call	it	a	lie.	It's	certainly
not	a	bad	lie	to	tell,	to	give	a	baby	the	impression	the	world	is
quiet	and	warm	and	safe.	But	this	harmless	type	of	lie	can	turn
sour	if	left	unexamined.

Imagine	if	you	tried	to	keep	someone	in	as	protected	an
environment	as	a	newborn	till	age	18.	To	mislead	someone	so
grossly	about	the	world	would	seem	not	protection	but	abuse.
That's	an	extreme	example,	of	course;	when	parents	do	that	sort
of	thing	it	becomes	national	news.	But	you	see	the	same	problem
on	a	smaller	scale	in	the	malaise	teenagers	feel	in	suburbia.

The	main	purpose	of	suburbia	is	to	provide	a	protected
environment	for	children	to	grow	up	in.	And	it	seems	great	for	10
year	olds.	I	liked	living	in	suburbia	when	I	was	10.	I	didn't	notice
how	sterile	it	was.	My	whole	world	was	no	bigger	than	a	few
friends'	houses	I	bicycled	to	and	some	woods	I	ran	around	in.	On

#f2n

a	log	scale	I	was	midway	between	crib	and	globe.	A	suburban
street	was	just	the	right	size.	But	as	I	grew	older,	suburbia
started	to	feel	suffocatingly	fake.

Life	can	be	pretty	good	at	10	or	20,	but	it's	often	frustrating	at
15.	This	is	too	big	a	problem	to	solve	here,	but	certainly	one
reason	life	sucks	at	15	is	that	kids	are	trapped	in	a	world
designed	for	10	year	olds.

What	do	parents	hope	to	protect	their	children	from	by	raising
them	in	suburbia?	A	friend	who	moved	out	of	Manhattan	said
merely	that	her	3	year	old	daughter	"saw	too	much."	Off	the	top
of	my	head,	that	might	include:	people	who	are	high	or	drunk,
poverty,	madness,	gruesome	medical	conditions,	sexual	behavior
of	various	degrees	of	oddness,	and	violent	anger.

I	think	it's	the	anger	that	would	worry	me	most	if	I	had	a	3	year
old.	I	was	29	when	I	moved	to	New	York	and	I	was	surprised	even
then.	I	wouldn't	want	a	3	year	old	to	see	some	of	the	disputes	I
saw.	It	would	be	too	frightening.	A	lot	of	the	things	adults	conceal
from	smaller	children,	they	conceal	because	they'd	be
frightening,	not	because	they	want	to	conceal	the	existence	of
such	things.	Misleading	the	child	is	just	a	byproduct.

This	seems	one	of	the	most	justifiable	types	of	lying	adults	do	to
kids.	But	because	the	lies	are	indirect	we	don't	keep	a	very	strict
accounting	of	them.	Parents	know	they've	concealed	the	facts
about	sex,	and	many	at	some	point	sit	their	kids	down	and
explain	more.	But	few	tell	their	kids	about	the	differences
between	the	real	world	and	the	cocoon	they	grew	up	in.	Combine
this	with	the	confidence	parents	try	to	instill	in	their	kids,	and
every	year	you	get	a	new	crop	of	18	year	olds	who	think	they
know	how	to	run	the	world.

Don't	all	18	year	olds	think	they	know	how	to	run	the	world?
Actually	this	seems	to	be	a	recent	innovation,	no	more	than	about
100	years	old.	In	preindustrial	times	teenage	kids	were	junior
members	of	the	adult	world	and	comparatively	well	aware	of
their	shortcomings.	They	could	see	they	weren't	as	strong	or
skillful	as	the	village	smith.	In	past	times	people	lied	to	kids
about	some	things	more	than	we	do	now,	but	the	lies	implicit	in

an	artificial,	protected	environment	are	a	recent	invention.	Like	a
lot	of	new	inventions,	the	rich	got	this	first.	Children	of	kings	and
great	magnates	were	the	first	to	grow	up	out	of	touch	with	the
world.	Suburbia	means	half	the	population	can	live	like	kings	in
that	respect.

Sex	(and	Drugs)

I'd	have	different	worries	about	raising	teenage	kids	in	New
York.	I'd	worry	less	about	what	they'd	see,	and	more	about	what
they'd	do.	I	went	to	college	with	a	lot	of	kids	who	grew	up	in
Manhattan,	and	as	a	rule	they	seemed	pretty	jaded.	They	seemed
to	have	lost	their	virginity	at	an	average	of	about	14	and	by
college	had	tried	more	drugs	than	I'd	even	heard	of.

The	reasons	parents	don't	want	their	teenage	kids	having	sex	are
complex.	There	are	some	obvious	dangers:	pregnancy	and
sexually	transmitted	diseases.	But	those	aren't	the	only	reasons
parents	don't	want	their	kids	having	sex.	The	average	parents	of
a	14	year	old	girl	would	hate	the	idea	of	her	having	sex	even	if
there	were	zero	risk	of	pregnancy	or	sexually	transmitted
diseases.

Kids	can	probably	sense	they	aren't	being	told	the	whole	story.
After	all,	pregnancy	and	sexually	transmitted	diseases	are	just	as
much	a	problem	for	adults,	and	they	have	sex.

What	really	bothers	parents	about	their	teenage	kids	having	sex?
Their	dislike	of	the	idea	is	so	visceral	it's	probably	inborn.	But	if
it's	inborn	it	should	be	universal,	and	there	are	plenty	of	societies
where	parents	don't	mind	if	their	teenage	kids	have	sex—indeed,
where	it's	normal	for	14	year	olds	to	become	mothers.	So	what's
going	on?	There	does	seem	to	be	a	universal	taboo	against	sex
with	prepubescent	children.	One	can	imagine	evolutionary
reasons	for	that.	And	I	think	this	is	the	main	reason	parents	in
industrialized	societies	dislike	teenage	kids	having	sex.	They	still
think	of	them	as	children,	even	though	biologically	they're	not,	so
the	taboo	against	child	sex	still	has	force.

One	thing	adults	conceal	about	sex	they	also	conceal	about
drugs:	that	it	can	cause	great	pleasure.	That's	what	makes	sex

and	drugs	so	dangerous.	The	desire	for	them	can	cloud	one's
judgement—which	is	especially	frightening	when	the	judgement
being	clouded	is	the	already	wretched	judgement	of	a	teenage
kid.

Here	parents'	desires	conflict.	Older	societies	told	kids	they	had
bad	judgement,	but	modern	parents	want	their	children	to	be
confident.	This	may	well	be	a	better	plan	than	the	old	one	of
putting	them	in	their	place,	but	it	has	the	side	effect	that	after
having	implicitly	lied	to	kids	about	how	good	their	judgement	is,
we	then	have	to	lie	again	about	all	the	things	they	might	get	into
trouble	with	if	they	believed	us.

If	parents	told	their	kids	the	truth	about	sex	and	drugs,	it	would
be:	the	reason	you	should	avoid	these	things	is	that	you	have
lousy	judgement.	People	with	twice	your	experience	still	get
burned	by	them.	But	this	may	be	one	of	those	cases	where	the
truth	wouldn't	be	convincing,	because	one	of	the	symptoms	of
bad	judgement	is	believing	you	have	good	judgement.	When
you're	too	weak	to	lift	something,	you	can	tell,	but	when	you're
making	a	decision	impetuously,	you're	all	the	more	sure	of	it.

Innocence

Another	reason	parents	don't	want	their	kids	having	sex	is	that
they	want	to	keep	them	innocent.	Adults	have	a	certain	model	of
how	kids	are	supposed	to	behave,	and	it's	different	from	what
they	expect	of	other	adults.

One	of	the	most	obvious	differences	is	the	words	kids	are	allowed
to	use.	Most	parents	use	words	when	talking	to	other	adults	that
they	wouldn't	want	their	kids	using.	They	try	to	hide	even	the
existence	of	these	words	for	as	long	as	they	can.	And	this	is
another	of	those	conspiracies	everyone	participates	in:	everyone
knows	you're	not	supposed	to	swear	in	front	of	kids.

I've	never	heard	more	different	explanations	for	anything	parents
tell	kids	than	why	they	shouldn't	swear.	Every	parent	I	know
forbids	their	children	to	swear,	and	yet	no	two	of	them	have	the
same	justification.	It's	clear	most	start	with	not	wanting	kids	to
swear,	then	make	up	the	reason	afterward.

So	my	theory	about	what's	going	on	is	that	the	function	of
swearwords	is	to	mark	the	speaker	as	an	adult.	There's	no
difference	in	the	meaning	of	"shit"	and	"poopoo."	So	why	should
one	be	ok	for	kids	to	say	and	one	forbidden?	The	only	explanation
is:	by	definition.	[3]

Why	does	it	bother	adults	so	much	when	kids	do	things	reserved
for	adults?	The	idea	of	a	foul-mouthed,	cynical	10	year	old
leaning	against	a	lamppost	with	a	cigarette	hanging	out	of	the
corner	of	his	mouth	is	very	disconcerting.	But	why?

One	reason	we	want	kids	to	be	innocent	is	that	we're
programmed	to	like	certain	kinds	of	helplessness.	I've	several
times	heard	mothers	say	they	deliberately	refrained	from
correcting	their	young	children's	mispronunciations	because	they
were	so	cute.	And	if	you	think	about	it,	cuteness	is	helplessness.
Toys	and	cartoon	characters	meant	to	be	cute	always	have
clueless	expressions	and	stubby,	ineffectual	limbs.

It's	not	surprising	we'd	have	an	inborn	desire	to	love	and	protect
helpless	creatures,	considering	human	offspring	are	so	helpless
for	so	long.	Without	the	helplessness	that	makes	kids	cute,	they'd
be	very	annoying.	They'd	merely	seem	like	incompetent	adults.
But	there's	more	to	it	than	that.	The	reason	our	hypothetical
jaded	10	year	old	bothers	me	so	much	is	not	just	that	he'd	be
annoying,	but	that	he'd	have	cut	off	his	prospects	for	growth	so
early.	To	be	jaded	you	have	to	think	you	know	how	the	world
works,	and	any	theory	a	10	year	old	had	about	that	would
probably	be	a	pretty	narrow	one.

Innocence	is	also	open-mindedness.	We	want	kids	to	be	innocent
so	they	can	continue	to	learn.	Paradoxical	as	it	sounds,	there	are
some	kinds	of	knowledge	that	get	in	the	way	of	other	kinds	of
knowledge.	If	you're	going	to	learn	that	the	world	is	a	brutal
place	full	of	people	trying	to	take	advantage	of	one	another,
you're	better	off	learning	it	last.	Otherwise	you	won't	bother
learning	much	more.

Very	smart	adults	often	seem	unusually	innocent,	and	I	don't
think	this	is	a	coincidence.	I	think	they've	deliberately	avoided

#f3n

learning	about	certain	things.	Certainly	I	do.	I	used	to	think	I
wanted	to	know	everything.	Now	I	know	I	don't.

Death

After	sex,	death	is	the	topic	adults	lie	most	conspicuously	about
to	kids.	Sex	I	believe	they	conceal	because	of	deep	taboos.	But
why	do	we	conceal	death	from	kids?	Probably	because	small
children	are	particularly	horrified	by	it.	They	want	to	feel	safe,
and	death	is	the	ultimate	threat.

One	of	the	most	spectacular	lies	our	parents	told	us	was	about
the	death	of	our	first	cat.	Over	the	years,	as	we	asked	for	more
details,	they	were	compelled	to	invent	more,	so	the	story	grew
quite	elaborate.	The	cat	had	died	at	the	vet's	office.	Of	what?	Of
the	anaesthesia	itself.	Why	was	the	cat	at	the	vet's	office?	To	be
fixed.	And	why	had	such	a	routine	operation	killed	it?	It	wasn't
the	vet's	fault;	the	cat	had	a	congenitally	weak	heart;	the
anaesthesia	was	too	much	for	it;	but	there	was	no	way	anyone
could	have	known	this	in	advance.	It	was	not	till	we	were	in	our
twenties	that	the	truth	came	out:	my	sister,	then	about	three,	had
accidentally	stepped	on	the	cat	and	broken	its	back.

They	didn't	feel	the	need	to	tell	us	the	cat	was	now	happily	in	cat
heaven.	My	parents	never	claimed	that	people	or	animals	who
died	had	"gone	to	a	better	place,"	or	that	we'd	meet	them	again.
It	didn't	seem	to	harm	us.

My	grandmother	told	us	an	edited	version	of	the	death	of	my
grandfather.	She	said	they'd	been	sitting	reading	one	day,	and
when	she	said	something	to	him,	he	didn't	answer.	He	seemed	to
be	asleep,	but	when	she	tried	to	rouse	him,	she	couldn't.	"He	was
gone."	Having	a	heart	attack	sounded	like	falling	asleep.	Later	I
learned	it	hadn't	been	so	neat,	and	the	heart	attack	had	taken
most	of	a	day	to	kill	him.

Along	with	such	outright	lies,	there	must	have	been	a	lot	of
changing	the	subject	when	death	came	up.	I	can't	remember
that,	of	course,	but	I	can	infer	it	from	the	fact	that	I	didn't	really
grasp	I	was	going	to	die	till	I	was	about	19.	How	could	I	have
missed	something	so	obvious	for	so	long?	Now	that	I've	seen

parents	managing	the	subject,	I	can	see	how:	questions	about
death	are	gently	but	firmly	turned	aside.

On	this	topic,	especially,	they're	met	half-way	by	kids.	Kids	often
want	to	be	lied	to.	They	want	to	believe	they're	living	in	a
comfortable,	safe	world	as	much	as	their	parents	want	them	to
believe	it.	[4]

Identity

Some	parents	feel	a	strong	adherence	to	an	ethnic	or	religious
group	and	want	their	kids	to	feel	it	too.	This	usually	requires	two
different	kinds	of	lying:	the	first	is	to	tell	the	child	that	he	or	she
is	an	X,	and	the	second	is	whatever	specific	lies	Xes	differentiate
themselves	by	believing.	[5]

Telling	a	child	they	have	a	particular	ethnic	or	religious	identity
is	one	of	the	stickiest	things	you	can	tell	them.	Almost	anything
else	you	tell	a	kid,	they	can	change	their	mind	about	later	when
they	start	to	think	for	themselves.	But	if	you	tell	a	kid	they're	a
member	of	a	certain	group,	that	seems	nearly	impossible	to
shake.

This	despite	the	fact	that	it	can	be	one	of	the	most	premeditated
lies	parents	tell.	When	parents	are	of	different	religions,	they'll
often	agree	between	themselves	that	their	children	will	be
"raised	as	Xes."	And	it	works.	The	kids	obligingly	grow	up
considering	themselves	as	Xes,	despite	the	fact	that	if	their
parents	had	chosen	the	other	way,	they'd	have	grown	up
considering	themselves	as	Ys.

One	reason	this	works	so	well	is	the	second	kind	of	lie	involved.
The	truth	is	common	property.	You	can't	distinguish	your	group
by	doing	things	that	are	rational,	and	believing	things	that	are
true.	If	you	want	to	set	yourself	apart	from	other	people,	you
have	to	do	things	that	are	arbitrary,	and	believe	things	that	are
false.	And	after	having	spent	their	whole	lives	doing	things	that
are	arbitrary	and	believing	things	that	are	false,	and	being
regarded	as	odd	by	"outsiders"	on	that	account,	the	cognitive
dissonance	pushing	children	to	regard	themselves	as	Xes	must	be
enormous.	If	they	aren't	an	X,	why	are	they	attached	to	all	these

#f4n
#f5n

arbitrary	beliefs	and	customs?	If	they	aren't	an	X,	why	do	all	the
non-Xes	call	them	one?

This	form	of	lie	is	not	without	its	uses.	You	can	use	it	to	carry	a
payload	of	beneficial	beliefs,	and	they	will	also	become	part	of
the	child's	identity.	You	can	tell	the	child	that	in	addition	to	never
wearing	the	color	yellow,	believing	the	world	was	created	by	a
giant	rabbit,	and	always	snapping	their	fingers	before	eating	fish,
Xes	are	also	particularly	honest	and	industrious.	Then	X	children
will	grow	up	feeling	it's	part	of	their	identity	to	be	honest	and
industrious.

This	probably	accounts	for	a	lot	of	the	spread	of	modern
religions,	and	explains	why	their	doctrines	are	a	combination	of
the	useful	and	the	bizarre.	The	bizarre	half	is	what	makes	the
religion	stick,	and	the	useful	half	is	the	payload.	[6]

Authority

One	of	the	least	excusable	reasons	adults	lie	to	kids	is	to
maintain	power	over	them.	Sometimes	these	lies	are	truly
sinister,	like	a	child	molester	telling	his	victims	they'll	get	in
trouble	if	they	tell	anyone	what	happened	to	them.	Others	seem
more	innocent;	it	depends	how	badly	adults	lie	to	maintain	their
power,	and	what	they	use	it	for.

Most	adults	make	some	effort	to	conceal	their	flaws	from
children.	Usually	their	motives	are	mixed.	For	example,	a	father
who	has	an	affair	generally	conceals	it	from	his	children.	His
motive	is	partly	that	it	would	worry	them,	partly	that	this	would
introduce	the	topic	of	sex,	and	partly	(a	larger	part	than	he	would
admit)	that	he	doesn't	want	to	tarnish	himself	in	their	eyes.

If	you	want	to	learn	what	lies	are	told	to	kids,	read	almost	any
book	written	to	teach	them	about	"issues."	[7]	Peter	Mayle	wrote
one	called	Why	Are	We	Getting	a	Divorce?	It	begins	with	the
three	most	important	things	to	remember	about	divorce,	one	of
which	is:

You	shouldn't	put	the	blame	on	one	parent,	because
divorce	is	never	only	one	person's	fault.	[8]

#f6n
#f7n
#f8n

Really?	When	a	man	runs	off	with	his	secretary,	is	it	always	partly
his	wife's	fault?	But	I	can	see	why	Mayle	might	have	said	this.
Maybe	it's	more	important	for	kids	to	respect	their	parents	than
to	know	the	truth	about	them.

But	because	adults	conceal	their	flaws,	and	at	the	same	time
insist	on	high	standards	of	behavior	for	kids,	a	lot	of	kids	grow	up
feeling	they	fall	hopelessly	short.	They	walk	around	feeling
horribly	evil	for	having	used	a	swearword,	while	in	fact	most	of
the	adults	around	them	are	doing	much	worse	things.

This	happens	in	intellectual	as	well	as	moral	questions.	The	more
confident	people	are,	the	more	willing	they	seem	to	be	to	answer
a	question	"I	don't	know."	Less	confident	people	feel	they	have	to
have	an	answer	or	they'll	look	bad.	My	parents	were	pretty	good
about	admitting	when	they	didn't	know	things,	but	I	must	have
been	told	a	lot	of	lies	of	this	type	by	teachers,	because	I	rarely
heard	a	teacher	say	"I	don't	know"	till	I	got	to	college.	I
remember	because	it	was	so	surprising	to	hear	someone	say	that
in	front	of	a	class.

The	first	hint	I	had	that	teachers	weren't	omniscient	came	in
sixth	grade,	after	my	father	contradicted	something	I'd	learned	in
school.	When	I	protested	that	the	teacher	had	said	the	opposite,
my	father	replied	that	the	guy	had	no	idea	what	he	was	talking
about—that	he	was	just	an	elementary	school	teacher,	after	all.

Just	a	teacher?	The	phrase	seemed	almost	grammatically	ill-
formed.	Didn't	teachers	know	everything	about	the	subjects	they
taught?	And	if	not,	why	were	they	the	ones	teaching	us?

The	sad	fact	is,	US	public	school	teachers	don't	generally
understand	the	stuff	they're	teaching	very	well.	There	are	some
sterling	exceptions,	but	as	a	rule	people	planning	to	go	into
teaching	rank	academically	near	the	bottom	of	the	college
population.	So	the	fact	that	I	still	thought	at	age	11	that	teachers
were	infallible	shows	what	a	job	the	system	must	have	done	on
my	brain.

School

What	kids	get	taught	in	school	is	a	complex	mix	of	lies.	The	most
excusable	are	those	told	to	simplify	ideas	to	make	them	easy	to
learn.	The	problem	is,	a	lot	of	propaganda	gets	slipped	into	the
curriculum	in	the	name	of	simplification.

Public	school	textbooks	represent	a	compromise	between	what
various	powerful	groups	want	kids	to	be	told.	The	lies	are	rarely
overt.	Usually	they	consist	either	of	omissions	or	of	over-
emphasizing	certain	topics	at	the	expense	of	others.	The	view	of
history	we	got	in	elementary	school	was	a	crude	hagiography,
with	at	least	one	representative	of	each	powerful	group.

The	famous	scientists	I	remember	were	Einstein,	Marie	Curie,
and	George	Washington	Carver.	Einstein	was	a	big	deal	because
his	work	led	to	the	atom	bomb.	Marie	Curie	was	involved	with	X-
rays.	But	I	was	mystified	about	Carver.	He	seemed	to	have	done
stuff	with	peanuts.

It's	obvious	now	that	he	was	on	the	list	because	he	was	black
(and	for	that	matter	that	Marie	Curie	was	on	it	because	she	was
a	woman),	but	as	a	kid	I	was	confused	for	years	about	him.	I
wonder	if	it	wouldn't	have	been	better	just	to	tell	us	the	truth:
that	there	weren't	any	famous	black	scientists.	Ranking	George
Washington	Carver	with	Einstein	misled	us	not	only	about
science,	but	about	the	obstacles	blacks	faced	in	his	time.

As	subjects	got	softer,	the	lies	got	more	frequent.	By	the	time	you
got	to	politics	and	recent	history,	what	we	were	taught	was
pretty	much	pure	propaganda.	For	example,	we	were	taught	to
regard	political	leaders	as	saints—especially	the	recently
martyred	Kennedy	and	King.	It	was	astonishing	to	learn	later	that
they'd	both	been	serial	womanizers,	and	that	Kennedy	was	a
speed	freak	to	boot.	(By	the	time	King's	plagiarism	emerged,	I'd
lost	the	ability	to	be	surprised	by	the	misdeeds	of	famous
people.)

I	doubt	you	could	teach	kids	recent	history	without	teaching
them	lies,	because	practically	everyone	who	has	anything	to	say
about	it	has	some	kind	of	spin	to	put	on	it.	Much	recent	history
consists	of	spin.	It	would	probably	be	better	just	to	teach	them
metafacts	like	that.

Probably	the	biggest	lie	told	in	schools,	though,	is	that	the	way	to
succeed	is	through	following	"the	rules."	In	fact	most	such	rules
are	just	hacks	to	manage	large	groups	efficiently.

Peace

Of	all	the	reasons	we	lie	to	kids,	the	most	powerful	is	probably
the	same	mundane	reason	they	lie	to	us.

Often	when	we	lie	to	people	it's	not	part	of	any	conscious
strategy,	but	because	they'd	react	violently	to	the	truth.	Kids,
almost	by	definition,	lack	self-control.	They	react	violently	to
things—and	so	they	get	lied	to	a	lot.	[9]

A	few	Thanksgivings	ago,	a	friend	of	mine	found	himself	in	a
situation	that	perfectly	illustrates	the	complex	motives	we	have
when	we	lie	to	kids.	As	the	roast	turkey	appeared	on	the	table,
his	alarmingly	perceptive	5	year	old	son	suddenly	asked	if	the
turkey	had	wanted	to	die.	Foreseeing	disaster,	my	friend	and	his
wife	rapidly	improvised:	yes,	the	turkey	had	wanted	to	die,	and	in
fact	had	lived	its	whole	life	with	the	aim	of	being	their
Thanksgiving	dinner.	And	that	(phew)	was	the	end	of	that.

Whenever	we	lie	to	kids	to	protect	them,	we're	usually	also	lying
to	keep	the	peace.

One	consequence	of	this	sort	of	calming	lie	is	that	we	grow	up
thinking	horrible	things	are	normal.	It's	hard	for	us	to	feel	a
sense	of	urgency	as	adults	over	something	we've	literally	been
trained	not	to	worry	about.	When	I	was	about	10	I	saw	a
documentary	on	pollution	that	put	me	into	a	panic.	It	seemed	the
planet	was	being	irretrievably	ruined.	I	went	to	my	mother
afterward	to	ask	if	this	was	so.	I	don't	remember	what	she	said,
but	she	made	me	feel	better,	so	I	stopped	worrying	about	it.

That	was	probably	the	best	way	to	handle	a	frightened	10	year
old.	But	we	should	understand	the	price.	This	sort	of	lie	is	one	of
the	main	reasons	bad	things	persist:	we're	all	trained	to	ignore
them.

#f9n

Detox

A	sprinter	in	a	race	almost	immediately	enters	a	state	called
"oxygen	debt."	His	body	switches	to	an	emergency	source	of
energy	that's	faster	than	regular	aerobic	respiration.	But	this
process	builds	up	waste	products	that	ultimately	require	extra
oxygen	to	break	down,	so	at	the	end	of	the	race	he	has	to	stop
and	pant	for	a	while	to	recover.

We	arrive	at	adulthood	with	a	kind	of	truth	debt.	We	were	told	a
lot	of	lies	to	get	us	(and	our	parents)	through	our	childhood.
Some	may	have	been	necessary.	Some	probably	weren't.	But	we
all	arrive	at	adulthood	with	heads	full	of	lies.

There's	never	a	point	where	the	adults	sit	you	down	and	explain
all	the	lies	they	told	you.	They've	forgotten	most	of	them.	So	if
you're	going	to	clear	these	lies	out	of	your	head,	you're	going	to
have	to	do	it	yourself.

Few	do.	Most	people	go	through	life	with	bits	of	packing	material
adhering	to	their	minds	and	never	know	it.	You	probably	never
can	completely	undo	the	effects	of	lies	you	were	told	as	a	kid,	but
it's	worth	trying.	I've	found	that	whenever	I've	been	able	to	undo
a	lie	I	was	told,	a	lot	of	other	things	fell	into	place.

Fortunately,	once	you	arrive	at	adulthood	you	get	a	valuable	new
resource	you	can	use	to	figure	out	what	lies	you	were	told.	You're
now	one	of	the	liars.	You	get	to	watch	behind	the	scenes	as	adults
spin	the	world	for	the	next	generation	of	kids.

The	first	step	in	clearing	your	head	is	to	realize	how	far	you	are
from	a	neutral	observer.	When	I	left	high	school	I	was,	I	thought,
a	complete	skeptic.	I'd	realized	high	school	was	crap.	I	thought	I
was	ready	to	question	everything	I	knew.	But	among	the	many
other	things	I	was	ignorant	of	was	how	much	debris	there
already	was	in	my	head.	It's	not	enough	to	consider	your	mind	a
blank	slate.	You	have	to	consciously	erase	it.

Notes

[1]	One	reason	I	stuck	with	such	a	brutally	simple	word	is	that
the	lies	we	tell	kids	are	probably	not	quite	as	harmless	as	we
think.	If	you	look	at	what	adults	told	children	in	the	past,	it's
shocking	how	much	they	lied	to	them.	Like	us,	they	did	it	with
the	best	intentions.	So	if	we	think	we're	as	open	as	one	could
reasonably	be	with	children,	we're	probably	fooling	ourselves.
Odds	are	people	in	100	years	will	be	as	shocked	at	some	of	the
lies	we	tell	as	we	are	at	some	of	the	lies	people	told	100	years
ago.

I	can't	predict	which	these	will	be,	and	I	don't	want	to	write	an
essay	that	will	seem	dumb	in	100	years.	So	instead	of	using
special	euphemisms	for	lies	that	seem	excusable	according	to
present	fashions,	I'm	just	going	to	call	all	our	lies	lies.

(I	have	omitted	one	type:	lies	told	to	play	games	with	kids'
credulity.	These	range	from	"make-believe,"	which	is	not	really	a
lie	because	it's	told	with	a	wink,	to	the	frightening	lies	told	by
older	siblings.	There's	not	much	to	say	about	these:	I	wouldn't
want	the	first	type	to	go	away,	and	wouldn't	expect	the	second
type	to.)

[2]	Calaprice,	Alice	(ed.),	The	Quotable	Einstein,	Princeton
University	Press,	1996.

[3]	If	you	ask	parents	why	kids	shouldn't	swear,	the	less	educated
ones	usually	reply	with	some	question-begging	answer	like	"it's
inappropriate,"	while	the	more	educated	ones	come	up	with
elaborate	rationalizations.	In	fact	the	less	educated	parents	seem
closer	to	the	truth.

[4]	As	a	friend	with	small	children	pointed	out,	it's	easy	for	small
children	to	consider	themselves	immortal,	because	time	seems	to
pass	so	slowly	for	them.	To	a	3	year	old,	a	day	feels	like	a	month
might	to	an	adult.	So	80	years	sounds	to	him	like	2400	years
would	to	us.

[5]	I	realize	I'm	going	to	get	endless	grief	for	classifying	religion

as	a	type	of	lie.	Usually	people	skirt	that	issue	with	some
equivocation	implying	that	lies	believed	for	a	sufficiently	long
time	by	sufficiently	large	numbers	of	people	are	immune	to	the
usual	standards	for	truth.	But	because	I	can't	predict	which	lies
future	generations	will	consider	inexcusable,	I	can't	safely	omit
any	type	we	tell.	Yes,	it	seems	unlikely	that	religion	will	be	out	of
fashion	in	100	years,	but	no	more	unlikely	than	it	would	have
seemed	to	someone	in	1880	that	schoolchildren	in	1980	would	be
taught	that	masturbation	was	perfectly	normal	and	not	to	feel
guilty	about	it.

[6]	Unfortunately	the	payload	can	consist	of	bad	customs	as	well
as	good	ones.	For	example,	there	are	certain	qualities	that	some
groups	in	America	consider	"acting	white."	In	fact	most	of	them
could	as	accurately	be	called	"acting	Japanese."	There's	nothing
specifically	white	about	such	customs.	They're	common	to	all
cultures	with	long	traditions	of	living	in	cities.	So	it	is	probably	a
losing	bet	for	a	group	to	consider	behaving	the	opposite	way	as
part	of	its	identity.

[7]	In	this	context,	"issues"	basically	means	"things	we're	going
to	lie	to	them	about."	That's	why	there's	a	special	name	for	these
topics.

[8]	Mayle,	Peter,	Why	Are	We	Getting	a	Divorce?,	Harmony,	1988.

[9]	The	ironic	thing	is,	this	is	also	the	main	reason	kids	lie	to
adults.	If	you	freak	out	when	people	tell	you	alarming	things,
they	won't	tell	you	them.	Teenagers	don't	tell	their	parents	what
happened	that	night	they	were	supposed	to	be	staying	at	a
friend's	house	for	the	same	reason	parents	don't	tell	5	year	olds
the	truth	about	the	Thanksgiving	turkey.	They'd	freak	if	they
knew.

Thanks	to	Sam	Altman,	Marc	Andreessen,	Trevor	Blackwell,
Patrick	Collison,	Jessica	Livingston,	Jackie	McDonough,	Robert
Morris,	and	David	Sloo	for	reading	drafts	of	this.	And	since	there
are	some	controversial	ideas	here,	I	should	add	that	none	of	them
agreed	with	everything	in	it.

	

Disconnecting	Distraction
Note:	The	strategy	described	at	the	end	of	this	essay	didn't	work.
It	would	work	for	a	while,	and	then	I'd	gradually	find	myself
using	the	Internet	on	my	work	computer.	I'm	trying	other
strategies	now,	but	I	think	this	time	I'll	wait	till	I'm	sure	they
work	before	writing	about	them.

May	2008

Procrastination	feeds	on	distractions.	Most	people	find	it
uncomfortable	just	to	sit	and	do	nothing;	you	avoid	work	by	doing
something	else.

So	one	way	to	beat	procrastination	is	to	starve	it	of	distractions.
But	that's	not	as	straightforward	as	it	sounds,	because	there	are
people	working	hard	to	distract	you.	Distraction	is	not	a	static
obstacle	that	you	avoid	like	you	might	avoid	a	rock	in	the	road.
Distraction	seeks	you	out.

Chesterfield	described	dirt	as	matter	out	of	place.	Distracting	is,
similarly,	desirable	at	the	wrong	time.	And	technology	is
continually	being	refined	to	produce	more	and	more	desirable
things.	Which	means	that	as	we	learn	to	avoid	one	class	of
distractions,	new	ones	constantly	appear,	like	drug-resistant
bacteria.

Television,	for	example,	has	after	50	years	of	refinement	reached
the	point	where	it's	like	visual	crack.	I	realized	when	I	was	13
that	TV	was	addictive,	so	I	stopped	watching	it.	But	I	read
recently	that	the	average	American	watches	4	hours	of	TV	a	day.
A	quarter	of	their	life.

TV	is	in	decline	now,	but	only	because	people	have	found	even
more	addictive	ways	of	wasting	time.	And	what's	especially
dangerous	is	that	many	happen	at	your	computer.	This	is	no
accident.	An	ever	larger	percentage	of	office	workers	sit	in	front

http://www.forbes.com/forbes/2003/0929/076.html

of	computers	connected	to	the	Internet,	and	distractions	always
evolve	toward	the	procrastinators.

I	remember	when	computers	were,	for	me	at	least,	exclusively
for	work.	I	might	occasionally	dial	up	a	server	to	get	mail	or	ftp
files,	but	most	of	the	time	I	was	offline.	All	I	could	do	was	write
and	program.	Now	I	feel	as	if	someone	snuck	a	television	onto	my
desk.	Terribly	addictive	things	are	just	a	click	away.	Run	into	an
obstacle	in	what	you're	working	on?	Hmm,	I	wonder	what's	new
online.	Better	check.

After	years	of	carefully	avoiding	classic	time	sinks	like	TV,	games,
and	Usenet,	I	still	managed	to	fall	prey	to	distraction,	because	I
didn't	realize	that	it	evolves.	Something	that	used	to	be	safe,
using	the	Internet,	gradually	became	more	and	more	dangerous.
Some	days	I'd	wake	up,	get	a	cup	of	tea	and	check	the	news,	then
check	email,	then	check	the	news	again,	then	answer	a	few
emails,	then	suddenly	notice	it	was	almost	lunchtime	and	I	hadn't
gotten	any	real	work	done.	And	this	started	to	happen	more	and
more	often.

It	took	me	surprisingly	long	to	realize	how	distracting	the
Internet	had	become,	because	the	problem	was	intermittent.	I
ignored	it	the	way	you	let	yourself	ignore	a	bug	that	only	appears
intermittently.	When	I	was	in	the	middle	of	a	project,	distractions
weren't	really	a	problem.	It	was	when	I'd	finished	one	project	and
was	deciding	what	to	do	next	that	they	always	bit	me.

Another	reason	it	was	hard	to	notice	the	danger	of	this	new	type
of	distraction	was	that	social	customs	hadn't	yet	caught	up	with
it.	If	I'd	spent	a	whole	morning	sitting	on	a	sofa	watching	TV,	I'd
have	noticed	very	quickly.	That's	a	known	danger	sign,	like
drinking	alone.	But	using	the	Internet	still	looked	and	felt	a	lot
like	work.

Eventually,	though,	it	became	clear	that	the	Internet	had	become
so	much	more	distracting	that	I	had	to	start	treating	it
differently.	Basically,	I	had	to	add	a	new	application	to	my	list	of
known	time	sinks:	Firefox.

*	*	*

The	problem	is	a	hard	one	to	solve	because	most	people	still	need
the	Internet	for	some	things.	If	you	drink	too	much,	you	can	solve
that	problem	by	stopping	entirely.	But	you	can't	solve	the
problem	of	overeating	by	stopping	eating.	I	couldn't	simply	avoid
the	Internet	entirely,	as	I'd	done	with	previous	time	sinks.

At	first	I	tried	rules.	For	example,	I'd	tell	myself	I	was	only	going
to	use	the	Internet	twice	a	day.	But	these	schemes	never	worked
for	long.	Eventually	something	would	come	up	that	required	me
to	use	it	more	than	that.	And	then	I'd	gradually	slip	back	into	my
old	ways.

Addictive	things	have	to	be	treated	as	if	they	were	sentient
adversaries—as	if	there	were	a	little	man	in	your	head	always
cooking	up	the	most	plausible	arguments	for	doing	whatever
you're	trying	to	stop	doing.	If	you	leave	a	path	to	it,	he'll	find	it.

The	key	seems	to	be	visibility.	The	biggest	ingredient	in	most	bad
habits	is	denial.	So	you	have	to	make	it	so	that	you	can't	merely
slip	into	doing	the	thing	you're	trying	to	avoid.	It	has	to	set	off
alarms.

Maybe	in	the	long	term	the	right	answer	for	dealing	with
Internet	distractions	will	be	software	that	watches	and	controls
them.	But	in	the	meantime	I've	found	a	more	drastic	solution	that
definitely	works:	to	set	up	a	separate	computer	for	using	the
Internet.

I	now	leave	wifi	turned	off	on	my	main	computer	except	when	I
need	to	transfer	a	file	or	edit	a	web	page,	and	I	have	a	separate
laptop	on	the	other	side	of	the	room	that	I	use	to	check	mail	or
browse	the	web.	(Irony	of	ironies,	it's	the	computer	Steve
Huffman	wrote	Reddit	on.	When	Steve	and	Alexis	auctioned	off
their	old	laptops	for	charity,	I	bought	them	for	the	Y	Combinator
museum.)

My	rule	is	that	I	can	spend	as	much	time	online	as	I	want,	as	long
as	I	do	it	on	that	computer.	And	this	turns	out	to	be	enough.

http://rescuetime.com/

When	I	have	to	sit	on	the	other	side	of	the	room	to	check	email	or
browse	the	web,	I	become	much	more	aware	of	it.	Sufficiently
aware,	in	my	case	at	least,	that	it's	hard	to	spend	more	than
about	an	hour	a	day	online.

And	my	main	computer	is	now	freed	for	work.	If	you	try	this
trick,	you'll	probably	be	struck	by	how	different	it	feels	when
your	computer	is	disconnected	from	the	Internet.	It	was	alarming
to	me	how	foreign	it	felt	to	sit	in	front	of	a	computer	that	could
only	be	used	for	work,	because	that	showed	how	much	time	I
must	have	been	wasting.

Wow.	All	I	can	do	at	this	computer	is	work.	Ok,	I	better	work
then.

That's	the	good	part.	Your	old	bad	habits	now	help	you	to	work.
You're	used	to	sitting	in	front	of	that	computer	for	hours	at	a
time.	But	you	can't	browse	the	web	or	check	email	now.	What	are
you	going	to	do?	You	can't	just	sit	there.	So	you	start	working.

	

Cities	and	Ambition
May	2008

Great	cities	attract	ambitious	people.	You	can	sense	it	when	you
walk	around	one.	In	a	hundred	subtle	ways,	the	city	sends	you	a
message:	you	could	do	more;	you	should	try	harder.

The	surprising	thing	is	how	different	these	messages	can	be.
New	York	tells	you,	above	all:	you	should	make	more	money.
There	are	other	messages	too,	of	course.	You	should	be	hipper.
You	should	be	better	looking.	But	the	clearest	message	is	that
you	should	be	richer.

What	I	like	about	Boston	(or	rather	Cambridge)	is	that	the
message	there	is:	you	should	be	smarter.	You	really	should	get
around	to	reading	all	those	books	you've	been	meaning	to.

When	you	ask	what	message	a	city	sends,	you	sometimes	get
surprising	answers.	As	much	as	they	respect	brains	in	Silicon
Valley,	the	message	the	Valley	sends	is:	you	should	be	more
powerful.

That's	not	quite	the	same	message	New	York	sends.	Power
matters	in	New	York	too	of	course,	but	New	York	is	pretty
impressed	by	a	billion	dollars	even	if	you	merely	inherited	it.	In
Silicon	Valley	no	one	would	care	except	a	few	real	estate	agents.
What	matters	in	Silicon	Valley	is	how	much	effect	you	have	on
the	world.	The	reason	people	there	care	about	Larry	and	Sergey
is	not	their	wealth	but	the	fact	that	they	control	Google,	which
affects	practically	everyone.

How	much	does	it	matter	what	message	a	city	sends?
Empirically,	the	answer	seems	to	be:	a	lot.	You	might	think	that	if

you	had	enough	strength	of	mind	to	do	great	things,	you'd	be
able	to	transcend	your	environment.	Where	you	live	should	make
at	most	a	couple	percent	difference.	But	if	you	look	at	the
historical	evidence,	it	seems	to	matter	more	than	that.	Most
people	who	did	great	things	were	clumped	together	in	a	few
places	where	that	sort	of	thing	was	done	at	the	time.

You	can	see	how	powerful	cities	are	from	something	I	wrote
about	earlier:	the	case	of	the	Milanese	Leonardo.	Practically
every	fifteenth	century	Italian	painter	you've	heard	of	was	from
Florence,	even	though	Milan	was	just	as	big.	People	in	Florence
weren't	genetically	different,	so	you	have	to	assume	there	was
someone	born	in	Milan	with	as	much	natural	ability	as	Leonardo.
What	happened	to	him?

If	even	someone	with	the	same	natural	ability	as	Leonardo
couldn't	beat	the	force	of	environment,	do	you	suppose	you	can?

I	don't.	I'm	fairly	stubborn,	but	I	wouldn't	try	to	fight	this	force.
I'd	rather	use	it.	So	I've	thought	a	lot	about	where	to	live.

I'd	always	imagined	Berkeley	would	be	the	ideal	place	—	that	it
would	basically	be	Cambridge	with	good	weather.	But	when	I
finally	tried	living	there	a	couple	years	ago,	it	turned	out	not	to
be.	The	message	Berkeley	sends	is:	you	should	live	better.	Life	in
Berkeley	is	very	civilized.	It's	probably	the	place	in	America
where	someone	from	Northern	Europe	would	feel	most	at	home.
But	it's	not	humming	with	ambition.

In	retrospect	it	shouldn't	have	been	surprising	that	a	place	so
pleasant	would	attract	people	interested	above	all	in	quality	of
life.	Cambridge	with	good	weather,	it	turns	out,	is	not
Cambridge.	The	people	you	find	in	Cambridge	are	not	there	by
accident.	You	have	to	make	sacrifices	to	live	there.	It's	expensive
and	somewhat	grubby,	and	the	weather's	often	bad.	So	the	kind
of	people	you	find	in	Cambridge	are	the	kind	of	people	who	want
to	live	where	the	smartest	people	are,	even	if	that	means	living	in
an	expensive,	grubby	place	with	bad	weather.

As	of	this	writing,	Cambridge	seems	to	be	the	intellectual	capital
of	the	world.	I	realize	that	seems	a	preposterous	claim.	What

taste.html

makes	it	true	is	that	it's	more	preposterous	to	claim	about
anywhere	else.	American	universities	currently	seem	to	be	the
best,	judging	from	the	flow	of	ambitious	students.	And	what	US
city	has	a	stronger	claim?	New	York?	A	fair	number	of	smart
people,	but	diluted	by	a	much	larger	number	of	neanderthals	in
suits.	The	Bay	Area	has	a	lot	of	smart	people	too,	but	again,
diluted;	there	are	two	great	universities,	but	they're	far	apart.
Harvard	and	MIT	are	practically	adjacent	by	West	Coast
standards,	and	they're	surrounded	by	about	20	other	colleges
and	universities.	[1]

Cambridge	as	a	result	feels	like	a	town	whose	main	industry	is
ideas,	while	New	York's	is	finance	and	Silicon	Valley's	is	startups.

When	you	talk	about	cities	in	the	sense	we	are,	what	you're	really
talking	about	is	collections	of	people.	For	a	long	time	cities	were
the	only	large	collections	of	people,	so	you	could	use	the	two
ideas	interchangeably.	But	we	can	see	how	much	things	are
changing	from	the	examples	I've	mentioned.	New	York	is	a
classic	great	city.	But	Cambridge	is	just	part	of	a	city,	and	Silicon
Valley	is	not	even	that.	(San	Jose	is	not,	as	it	sometimes	claims,
the	capital	of	Silicon	Valley.	It's	just	178	square	miles	at	one	end
of	it.)

Maybe	the	Internet	will	change	things	further.	Maybe	one	day
the	most	important	community	you	belong	to	will	be	a	virtual
one,	and	it	won't	matter	where	you	live	physically.	But	I	wouldn't
bet	on	it.	The	physical	world	is	very	high	bandwidth,	and	some	of
the	ways	cities	send	you	messages	are	quite	subtle.

One	of	the	exhilarating	things	about	coming	back	to	Cambridge
every	spring	is	walking	through	the	streets	at	dusk,	when	you
can	see	into	the	houses.	When	you	walk	through	Palo	Alto	in	the
evening,	you	see	nothing	but	the	blue	glow	of	TVs.	In	Cambridge
you	see	shelves	full	of	promising-looking	books.	Palo	Alto	was
probably	much	like	Cambridge	in	1960,	but	you'd	never	guess
now	that	there	was	a	university	nearby.	Now	it's	just	one	of	the
richer	neighborhoods	in	Silicon	Valley.	[2]

#f1n
#f2n

A	city	speaks	to	you	mostly	by	accident	—	in	things	you	see
through	windows,	in	conversations	you	overhear.	It's	not
something	you	have	to	seek	out,	but	something	you	can't	turn	off.
One	of	the	occupational	hazards	of	living	in	Cambridge	is
overhearing	the	conversations	of	people	who	use	interrogative
intonation	in	declarative	sentences.	But	on	average	I'll	take
Cambridge	conversations	over	New	York	or	Silicon	Valley	ones.

A	friend	who	moved	to	Silicon	Valley	in	the	late	90s	said	the
worst	thing	about	living	there	was	the	low	quality	of	the
eavesdropping.	At	the	time	I	thought	she	was	being	deliberately
eccentric.	Sure,	it	can	be	interesting	to	eavesdrop	on	people,	but
is	good	quality	eavesdropping	so	important	that	it	would	affect
where	you	chose	to	live?	Now	I	understand	what	she	meant.	The
conversations	you	overhear	tell	you	what	sort	of	people	you're
among.

No	matter	how	determined	you	are,	it's	hard	not	to	be	influenced
by	the	people	around	you.	It's	not	so	much	that	you	do	whatever
a	city	expects	of	you,	but	that	you	get	discouraged	when	no	one
around	you	cares	about	the	same	things	you	do.

There's	an	imbalance	between	encouragement	and
discouragement	like	that	between	gaining	and	losing	money.
Most	people	overvalue	negative	amounts	of	money:	they'll	work
much	harder	to	avoid	losing	a	dollar	than	to	gain	one.	Similarly,
although	there	are	plenty	of	people	strong	enough	to	resist	doing
something	just	because	that's	what	one	is	supposed	to	do	where
they	happen	to	be,	there	are	few	strong	enough	to	keep	working
on	something	no	one	around	them	cares	about.

Because	ambitions	are	to	some	extent	incompatible	and
admiration	is	a	zero-sum	game,	each	city	tends	to	focus	on	one
type	of	ambition.	The	reason	Cambridge	is	the	intellectual	capital
is	not	just	that	there's	a	concentration	of	smart	people	there,	but
that	there's	nothing	else	people	there	care	about	more.
Professors	in	New	York	and	the	Bay	area	are	second	class

citizens	—	till	they	start	hedge	funds	or	startups	respectively.

This	suggests	an	answer	to	a	question	people	in	New	York	have
wondered	about	since	the	Bubble:	whether	New	York	could	grow
into	a	startup	hub	to	rival	Silicon	Valley.	One	reason	that's
unlikely	is	that	someone	starting	a	startup	in	New	York	would
feel	like	a	second	class	citizen.	[3]	There's	already	something
else	people	in	New	York	admire	more.

In	the	long	term,	that	could	be	a	bad	thing	for	New	York.	The
power	of	an	important	new	technology	does	eventually	convert	to
money.	So	by	caring	more	about	money	and	less	about	power
than	Silicon	Valley,	New	York	is	recognizing	the	same	thing,	but
slower.	[4]	And	in	fact	it	has	been	losing	to	Silicon	Valley	at	its
own	game:	the	ratio	of	New	York	to	California	residents	in	the
Forbes	400	has	decreased	from	1.45	(81:56)	when	the	list	was
first	published	in	1982	to	.83	(73:88)	in	2007.

Not	all	cities	send	a	message.	Only	those	that	are	centers	for
some	type	of	ambition	do.	And	it	can	be	hard	to	tell	exactly	what
message	a	city	sends	without	living	there.	I	understand	the
messages	of	New	York,	Cambridge,	and	Silicon	Valley	because
I've	lived	for	several	years	in	each	of	them.	DC	and	LA	seem	to
send	messages	too,	but	I	haven't	spent	long	enough	in	either	to
say	for	sure	what	they	are.

The	big	thing	in	LA	seems	to	be	fame.	There's	an	A	List	of	people
who	are	most	in	demand	right	now,	and	what's	most	admired	is
to	be	on	it,	or	friends	with	those	who	are.	Beneath	that,	the
message	is	much	like	New	York's,	though	perhaps	with	more
emphasis	on	physical	attractiveness.

In	DC	the	message	seems	to	be	that	the	most	important	thing	is
who	you	know.	You	want	to	be	an	insider.	In	practice	this	seems
to	work	much	as	in	LA.	There's	an	A	List	and	you	want	to	be	on	it
or	close	to	those	who	are.	The	only	difference	is	how	the	A	List	is
selected.	And	even	that	is	not	that	different.

#f3n
#f4n

At	the	moment,	San	Francisco's	message	seems	to	be	the	same
as	Berkeley's:	you	should	live	better.	But	this	will	change	if
enough	startups	choose	SF	over	the	Valley.	During	the	Bubble
that	was	a	predictor	of	failure	—	a	self-indulgent	choice,	like
buying	expensive	office	furniture.	Even	now	I'm	suspicious	when
startups	choose	SF.	But	if	enough	good	ones	do,	it	stops	being	a
self-indulgent	choice,	because	the	center	of	gravity	of	Silicon
Valley	will	shift	there.

I	haven't	found	anything	like	Cambridge	for	intellectual	ambition.
Oxford	and	Cambridge	(England)	feel	like	Ithaca	or	Hanover:	the
message	is	there,	but	not	as	strong.

Paris	was	once	a	great	intellectual	center.	If	you	went	there	in
1300,	it	might	have	sent	the	message	Cambridge	does	now.	But	I
tried	living	there	for	a	bit	last	year,	and	the	ambitions	of	the
inhabitants	are	not	intellectual	ones.	The	message	Paris	sends
now	is:	do	things	with	style.	I	liked	that,	actually.	Paris	is	the	only
city	I've	lived	in	where	people	genuinely	cared	about	art.	In
America	only	a	few	rich	people	buy	original	art,	and	even	the
more	sophisticated	ones	rarely	get	past	judging	it	by	the	brand
name	of	the	artist.	But	looking	through	windows	at	dusk	in	Paris
you	can	see	that	people	there	actually	care	what	paintings	look
like.	Visually,	Paris	has	the	best	eavesdropping	I	know.	[5]

There's	one	more	message	I've	heard	from	cities:	in	London	you
can	still	(barely)	hear	the	message	that	one	should	be	more
aristocratic.	If	you	listen	for	it	you	can	also	hear	it	in	Paris,	New
York,	and	Boston.	But	this	message	is	everywhere	very	faint.	It
would	have	been	strong	100	years	ago,	but	now	I	probably
wouldn't	have	picked	it	up	at	all	if	I	hadn't	deliberately	tuned	in
to	that	wavelength	to	see	if	there	was	any	signal	left.

So	far	the	complete	list	of	messages	I've	picked	up	from	cities	is:
wealth,	style,	hipness,	physical	attractiveness,	fame,	political
power,	economic	power,	intelligence,	social	class,	and	quality	of
life.

#f5n

My	immediate	reaction	to	this	list	is	that	it	makes	me	slightly
queasy.	I'd	always	considered	ambition	a	good	thing,	but	I	realize
now	that	was	because	I'd	always	implicitly	understood	it	to	mean
ambition	in	the	areas	I	cared	about.	When	you	list	everything
ambitious	people	are	ambitious	about,	it's	not	so	pretty.

On	closer	examination	I	see	a	couple	things	on	the	list	that	are
surprising	in	the	light	of	history.	For	example,	physical
attractiveness	wouldn't	have	been	there	100	years	ago	(though	it
might	have	been	2400	years	ago).	It	has	always	mattered	for
women,	but	in	the	late	twentieth	century	it	seems	to	have	started
to	matter	for	men	as	well.	I'm	not	sure	why	—	probably	some
combination	of	the	increasing	power	of	women,	the	increasing
influence	of	actors	as	models,	and	the	fact	that	so	many	people
work	in	offices	now:	you	can't	show	off	by	wearing	clothes	too
fancy	to	wear	in	a	factory,	so	you	have	to	show	off	with	your	body
instead.

Hipness	is	another	thing	you	wouldn't	have	seen	on	the	list	100
years	ago.	Or	wouldn't	you?	What	it	means	is	to	know	what's
what.	So	maybe	it	has	simply	replaced	the	component	of	social
class	that	consisted	of	being	"au	fait."	That	could	explain	why
hipness	seems	particularly	admired	in	London:	it's	version	2	of
the	traditional	English	delight	in	obscure	codes	that	only	insiders
understand.

Economic	power	would	have	been	on	the	list	100	years	ago,	but
what	we	mean	by	it	is	changing.	It	used	to	mean	the	control	of
vast	human	and	material	resources.	But	increasingly	it	means	the
ability	to	direct	the	course	of	technology,	and	some	of	the	people
in	a	position	to	do	that	are	not	even	rich	—	leaders	of	important
open	source	projects,	for	example.	The	Captains	of	Industry	of
times	past	had	laboratories	full	of	clever	people	cooking	up	new
technologies	for	them.	The	new	breed	are	themselves	those
people.

As	this	force	gets	more	attention,	another	is	dropping	off	the	list:
social	class.	I	think	the	two	changes	are	related.	Economic
power,	wealth,	and	social	class	are	just	names	for	the	same	thing
at	different	stages	in	its	life:	economic	power	converts	to	wealth,
and	wealth	to	social	class.	So	the	focus	of	admiration	is	simply

shifting	upstream.

Does	anyone	who	wants	to	do	great	work	have	to	live	in	a	great
city?	No;	all	great	cities	inspire	some	sort	of	ambition,	but	they
aren't	the	only	places	that	do.	For	some	kinds	of	work,	all	you
need	is	a	handful	of	talented	colleagues.

What	cities	provide	is	an	audience,	and	a	funnel	for	peers.	These
aren't	so	critical	in	something	like	math	or	physics,	where	no
audience	matters	except	your	peers,	and	judging	ability	is
sufficiently	straightforward	that	hiring	and	admissions
committees	can	do	it	reliably.	In	a	field	like	math	or	physics	all
you	need	is	a	department	with	the	right	colleagues	in	it.	It	could
be	anywhere	—	in	Los	Alamos,	New	Mexico,	for	example.

It's	in	fields	like	the	arts	or	writing	or	technology	that	the	larger
environment	matters.	In	these	the	best	practitioners	aren't
conveniently	collected	in	a	few	top	university	departments	and
research	labs	—	partly	because	talent	is	harder	to	judge,	and
partly	because	people	pay	for	these	things,	so	one	doesn't	need
to	rely	on	teaching	or	research	funding	to	support	oneself.	It's	in
these	more	chaotic	fields	that	it	helps	most	to	be	in	a	great	city:
you	need	the	encouragement	of	feeling	that	people	around	you
care	about	the	kind	of	work	you	do,	and	since	you	have	to	find
peers	for	yourself,	you	need	the	much	larger	intake	mechanism
of	a	great	city.

You	don't	have	to	live	in	a	great	city	your	whole	life	to	benefit
from	it.	The	critical	years	seem	to	be	the	early	and	middle	ones
of	your	career.	Clearly	you	don't	have	to	grow	up	in	a	great	city.
Nor	does	it	seem	to	matter	if	you	go	to	college	in	one.	To	most
college	students	a	world	of	a	few	thousand	people	seems	big
enough.	Plus	in	college	you	don't	yet	have	to	face	the	hardest
kind	of	work	—	discovering	new	problems	to	solve.

It's	when	you	move	on	to	the	next	and	much	harder	step	that	it
helps	most	to	be	in	a	place	where	you	can	find	peers	and
encouragement.	You	seem	to	be	able	to	leave,	if	you	want,	once

you've	found	both.	The	Impressionists	show	the	typical	pattern:
they	were	born	all	over	France	(Pissarro	was	born	in	the
Carribbean)	and	died	all	over	France,	but	what	defined	them
were	the	years	they	spent	together	in	Paris.

Unless	you're	sure	what	you	want	to	do	and	where	the	leading
center	for	it	is,	your	best	bet	is	probably	to	try	living	in	several
places	when	you're	young.	You	can	never	tell	what	message	a	city
sends	till	you	live	there,	or	even	whether	it	still	sends	one.	Often
your	information	will	be	wrong:	I	tried	living	in	Florence	when	I
was	25,	thinking	it	would	be	an	art	center,	but	it	turned	out	I	was
450	years	too	late.

Even	when	a	city	is	still	a	live	center	of	ambition,	you	won't	know
for	sure	whether	its	message	will	resonate	with	you	till	you	hear
it.	When	I	moved	to	New	York,	I	was	very	excited	at	first.	It's	an
exciting	place.	So	it	took	me	quite	a	while	to	realize	I	just	wasn't
like	the	people	there.	I	kept	searching	for	the	Cambridge	of	New
York.	It	turned	out	it	was	way,	way	uptown:	an	hour	uptown	by
air.

Some	people	know	at	16	what	sort	of	work	they're	going	to	do,
but	in	most	ambitious	kids,	ambition	seems	to	precede	anything
specific	to	be	ambitious	about.	They	know	they	want	to	do
something	great.	They	just	haven't	decided	yet	whether	they're
going	to	be	a	rock	star	or	a	brain	surgeon.	There's	nothing	wrong
with	that.	But	it	means	if	you	have	this	most	common	type	of
ambition,	you'll	probably	have	to	figure	out	where	to	live	by	trial
and	error.	You'll	probably	have	to	find	the	city	where	you	feel	at
home	to	know	what	sort	of	ambition	you	have.

Notes

[1]	This	is	one	of	the	advantages	of	not	having	the	universities	in
your	country	controlled	by	the	government.	When	governments
decide	how	to	allocate	resources,	political	deal-making	causes
things	to	be	spread	out	geographically.	No	central	goverment
would	put	its	two	best	universities	in	the	same	town,	unless	it
was	the	capital	(which	would	cause	other	problems).	But	scholars
seem	to	like	to	cluster	together	as	much	as	people	in	any	other
field,	and	when	given	the	freedom	to	they	derive	the	same
advantages	from	it.

[2]	There	are	still	a	few	old	professors	in	Palo	Alto,	but	one	by
one	they	die	and	their	houses	are	transformed	by	developers	into
McMansions	and	sold	to	VPs	of	Bus	Dev.

[3]	How	many	times	have	you	read	about	startup	founders	who
continued	to	live	inexpensively	as	their	companies	took	off?	Who
continued	to	dress	in	jeans	and	t-shirts,	to	drive	the	old	car	they
had	in	grad	school,	and	so	on?	If	you	did	that	in	New	York,	people
would	treat	you	like	shit.	If	you	walk	into	a	fancy	restaurant	in
San	Francisco	wearing	a	jeans	and	a	t-shirt,	they're	nice	to	you;
who	knows	who	you	might	be?	Not	in	New	York.

One	sign	of	a	city's	potential	as	a	technology	center	is	the
number	of	restaurants	that	still	require	jackets	for	men.
According	to	Zagat's	there	are	none	in	San	Francisco,	LA,
Boston,	or	Seattle,	4	in	DC,	6	in	Chicago,	8	in	London,	13	in	New
York,	and	20	in	Paris.

(Zagat's	lists	the	Ritz	Carlton	Dining	Room	in	SF	as	requiring
jackets	but	I	couldn't	believe	it,	so	I	called	to	check	and	in	fact
they	don't.	Apparently	there's	only	one	restaurant	left	on	the
entire	West	Coast	that	still	requires	jackets:	The	French	Laundry
in	Napa	Valley.)

[4]	Ideas	are	one	step	upstream	from	economic	power,	so	it's
conceivable	that	intellectual	centers	like	Cambridge	will	one	day
have	an	edge	over	Silicon	Valley	like	the	one	the	Valley	has	over
New	York.

This	seems	unlikely	at	the	moment;	if	anything	Boston	is	falling

further	and	further	behind.	The	only	reason	I	even	mention	the
possibility	is	that	the	path	from	ideas	to	startups	has	recently
been	getting	smoother.	It's	a	lot	easier	now	for	a	couple	of
hackers	with	no	business	experience	to	start	a	startup	than	it
was	10	years	ago.	If	you	extrapolate	another	20	years,	maybe	the
balance	of	power	will	start	to	shift	back.	I	wouldn't	bet	on	it,	but	I
wouldn't	bet	against	it	either.

[5]	If	Paris	is	where	people	care	most	about	art,	why	is	New	York
the	center	of	gravity	of	the	art	business?	Because	in	the
twentieth	century,	art	as	brand	split	apart	from	art	as	stuff.	New
York	is	where	the	richest	buyers	are,	but	all	they	demand	from
art	is	brand,	and	since	you	can	base	brand	on	anything	with	a
sufficiently	identifiable	style,	you	may	as	well	use	the	local	stuff.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,
Jackie	McDonough,	Robert	Morris,	and	David	Sloo	for	reading
drafts	of	this.

	

The	Pooled-Risk	Company
Management	Company
July	2008

At	this	year's	startup	school,	David	Heinemeier	Hansson	gave	a
talk	in	which	he	suggested	that	startup	founders	should	do	things
the	old	fashioned	way.	Instead	of	hoping	to	get	rich	by	building	a
valuable	company	and	then	selling	stock	in	a	"liquidity	event,"
founders	should	start	companies	that	make	money	and	live	off
the	revenues.

Sounds	like	a	good	plan.	Let's	think	about	the	optimal	way	to	do
this.

One	disadvantage	of	living	off	the	revenues	of	your	company	is
that	you	have	to	keep	running	it.	And	as	anyone	who	runs	their
own	business	can	tell	you,	that	requires	your	complete	attention.
You	can't	just	start	a	business	and	check	out	once	things	are
going	well,	or	they	stop	going	well	surprisingly	fast.

The	main	economic	motives	of	startup	founders	seem	to	be
freedom	and	security.	They	want	enough	money	that	(a)	they
don't	have	to	worry	about	running	out	of	money	and	(b)	they	can
spend	their	time	how	they	want.	Running	your	own	business
offers	neither.	You	certainly	don't	have	freedom:	no	boss	is	so
demanding.	Nor	do	you	have	security,	because	if	you	stop	paying
attention	to	the	company,	its	revenues	go	away,	and	with	them
your	income.

The	best	case,	for	most	people,	would	be	if	you	could	hire
someone	to	manage	the	company	for	you	once	you'd	grown	it	to	a
certain	size.	Suppose	you	could	find	a	really	good	manager.	Then
you	would	have	both	freedom	and	security.	You	could	pay	as	little
attention	to	the	business	as	you	wanted,	knowing	that	your
manager	would	keep	things	running	smoothly.	And	that	being	so,

http://www.omnisio.com/startupschool08/david-heinemeier-hansson-at-startup-school-08

revenues	would	continue	to	flow	in,	so	you'd	have	security	as
well.

There	will	of	course	be	some	founders	who	wouldn't	like	that
idea:	the	ones	who	like	running	their	company	so	much	that
there's	nothing	else	they'd	rather	do.	But	this	group	must	be
small.	The	way	you	succeed	in	most	businesses	is	to	be
fanatically	attentive	to	customers'	needs.	What	are	the	odds	that
your	own	desires	would	coincide	exactly	with	the	demands	of	this
powerful,	external	force?

Sure,	running	your	own	company	can	be	fairly	interesting.
Viaweb	was	more	interesting	than	any	job	I'd	had	before.	And
since	I	made	much	more	money	from	it,	it	offered	the	highest
ratio	of	income	to	boringness	of	anything	I'd	done,	by	orders	of
magnitude.	But	was	it	the	most	interesting	work	I	could	imagine
doing?	No.

Whether	the	number	of	founders	in	the	same	position	is
asymptotic	or	merely	large,	there	are	certainly	a	lot	of	them.	For
them	the	right	approach	would	be	to	hand	the	company	over	to	a
professional	manager	eventually,	if	they	could	find	one	who	was
good	enough.

So	far	so	good.	But	what	if	your	manager	was	hit	by	a	bus?	What
you	really	want	is	a	management	company	to	run	your	company
for	you.	Then	you	don't	depend	on	any	one	person.

If	you	own	rental	property,	there	are	companies	you	can	hire	to
manage	it	for	you.	Some	will	do	everything,	from	finding	tenants
to	fixing	leaks.	Of	course,	running	companies	is	a	lot	more
complicated	than	managing	rental	property,	but	let's	suppose
there	were	management	companies	that	could	do	it	for	you.
They'd	charge	a	lot,	but	wouldn't	it	be	worth	it?	I'd	sacrifice	a
large	percentage	of	the	income	for	the	extra	peace	of	mind.

I	realize	what	I'm	describing	already	sounds	too	good	to	be	true,

but	I	can	think	of	a	way	to	make	it	even	more	attractive.	If
company	management	companies	existed,	there	would	be	an
additional	service	they	could	offer	clients:	they	could	let	them
insure	their	returns	by	pooling	their	risk.	After	all,	even	a	perfect
manager	can't	save	a	company	when,	as	sometimes	happens,	its
whole	market	dies,	just	as	property	managers	can't	save	you
from	the	building	burning	down.	But	a	company	that	managed	a
large	enough	number	of	companies	could	say	to	all	its	clients:
we'll	combine	the	revenues	from	all	your	companies,	and	pay	you
your	proportionate	share.

If	such	management	companies	existed,	they'd	offer	the
maximum	of	freedom	and	security.	Someone	would	run	your
company	for	you,	and	you'd	be	protected	even	if	it	happened	to
die.

Let's	think	about	how	such	a	management	company	might	be
organized.	The	simplest	way	would	be	to	have	a	new	kind	of
stock	representing	the	total	pool	of	companies	they	were
managing.	When	you	signed	up,	you'd	trade	your	company's
stock	for	shares	of	this	pool,	in	proportion	to	an	estimate	of	your
company's	value	that	you'd	both	agreed	upon.	Then	you'd
automatically	get	your	share	of	the	returns	of	the	whole	pool.

The	catch	is	that	because	this	kind	of	trade	would	be	hard	to
undo,	you	couldn't	switch	management	companies.	But	there's	a
way	they	could	fix	that:	suppose	all	the	company	management
companies	got	together	and	agreed	to	allow	their	clients	to
exchange	shares	in	all	their	pools.	Then	you	could,	in	effect,
simultaneously	choose	all	the	management	companies	to	run
yours	for	you,	in	whatever	proportion	you	wanted,	and	change
your	mind	later	as	often	as	you	wanted.

If	such	pooled-risk	company	management	companies	existed,
signing	up	with	one	would	seem	the	ideal	plan	for	most	people
following	the	route	David	advocated.

Good	news:	they	do	exist.	What	I've	just	described	is	an
acquisition	by	a	public	company.

Unfortunately,	though	public	acquirers	are	structurally	identical
to	pooled-risk	company	management	companies,	they	don't	think
of	themselves	that	way.	With	a	property	management	company,
you	can	just	walk	in	whenever	you	want	and	say	"manage	my
rental	property	for	me"	and	they'll	do	it.	Whereas	acquirers	are,
as	of	this	writing,	extremely	fickle.	Sometimes	they're	in	a	buying
mood	and	they'll	overpay	enormously;	other	times	they're	not
interested.	They're	like	property	management	companies	run	by
madmen.	Or	more	precisely,	by	Benjamin	Graham's	Mr.	Market.

So	while	on	average	public	acquirers	behave	like	pooled-risk
company	managers,	you	need	a	window	of	several	years	to	get
average	case	performance.	If	you	wait	long	enough	(five	years,
say)	you're	likely	to	hit	an	up	cycle	where	some	acquirer	is	hot	to
buy	you.	But	you	can't	choose	when	it	happens.

You	can't	assume	investors	will	carry	you	for	as	long	as	you	might
have	to	wait.	Your	company	has	to	make	money.	Opinions	are
divided	about	how	early	to	focus	on	that.	Joe	Kraus	says	you
should	try	charging	customers	right	away.	And	yet	some	of	the
most	successful	startups,	including	Google,	ignored	revenue	at
first	and	concentrated	exclusively	on	development.	The	answer
probably	depends	on	the	type	of	company	you're	starting.	I	can
imagine	some	where	trying	to	make	sales	would	be	a	good
heuristic	for	product	design,	and	others	where	it	would	just	be	a
distraction.	The	test	is	probably	whether	it	helps	you	to
understand	your	users.

You	can	choose	whichever	revenue	strategy	you	think	is	best	for
the	type	of	company	you're	starting,	so	long	as	you're	profitable.
Being	profitable	ensures	you'll	get	at	least	the	average	of	the
acquisition	market—in	which	public	companies	do	behave	as
pooled-risk	company	management	companies.

David	isn't	mistaken	in	saying	you	should	start	a	company	to	live
off	its	revenues.	The	mistake	is	thinking	this	is	somehow	opposed
to	starting	a	company	and	selling	it.	In	fact,	for	most	people	the
latter	is	merely	the	optimal	case	of	the	former.

http://susanitsa.wordpress.com/2006/11/08/the-joe-kraus-qa-better-late/

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Michael	Mandel,
Robert	Morris,	and	Fred	Wilson	for	reading	drafts	of	this.

	

A	Fundraising	Survival	Guide
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

August	2008

Raising	money	is	the	second	hardest	part	of	starting	a	startup.
The	hardest	part	is	making	something	people	want:	most
startups	that	die,	die	because	they	didn't	do	that.	But	the	second
biggest	cause	of	death	is	probably	the	difficulty	of	raising	money.
Fundraising	is	brutal.

One	reason	it's	so	brutal	is	simply	the	brutality	of	markets.
People	who've	spent	most	of	their	lives	in	schools	or	big
companies	may	not	have	been	exposed	to	that.	Professors	and
bosses	usually	feel	some	sense	of	responsibility	toward	you;	if
you	make	a	valiant	effort	and	fail,	they'll	cut	you	a	break.
Markets	are	less	forgiving.	Customers	don't	care	how	hard	you
worked,	only	whether	you	solved	their	problems.

Investors	evaluate	startups	the	way	customers	evaluate	products,
not	the	way	bosses	evaluate	employees.	If	you're	making	a
valiant	effort	and	failing,	maybe	they'll	invest	in	your	next
startup,	but	not	this	one.

But	raising	money	from	investors	is	harder	than	selling	to
customers,	because	there	are	so	few	of	them.	There's	nothing
like	an	efficient	market.	You're	unlikely	to	have	more	than	10
who	are	interested;	it's	difficult	to	talk	to	more.	So	the
randomness	of	any	one	investor's	behavior	can	really	affect	you.

Problem	number	3:	investors	are	very	random.	All	investors,
including	us,	are	by	ordinary	standards	incompetent.	We
constantly	have	to	make	decisions	about	things	we	don't
understand,	and	more	often	than	not	we're	wrong.

And	yet	a	lot	is	at	stake.	The	amounts	invested	by	different	types

http://ycombinator.com/apply.html

of	investors	vary	from	five	thousand	dollars	to	fifty	million,	but
the	amount	usually	seems	large	for	whatever	type	of	investor	it
is.	Investment	decisions	are	big	decisions.

That	combination—making	big	decisions	about	things	they	don't
understand—tends	to	make	investors	very	skittish.	VCs	are
notorious	for	leading	founders	on.	Some	of	the	more
unscrupulous	do	it	deliberately.	But	even	the	most	well-
intentioned	investors	can	behave	in	a	way	that	would	seem	crazy
in	everyday	life.	One	day	they're	full	of	enthusiasm	and	seem
ready	to	write	you	a	check	on	the	spot;	the	next	they	won't	return
your	phone	calls.	They're	not	playing	games	with	you.	They	just
can't	make	up	their	minds.	[1]

If	that	weren't	bad	enough,	these	wildly	fluctuating	nodes	are	all
linked	together.	Startup	investors	all	know	one	another,	and
(though	they	hate	to	admit	it)	the	biggest	factor	in	their	opinion
of	you	is	the	opinion	of	other	investors.	[2]	Talk	about	a	recipe	for
an	unstable	system.	You	get	the	opposite	of	the	damping	that	the
fear/greed	balance	usually	produces	in	markets.	No	one	is
interested	in	a	startup	that's	a	"bargain"	because	everyone	else
hates	it.

So	the	inefficient	market	you	get	because	there	are	so	few
players	is	exacerbated	by	the	fact	that	they	act	less	than
independently.	The	result	is	a	system	like	some	kind	of	primitive,
multi-celled	sea	creature,	where	you	irritate	one	extremity	and
the	whole	thing	contracts	violently.

Y	Combinator	is	working	to	fix	this.	We're	trying	to	increase	the
number	of	investors	just	as	we're	increasing	the	number	of
startups.	We	hope	that	as	the	number	of	both	increases	we'll	get
something	more	like	an	efficient	market.	As	t	approaches	infinity,
Demo	Day	approaches	an	auction.

Unfortunately,	t	is	still	very	far	from	infinity.	What	does	a	startup
do	now,	in	the	imperfect	world	we	currently	inhabit?	The	most
important	thing	is	not	to	let	fundraising	get	you	down.	Startups
live	or	die	on	morale.	If	you	let	the	difficulty	of	raising	money
destroy	your	morale,	it	will	become	a	self-fulfilling	prophecy.

#f1n
#f2n

Bootstrapping	(=	Consulting)

Some	would-be	founders	may	by	now	be	thinking,	why	deal	with
investors	at	all?	If	raising	money	is	so	painful,	why	do	it?

One	answer	to	that	is	obvious:	because	you	need	money	to	live
on.	It's	a	fine	idea	in	principle	to	finance	your	startup	with	its
own	revenues,	but	you	can't	create	instant	customers.	Whatever
you	make,	you	have	to	sell	a	certain	amount	to	break	even.	It	will
take	time	to	grow	your	sales	to	that	point,	and	it's	hard	to
predict,	till	you	try,	how	long	it	will	take.

We	could	not	have	bootstrapped	Viaweb,	for	example.	We
charged	quite	a	lot	for	our	software—about	$140	per	user	per
month—but	it	was	at	least	a	year	before	our	revenues	would	have
covered	even	our	paltry	costs.	We	didn't	have	enough	saved	to
live	on	for	a	year.

If	you	factor	out	the	"bootstrapped"	companies	that	were	actually
funded	by	their	founders	through	savings	or	a	day	job,	the
remainder	either	(a)	got	really	lucky,	which	is	hard	to	do	on
demand,	or	(b)	began	life	as	consulting	companies	and	gradually
transformed	themselves	into	product	companies.

Consulting	is	the	only	option	you	can	count	on.	But	consulting	is
far	from	free	money.	It's	not	as	painful	as	raising	money	from
investors,	perhaps,	but	the	pain	is	spread	over	a	longer	period.
Years,	probably.	And	for	many	types	of	startup,	that	delay	could
be	fatal.	If	you're	working	on	something	so	unusual	that	no	one
else	is	likely	to	think	of	it,	you	can	take	your	time.	Joshua
Schachter	gradually	built	Delicious	on	the	side	while	working	on
Wall	Street.	He	got	away	with	it	because	no	one	else	realized	it
was	a	good	idea.	But	if	you	were	building	something	as	obviously
necessary	as	online	store	software	at	about	the	same	time	as
Viaweb,	and	you	were	working	on	it	on	the	side	while	spending
most	of	your	time	on	client	work,	you	were	not	in	a	good	position.

Bootstrapping	sounds	great	in	principle,	but	this	apparently
verdant	territory	is	one	from	which	few	startups	emerge	alive.
The	mere	fact	that	bootstrapped	startups	tend	to	be	famous	on
that	account	should	set	off	alarm	bells.	If	it	worked	so	well,	it

would	be	the	norm.	[3]

Bootstrapping	may	get	easier,	because	starting	a	company	is
getting	cheaper.	But	I	don't	think	we'll	ever	reach	the	point
where	most	startups	can	do	without	outside	funding.	Technology
tends	to	get	dramatically	cheaper,	but	living	expenses	don't.

The	upshot	is,	you	can	choose	your	pain:	either	the	short,	sharp
pain	of	raising	money,	or	the	chronic	ache	of	consulting.	For	a
given	total	amount	of	pain,	raising	money	is	the	better	choice,
because	new	technology	is	usually	more	valuable	now	than	later.

But	although	for	most	startups	raising	money	will	be	the	lesser
evil,	it's	still	a	pretty	big	evil—so	big	that	it	can	easily	kill	you.
Not	merely	in	the	obvious	sense	that	if	you	fail	to	raise	money
you	might	have	to	shut	the	company	down,	but	because	the
process	of	raising	money	itself	can	kill	you.

To	survive	it	you	need	a	set	of	techniques	mostly	orthogonal	to
the	ones	used	in	convincing	investors,	just	as	mountain	climbers
need	to	know	survival	techniques	that	are	mostly	orthogonal	to
those	used	in	physically	getting	up	and	down	mountains.

1.	Have	low	expectations.

The	reason	raising	money	destroys	so	many	startups'	morale	is
not	simply	that	it's	hard,	but	that	it's	so	much	harder	than	they
expected.	What	kills	you	is	the	disappointment.	And	the	lower
your	expectations,	the	harder	it	is	to	be	disappointed.

Startup	founders	tend	to	be	optimistic.	This	can	work	well	in
technology,	at	least	some	of	the	time,	but	it's	the	wrong	way	to
approach	raising	money.	Better	to	assume	investors	will	always
let	you	down.	Acquirers	too,	while	we're	at	it.	At	YC	one	of	our
secondary	mantras	is	"Deals	fall	through."	No	matter	what	deal
you	have	going	on,	assume	it	will	fall	through.	The	predictive
power	of	this	simple	rule	is	amazing.

There	will	be	a	tendency,	as	a	deal	progresses,	to	start	to	believe
it	will	happen,	and	then	to	depend	on	it	happening.	You	must
resist	this.	Tie	yourself	to	the	mast.	This	is	what	kills	you.	Deals

#f3n

do	not	have	a	trajectory	like	most	other	human	interactions,
where	shared	plans	solidify	linearly	over	time.	Deals	often	fall
through	at	the	last	moment.	Often	the	other	party	doesn't	really
think	about	what	they	want	till	the	last	moment.	So	you	can't	use
your	everyday	intuitions	about	shared	plans	as	a	guide.	When	it
comes	to	deals,	you	have	to	consciously	turn	them	off	and
become	pathologically	cynical.

This	is	harder	to	do	than	it	sounds.	It's	very	flattering	when
eminent	investors	seem	interested	in	funding	you.	It's	easy	to
start	to	believe	that	raising	money	will	be	quick	and
straightforward.	But	it	hardly	ever	is.

2.	Keep	working	on	your	startup.

It	sounds	obvious	to	say	that	you	should	keep	working	on	your
startup	while	raising	money.	Actually	this	is	hard	to	do.	Most
startups	don't	manage	to.

Raising	money	has	a	mysterious	capacity	to	suck	up	all	your
attention.	Even	if	you	only	have	one	meeting	a	day	with
investors,	somehow	that	one	meeting	will	burn	up	your	whole
day.	It	costs	not	just	the	time	of	the	actual	meeting,	but	the	time
getting	there	and	back,	and	the	time	preparing	for	it	beforehand
and	thinking	about	it	afterward.

The	best	way	to	survive	the	distraction	of	meeting	with	investors
is	probably	to	partition	the	company:	to	pick	one	founder	to	deal
with	investors	while	the	others	keep	the	company	going.	This
works	better	when	a	startup	has	3	founders	than	2,	and	better
when	the	leader	of	the	company	is	not	also	the	lead	developer.	In
the	best	case,	the	company	keeps	moving	forward	at	about	half
speed.

That's	the	best	case,	though.	More	often	than	not	the	company
comes	to	a	standstill	while	raising	money.	And	that	is	dangerous
for	so	many	reasons.	Raising	money	always	takes	longer	than	you
expect.	What	seems	like	it's	going	to	be	a	2	week	interruption
turns	into	a	4	month	interruption.	That	can	be	very	demoralizing.
And	worse	still,	it	can	make	you	less	attractive	to	investors.	They
want	to	invest	in	companies	that	are	dynamic.	A	company	that

hasn't	done	anything	new	in	4	months	doesn't	seem	dynamic,	so
they	start	to	lose	interest.	Investors	rarely	grasp	this,	but	much
of	what	they're	responding	to	when	they	lose	interest	in	a	startup
is	the	damage	done	by	their	own	indecision.

The	solution:	put	the	startup	first.	Fit	meetings	with	investors
into	the	spare	moments	in	your	development	schedule,	rather
than	doing	development	in	the	spare	moments	between	meetings
with	investors.	If	you	keep	the	company	moving	forward—
releasing	new	features,	increasing	traffic,	doing	deals,	getting
written	about—those	investor	meetings	are	more	likely	to	be
productive.	Not	just	because	your	startup	will	seem	more	alive,
but	also	because	it	will	be	better	for	your	own	morale,	which	is
one	of	the	main	ways	investors	judge	you.

3.	Be	conservative.

As	conditions	get	worse,	the	optimal	strategy	becomes	more
conservative.	When	things	go	well	you	can	take	risks;	when
things	are	bad	you	want	to	play	it	safe.

I	advise	approaching	fundraising	as	if	it	were	always	going	badly.
The	reason	is	that	between	your	ability	to	delude	yourself	and
the	wildly	unstable	nature	of	the	system	you're	dealing	with,
things	probably	either	already	are	or	could	easily	become	much
worse	than	they	seem.

What	I	tell	most	startups	we	fund	is	that	if	someone	reputable
offers	you	funding	on	reasonable	terms,	take	it.	There	have	been
startups	that	ignored	this	advice	and	got	away	with	it—startups
that	ignored	a	good	offer	in	the	hope	of	getting	a	better	one,	and
actually	did.	But	in	the	same	position	I'd	give	the	same	advice
again.	Who	knows	how	many	bullets	were	in	the	gun	they	were
playing	Russian	roulette	with?

Corollary:	if	an	investor	seems	interested,	don't	just	let	them	sit.
You	can't	assume	someone	interested	in	investing	will	stay
interested.	In	fact,	you	can't	even	tell	(they	can't	even	tell)	if
they're	really	interested	till	you	try	to	convert	that	interest	into
money.	So	if	you	have	hot	prospect,	either	close	them	now	or
write	them	off.	And	unless	you	already	have	enough	funding,	that

reduces	to:	close	them	now.

Startups	don't	win	by	getting	great	funding	rounds,	but	by
making	great	products.	So	finish	raising	money	and	get	back	to
work.

4.	Be	flexible.

There	are	two	questions	VCs	ask	that	you	shouldn't	answer:
"Who	else	are	you	talking	to?"	and	"How	much	are	you	trying	to
raise?"

VCs	don't	expect	you	to	answer	the	first	question.	They	ask	it	just
in	case.	[4]	They	do	seem	to	expect	an	answer	to	the	second.	But
I	don't	think	you	should	just	tell	them	a	number.	Not	as	a	way	to
play	games	with	them,	but	because	you	shouldn't	have	a	fixed
amount	you	need	to	raise.

The	custom	of	a	startup	needing	a	fixed	amount	of	funding	is	an
obsolete	one	left	over	from	the	days	when	startups	were	more
expensive.	A	company	that	needed	to	build	a	factory	or	hire	50
people	obviously	needed	to	raise	a	certain	minimum	amount.	But
few	technology	startups	are	in	that	position	today.

We	advise	startups	to	tell	investors	there	are	several	different
routes	they	could	take	depending	on	how	much	they	raised.	As
little	as	$50k	could	pay	for	food	and	rent	for	the	founders	for	a
year.	A	couple	hundred	thousand	would	let	them	get	office	space
and	hire	some	smart	people	they	know	from	school.	A	couple
million	would	let	them	really	blow	this	thing	out.	The	message
(and	not	just	the	message,	but	the	fact)	should	be:	we're	going	to
succeed	no	matter	what.	Raising	more	money	just	lets	us	do	it
faster.

If	you're	raising	an	angel	round,	the	size	of	the	round	can	even
change	on	the	fly.	In	fact,	it's	just	as	well	to	make	the	round	small
initially,	then	expand	as	needed,	rather	than	trying	to	raise	a
large	round	and	risk	losing	the	investors	you	already	have	if	you
can't	raise	the	full	amount.	You	may	even	want	to	do	a	"rolling
close,"	where	the	round	has	no	predetermined	size,	but	instead
you	sell	stock	to	investors	one	at	a	time	as	they	say	yes.	That

#f4n

helps	break	deadlocks,	because	you	can	start	as	soon	as	the	first
one	is	ready	to	buy.	[5]

5.	Be	independent.

A	startup	with	a	couple	founders	in	their	early	twenties	can	have
expenses	so	low	that	they	could	be	profitable	on	as	little	as
$2000	per	month.	That's	negligible	as	corporate	revenues	go,	but
the	effect	on	your	morale	and	your	bargaining	position	is
anything	but.	At	YC	we	use	the	phrase	"ramen	profitable"	to
describe	the	situation	where	you're	making	just	enough	to	pay
your	living	expenses.	Once	you	cross	into	ramen	profitable,
everything	changes.	You	may	still	need	investment	to	make	it	big,
but	you	don't	need	it	this	month.

You	can't	plan	when	you	start	a	startup	how	long	it	will	take	to
become	profitable.	But	if	you	find	yourself	in	a	position	where	a
little	more	effort	expended	on	sales	would	carry	you	over	the
threshold	of	ramen	profitable,	do	it.

Investors	like	it	when	you're	ramen	profitable.	It	shows	you've
thought	about	making	money,	instead	of	just	working	on	amusing
technical	problems;	it	shows	you	have	the	discipline	to	keep	your
expenses	low;	but	above	all,	it	means	you	don't	need	them.

There	is	nothing	investors	like	more	than	a	startup	that	seems
like	it's	going	to	succeed	even	without	them.	Investors	like	it
when	they	can	help	a	startup,	but	they	don't	like	startups	that
would	die	without	that	help.

At	YC	we	spend	a	lot	of	time	trying	to	predict	how	the	startups
we've	funded	will	do,	because	we're	trying	to	learn	how	to	pick
winners.	We've	now	watched	the	trajectories	of	so	many	startups
that	we're	getting	better	at	predicting	them.	And	when	we're
talking	about	startups	we	think	are	likely	to	succeed,	what	we
find	ourselves	saying	is	things	like	"Oh,	those	guys	can	take	care
of	themselves.	They'll	be	fine."	Not	"those	guys	are	really	smart"
or	"those	guys	are	working	on	a	great	idea."	[6]	When	we	predict
good	outcomes	for	startups,	the	qualities	that	come	up	in	the
supporting	arguments	are	toughness,	adaptability,	determination.
Which	means	to	the	extent	we're	correct,	those	are	the	qualities

#f5n
#f6n

you	need	to	win.

Investors	know	this,	at	least	unconsciously.	The	reason	they	like
it	when	you	don't	need	them	is	not	simply	that	they	like	what
they	can't	have,	but	because	that	quality	is	what	makes	founders
succeed.

Sam	Altman	has	it.	You	could	parachute	him	into	an	island	full	of
cannibals	and	come	back	in	5	years	and	he'd	be	the	king.	If
you're	Sam	Altman,	you	don't	have	to	be	profitable	to	convey	to
investors	that	you'll	succeed	with	or	without	them.	(He	wasn't,
and	he	did.)	Not	everyone	has	Sam's	deal-making	ability.	I	myself
don't.	But	if	you	don't,	you	can	let	the	numbers	speak	for	you.

6.	Don't	take	rejection	personally.

Getting	rejected	by	investors	can	make	you	start	to	doubt
yourself.	After	all,	they're	more	experienced	than	you.	If	they
think	your	startup	is	lame,	aren't	they	probably	right?

Maybe,	maybe	not.	The	way	to	handle	rejection	is	with	precision.
You	shouldn't	simply	ignore	rejection.	It	might	mean	something.
But	you	shouldn't	automatically	get	demoralized	either.

To	understand	what	rejection	means,	you	have	to	understand
first	of	all	how	common	it	is.	Statistically,	the	average	VC	is	a
rejection	machine.	David	Hornik,	a	partner	at	August,	told	me:

The	numbers	for	me	ended	up	being	something	like
500	to	800	plans	received	and	read,	somewhere
between	50	and	100	initial	1	hour	meetings	held,
about	20	companies	that	I	got	interested	in,	about	5
that	I	got	serious	about	and	did	a	bunch	of	work,	1	to
2	deals	done	in	a	year.	So	the	odds	are	against	you.
You	may	be	a	great	entrepreneur,	working	on
interesting	stuff,	etc.	but	it	is	still	incredibly	unlikely
that	you	get	funded.

This	is	less	true	with	angels,	but	VCs	reject	practically	everyone.
The	structure	of	their	business	means	a	partner	does	at	most	2
new	investments	a	year,	no	matter	how	many	good	startups

http://www.youtube.com/watch?v=KhhId_WG7RA

approach	him.

In	addition	to	the	odds	being	terrible,	the	average	investor	is,	as	I
mentioned,	a	pretty	bad	judge	of	startups.	It's	harder	to	judge
startups	than	most	other	things,	because	great	startup	ideas	tend
to	seem	wrong.	A	good	startup	idea	has	to	be	not	just	good	but
novel.	And	to	be	both	good	and	novel,	an	idea	probably	has	to
seem	bad	to	most	people,	or	someone	would	already	be	doing	it
and	it	wouldn't	be	novel.

That	makes	judging	startups	harder	than	most	other	things	one
judges.	You	have	to	be	an	intellectual	contrarian	to	be	a	good
startup	investor.	That's	a	problem	for	VCs,	most	of	whom	are	not
particularly	imaginative.	VCs	are	mostly	money	guys,	not	people
who	make	things.	[7]	Angels	are	better	at	appreciating	novel
ideas,	because	most	were	founders	themselves.

So	when	you	get	a	rejection,	use	the	data	that's	in	it,	and	not
what's	not.	If	an	investor	gives	you	specific	reasons	for	not
investing,	look	at	your	startup	and	ask	if	they're	right.	If	they're
real	problems,	fix	them.	But	don't	just	take	their	word	for	it.
You're	supposed	to	be	the	domain	expert;	you	have	to	decide.

Though	a	rejection	doesn't	necessarily	tell	you	anything	about
your	startup,	it	does	suggest	your	pitch	could	be	improved.
Figure	out	what's	not	working	and	change	it.	Don't	just	think
"investors	are	stupid."	Often	they	are,	but	figure	out	precisely
where	you	lose	them.

Don't	let	rejections	pile	up	as	a	depressing,	undifferentiated
heap.	Sort	them	and	analyze	them,	and	then	instead	of	thinking
"no	one	likes	us,"	you'll	know	precisely	how	big	a	problem	you
have,	and	what	to	do	about	it.

7.	Be	able	to	downshift	into	consulting	(if	appropriate).

Consulting,	as	I	mentioned,	is	a	dangerous	way	to	finance	a
startup.	But	it's	better	than	dying.	It's	a	bit	like	anaerobic
respiration:	not	the	optimum	solution	for	the	long	term,	but	it	can
save	you	from	an	immediate	threat.	If	you're	having	trouble
raising	money	from	investors	at	all,	it	could	save	you	to	be	able

#f7n

to	shift	toward	consulting.

This	works	better	for	some	startups	than	others.	It	wouldn't	have
been	a	natural	fit	for,	say,	Google,	but	if	your	company	was
making	software	for	building	web	sites,	you	could	degrade	fairly
gracefully	into	consulting	by	building	sites	for	clients	with	it.

So	long	as	you	were	careful	not	to	get	sucked	permanently	into
consulting,	this	could	even	have	advantages.	You'd	understand
your	users	well	if	you	were	using	the	software	for	them.	Plus	as	a
consulting	company	you	might	be	able	to	get	big-name	users
using	your	software	that	you	wouldn't	have	gotten	as	a	product
company.

At	Viaweb	we	were	forced	to	operate	like	a	consulting	company
initially,	because	we	were	so	desperate	for	users	that	we'd	offer
to	build	merchants'	sites	for	them	if	they'd	sign	up.	But	we	never
charged	for	such	work,	because	we	didn't	want	them	to	start
treating	us	like	actual	consultants,	and	calling	us	every	time	they
wanted	something	changed	on	their	site.	We	knew	we	had	to	stay
a	product	company,	because	only	that	scales.

8.	Avoid	inexperienced	investors.

Though	novice	investors	seem	unthreatening	they	can	be	the
most	dangerous	sort,	because	they're	so	nervous.	Especially	in
proportion	to	the	amount	they	invest.	Raising	$20,000	from	a
first-time	angel	investor	can	be	as	much	work	as	raising	$2
million	from	a	VC	fund.

Their	lawyers	are	generally	inexperienced	too.	But	while	the
investors	can	admit	they	don't	know	what	they're	doing,	their
lawyers	can't.	One	YC	startup	negotiated	terms	for	a	tiny	round
with	an	angel,	only	to	receive	a	70-page	agreement	from	his
lawyer.	And	since	the	lawyer	could	never	admit,	in	front	of	his
client,	that	he'd	screwed	up,	he	instead	had	to	insist	on	retaining
all	the	draconian	terms	in	it,	so	the	deal	fell	through.

Of	course,	someone	has	to	take	money	from	novice	investors,	or
there	would	never	be	any	experienced	ones.	But	if	you	do,	either
(a)	drive	the	process	yourself,	including	supplying	the

paperwork,	or	(b)	use	them	only	to	fill	up	a	larger	round	led	by
someone	else.

9.	Know	where	you	stand.

The	most	dangerous	thing	about	investors	is	their	indecisiveness.
The	worst	case	scenario	is	the	long	no,	the	no	that	comes	after
months	of	meetings.	Rejections	from	investors	are	like	design
flaws:	inevitable,	but	much	less	costly	if	you	discover	them	early.

So	while	you're	talking	to	investors,	constantly	look	for	signs	of
where	you	stand.	How	likely	are	they	to	offer	you	a	term	sheet?
What	do	they	have	to	be	convinced	of	first?	You	shouldn't
necessarily	always	be	asking	these	questions	outright—that	could
get	annoying—but	you	should	always	be	collecting	data	about
them.

Investors	tend	to	resist	committing	except	to	the	extent	you	push
them	to.	It's	in	their	interest	to	collect	the	maximum	amount	of
information	while	making	the	minimum	number	of	decisions.	The
best	way	to	force	them	to	act	is,	of	course,	competing	investors.
But	you	can	also	apply	some	force	by	focusing	the	discussion:	by
asking	what	specific	questions	they	need	answered	to	make	up
their	minds,	and	then	answering	them.	If	you	get	through	several
obstacles	and	they	keep	raising	new	ones,	assume	that	ultimately
they're	going	to	flake.

You	have	to	be	disciplined	when	collecting	data	about	investors'
intentions.	Otherwise	their	desire	to	lead	you	on	will	combine
with	your	own	desire	to	be	led	on	to	produce	completely
inaccurate	impressions.

Use	the	data	to	weight	your	strategy.	You'll	probably	be	talking	to
several	investors.	Focus	on	the	ones	that	are	most	likely	to	say
yes.	The	value	of	a	potential	investor	is	a	combination	of	how
good	it	would	be	if	they	said	yes,	and	how	likely	they	are	to	say
it.	Put	the	most	weight	on	the	second	factor.	Partly	because	the
most	important	quality	in	an	investor	is	simply	investing.	But	also
because,	as	I	mentioned,	the	biggest	factor	in	investors'	opinion
of	you	is	other	investors'	opinion	of	you.	If	you're	talking	to
several	investors	and	you	manage	to	get	one	over	the	threshold

http://ycombinator.com/seriesaa.html

of	saying	yes,	it	will	make	the	others	much	more	interested.	So
you're	not	sacrificing	the	lukewarm	investors	if	you	focus	on	the
hot	ones;	convincing	the	hot	investors	is	the	best	way	to	convince
the	lukewarm	ones.

Future

I'm	hopeful	things	won't	always	be	so	awkward.	I	hope	that	as
startups	get	cheaper	and	the	number	of	investors	increases,
raising	money	will	become,	if	not	easy,	at	least	straightforward.

In	the	meantime,	the	brokenness	of	the	funding	process	offers	a
big	opportunity.	Most	investors	have	no	idea	how	dangerous	they
are.	They'd	be	surprised	to	hear	that	raising	money	from	them	is
something	that	has	to	be	treated	as	a	threat	to	a	company's
survival.	They	just	think	they	need	a	little	more	information	to
make	up	their	minds.	They	don't	get	that	there	are	10	other
investors	who	also	want	a	little	more	information,	and	that	the
process	of	talking	to	them	all	can	bring	a	startup	to	a	standstill
for	months.

Because	investors	don't	understand	the	cost	of	dealing	with
them,	they	don't	realize	how	much	room	there	is	for	a	potential
competitor	to	undercut	them.	I	know	from	my	own	experience
how	much	faster	investors	could	decide,	because	we've	brought
our	own	time	down	to	20	minutes	(5	minutes	of	reading	an
application	plus	a	10	minute	interview	plus	5	minutes	of
discussion).	If	you	were	investing	more	money	you'd	want	to	take
longer,	of	course.	But	if	we	can	decide	in	20	minutes,	should	it
take	anyone	longer	than	a	couple	days?

Opportunities	like	this	don't	sit	unexploited	forever,	even	in	an
industry	as	conservative	as	venture	capital.	So	either	existing
investors	will	start	to	make	up	their	minds	faster,	or	new
investors	will	emerge	who	do.

In	the	meantime	founders	have	to	treat	raising	money	as	a
dangerous	process.	Fortunately,	I	can	fix	the	biggest	danger	right
here.	The	biggest	danger	is	surprise.	It's	that	startups	will
underestimate	the	difficulty	of	raising	money—that	they'll	cruise
through	all	the	initial	steps,	but	when	they	turn	to	raising	money

they'll	find	it	surprisingly	hard,	get	demoralized,	and	give	up.	So
I'm	telling	you	in	advance:	raising	money	is	hard.

Notes

[1]	When	investors	can't	make	up	their	minds,	they	sometimes
describe	it	as	if	it	were	a	property	of	the	startup.	"You're	too
early	for	us,"	they	sometimes	say.	But	which	of	them,	if	they	were
taken	back	in	a	time	machine	to	the	hour	Google	was	founded,
wouldn't	offer	to	invest	at	any	valuation	the	founders	chose?	An
hour	old	is	not	too	early	if	it's	the	right	startup.	What	"you're	too
early"	really	means	is	"we	can't	figure	out	yet	whether	you'll
succeed."

[2]	Investors	influence	one	another	both	directly	and	indirectly.
They	influence	one	another	directly	through	the	"buzz"	that
surrounds	a	hot	startup.	But	they	also	influence	one	another
indirectly	through	the	founders.	When	a	lot	of	investors	are
interested	in	you,	it	increases	your	confidence	in	a	way	that
makes	you	much	more	attractive	to	investors.

No	VC	will	admit	they're	influenced	by	buzz.	Some	genuinely
aren't.	But	there	are	few	who	can	say	they're	not	influenced	by
confidence.

[3]	One	VC	who	read	this	essay	wrote:

"We	try	to	avoid	companies	that	got	bootstrapped	with
consulting.	It	creates	very	bad	behaviors/instincts	that	are	hard
to	erase	from	a	company's	culture."

[4]	The	optimal	way	to	answer	the	first	question	is	to	say	that	it
would	be	improper	to	name	names,	while	simultaneously
implying	that	you're	talking	to	a	bunch	of	other	VCs	who	are	all
about	to	give	you	term	sheets.	If	you're	the	sort	of	person	who
understands	how	to	do	that,	go	ahead.	If	not,	don't	even	try.
Nothing	annoys	VCs	more	than	clumsy	efforts	to	manipulate

them.

[5]	The	disadvantage	of	expanding	a	round	on	the	fly	is	that	the
valuation	is	fixed	at	the	start,	so	if	you	get	a	sudden	rush	of
interest,	you	may	have	to	decide	between	turning	some	investors
away	and	selling	more	of	the	company	than	you	meant	to.	That's
a	good	problem	to	have,	however.

[6]	I	wouldn't	say	that	intelligence	doesn't	matter	in	startups.
We're	only	comparing	YC	startups,	who've	already	made	it	over	a
certain	threshold.

[7]	But	not	all	are.	Though	most	VCs	are	suits	at	heart,	the	most
successful	ones	tend	not	to	be.	Oddly	enough,	the	best	VCs	tend
to	be	the	least	VC-like.

Thanks	to	Trevor	Blackwell,	David	Hornik,	Jessica	Livingston,
Robert	Morris,	and	Fred	Wilson	for	reading	drafts	of	this.

	

Why	to	Start	a	Startup	in	a
Bad	Economy
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	Other	Half	of	"Artists
Ship"
November	2008

One	of	the	differences	between	big	companies	and	startups	is
that	big	companies	tend	to	have	developed	procedures	to	protect
themselves	against	mistakes.	A	startup	walks	like	a	toddler,
bashing	into	things	and	falling	over	all	the	time.	A	big	company	is
more	deliberate.

The	gradual	accumulation	of	checks	in	an	organization	is	a	kind
of	learning,	based	on	disasters	that	have	happened	to	it	or	others
like	it.	After	giving	a	contract	to	a	supplier	who	goes	bankrupt
and	fails	to	deliver,	for	example,	a	company	might	require	all
suppliers	to	prove	they're	solvent	before	submitting	bids.

As	companies	grow	they	invariably	get	more	such	checks,	either
in	response	to	disasters	they've	suffered,	or	(probably	more
often)	by	hiring	people	from	bigger	companies	who	bring	with
them	customs	for	protecting	against	new	types	of	disasters.

It's	natural	for	organizations	to	learn	from	mistakes.	The	problem
is,	people	who	propose	new	checks	almost	never	consider	that
the	check	itself	has	a	cost.

Every	check	has	a	cost.	For	example,	consider	the	case	of	making
suppliers	verify	their	solvency.	Surely	that's	mere	prudence?	But
in	fact	it	could	have	substantial	costs.	There's	obviously	the
direct	cost	in	time	of	the	people	on	both	sides	who	supply	and
check	proofs	of	the	supplier's	solvency.	But	the	real	costs	are	the
ones	you	never	hear	about:	the	company	that	would	be	the	best
supplier,	but	doesn't	bid	because	they	can't	spare	the	effort	to
get	verified.	Or	the	company	that	would	be	the	best	supplier,	but
falls	just	short	of	the	threshold	for	solvency—which	will	of	course
have	been	set	on	the	high	side,	since	there	is	no	apparent	cost	of

increasing	it.

Whenever	someone	in	an	organization	proposes	to	add	a	new
check,	they	should	have	to	explain	not	just	the	benefit	but	the
cost.	No	matter	how	bad	a	job	they	did	of	analyzing	it,	this	meta-
check	would	at	least	remind	everyone	there	had	to	be	a	cost,	and
send	them	looking	for	it.

If	companies	started	doing	that,	they'd	find	some	surprises.	Joel
Spolsky	recently	spoke	at	Y	Combinator	about	selling	software	to
corporate	customers.	He	said	that	in	most	companies	software
costing	up	to	about	$1000	could	be	bought	by	individual
managers	without	any	additional	approvals.	Above	that
threshold,	software	purchases	generally	had	to	be	approved	by	a
committee.	But	babysitting	this	process	was	so	expensive	for
software	vendors	that	it	didn't	make	sense	to	charge	less	than
$50,000.	Which	means	if	you're	making	something	you	might
otherwise	have	charged	$5000	for,	you	have	to	sell	it	for	$50,000
instead.

The	purpose	of	the	committee	is	presumably	to	ensure	that	the
company	doesn't	waste	money.	And	yet	the	result	is	that	the
company	pays	10	times	as	much.

Checks	on	purchases	will	always	be	expensive,	because	the
harder	it	is	to	sell	something	to	you,	the	more	it	has	to	cost.	And
not	merely	linearly,	either.	If	you're	hard	enough	to	sell	to,	the
people	who	are	best	at	making	things	don't	want	to	bother.	The
only	people	who	will	sell	to	you	are	companies	that	specialize	in
selling	to	you.	Then	you've	sunk	to	a	whole	new	level	of
inefficiency.	Market	mechanisms	no	longer	protect	you,	because
the	good	suppliers	are	no	longer	in	the	market.

Such	things	happen	constantly	to	the	biggest	organizations	of	all,
governments.	But	checks	instituted	by	governments	can	cause
much	worse	problems	than	merely	overpaying.	Checks	instituted
by	governments	can	cripple	a	country's	whole	economy.	Up	till
about	1400,	China	was	richer	and	more	technologically	advanced
than	Europe.	One	reason	Europe	pulled	ahead	was	that	the
Chinese	government	restricted	long	trading	voyages.	So	it	was
left	to	the	Europeans	to	explore	and	eventually	to	dominate	the

rest	of	the	world,	including	China.

In	more	recent	times,	Sarbanes-Oxley	has	practically	destroyed
the	US	IPO	market.	That	wasn't	the	intention	of	the	legislators
who	wrote	it.	They	just	wanted	to	add	a	few	more	checks	on
public	companies.	But	they	forgot	to	consider	the	cost.	They
forgot	that	companies	about	to	go	public	are	usually	rather
stretched,	and	that	the	weight	of	a	few	extra	checks	that	might
be	easy	for	General	Electric	to	bear	are	enough	to	prevent
younger	companies	from	being	public	at	all.

Once	you	start	to	think	about	the	cost	of	checks,	you	can	start	to
ask	other	interesting	questions.	Is	the	cost	increasing	or
decreasing?	Is	it	higher	in	some	areas	than	others?	Where	does	it
increase	discontinuously?	If	large	organizations	started	to	ask
questions	like	that,	they'd	learn	some	frightening	things.

I	think	the	cost	of	checks	may	actually	be	increasing.	The	reason
is	that	software	plays	an	increasingly	important	role	in
companies,	and	the	people	who	write	software	are	particularly
harmed	by	checks.

Programmers	are	unlike	many	types	of	workers	in	that	the	best
ones	actually	prefer	to	work	hard.	This	doesn't	seem	to	be	the
case	in	most	types	of	work.	When	I	worked	in	fast	food,	we	didn't
prefer	the	busy	times.	And	when	I	used	to	mow	lawns,	I	definitely
didn't	prefer	it	when	the	grass	was	long	after	a	week	of	rain.

Programmers,	though,	like	it	better	when	they	write	more	code.
Or	more	precisely,	when	they	release	more	code.	Programmers
like	to	make	a	difference.	Good	ones,	anyway.

For	good	programmers,	one	of	the	best	things	about	working	for
a	startup	is	that	there	are	few	checks	on	releases.	In	true
startups,	there	are	no	external	checks	at	all.	If	you	have	an	idea
for	a	new	feature	in	the	morning,	you	can	write	it	and	push	it	to
the	production	servers	before	lunch.	And	when	you	can	do	that,
you	have	more	ideas.

At	big	companies,	software	has	to	go	through	various	approvals
before	it	can	be	launched.	And	the	cost	of	doing	this	can	be

enormous—in	fact,	discontinuous.	I	was	talking	recently	to	a
group	of	three	programmers	whose	startup	had	been	acquired	a
few	years	before	by	a	big	company.	When	they'd	been
independent,	they	could	release	changes	instantly.	Now,	they
said,	the	absolute	fastest	they	could	get	code	released	on	the
production	servers	was	two	weeks.

This	didn't	merely	make	them	less	productive.	It	made	them	hate
working	for	the	acquirer.

Here's	a	sign	of	how	much	programmers	like	to	be	able	to	work
hard:	these	guys	would	have	paid	to	be	able	to	release	code
immediately,	the	way	they	used	to.	I	asked	them	if	they'd	trade
10%	of	the	acquisition	price	for	the	ability	to	release	code
immediately,	and	all	three	instantly	said	yes.	Then	I	asked	what
was	the	maximum	percentage	of	the	acquisition	price	they'd
trade	for	it.	They	said	they	didn't	want	to	think	about	it,	because
they	didn't	want	to	know	how	high	they'd	go,	but	I	got	the
impression	it	might	be	as	much	as	half.

They'd	have	sacrificed	hundreds	of	thousands	of	dollars,	perhaps
millions,	just	to	be	able	to	deliver	more	software	to	users.	And
you	know	what?	It	would	have	been	perfectly	safe	to	let	them.	In
fact,	the	acquirer	would	have	been	better	off;	not	only	wouldn't
these	guys	have	broken	anything,	they'd	have	gotten	a	lot	more
done.	So	the	acquirer	is	in	fact	getting	worse	performance	at
greater	cost.	Just	like	the	committee	approving	software
purchases.

And	just	as	the	greatest	danger	of	being	hard	to	sell	to	is	not	that
you	overpay	but	that	the	best	suppliers	won't	even	sell	to	you,
the	greatest	danger	of	applying	too	many	checks	to	your
programmers	is	not	that	you'll	make	them	unproductive,	but	that
good	programmers	won't	even	want	to	work	for	you.

Steve	Jobs's	famous	maxim	"artists	ship"	works	both	ways.	Artists
aren't	merely	capable	of	shipping.	They	insist	on	it.	So	if	you
don't	let	people	ship,	you	won't	have	any	artists.

	

The	High-Res	Society
December	2008

For	nearly	all	of	history	the	success	of	a	society	was
proportionate	to	its	ability	to	assemble	large	and	disciplined
organizations.	Those	who	bet	on	economies	of	scale	generally
won,	which	meant	the	largest	organizations	were	the	most
successful	ones.

Things	have	already	changed	so	much	that	this	is	hard	for	us	to
believe,	but	till	just	a	few	decades	ago	the	largest	organizations
tended	to	be	the	most	progressive.	An	ambitious	kid	graduating
from	college	in	1960	wanted	to	work	in	the	huge,	gleaming
offices	of	Ford,	or	General	Electric,	or	NASA.	Small	meant	small-
time.	Small	in	1960	didn't	mean	a	cool	little	startup.	It	meant
uncle	Sid's	shoe	store.

When	I	grew	up	in	the	1970s,	the	idea	of	the	"corporate	ladder"
was	still	very	much	alive.	The	standard	plan	was	to	try	to	get	into
a	good	college,	from	which	one	would	be	drafted	into	some
organization	and	then	rise	to	positions	of	gradually	increasing
responsibility.	The	more	ambitious	merely	hoped	to	climb	the
same	ladder	faster.	[1]

But	in	the	late	twentieth	century	something	changed.	It	turned
out	that	economies	of	scale	were	not	the	only	force	at	work.
Particularly	in	technology,	the	increase	in	speed	one	could	get
from	smaller	groups	started	to	trump	the	advantages	of	size.

The	future	turned	out	to	be	different	from	the	one	we	were
expecting	in	1970.	The	domed	cities	and	flying	cars	we	expected
have	failed	to	materialize.	But	fortunately	so	have	the	jumpsuits
with	badges	indicating	our	specialty	and	rank.	Instead	of	being
dominated	by	a	few,	giant	tree-structured	organizations,	it's	now
looking	like	the	economy	of	the	future	will	be	a	fluid	network	of
smaller,	independent	units.

#f1n

It's	not	so	much	that	large	organizations	stopped	working.
There's	no	evidence	that	famously	successful	organizations	like
the	Roman	army	or	the	British	East	India	Company	were	any	less
afflicted	by	protocol	and	politics	than	organizations	of	the	same
size	today.	But	they	were	competing	against	opponents	who
couldn't	change	the	rules	on	the	fly	by	discovering	new
technology.	Now	it	turns	out	the	rule	"large	and	disciplined
organizations	win"	needs	to	have	a	qualification	appended:	"at
games	that	change	slowly."	No	one	knew	till	change	reached	a
sufficient	speed.

Large	organizations	will	start	to	do	worse	now,	though,	because
for	the	first	time	in	history	they're	no	longer	getting	the	best
people.	An	ambitious	kid	graduating	from	college	now	doesn't
want	to	work	for	a	big	company.	They	want	to	work	for	the	hot
startup	that's	rapidly	growing	into	one.	If	they're	really
ambitious,	they	want	to	start	it.	[2]

This	doesn't	mean	big	companies	will	disappear.	To	say	that
startups	will	succeed	implies	that	big	companies	will	exist,
because	startups	that	succeed	either	become	big	companies	or
are	acquired	by	them.	[3]	But	large	organizations	will	probably
never	again	play	the	leading	role	they	did	up	till	the	last	quarter
of	the	twentieth	century.

It's	kind	of	surprising	that	a	trend	that	lasted	so	long	would	ever
run	out.	How	often	does	it	happen	that	a	rule	works	for
thousands	of	years,	then	switches	polarity?

The	millennia-long	run	of	bigger-is-better	left	us	with	a	lot	of
traditions	that	are	now	obsolete,	but	extremely	deeply	rooted.
Which	means	the	ambitious	can	now	do	arbitrage	on	them.	It	will
be	very	valuable	to	understand	precisely	which	ideas	to	keep	and
which	can	now	be	discarded.

The	place	to	look	is	where	the	spread	of	smallness	began:	in	the
world	of	startups.

There	have	always	been	occasional	cases,	particularly	in	the	US,
of	ambitious	people	who	grew	the	ladder	under	them	instead	of

#f2n
#f3n
credentials.html

climbing	it.	But	till	recently	this	was	an	anomalous	route	that
tended	to	be	followed	only	by	outsiders.	It	was	no	coincidence
that	the	great	industrialists	of	the	nineteenth	century	had	so
little	formal	education.	As	huge	as	their	companies	eventually
became,	they	were	all	essentially	mechanics	and	shopkeepers	at
first.	That	was	a	social	step	no	one	with	a	college	education
would	take	if	they	could	avoid	it.	Till	the	rise	of	technology
startups,	and	in	particular,	Internet	startups,	it	was	very	unusual
for	educated	people	to	start	their	own	businesses.

The	eight	men	who	left	Shockley	Semiconductor	to	found
Fairchild	Semiconductor,	the	original	Silicon	Valley	startup,
weren't	even	trying	to	start	a	company	at	first.	They	were	just
looking	for	a	company	willing	to	hire	them	as	a	group.	Then	one
of	their	parents	introduced	them	to	a	small	investment	bank	that
offered	to	find	funding	for	them	to	start	their	own,	so	they	did.
But	starting	a	company	was	an	alien	idea	to	them;	it	was
something	they	backed	into.	[4]

Now	I	would	guess	that	practically	every	Stanford	or	Berkeley
undergrad	who	knows	how	to	program	has	at	least	considered
the	idea	of	starting	a	startup.	East	Coast	universities	are	not	far
behind,	and	British	universities	only	a	little	behind	them.	This
pattern	suggests	that	attitudes	at	Stanford	and	Berkeley	are	not
an	anomaly,	but	a	leading	indicator.	This	is	the	way	the	world	is
going.

Of	course,	Internet	startups	are	still	only	a	fraction	of	the	world's
economy.	Could	a	trend	based	on	them	be	that	powerful?

I	think	so.	There's	no	reason	to	suppose	there's	any	limit	to	the
amount	of	work	that	could	be	done	in	this	area.	Like	science,
wealth	seems	to	expand	fractally.	Steam	power	was	a	sliver	of	the
British	economy	when	Watt	started	working	on	it.	But	his	work
led	to	more	work	till	that	sliver	had	expanded	into	something
bigger	than	the	whole	economy	of	which	it	had	initially	been	a
part.

The	same	thing	could	happen	with	the	Internet.	If	Internet
startups	offer	the	best	opportunity	for	ambitious	people,	then	a
lot	of	ambitious	people	will	start	them,	and	this	bit	of	the

#f4n

economy	will	balloon	in	the	usual	fractal	way.

Even	if	Internet-related	applications	only	become	a	tenth	of	the
world's	economy,	this	component	will	set	the	tone	for	the	rest.
The	most	dynamic	part	of	the	economy	always	does,	in
everything	from	salaries	to	standards	of	dress.	Not	just	because
of	its	prestige,	but	because	the	principles	underlying	the	most
dynamic	part	of	the	economy	tend	to	be	ones	that	work.

For	the	future,	the	trend	to	bet	on	seems	to	be	networks	of	small,
autonomous	groups	whose	performance	is	measured	individually.
And	the	societies	that	win	will	be	the	ones	with	the	least
impedance.

As	with	the	original	industrial	revolution,	some	societies	are
going	to	be	better	at	this	than	others.	Within	a	generation	of	its
birth	in	England,	the	Industrial	Revolution	had	spread	to
continental	Europe	and	North	America.	But	it	didn't	spread
everywhere.	This	new	way	of	doing	things	could	only	take	root	in
places	that	were	prepared	for	it.	It	could	only	spread	to	places
that	already	had	a	vigorous	middle	class.

There	is	a	similar	social	component	to	the	transformation	that
began	in	Silicon	Valley	in	the	1960s.	Two	new	kinds	of	techniques
were	developed	there:	techniques	for	building	integrated
circuits,	and	techniques	for	building	a	new	type	of	company
designed	to	grow	fast	by	creating	new	technology.	The
techniques	for	building	integrated	circuits	spread	rapidly	to
other	countries.	But	the	techniques	for	building	startups	didn't.
Fifty	years	later,	startups	are	ubiquitous	in	Silicon	Valley	and
common	in	a	handful	of	other	US	cities,	but	they're	still	an
anomaly	in	most	of	the	world.

Part	of	the	reason—possibly	the	main	reason—that	startups	have
not	spread	as	broadly	as	the	Industrial	Revolution	did	is	their
social	disruptiveness.	Though	it	brought	many	social	changes,
the	Industrial	Revolution	was	not	fighting	the	principle	that
bigger	is	better.	Quite	the	opposite:	the	two	dovetailed
beautifully.	The	new	industrial	companies	adapted	the	customs	of
existing	large	organizations	like	the	military	and	the	civil	service,
and	the	resulting	hybrid	worked	well.	"Captains	of	industry"

issued	orders	to	"armies	of	workers,"	and	everyone	knew	what
they	were	supposed	to	do.

Startups	seem	to	go	more	against	the	grain,	socially.	It's	hard	for
them	to	flourish	in	societies	that	value	hierarchy	and	stability,
just	as	it	was	hard	for	industrialization	to	flourish	in	societies
ruled	by	people	who	stole	at	will	from	the	merchant	class.	But
there	were	already	a	handful	of	countries	past	that	stage	when
the	Industrial	Revolution	happened.	There	do	not	seem	to	be	that
many	ready	this	time.

Notes

[1]	One	of	the	bizarre	consequences	of	this	model	was	that	the
usual	way	to	make	more	money	was	to	become	a	manager.	This	is
one	of	the	things	startups	fix.

[2]	There	are	a	lot	of	reasons	American	car	companies	have	been
doing	so	much	worse	than	Japanese	car	companies,	but	at	least
one	of	them	is	a	cause	for	optimism:	American	graduates	have
more	options.

[3]	It's	possible	that	companies	will	one	day	be	able	to	grow	big
in	revenues	without	growing	big	in	people,	but	we	are	not	very
far	along	that	trend	yet.

[4]	Lecuyer,	Christophe,	Making	Silicon	Valley,	MIT	Press,	2006.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Jessica	Livingston,
and	Robert	Morris	for	reading	drafts	of	this.

	

Could	VC	be	a	Casualty	of	the
Recession?
December	2008

(I	originally	wrote	this	at	the	request	of	a	company	producing	a
report	about	entrepreneurship.	Unfortunately	after	reading	it
they	decided	it	was	too	controversial	to	include.)

VC	funding	will	probably	dry	up	somewhat	during	the	present
recession,	like	it	usually	does	in	bad	times.	But	this	time	the
result	may	be	different.	This	time	the	number	of	new	startups
may	not	decrease.	And	that	could	be	dangerous	for	VCs.

When	VC	funding	dried	up	after	the	Internet	Bubble,	startups
dried	up	too.	There	were	not	a	lot	of	new	startups	being	founded
in	2003.	But	startups	aren't	tied	to	VC	the	way	they	were	10
years	ago.	It's	now	possible	for	VCs	and	startups	to	diverge.	And
if	they	do,	they	may	not	reconverge	once	the	economy	gets
better.

The	reason	startups	no	longer	depend	so	much	on	VCs	is	one	that
everyone	in	the	startup	business	knows	by	now:	it	has	gotten
much	cheaper	to	start	a	startup.	There	are	four	main	reasons:
Moore's	law	has	made	hardware	cheap;	open	source	has	made
software	free;	the	web	has	made	marketing	and	distribution	free;
and	more	powerful	programming	languages	mean	development
teams	can	be	smaller.	These	changes	have	pushed	the	cost	of
starting	a	startup	down	into	the	noise.	In	a	lot	of	startups—
probaby	most	startups	funded	by	Y	Combinator—the	biggest
expense	is	simply	the	founders'	living	expenses.	We've	had
startups	that	were	profitable	on	revenues	of	$3000	a	month.

$3000	is	insignificant	as	revenues	go.	Why	should	anyone	care
about	a	startup	making	$3000	a	month?	Because,	although
insignificant	as	revenue,	this	amount	of	money	can	change	a

startup's	funding	situation	completely.

Someone	running	a	startup	is	always	calculating	in	the	back	of
their	mind	how	much	"runway"	they	have—how	long	they	have
till	the	money	in	the	bank	runs	out	and	they	either	have	to	be
profitable,	raise	more	money,	or	go	out	of	business.	Once	you
cross	the	threshold	of	profitability,	however	low,	your	runway
becomes	infinite.	It's	a	qualitative	change,	like	the	stars	turning
into	lines	and	disappearing	when	the	Enterprise	accelerates	to
warp	speed.	Once	you're	profitable	you	don't	need	investors'
money.	And	because	Internet	startups	have	become	so	cheap	to
run,	the	threshold	of	profitability	can	be	trivially	low.	Which
means	many	Internet	startups	don't	need	VC-scale	investments
anymore.	For	many	startups,	VC	funding	has,	in	the	language	of
VCs,	gone	from	a	must-have	to	a	nice-to-have.

This	change	happened	while	no	one	was	looking,	and	its	effects
have	been	largely	masked	so	far.	It	was	during	the	trough	after
the	Internet	Bubble	that	it	became	trivially	cheap	to	start	a
startup,	but	few	realized	it	because	startups	were	so	out	of
fashion.	When	startups	came	back	into	fashion,	around	2005,
investors	were	starting	to	write	checks	again.	And	while	founders
may	not	have	needed	VC	money	the	way	they	used	to,	they	were
willing	to	take	it	if	offered—partly	because	there	was	a	tradition
of	startups	taking	VC	money,	and	partly	because	startups,	like
dogs,	tend	to	eat	when	given	the	opportunity.	As	long	as	VCs
were	writing	checks,	founders	were	never	forced	to	explore	the
limits	of	how	little	they	needed	them.	There	were	a	few	startups
who	hit	these	limits	accidentally	because	of	their	unusual
circumstances—most	famously	37signals,	which	hit	the	limit
because	they	crossed	into	startup	land	from	the	other	direction:
they	started	as	a	consulting	firm,	so	they	had	revenue	before
they	had	a	product.

VCs	and	founders	are	like	two	components	that	used	to	be	bolted
together.	Around	2000	the	bolt	was	removed.	Because	the
components	have	so	far	been	subjected	to	the	same	forces,	they
still	seem	to	be	joined	together,	but	really	one	is	just	resting	on
the	other.	A	sharp	impact	would	make	them	fly	apart.	And	the
present	recession	could	be	that	impact.

Because	of	Y	Combinator's	position	at	the	extreme	end	of	the
spectrum,	we'd	be	the	first	to	see	signs	of	a	separation	between
founders	and	investors,	and	we	are	in	fact	seeing	it.	For	example,
though	the	stock	market	crash	does	seem	to	have	made	investors
more	cautious,	it	doesn't	seem	to	have	had	any	effect	on	the
number	of	people	who	want	to	start	startups.	We	take
applications	for	funding	every	6	months.	Applications	for	the
current	funding	cycle	closed	on	October	17,	well	after	the
markets	tanked,	and	even	so	we	got	a	record	number,	up	40%
from	the	same	cycle	a	year	before.

Maybe	things	will	be	different	a	year	from	now,	if	the	economy
continues	to	get	worse,	but	so	far	there	is	zero	slackening	of
interest	among	potential	founders.	That's	different	from	the	way
things	felt	in	2001.	Then	there	was	a	widespread	feeling	among
potential	founders	that	startups	were	over,	and	that	one	should
just	go	to	grad	school.	That	isn't	happening	this	time,	and	part	of
the	reason	is	that	even	in	a	bad	economy	it's	not	that	hard	to
build	something	that	makes	$3000	a	month.	If	investors	stop
writing	checks,	who	cares?

We	also	see	signs	of	a	divergence	between	founders	and
investors	in	the	attitudes	of	existing	startups	we've	funded.	I	was
talking	to	one	recently	that	had	a	round	fall	through	at	the	last
minute	over	the	sort	of	trifle	that	breaks	deals	when	investors
feel	they	have	the	upper	hand—over	an	uncertainty	about
whether	the	founders	had	correctly	filed	their	83(b)	forms,	if	you
can	believe	that.	And	yet	this	startup	is	obviously	going	to
succeed:	their	traffic	and	revenue	graphs	look	like	a	jet	taking
off.	So	I	asked	them	if	they	wanted	me	to	introduce	them	to	more
investors.	To	my	surprise,	they	said	no—that	they'd	just	spent
four	months	dealing	with	investors,	and	they	were	actually	a	lot
happier	now	that	they	didn't	have	to.	There	was	a	friend	they
wanted	to	hire	with	the	investor	money,	and	now	they'd	have	to
postpone	that.	But	otherwise	they	felt	they	had	enough	in	the
bank	to	make	it	to	profitability.	To	make	sure,	they	were	moving
to	a	cheaper	apartment.	And	in	this	economy	I	bet	they	got	a
good	deal	on	it.

I've	detected	this	"investors	aren't	worth	the	trouble"	vibe	from
several	YC	founders	I've	talked	to	recently.	At	least	one	startup

from	the	most	recent	(summer)	cycle	may	not	even	raise	angel
money,	let	alone	VC.	Ticketstumbler	made	it	to	profitability	on	Y
Combinator's	$15,000	investment	and	they	hope	not	to	need
more.	This	surprised	even	us.	Although	YC	is	based	on	the	idea	of
it	being	cheap	to	start	a	startup,	we	never	anticipated	that
founders	would	grow	successful	startups	on	nothing	more	than
YC	funding.

If	founders	decide	VCs	aren't	worth	the	trouble,	that	could	be
bad	for	VCs.	When	the	economy	bounces	back	in	a	few	years	and
they're	ready	to	write	checks	again,	they	may	find	that	founders
have	moved	on.

There	is	a	founder	community	just	as	there's	a	VC	community.
They	all	know	one	another,	and	techniques	spread	rapidly
between	them.	If	one	tries	a	new	programming	language	or	a
new	hosting	provider	and	gets	good	results,	6	months	later	half
of	them	are	using	it.	And	the	same	is	true	for	funding.	The
current	generation	of	founders	want	to	raise	money	from	VCs,
and	Sequoia	specifically,	because	Larry	and	Sergey	took	money
from	VCs,	and	Sequoia	specifically.	Imagine	what	it	would	do	to
the	VC	business	if	the	next	hot	company	didn't	take	VC	at	all.

VCs	think	they're	playing	a	zero	sum	game.	In	fact,	it's	not	even
that.	If	you	lose	a	deal	to	Benchmark,	you	lose	that	deal,	but	VC
as	an	industry	still	wins.	If	you	lose	a	deal	to	None,	all	VCs	lose.

This	recession	may	be	different	from	the	one	after	the	Internet
Bubble.	This	time	founders	may	keep	starting	startups.	And	if
they	do,	VCs	will	have	to	keep	writing	checks,	or	they	could
become	irrelevant.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	David	Hornik,	Jessica
Livingston,	Robert	Morris,	and	Fred	Wilson	for	reading	drafts	of
this.

http://ticketstumbler.com/

	

After	Credentials
December	2008

A	few	months	ago	I	read	a	New	York	Times	article	on	South
Korean	cram	schools	that	said

Admission	to	the	right	university	can	make	or	break
an	ambitious	young	South	Korean.

A	parent	added:

"In	our	country,	college	entrance	exams	determine
70	to	80	percent	of	a	person's	future."

It	was	striking	how	old	fashioned	this	sounded.	And	yet	when	I
was	in	high	school	it	wouldn't	have	seemed	too	far	off	as	a
description	of	the	US.	Which	means	things	must	have	been
changing	here.

The	course	of	people's	lives	in	the	US	now	seems	to	be
determined	less	by	credentials	and	more	by	performance	than	it
was	25	years	ago.	Where	you	go	to	college	still	matters,	but	not
like	it	used	to.

What	happened?

Judging	people	by	their	academic	credentials	was	in	its	time	an
advance.	The	practice	seems	to	have	begun	in	China,	where
starting	in	587	candidates	for	the	imperial	civil	service	had	to
take	an	exam	on	classical	literature.	[1]	It	was	also	a	test	of
wealth,	because	the	knowledge	it	tested	was	so	specialized	that
passing	required	years	of	expensive	training.	But	though	wealth
was	a	necessary	condition	for	passing,	it	was	not	a	sufficient	one.
By	the	standards	of	the	rest	of	the	world	in	587,	the	Chinese

#f1n

system	was	very	enlightened.	Europeans	didn't	introduce	formal
civil	service	exams	till	the	nineteenth	century,	and	even	then	they
seem	to	have	been	influenced	by	the	Chinese	example.

Before	credentials,	government	positions	were	obtained	mainly
by	family	influence,	if	not	outright	bribery.	It	was	a	great	step
forward	to	judge	people	by	their	performance	on	a	test.	But	by	no
means	a	perfect	solution.	When	you	judge	people	that	way,	you
tend	to	get	cram	schools—which	they	did	in	Ming	China	and
nineteenth	century	England	just	as	much	as	in	present	day	South
Korea.

What	cram	schools	are,	in	effect,	is	leaks	in	a	seal.	The	use	of
credentials	was	an	attempt	to	seal	off	the	direct	transmission	of
power	between	generations,	and	cram	schools	represent	that
power	finding	holes	in	the	seal.	Cram	schools	turn	wealth	in	one
generation	into	credentials	in	the	next.

It's	hard	to	beat	this	phenomenon,	because	the	schools	adjust	to
suit	whatever	the	tests	measure.	When	the	tests	are	narrow	and
predictable,	you	get	cram	schools	on	the	classic	model,	like	those
that	prepared	candidates	for	Sandhurst	(the	British	West	Point)
or	the	classes	American	students	take	now	to	improve	their	SAT
scores.	But	as	the	tests	get	broader,	the	schools	do	too.	Preparing
a	candidate	for	the	Chinese	imperial	civil	service	exams	took
years,	as	prep	school	does	today.	But	the	raison	d'etre	of	all	these
institutions	has	been	the	same:	to	beat	the	system.	[2]

History	suggests	that,	all	other	things	being	equal,	a	society
prospers	in	proportion	to	its	ability	to	prevent	parents	from
influencing	their	children's	success	directly.	It's	a	fine	thing	for
parents	to	help	their	children	indirectly—for	example,	by	helping
them	to	become	smarter	or	more	disciplined,	which	then	makes
them	more	successful.	The	problem	comes	when	parents	use
direct	methods:	when	they	are	able	to	use	their	own	wealth	or
power	as	a	substitute	for	their	children's	qualities.

Parents	will	tend	to	do	this	when	they	can.	Parents	will	die	for

#f2n

their	kids,	so	it's	not	surprising	to	find	they'll	also	push	their
scruples	to	the	limits	for	them.	Especially	if	other	parents	are
doing	it.

Sealing	off	this	force	has	a	double	advantage.	Not	only	does	a
society	get	"the	best	man	for	the	job,"	but	parents'	ambitions	are
diverted	from	direct	methods	to	indirect	ones—to	actually	trying
to	raise	their	kids	well.

But	we	should	expect	it	to	be	very	hard	to	contain	parents'
efforts	to	obtain	an	unfair	advantage	for	their	kids.	We're	dealing
with	one	of	the	most	powerful	forces	in	human	nature.	We
shouldn't	expect	naive	solutions	to	work,	any	more	than	we'd
expect	naive	solutions	for	keeping	heroin	out	of	a	prison	to	work.

The	obvious	way	to	solve	the	problem	is	to	make	credentials
better.	If	the	tests	a	society	uses	are	currently	hackable,	we	can
study	the	way	people	beat	them	and	try	to	plug	the	holes.	You
can	use	the	cram	schools	to	show	you	where	most	of	the	holes
are.	They	also	tell	you	when	you're	succeeding	in	fixing	them:
when	cram	schools	become	less	popular.

A	more	general	solution	would	be	to	push	for	increased
transparency,	especially	at	critical	social	bottlenecks	like	college
admissions.	In	the	US	this	process	still	shows	many	outward
signs	of	corruption.	For	example,	legacy	admissions.	The	official
story	is	that	legacy	status	doesn't	carry	much	weight,	because	all
it	does	is	break	ties:	applicants	are	bucketed	by	ability,	and
legacy	status	is	only	used	to	decide	between	the	applicants	in	the
bucket	that	straddles	the	cutoff.	But	what	this	means	is	that	a
university	can	make	legacy	status	have	as	much	or	as	little
weight	as	they	want,	by	adjusting	the	size	of	the	bucket	that
straddles	the	cutoff.

By	gradually	chipping	away	at	the	abuse	of	credentials,	you	could
probably	make	them	more	airtight.	But	what	a	long	fight	it	would
be.	Especially	when	the	institutions	administering	the	tests	don't
really	want	them	to	be	airtight.

Fortunately	there's	a	better	way	to	prevent	the	direct
transmission	of	power	between	generations.	Instead	of	trying	to
make	credentials	harder	to	hack,	we	can	also	make	them	matter
less.

Let's	think	about	what	credentials	are	for.	What	they	are,
functionally,	is	a	way	of	predicting	performance.	If	you	could
measure	actual	performance,	you	wouldn't	need	them.

So	why	did	they	even	evolve?	Why	haven't	we	just	been
measuring	actual	performance?	Think	about	where	credentialism
first	appeared:	in	selecting	candidates	for	large	organizations.
Individual	performance	is	hard	to	measure	in	large	organizations,
and	the	harder	performance	is	to	measure,	the	more	important	it
is	to	predict	it.	If	an	organization	could	immediately	and	cheaply
measure	the	performance	of	recruits,	they	wouldn't	need	to
examine	their	credentials.	They	could	take	everyone	and	keep
just	the	good	ones.

Large	organizations	can't	do	this.	But	a	bunch	of	small
organizations	in	a	market	can	come	close.	A	market	takes	every
organization	and	keeps	just	the	good	ones.	As	organizations	get
smaller,	this	approaches	taking	every	person	and	keeping	just	the
good	ones.	So	all	other	things	being	equal,	a	society	consisting	of
more,	smaller	organizations	will	care	less	about	credentials.

That's	what's	been	happening	in	the	US.	That's	why	those	quotes
from	Korea	sound	so	old	fashioned.	They're	talking	about	an
economy	like	America's	a	few	decades	ago,	dominated	by	a	few
big	companies.	The	route	for	the	ambitious	in	that	sort	of
environment	is	to	join	one	and	climb	to	the	top.	Credentials
matter	a	lot	then.	In	the	culture	of	a	large	organization,	an	elite
pedigree	becomes	a	self-fulfilling	prophecy.

This	doesn't	work	in	small	companies.	Even	if	your	colleagues
were	impressed	by	your	credentials,	they'd	soon	be	parted	from
you	if	your	performance	didn't	match,	because	the	company
would	go	out	of	business	and	the	people	would	be	dispersed.

In	a	world	of	small	companies,	performance	is	all	anyone	cares
about.	People	hiring	for	a	startup	don't	care	whether	you've	even
graduated	from	college,	let	alone	which	one.	All	they	care	about
is	what	you	can	do.	Which	is	in	fact	all	that	should	matter,	even	in
a	large	organization.	The	reason	credentials	have	such	prestige
is	that	for	so	long	the	large	organizations	in	a	society	tended	to
be	the	most	powerful.	But	in	the	US	at	least	they	don't	have	the
monopoly	on	power	they	once	did,	precisely	because	they	can't
measure	(and	thus	reward)	individual	performance.	Why	spend
twenty	years	climbing	the	corporate	ladder	when	you	can	get
rewarded	directly	by	the	market?

I	realize	I	see	a	more	exaggerated	version	of	the	change	than
most	other	people.	As	a	partner	at	an	early	stage	venture	funding
firm,	I'm	like	a	jumpmaster	shoving	people	out	of	the	old	world	of
credentials	and	into	the	new	one	of	performance.	I'm	an	agent	of
the	change	I'm	seeing.	But	I	don't	think	I'm	imagining	it.	It	was
not	so	easy	25	years	ago	for	an	ambitious	person	to	choose	to	be
judged	directly	by	the	market.	You	had	to	go	through	bosses,	and
they	were	influenced	by	where	you'd	been	to	college.

What	made	it	possible	for	small	organizations	to	succeed	in
America?	I'm	still	not	entirely	sure.	Startups	are	certainly	a	large
part	of	it.	Small	organizations	can	develop	new	ideas	faster	than
large	ones,	and	new	ideas	are	increasingly	valuable.

But	I	don't	think	startups	account	for	all	the	shift	from
credentials	to	measurement.	My	friend	Julian	Weber	told	me	that
when	he	went	to	work	for	a	New	York	law	firm	in	the	1950s	they
paid	associates	far	less	than	firms	do	today.	Law	firms	then	made
no	pretense	of	paying	people	according	to	the	value	of	the	work
they'd	done.	Pay	was	based	on	seniority.	The	younger	employees
were	paying	their	dues.	They'd	be	rewarded	later.

The	same	principle	prevailed	at	industrial	companies.	When	my
father	was	working	at	Westinghouse	in	the	1970s,	he	had	people
working	for	him	who	made	more	than	he	did,	because	they'd
been	there	longer.

Now	companies	increasingly	have	to	pay	employees	market	price
for	the	work	they	do.	One	reason	is	that	employees	no	longer
trust	companies	to	deliver	deferred	rewards:	why	work	to
accumulate	deferred	rewards	at	a	company	that	might	go
bankrupt,	or	be	taken	over	and	have	all	its	implicit	obligations
wiped	out?	The	other	is	that	some	companies	broke	ranks	and
started	to	pay	young	employees	large	amounts.	This	was
particularly	true	in	consulting,	law,	and	finance,	where	it	led	to
the	phenomenon	of	yuppies.	The	word	is	rarely	used	today
because	it's	no	longer	surprising	to	see	a	25	year	old	with	money,
but	in	1985	the	sight	of	a	25	year	old	professional	able	to	afford	a
new	BMW	was	so	novel	that	it	called	forth	a	new	word.

The	classic	yuppie	worked	for	a	small	organization.	He	didn't
work	for	General	Widget,	but	for	the	law	firm	that	handled
General	Widget's	acquisitions	or	the	investment	bank	that	floated
their	bond	issues.

Startups	and	yuppies	entered	the	American	conceptual
vocabulary	roughly	simultaneously	in	the	late	1970s	and	early
1980s.	I	don't	think	there	was	a	causal	connection.	Startups
happened	because	technology	started	to	change	so	fast	that	big
companies	could	no	longer	keep	a	lid	on	the	smaller	ones.	I	don't
think	the	rise	of	yuppies	was	inspired	by	it;	it	seems	more	as	if
there	was	a	change	in	the	social	conventions	(and	perhaps	the
laws)	governing	the	way	big	companies	worked.	But	the	two
phenomena	rapidly	fused	to	produce	a	principle	that	now	seems
obvious:	paying	energetic	young	people	market	rates,	and
getting	correspondingly	high	performance	from	them.

At	about	the	same	time	the	US	economy	rocketed	out	of	the
doldrums	that	had	afflicted	it	for	most	of	the	1970s.	Was	there	a
connection?	I	don't	know	enough	to	say,	but	it	felt	like	it	at	the
time.	There	was	a	lot	of	energy	released.

ladder.html

Countries	worried	about	their	competitiveness	are	right	to	be
concerned	about	the	number	of	startups	started	within	them.	But
they	would	do	even	better	to	examine	the	underlying	principle.
Do	they	let	energetic	young	people	get	paid	market	rate	for	the
work	they	do?	The	young	are	the	test,	because	when	people
aren't	rewarded	according	to	performance,	they're	invariably
rewarded	according	to	seniority	instead.

All	it	takes	is	a	few	beachheads	in	your	economy	that	pay	for
performance.	Measurement	spreads	like	heat.	If	one	part	of	a
society	is	better	at	measurement	than	others,	it	tends	to	push	the
others	to	do	better.	If	people	who	are	young	but	smart	and	driven
can	make	more	by	starting	their	own	companies	than	by	working
for	existing	ones,	the	existing	companies	are	forced	to	pay	more
to	keep	them.	So	market	rates	gradually	permeate	every
organization,	even	the	government.	[3]

The	measurement	of	performance	will	tend	to	push	even	the
organizations	issuing	credentials	into	line.	When	we	were	kids	I
used	to	annoy	my	sister	by	ordering	her	to	do	things	I	knew	she
was	about	to	do	anyway.	As	credentials	are	superseded	by
performance,	a	similar	role	is	the	best	former	gatekeepers	can
hope	for.	Once	credential	granting	institutions	are	no	longer	in
the	self-fullfilling	prophecy	business,	they'll	have	to	work	harder
to	predict	the	future.

Credentials	are	a	step	beyond	bribery	and	influence.	But	they're
not	the	final	step.	There's	an	even	better	way	to	block	the
transmission	of	power	between	generations:	to	encourage	the
trend	toward	an	economy	made	of	more,	smaller	units.	Then	you
can	measure	what	credentials	merely	predict.

No	one	likes	the	transmission	of	power	between	generations—not
the	left	or	the	right.	But	the	market	forces	favored	by	the	right
turn	out	to	be	a	better	way	of	preventing	it	than	the	credentials

#f3n

the	left	are	forced	to	fall	back	on.

The	era	of	credentials	began	to	end	when	the	power	of	large
organizations	peaked	in	the	late	twentieth	century.	Now	we	seem
to	be	entering	a	new	era	based	on	measurement.	The	reason	the
new	model	has	advanced	so	rapidly	is	that	it	works	so	much
better.	It	shows	no	sign	of	slowing.

Notes

[1]	Miyazaki,	Ichisada	(Conrad	Schirokauer	trans.),	China's
Examination	Hell:	The	Civil	Service	Examinations	of	Imperial
China,	Yale	University	Press,	1981.

Scribes	in	ancient	Egypt	took	exams,	but	they	were	more	the
type	of	proficiency	test	any	apprentice	might	have	to	pass.

[2]	When	I	say	the	raison	d'etre	of	prep	schools	is	to	get	kids	into
better	colleges,	I	mean	this	in	the	narrowest	sense.	I'm	not
saying	that's	all	prep	schools	do,	just	that	if	they	had	zero	effect
on	college	admissions	there	would	be	far	less	demand	for	them.

[3]	Progressive	tax	rates	will	tend	to	damp	this	effect,	however,
by	decreasing	the	difference	between	good	and	bad	measurers.

Thanks	to	Trevor	Blackwell,	Sarah	Harlin,	Jessica	Livingston,	and
David	Sloo	for	reading	drafts	of	this.

highres.html

	

Keep	Your	Identity	Small
February	2009

I	finally	realized	today	why	politics	and	religion	yield	such
uniquely	useless	discussions.

As	a	rule,	any	mention	of	religion	on	an	online	forum	degenerates
into	a	religious	argument.	Why?	Why	does	this	happen	with
religion	and	not	with	Javascript	or	baking	or	other	topics	people
talk	about	on	forums?

What's	different	about	religion	is	that	people	don't	feel	they	need
to	have	any	particular	expertise	to	have	opinions	about	it.	All
they	need	is	strongly	held	beliefs,	and	anyone	can	have	those.	No
thread	about	Javascript	will	grow	as	fast	as	one	about	religion,
because	people	feel	they	have	to	be	over	some	threshold	of
expertise	to	post	comments	about	that.	But	on	religion
everyone's	an	expert.

Then	it	struck	me:	this	is	the	problem	with	politics	too.	Politics,
like	religion,	is	a	topic	where	there's	no	threshold	of	expertise	for
expressing	an	opinion.	All	you	need	is	strong	convictions.

Do	religion	and	politics	have	something	in	common	that	explains
this	similarity?	One	possible	explanation	is	that	they	deal	with
questions	that	have	no	definite	answers,	so	there's	no	back
pressure	on	people's	opinions.	Since	no	one	can	be	proven
wrong,	every	opinion	is	equally	valid,	and	sensing	this,	everyone
lets	fly	with	theirs.

But	this	isn't	true.	There	are	certainly	some	political	questions
that	have	definite	answers,	like	how	much	a	new	government
policy	will	cost.	But	the	more	precise	political	questions	suffer
the	same	fate	as	the	vaguer	ones.

I	think	what	religion	and	politics	have	in	common	is	that	they

become	part	of	people's	identity,	and	people	can	never	have	a
fruitful	argument	about	something	that's	part	of	their	identity.	By
definition	they're	partisan.

Which	topics	engage	people's	identity	depends	on	the	people,	not
the	topic.	For	example,	a	discussion	about	a	battle	that	included
citizens	of	one	or	more	of	the	countries	involved	would	probably
degenerate	into	a	political	argument.	But	a	discussion	today
about	a	battle	that	took	place	in	the	Bronze	Age	probably
wouldn't.	No	one	would	know	what	side	to	be	on.	So	it's	not
politics	that's	the	source	of	the	trouble,	but	identity.	When	people
say	a	discussion	has	degenerated	into	a	religious	war,	what	they
really	mean	is	that	it	has	started	to	be	driven	mostly	by	people's
identities.	[1]

Because	the	point	at	which	this	happens	depends	on	the	people
rather	than	the	topic,	it's	a	mistake	to	conclude	that	because	a
question	tends	to	provoke	religious	wars,	it	must	have	no	answer.
For	example,	the	question	of	the	relative	merits	of	programming
languages	often	degenerates	into	a	religious	war,	because	so
many	programmers	identify	as	X	programmers	or	Y
programmers.	This	sometimes	leads	people	to	conclude	the
question	must	be	unanswerable—that	all	languages	are	equally
good.	Obviously	that's	false:	anything	else	people	make	can	be
well	or	badly	designed;	why	should	this	be	uniquely	impossible
for	programming	languages?	And	indeed,	you	can	have	a	fruitful
discussion	about	the	relative	merits	of	programming	languages,
so	long	as	you	exclude	people	who	respond	from	identity.

More	generally,	you	can	have	a	fruitful	discussion	about	a	topic
only	if	it	doesn't	engage	the	identities	of	any	of	the	participants.
What	makes	politics	and	religion	such	minefields	is	that	they
engage	so	many	people's	identities.	But	you	could	in	principle
have	a	useful	conversation	about	them	with	some	people.	And
there	are	other	topics	that	might	seem	harmless,	like	the	relative
merits	of	Ford	and	Chevy	pickup	trucks,	that	you	couldn't	safely
talk	about	with	others.

The	most	intriguing	thing	about	this	theory,	if	it's	right,	is	that	it
explains	not	merely	which	kinds	of	discussions	to	avoid,	but	how
to	have	better	ideas.	If	people	can't	think	clearly	about	anything

#f1n
http://www.theledger.com/apps/pbcs.dll/article?AID=/20060418/NEWS/604180378/1039

that	has	become	part	of	their	identity,	then	all	other	things	being
equal,	the	best	plan	is	to	let	as	few	things	into	your	identity	as
possible.	[2]

Most	people	reading	this	will	already	be	fairly	tolerant.	But	there
is	a	step	beyond	thinking	of	yourself	as	x	but	tolerating	y:	not
even	to	consider	yourself	an	x.	The	more	labels	you	have	for
yourself,	the	dumber	they	make	you.

Notes

[1]	When	that	happens,	it	tends	to	happen	fast,	like	a	core	going
critical.	The	threshold	for	participating	goes	down	to	zero,	which
brings	in	more	people.	And	they	tend	to	say	incendiary	things,
which	draw	more	and	angrier	counterarguments.

[2]	There	may	be	some	things	it's	a	net	win	to	include	in	your
identity.	For	example,	being	a	scientist.	But	arguably	that	is	more
of	a	placeholder	than	an	actual	label—like	putting	NMI	on	a	form
that	asks	for	your	middle	initial—because	it	doesn't	commit	you
to	believing	anything	in	particular.	A	scientist	isn't	committed	to
believing	in	natural	selection	in	the	same	way	a	biblical	literalist
is	committed	to	rejecting	it.	All	he's	committed	to	is	following	the
evidence	wherever	it	leads.

Considering	yourself	a	scientist	is	equivalent	to	putting	a	sign	in
a	cupboard	saying	"this	cupboard	must	be	kept	empty."	Yes,
strictly	speaking,	you're	putting	something	in	the	cupboard,	but
not	in	the	ordinary	sense.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Paul	Buchheit,	and
Robert	Morris	for	reading	drafts	of	this.

#f2n

	

Startups	in	13	Sentences
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

	Watch	how	this	essay	was	written.	

February	2009

One	of	the	things	I	always	tell	startups	is	a	principle	I	learned
from	Paul	Buchheit:	it's	better	to	make	a	few	people	really	happy
than	to	make	a	lot	of	people	semi-happy.	I	was	saying	recently	to
a	reporter	that	if	I	could	only	tell	startups	10	things,	this	would
be	one	of	them.	Then	I	thought:	what	would	the	other	9	be?

When	I	made	the	list	there	turned	out	to	be	13:

1.	Pick	good	cofounders.

Cofounders	are	for	a	startup	what	location	is	for	real	estate.	You
can	change	anything	about	a	house	except	where	it	is.	In	a
startup	you	can	change	your	idea	easily,	but	changing	your
cofounders	is	hard.	[1]	And	the	success	of	a	startup	is	almost
always	a	function	of	its	founders.

2.	Launch	fast.

The	reason	to	launch	fast	is	not	so	much	that	it's	critical	to	get
your	product	to	market	early,	but	that	you	haven't	really	started
working	on	it	till	you've	launched.	Launching	teaches	you	what
you	should	have	been	building.	Till	you	know	that	you're	wasting
your	time.	So	the	main	value	of	whatever	you	launch	with	is	as	a
pretext	for	engaging	users.

3.	Let	your	idea	evolve.

This	is	the	second	half	of	launching	fast.	Launch	fast	and	iterate.
It's	a	big	mistake	to	treat	a	startup	as	if	it	were	merely	a	matter

http://ycombinator.com/apply.html
https://code.stypi.com/hacks/13sentences?doomed=true
#f1n

of	implementing	some	brilliant	initial	idea.	As	in	an	essay,	most	of
the	ideas	appear	in	the	implementing.

4.	Understand	your	users.

You	can	envision	the	wealth	created	by	a	startup	as	a	rectangle,
where	one	side	is	the	number	of	users	and	the	other	is	how	much
you	improve	their	lives.	[2]	The	second	dimension	is	the	one	you
have	most	control	over.	And	indeed,	the	growth	in	the	first	will	be
driven	by	how	well	you	do	in	the	second.	As	in	science,	the	hard
part	is	not	answering	questions	but	asking	them:	the	hard	part	is
seeing	something	new	that	users	lack.	The	better	you	understand
them	the	better	the	odds	of	doing	that.	That's	why	so	many
successful	startups	make	something	the	founders	needed.

5.	Better	to	make	a	few	users	love	you	than	a	lot	ambivalent.

Ideally	you	want	to	make	large	numbers	of	users	love	you,	but
you	can't	expect	to	hit	that	right	away.	Initially	you	have	to
choose	between	satisfying	all	the	needs	of	a	subset	of	potential
users,	or	satisfying	a	subset	of	the	needs	of	all	potential	users.
Take	the	first.	It's	easier	to	expand	userwise	than
satisfactionwise.	And	perhaps	more	importantly,	it's	harder	to	lie
to	yourself.	If	you	think	you're	85%	of	the	way	to	a	great	product,
how	do	you	know	it's	not	70%?	Or	10%?	Whereas	it's	easy	to
know	how	many	users	you	have.

6.	Offer	surprisingly	good	customer	service.

Customers	are	used	to	being	maltreated.	Most	of	the	companies
they	deal	with	are	quasi-monopolies	that	get	away	with	atrocious
customer	service.	Your	own	ideas	about	what's	possible	have
been	unconsciously	lowered	by	such	experiences.	Try	making
your	customer	service	not	merely	good,	but	surprisingly	good.	Go
out	of	your	way	to	make	people	happy.	They'll	be	overwhelmed;
you'll	see.	In	the	earliest	stages	of	a	startup,	it	pays	to	offer
customer	service	on	a	level	that	wouldn't	scale,	because	it's	a
way	of	learning	about	your	users.

7.	You	make	what	you	measure.

#f2n
http://www.diaryofawebsite.com/blog/2008/07/wufoo-and-the-art-of-customer-service/

I	learned	this	one	from	Joe	Kraus.	[3]	Merely	measuring
something	has	an	uncanny	tendency	to	improve	it.	If	you	want	to
make	your	user	numbers	go	up,	put	a	big	piece	of	paper	on	your
wall	and	every	day	plot	the	number	of	users.	You'll	be	delighted
when	it	goes	up	and	disappointed	when	it	goes	down.	Pretty	soon
you'll	start	noticing	what	makes	the	number	go	up,	and	you'll
start	to	do	more	of	that.	Corollary:	be	careful	what	you	measure.

8.	Spend	little.

I	can't	emphasize	enough	how	important	it	is	for	a	startup	to	be
cheap.	Most	startups	fail	before	they	make	something	people
want,	and	the	most	common	form	of	failure	is	running	out	of
money.	So	being	cheap	is	(almost)	interchangeable	with	iterating
rapidly.	[4]	But	it's	more	than	that.	A	culture	of	cheapness	keeps
companies	young	in	something	like	the	way	exercise	keeps
people	young.

9.	Get	ramen	profitable.

"Ramen	profitable"	means	a	startup	makes	just	enough	to	pay
the	founders'	living	expenses.	It's	not	rapid	prototyping	for
business	models	(though	it	can	be),	but	more	a	way	of	hacking
the	investment	process.	Once	you	cross	over	into	ramen
profitable,	it	completely	changes	your	relationship	with	investors.
It's	also	great	for	morale.

10.	Avoid	distractions.

Nothing	kills	startups	like	distractions.	The	worst	type	are	those
that	pay	money:	day	jobs,	consulting,	profitable	side-projects.
The	startup	may	have	more	long-term	potential,	but	you'll	always
interrupt	working	on	it	to	answer	calls	from	people	paying	you
now.	Paradoxically,	fundraising	is	this	type	of	distraction,	so	try	to
minimize	that	too.

11.	Don't	get	demoralized.

Though	the	immediate	cause	of	death	in	a	startup	tends	to	be
running	out	of	money,	the	underlying	cause	is	usually	lack	of
focus.	Either	the	company	is	run	by	stupid	people	(which	can't	be

#f3n
#f4n
fundraising.html

fixed	with	advice)	or	the	people	are	smart	but	got	demoralized.
Starting	a	startup	is	a	huge	moral	weight.	Understand	this	and
make	a	conscious	effort	not	to	be	ground	down	by	it,	just	as	you'd
be	careful	to	bend	at	the	knees	when	picking	up	a	heavy	box.

12.	Don't	give	up.

Even	if	you	get	demoralized,	don't	give	up.	You	can	get
surprisingly	far	by	just	not	giving	up.	This	isn't	true	in	all	fields.
There	are	a	lot	of	people	who	couldn't	become	good
mathematicians	no	matter	how	long	they	persisted.	But	startups
aren't	like	that.	Sheer	effort	is	usually	enough,	so	long	as	you
keep	morphing	your	idea.

13.	Deals	fall	through.

One	of	the	most	useful	skills	we	learned	from	Viaweb	was	not
getting	our	hopes	up.	We	probably	had	20	deals	of	various	types
fall	through.	After	the	first	10	or	so	we	learned	to	treat	deals	as
background	processes	that	we	should	ignore	till	they	terminated.
It's	very	dangerous	to	morale	to	start	to	depend	on	deals	closing,
not	just	because	they	so	often	don't,	but	because	it	makes	them
less	likely	to.

die.html

	

What	I've	Learned	from
Hacker	News
February	2009

Hacker	News	was	two	years	old	last	week.	Initially	it	was
supposed	to	be	a	side	project—an	application	to	sharpen	Arc	on,
and	a	place	for	current	and	future	Y	Combinator	founders	to
exchange	news.	It's	grown	bigger	and	taken	up	more	time	than	I
expected,	but	I	don't	regret	that	because	I've	learned	so	much
from	working	on	it.

Growth

When	we	launched	in	February	2007,	weekday	traffic	was	around
1600	daily	uniques.	It's	since	grown	to	around	22,000.	This
growth	rate	is	a	bit	higher	than	I'd	like.	I'd	like	the	site	to	grow,
since	a	site	that	isn't	growing	at	least	slowly	is	probably	dead.
But	I	wouldn't	want	it	to	grow	as	large	as	Digg	or	Reddit—mainly
because	that	would	dilute	the	character	of	the	site,	but	also
because	I	don't	want	to	spend	all	my	time	dealing	with	scaling.

I	already	have	problems	enough	with	that.	Remember,	the
original	motivation	for	HN	was	to	test	a	new	programming
language,	and	moreover	one	that's	focused	on	experimenting
with	language	design,	not	performance.	Every	time	the	site	gets
slow,	I	fortify	myself	by	recalling	McIlroy	and	Bentley's	famous
quote

The	key	to	performance	is	elegance,	not	battalions	of
special	cases.

and	look	for	the	bottleneck	I	can	remove	with	least	code.	So	far
I've	been	able	to	keep	up,	in	the	sense	that	performance	has
remained	consistently	mediocre	despite	14x	growth.	I	don't	know
what	I'll	do	next,	but	I'll	probably	think	of	something.

http://ycombinator.com/images/2yeartraffic.png

This	is	my	attitude	to	the	site	generally.	Hacker	News	is	an
experiment,	and	an	experiment	in	a	very	young	field.	Sites	of	this
type	are	only	a	few	years	old.	Internet	conversation	generally	is
only	a	few	decades	old.	So	we've	probably	only	discovered	a
fraction	of	what	we	eventually	will.

That's	why	I'm	so	optimistic	about	HN.	When	a	technology	is	this
young,	the	existing	solutions	are	usually	terrible;	which	means	it
must	be	possible	to	do	much	better;	which	means	many	problems
that	seem	insoluble	aren't.	Including,	I	hope,	the	problem	that
has	afflicted	so	many	previous	communities:	being	ruined	by
growth.

Dilution

Users	have	worried	about	that	since	the	site	was	a	few	months
old.	So	far	these	alarms	have	been	false,	but	they	may	not	always
be.	Dilution	is	a	hard	problem.	But	probably	soluble;	it	doesn't
mean	much	that	open	conversations	have	"always"	been
destroyed	by	growth	when	"always"	equals	20	instances.

But	it's	important	to	remember	we're	trying	to	solve	a	new
problem,	because	that	means	we're	going	to	have	to	try	new
things,	most	of	which	probably	won't	work.	A	couple	weeks	ago	I
tried	displaying	the	names	of	users	with	the	highest	average
comment	scores	in	orange.	[1]	That	was	a	mistake.	Suddenly	a
culture	that	had	been	more	or	less	united	was	divided	into	haves
and	have-nots.	I	didn't	realize	how	united	the	culture	had	been
till	I	saw	it	divided.	It	was	painful	to	watch.	[2]

So	orange	usernames	won't	be	back.	(Sorry	about	that.)	But
there	will	be	other	equally	broken-seeming	ideas	in	the	future,
and	the	ones	that	turn	out	to	work	will	probably	seem	just	as
broken	as	those	that	don't.

Probably	the	most	important	thing	I've	learned	about	dilution	is
that	it's	measured	more	in	behavior	than	users.	It's	bad	behavior
you	want	to	keep	out	more	than	bad	people.	User	behavior	turns
out	to	be	surprisingly	malleable.	If	people	are	expected	to	behave
well,	they	tend	to;	and	vice	versa.

#f1n
#f2n
http://ycombinator.com/newswelcome.html

Though	of	course	forbidding	bad	behavior	does	tend	to	keep
away	bad	people,	because	they	feel	uncomfortably	constrained	in
a	place	where	they	have	to	behave	well.	But	this	way	of	keeping
them	out	is	gentler	and	probably	also	more	effective	than	overt
barriers.

It's	pretty	clear	now	that	the	broken	windows	theory	applies	to
community	sites	as	well.	The	theory	is	that	minor	forms	of	bad
behavior	encourage	worse	ones:	that	a	neighborhood	with	lots	of
graffiti	and	broken	windows	becomes	one	where	robberies	occur.
I	was	living	in	New	York	when	Giuliani	introduced	the	reforms
that	made	the	broken	windows	theory	famous,	and	the
transformation	was	miraculous.	And	I	was	a	Reddit	user	when
the	opposite	happened	there,	and	the	transformation	was	equally
dramatic.

I'm	not	criticizing	Steve	and	Alexis.	What	happened	to	Reddit
didn't	happen	out	of	neglect.	From	the	start	they	had	a	policy	of
censoring	nothing	except	spam.	Plus	Reddit	had	different	goals
from	Hacker	News.	Reddit	was	a	startup,	not	a	side	project;	its
goal	was	to	grow	as	fast	as	possible.	Combine	rapid	growth	and
zero	censorship,	and	the	result	is	a	free	for	all.	But	I	don't	think
they'd	do	much	differently	if	they	were	doing	it	again.	Measured
by	traffic,	Reddit	is	much	more	successful	than	Hacker	News.

But	what	happened	to	Reddit	won't	inevitably	happen	to	HN.
There	are	several	local	maxima.	There	can	be	places	that	are	free
for	alls	and	places	that	are	more	thoughtful,	just	as	there	are	in
the	real	world;	and	people	will	behave	differently	depending	on
which	they're	in,	just	as	they	do	in	the	real	world.

I've	observed	this	in	the	wild.	I've	seen	people	cross-posting	on
Reddit	and	Hacker	News	who	actually	took	the	trouble	to	write
two	versions,	a	flame	for	Reddit	and	a	more	subdued	version	for
HN.

Submissions

There	are	two	major	types	of	problems	a	site	like	Hacker	News
needs	to	avoid:	bad	stories	and	bad	comments.	So	far	the	danger
of	bad	stories	seems	smaller.	The	stories	on	the	frontpage	now

are	still	roughly	the	ones	that	would	have	been	there	when	HN
started.

I	once	thought	I'd	have	to	weight	votes	to	keep	crap	off	the
frontpage,	but	I	haven't	had	to	yet.	I	wouldn't	have	predicted	the
frontpage	would	hold	up	so	well,	and	I'm	not	sure	why	it	has.
Perhaps	only	the	more	thoughtful	users	care	enough	to	submit
and	upvote	links,	so	the	marginal	cost	of	one	random	new	user
approaches	zero.	Or	perhaps	the	frontpage	protects	itself,	by
advertising	what	type	of	submission	is	expected.

The	most	dangerous	thing	for	the	frontpage	is	stuff	that's	too
easy	to	upvote.	If	someone	proves	a	new	theorem,	it	takes	some
work	by	the	reader	to	decide	whether	or	not	to	upvote	it.	An
amusing	cartoon	takes	less.	A	rant	with	a	rallying	cry	as	the	title
takes	zero,	because	people	vote	it	up	without	even	reading	it.

Hence	what	I	call	the	Fluff	Principle:	on	a	user-voted	news	site,
the	links	that	are	easiest	to	judge	will	take	over	unless	you	take
specific	measures	to	prevent	it.

Hacker	News	has	two	kinds	of	protections	against	fluff.	The	most
common	types	of	fluff	links	are	banned	as	off-topic.	Pictures	of
kittens,	political	diatribes,	and	so	on	are	explicitly	banned.	This
keeps	out	most	fluff,	but	not	all	of	it.	Some	links	are	both	fluff,	in
the	sense	of	being	very	short,	and	also	on	topic.

There's	no	single	solution	to	that.	If	a	link	is	just	an	empty	rant,
editors	will	sometimes	kill	it	even	if	it's	on	topic	in	the	sense	of
being	about	hacking,	because	it's	not	on	topic	by	the	real
standard,	which	is	to	engage	one's	intellectual	curiosity.	If	the
posts	on	a	site	are	characteristically	of	this	type	I	sometimes	ban
it,	which	means	new	stuff	at	that	url	is	auto-killed.	If	a	post	has	a
linkbait	title,	editors	sometimes	rephrase	it	to	be	more	matter-of-
fact.	This	is	especially	necessary	with	links	whose	titles	are
rallying	cries,	because	otherwise	they	become	implicit	"vote	up	if
you	believe	such-and-such"	posts,	which	are	the	most	extreme
form	of	fluff.

The	techniques	for	dealing	with	links	have	to	evolve,	because	the
links	do.	The	existence	of	aggregators	has	already	affected	what

they	aggregate.	Writers	now	deliberately	write	things	to	draw
traffic	from	aggregators—sometimes	even	specific	ones.	(No,	the
irony	of	this	statement	is	not	lost	on	me.)	Then	there	are	the
more	sinister	mutations,	like	linkjacking—posting	a	paraphrase
of	someone	else's	article	and	submitting	that	instead	of	the
original.	These	can	get	a	lot	of	upvotes,	because	a	lot	of	what's
good	in	an	article	often	survives;	indeed,	the	closer	the
paraphrase	is	to	plagiarism,	the	more	survives.	[3]

I	think	it's	important	that	a	site	that	kills	submissions	provide	a
way	for	users	to	see	what	got	killed	if	they	want	to.	That	keeps
editors	honest,	and	just	as	importantly,	makes	users	confident
they'd	know	if	the	editors	stopped	being	honest.	HN	users	can	do
this	by	flipping	a	switch	called	showdead	in	their	profile.	[4]

Comments

Bad	comments	seem	to	be	a	harder	problem	than	bad
submissions.	While	the	quality	of	links	on	the	frontpage	of	HN
hasn't	changed	much,	the	quality	of	the	median	comment	may
have	decreased	somewhat.

There	are	two	main	kinds	of	badness	in	comments:	meanness	and
stupidity.	There	is	a	lot	of	overlap	between	the	two—mean
comments	are	disproportionately	likely	also	to	be	dumb—but	the
strategies	for	dealing	with	them	are	different.	Meanness	is	easier
to	control.	You	can	have	rules	saying	one	shouldn't	be	mean,	and
if	you	enforce	them	it	seems	possible	to	keep	a	lid	on	meanness.

Keeping	a	lid	on	stupidity	is	harder,	perhaps	because	stupidity	is
not	so	easily	distinguishable.	Mean	people	are	more	likely	to
know	they're	being	mean	than	stupid	people	are	to	know	they're
being	stupid.

The	most	dangerous	form	of	stupid	comment	is	not	the	long	but
mistaken	argument,	but	the	dumb	joke.	Long	but	mistaken
arguments	are	actually	quite	rare.	There	is	a	strong	correlation
between	comment	quality	and	length;	if	you	wanted	to	compare
the	quality	of	comments	on	community	sites,	average	length
would	be	a	good	predictor.	Probably	the	cause	is	human	nature
rather	than	anything	specific	to	comment	threads.	Probably	it's

#f3n
#f4n

simply	that	stupidity	more	often	takes	the	form	of	having	few
ideas	than	wrong	ones.

Whatever	the	cause,	stupid	comments	tend	to	be	short.	And	since
it's	hard	to	write	a	short	comment	that's	distinguished	for	the
amount	of	information	it	conveys,	people	try	to	distinguish	them
instead	by	being	funny.	The	most	tempting	format	for	stupid
comments	is	the	supposedly	witty	put-down,	probably	because
put-downs	are	the	easiest	form	of	humor.	[5]	So	one	advantage	of
forbidding	meanness	is	that	it	also	cuts	down	on	these.

Bad	comments	are	like	kudzu:	they	take	over	rapidly.	Comments
have	much	more	effect	on	new	comments	than	submissions	have
on	new	submissions.	If	someone	submits	a	lame	article,	the	other
submissions	don't	all	become	lame.	But	if	someone	posts	a	stupid
comment	on	a	thread,	that	sets	the	tone	for	the	region	around	it.
People	reply	to	dumb	jokes	with	dumb	jokes.

Maybe	the	solution	is	to	add	a	delay	before	people	can	respond
to	a	comment,	and	make	the	length	of	the	delay	inversely
proportional	to	some	prediction	of	its	quality.	Then	dumb	threads
would	grow	slower.	[6]

People

I	notice	most	of	the	techniques	I've	described	are	conservative:
they're	aimed	at	preserving	the	character	of	the	site	rather	than
enhancing	it.	I	don't	think	that's	a	bias	of	mine.	It's	due	to	the
shape	of	the	problem.	Hacker	News	had	the	good	fortune	to	start
out	good,	so	in	this	case	it's	literally	a	matter	of	preservation.	But
I	think	this	principle	would	also	apply	to	sites	with	different
origins.

The	good	things	in	a	community	site	come	from	people	more	than
technology;	it's	mainly	in	the	prevention	of	bad	things	that
technology	comes	into	play.	Technology	certainly	can	enhance
discussion.	Nested	comments	do,	for	example.	But	I'd	rather	use
a	site	with	primitive	features	and	smart,	nice	users	than	a	more
advanced	one	whose	users	were	idiots	or	trolls.

So	the	most	important	thing	a	community	site	can	do	is	attract

#f5n
#f6n
trolls.html

the	kind	of	people	it	wants.	A	site	trying	to	be	as	big	as	possible
wants	to	attract	everyone.	But	a	site	aiming	at	a	particular
subset	of	users	has	to	attract	just	those—and	just	as	importantly,
repel	everyone	else.	I've	made	a	conscious	effort	to	do	this	on
HN.	The	graphic	design	is	as	plain	as	possible,	and	the	site	rules
discourage	dramatic	link	titles.	The	goal	is	that	the	only	thing	to
interest	someone	arriving	at	HN	for	the	first	time	should	be	the
ideas	expressed	there.

The	downside	of	tuning	a	site	to	attract	certain	people	is	that,	to
those	people,	it	can	be	too	attractive.	I'm	all	too	aware	how
addictive	Hacker	News	can	be.	For	me,	as	for	many	users,	it's	a
kind	of	virtual	town	square.	When	I	want	to	take	a	break	from
working,	I	walk	into	the	square,	just	as	I	might	into	Harvard
Square	or	University	Ave	in	the	physical	world.	[7]	But	an	online
square	is	more	dangerous	than	a	physical	one.	If	I	spent	half	the
day	loitering	on	University	Ave,	I'd	notice.	I	have	to	walk	a	mile
to	get	there,	and	sitting	in	a	cafe	feels	different	from	working.
But	visiting	an	online	forum	takes	just	a	click,	and	feels
superficially	very	much	like	working.	You	may	be	wasting	your
time,	but	you're	not	idle.	Someone	is	wrong	on	the	Internet,	and
you're	fixing	the	problem.

Hacker	News	is	definitely	useful.	I've	learned	a	lot	from	things
I've	read	on	HN.	I've	written	several	essays	that	began	as
comments	there.	So	I	wouldn't	want	the	site	to	go	away.	But	I
would	like	to	be	sure	it's	not	a	net	drag	on	productivity.	What	a
disaster	that	would	be,	to	attract	thousands	of	smart	people	to	a
site	that	caused	them	to	waste	lots	of	time.	I	wish	I	could	be
100%	sure	that's	not	a	description	of	HN.

I	feel	like	the	addictiveness	of	games	and	social	applications	is
still	a	mostly	unsolved	problem.	The	situation	now	is	like	it	was
with	crack	in	the	1980s:	we've	invented	terribly	addictive	new
things,	and	we	haven't	yet	evolved	ways	to	protect	ourselves
from	them.	We	will	eventually,	and	that's	one	of	the	problems	I
hope	to	focus	on	next.

#f7n
http://xkcd.com/386/

Notes

[1]	I	tried	ranking	users	by	both	average	and	median	comment
score,	and	average	(with	the	high	score	thrown	out)	seemed	the
more	accurate	predictor	of	high	quality.	Median	may	be	the	more
accurate	predictor	of	low	quality	though.

[2]	Another	thing	I	learned	from	this	experiment	is	that	if	you're
going	to	distinguish	between	people,	you	better	be	sure	you	do	it
right.	This	is	one	problem	where	rapid	prototyping	doesn't	work.

Indeed,	that's	the	intellectually	honest	argument	for	not
discriminating	between	various	types	of	people.	The	reason	not
to	do	it	is	not	that	everyone's	the	same,	but	that	it's	bad	to	do
wrong	and	hard	to	do	right.

[3]	When	I	catch	egregiously	linkjacked	posts	I	replace	the	url
with	that	of	whatever	they	copied.	Sites	that	habitually	linkjack
get	banned.

[4]	Digg	is	notorious	for	its	lack	of	transparency.	The	root	of	the
problem	is	not	that	the	guys	running	Digg	are	especially	sneaky,
but	that	they	use	the	wrong	algorithm	for	generating	their
frontpage.	Instead	of	bubbling	up	from	the	bottom	as	they	get
more	votes,	as	on	Reddit,	stories	start	at	the	top	and	get	pushed
down	by	new	arrivals.

The	reason	for	the	difference	is	that	Digg	is	derived	from
Slashdot,	while	Reddit	is	derived	from	Delicious/popular.	Digg	is
Slashdot	with	voting	instead	of	editors,	and	Reddit	is
Delicious/popular	with	voting	instead	of	bookmarking.	(You	can
still	see	fossils	of	their	origins	in	their	graphic	design.)

Digg's	algorithm	is	very	vulnerable	to	gaming,	because	any	story
that	makes	it	onto	the	frontpage	is	the	new	top	story.	Which	in
turn	forces	Digg	to	respond	with	extreme	countermeasures.	A	lot
of	startups	have	some	kind	of	secret	about	the	subterfuges	they
had	to	resort	to	in	the	early	days,	and	I	suspect	Digg's	is	the
extent	to	which	the	top	stories	were	de	facto	chosen	by	human
editors.

[5]	The	dialog	on	Beavis	and	Butthead	was	composed	largely	of
these,	and	when	I	read	comments	on	really	bad	sites	I	can	hear
them	in	their	voices.

[6]	I	suspect	most	of	the	techniques	for	discouraging	stupid
comments	have	yet	to	be	discovered.	Xkcd	implemented	a
particularly	clever	one	in	its	IRC	channel:	don't	allow	the	same
thing	twice.	Once	someone	has	said	"fail,"	no	one	can	ever	say	it
again.	This	would	penalize	short	comments	especially,	because
they	have	less	room	to	avoid	collisions	in.

Another	promising	idea	is	the	stupid	filter,	which	is	just	like	a
probabilistic	spam	filter,	but	trained	on	corpora	of	stupid	and
non-stupid	comments	instead.

You	may	not	have	to	kill	bad	comments	to	solve	the	problem.
Comments	at	the	bottom	of	a	long	thread	are	rarely	seen,	so	it
may	be	enough	to	incorporate	a	prediction	of	quality	in	the
comment	sorting	algorithm.

[7]	What	makes	most	suburbs	so	demoralizing	is	that	there's	no
center	to	walk	to.

Thanks	to	Justin	Kan,	Jessica	Livingston,	Robert	Morris,	Alexis
Ohanian,	Emmet	Shear,	and	Fred	Wilson	for	reading	drafts	of
this.

	Comment	on	this	essay.

http://stupidfilter.org/
http://news.ycombinator.com/item?id=495053

	

Can	You	Buy	a	Silicon	Valley?
Maybe.
February	2009

A	lot	of	cities	look	at	Silicon	Valley	and	ask	"How	could	we	make
something	like	that	happen	here?"	The	organic	way	to	do	it	is	to
establish	a	first-rate	university	in	a	place	where	rich	people	want
to	live.	That's	how	Silicon	Valley	happened.	But	could	you
shortcut	the	process	by	funding	startups?

Possibly.	Let's	consider	what	it	would	take.

The	first	thing	to	understand	is	that	encouraging	startups	is	a
different	problem	from	encouraging	startups	in	a	particular	city.
The	latter	is	much	more	expensive.

People	sometimes	think	they	could	improve	the	startup	scene	in
their	town	by	starting	something	like	Y	Combinator	there,	but	in
fact	it	will	have	near	zero	effect.	I	know	because	Y	Combinator
itself	had	near	zero	effect	on	Boston	when	we	were	based	there
half	the	year.	The	people	we	funded	came	from	all	over	the
country	(indeed,	the	world)	and	afterward	they	went	wherever
they	could	get	more	funding—which	generally	meant	Silicon
Valley.

The	seed	funding	business	is	not	a	regional	business,	because	at
that	stage	startups	are	mobile.	They're	just	a	couple	founders
with	laptops.	[1]

If	you	want	to	encourage	startups	in	a	particular	city,	you	have	to
fund	startups	that	won't	leave.	There	are	two	ways	to	do	that:
have	rules	preventing	them	from	leaving,	or	fund	them	at	the
point	in	their	life	when	they	naturally	take	root.	The	first
approach	is	a	mistake,	because	it	becomes	a	filter	for	selecting
bad	startups.	If	your	terms	force	startups	to	do	things	they	don't

siliconvalley.html
http://ycombinator.com/
#f1n

want	to,	only	the	desperate	ones	will	take	your	money.

Good	startups	will	move	to	another	city	as	a	condition	of	funding.
What	they	won't	do	is	agree	not	to	move	the	next	time	they	need
funding.	So	the	only	way	to	get	them	to	stay	is	to	give	them
enough	that	they	never	need	to	leave.

How	much	would	that	take?	If	you	want	to	keep	startups	from
leaving	your	town,	you	have	to	give	them	enough	that	they're	not
tempted	by	an	offer	from	Silicon	Valley	VCs	that	requires	them	to
move.	A	startup	would	be	able	to	refuse	such	an	offer	if	they	had
grown	to	the	point	where	they	were	(a)	rooted	in	your	town
and/or	(b)	so	successful	that	VCs	would	fund	them	even	if	they
didn't	move.

How	much	would	it	cost	to	grow	a	startup	to	that	point?	A
minimum	of	several	hundred	thousand	dollars.	Wufoo	seem	to
have	rooted	themselves	in	Tampa	on	$118k,	but	they're	an
extreme	case.	On	average	it	would	take	at	least	half	a	million.

So	if	it	seems	too	good	to	be	true	to	think	you	could	grow	a	local
silicon	valley	by	giving	startups	$15-20k	each	like	Y	Combinator,
that's	because	it	is.	To	make	them	stick	around	you'd	have	to	give
them	at	least	20	times	that	much.

However,	even	that	is	an	interesting	prospect.	Suppose	to	be	on
the	safe	side	it	would	cost	a	million	dollars	per	startup.	If	you
could	get	startups	to	stick	to	your	town	for	a	million	apiece,	then
for	a	billion	dollars	you	could	bring	in	a	thousand	startups.	That
probably	wouldn't	push	you	past	Silicon	Valley	itself,	but	it	might
get	you	second	place.

For	the	price	of	a	football	stadium,	any	town	that	was	decent	to
live	in	could	make	itself	one	of	the	biggest	startup	hubs	in	the
world.

What's	more,	it	wouldn't	take	very	long.	You	could	probably	do	it

http://wufoo.com/

in	five	years.	During	the	term	of	one	mayor.	And	it	would	get
easier	over	time,	because	the	more	startups	you	had	in	town,	the
less	it	would	take	to	get	new	ones	to	move	there.	By	the	time	you
had	a	thousand	startups	in	town,	the	VCs	wouldn't	be	trying	so
hard	to	get	them	to	move	to	Silicon	Valley;	instead	they'd	be
opening	local	offices.	Then	you'd	really	be	in	good	shape.	You'd
have	started	a	self-sustaining	chain	reaction	like	the	one	that
drives	the	Valley.

But	now	comes	the	hard	part.	You	have	to	pick	the	startups.	How
do	you	do	that?	Picking	startups	is	a	rare	and	valuable	skill,	and
the	handful	of	people	who	have	it	are	not	readily	hireable.	And
this	skill	is	so	hard	to	measure	that	if	a	government	did	try	to
hire	people	with	it,	they'd	almost	certainly	get	the	wrong	ones.

For	example,	a	city	could	give	money	to	a	VC	fund	to	establish	a
local	branch,	and	let	them	make	the	choices.	But	only	a	bad	VC
fund	would	take	that	deal.	They	wouldn't	seem	bad	to	the	city
officials.	They'd	seem	very	impressive.	But	they'd	be	bad	at
picking	startups.	That's	the	characteristic	failure	mode	of	VCs.
All	VCs	look	impressive	to	limited	partners.	The	difference
between	the	good	ones	and	the	bad	ones	only	becomes	visible	in
the	other	half	of	their	jobs:	choosing	and	advising	startups.	[2]

What	you	really	want	is	a	pool	of	local	angel	investors—people
investing	money	they	made	from	their	own	startups.	But
unfortunately	you	run	into	a	chicken	and	egg	problem	here.	If
your	city	isn't	already	a	startup	hub,	there	won't	be	people	there
who	got	rich	from	startups.	And	there	is	no	way	I	can	think	of
that	a	city	could	attract	angels	from	outside.	By	definition	they're
rich.	There's	no	incentive	that	would	make	them	move.	[3]

However,	a	city	could	select	startups	by	piggybacking	on	the
expertise	of	investors	who	weren't	local.	It	would	be	pretty
straightforward	to	make	a	list	of	the	most	eminent	Silicon	Valley
angels	and	from	that	to	generate	a	list	of	all	the	startups	they'd
invested	in.	If	a	city	offered	these	companies	a	million	dollars
each	to	move,	a	lot	of	the	earlier	stage	ones	would	probably	take

#f2n
#f3n

it.

Preposterous	as	this	plan	sounds,	it's	probably	the	most	efficient
way	a	city	could	select	good	startups.

It	would	hurt	the	startups	somewhat	to	be	separated	from	their
original	investors.	On	the	other	hand,	the	extra	million	dollars
would	give	them	a	lot	more	runway.

Would	the	transplanted	startups	survive?	Quite	possibly.	The	only
way	to	find	out	would	be	to	try	it.	It	would	be	a	pretty	cheap
experiment,	as	civil	expenditures	go.	Pick	30	startups	that
eminent	angels	have	recently	invested	in,	give	them	each	a
million	dollars	if	they'll	relocate	to	your	city,	and	see	what
happens	after	a	year.	If	they	seem	to	be	thriving,	you	can	try
importing	startups	on	a	larger	scale.

Don't	be	too	legalistic	about	the	conditions	under	which	they're
allowed	to	leave.	Just	have	a	gentlemen's	agreement.

Don't	try	to	do	it	on	the	cheap	and	pick	only	10	for	the	initial
experiment.	If	you	do	this	on	too	small	a	scale	you'll	just
guarantee	failure.	Startups	need	to	be	around	other	startups.	30
would	be	enough	to	feel	like	a	community.

Don't	try	to	make	them	all	work	in	some	renovated	warehouse
you've	made	into	an	"incubator."	Real	startups	prefer	to	work	in
their	own	spaces.

In	fact,	don't	impose	any	restrictions	on	the	startups	at	all.
Startup	founders	are	mostly	hackers,	and	hackers	are	much	more
constrained	by	gentlemen's	agreements	than	regulations.	If	they
shake	your	hand	on	a	promise,	they'll	keep	it.	But	show	them	a
lock	and	their	first	thought	is	how	to	pick	it.

Interestingly,	the	30-startup	experiment	could	be	done	by	any
sufficiently	rich	private	citizen.	And	what	pressure	it	would	put
on	the	city	if	it	worked.	[4]

gba.html
#f4n

Should	the	city	take	stock	in	return	for	the	money?	In	principle
they're	entitled	to,	but	how	would	they	choose	valuations	for	the
startups?	You	couldn't	just	give	them	all	the	same	valuation:	that
would	be	too	low	for	some	(who'd	turn	you	down)	and	too	high
for	others	(because	it	might	make	their	next	round	a	"down
round").	And	since	we're	assuming	we're	doing	this	without
being	able	to	pick	startups,	we	also	have	to	assume	we	can't
value	them,	since	that's	practically	the	same	thing.

Another	reason	not	to	take	stock	in	the	startups	is	that	startups
are	often	involved	in	disreputable	things.	So	are	established
companies,	but	they	don't	get	blamed	for	it.	If	someone	gets
murdered	by	someone	they	met	on	Facebook,	the	press	will	treat
the	story	as	if	it	were	about	Facebook.	If	someone	gets	murdered
by	someone	they	met	at	a	supermarket,	the	press	will	just	treat	it
as	a	story	about	a	murder.	So	understand	that	if	you	invest	in
startups,	they	might	build	things	that	get	used	for	pornography,
or	file-sharing,	or	the	expression	of	unfashionable	opinions.	You
should	probably	sponsor	this	project	jointly	with	your	political
opponents,	so	they	can't	use	whatever	the	startups	do	as	a	club
to	beat	you	with.

It	would	be	too	much	of	a	political	liability	just	to	give	the
startups	the	money,	though.	So	the	best	plan	would	be	to	make	it
convertible	debt,	but	which	didn't	convert	except	in	a	really	big
round,	like	$20	million.

How	well	this	scheme	worked	would	depend	on	the	city.	There
are	some	towns,	like	Portland,	that	would	be	easy	to	turn	into
startup	hubs,	and	others,	like	Detroit,	where	it	would	really	be	an
uphill	battle.	So	be	honest	with	yourself	about	the	sort	of	town
you	have	before	you	try	this.

It	will	be	easier	in	proportion	to	how	much	your	town	resembles

cities.html

San	Francisco.	Do	you	have	good	weather?	Do	people	live
downtown,	or	have	they	abandoned	the	center	for	the	suburbs?
Would	the	city	be	described	as	"hip"	and	"tolerant,"	or	as
reflecting	"traditional	values?"	Are	there	good	universities
nearby?	Are	there	walkable	neighborhoods?	Would	nerds	feel	at
home?	If	you	answered	yes	to	all	these	questions,	you	might	be
able	not	only	to	pull	off	this	scheme,	but	to	do	it	for	less	than	a
million	per	startup.

I	realize	the	chance	of	any	city	having	the	political	will	to	carry
out	this	plan	is	microscopically	small.	I	just	wanted	to	explore
what	it	would	take	if	one	did.	How	hard	would	it	be	to	jumpstart
a	silicon	valley?	It's	fascinating	to	think	this	prize	might	be	within
the	reach	of	so	many	cities.	So	even	though	they'll	all	still	spend
the	money	on	the	stadium,	at	least	now	someone	can	ask	them:
why	did	you	choose	to	do	that	instead	of	becoming	a	serious	rival
to	Silicon	Valley?

Notes

[1]	What	people	who	start	these	supposedly	local	seed	firms
always	find	is	that	(a)	their	applicants	come	from	all	over,	not	just
the	local	area,	and	(b)	the	local	startups	also	apply	to	the	other
seed	firms.	So	what	ends	up	happening	is	that	the	applicant	pool
gets	partitioned	by	quality	rather	than	geography.

[2]	Interestingly,	the	bad	VCs	fail	by	choosing	startups	run	by
people	like	them—people	who	are	good	presenters,	but	have	no
real	substance.	It's	a	case	of	the	fake	leading	the	fake.	And	since
everyone	involved	is	so	plausible,	the	LPs	who	invest	in	these
funds	have	no	idea	what's	happening	till	they	measure	their
returns.

[3]	Not	even	being	a	tax	haven,	I	suspect.	That	makes	some	rich
people	move,	but	not	the	type	who	would	make	good	angel
investors	in	startups.

[4]	Thanks	to	Michael	Keenan	for	pointing	this	out.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Robert	Morris,
and	Fred	Wilson	for	reading	drafts	of	this.

	

Why	TV	Lost
March	2009

About	twenty	years	ago	people	noticed	computers	and	TV	were
on	a	collision	course	and	started	to	speculate	about	what	they'd
produce	when	they	converged.	We	now	know	the	answer:
computers.	It's	clear	now	that	even	by	using	the	word
"convergence"	we	were	giving	TV	too	much	credit.	This	won't	be
convergence	so	much	as	replacement.	People	may	still	watch
things	they	call	"TV	shows,"	but	they'll	watch	them	mostly	on
computers.

What	decided	the	contest	for	computers?	Four	forces,	three	of
which	one	could	have	predicted,	and	one	that	would	have	been
harder	to.

One	predictable	cause	of	victory	is	that	the	Internet	is	an	open
platform.	Anyone	can	build	whatever	they	want	on	it,	and	the
market	picks	the	winners.	So	innovation	happens	at	hacker
speeds	instead	of	big	company	speeds.

The	second	is	Moore's	Law,	which	has	worked	its	usual	magic	on
Internet	bandwidth.	[1]

The	third	reason	computers	won	is	piracy.	Users	prefer	it	not	just
because	it's	free,	but	because	it's	more	convenient.	Bittorrent
and	YouTube	have	already	trained	a	new	generation	of	viewers
that	the	place	to	watch	shows	is	on	a	computer	screen.	[2]

The	somewhat	more	surprising	force	was	one	specific	type	of
innovation:	social	applications.	The	average	teenage	kid	has	a
pretty	much	infinite	capacity	for	talking	to	their	friends.	But	they
can't	physically	be	with	them	all	the	time.	When	I	was	in	high
school	the	solution	was	the	telephone.	Now	it's	social	networks,
multiplayer	games,	and	various	messaging	applications.	The	way
you	reach	them	all	is	through	a	computer.	[3]	Which	means	every

#f1n
#f2n
#f3n

teenage	kid	(a)	wants	a	computer	with	an	Internet	connection,
(b)	has	an	incentive	to	figure	out	how	to	use	it,	and	(c)	spends
countless	hours	in	front	of	it.

This	was	the	most	powerful	force	of	all.	This	was	what	made
everyone	want	computers.	Nerds	got	computers	because	they
liked	them.	Then	gamers	got	them	to	play	games	on.	But	it	was
connecting	to	other	people	that	got	everyone	else:	that's	what
made	even	grandmas	and	14	year	old	girls	want	computers.	

After	decades	of	running	an	IV	drip	right	into	their	audience,
people	in	the	entertainment	business	had	understandably	come
to	think	of	them	as	rather	passive.	They	thought	they'd	be	able	to
dictate	the	way	shows	reached	audiences.	But	they
underestimated	the	force	of	their	desire	to	connect	with	one
another.

Facebook	killed	TV.	That	is	wildly	oversimplified,	of	course,	but
probably	as	close	to	the	truth	as	you	can	get	in	three	words.

The	TV	networks	already	seem,	grudgingly,	to	see	where	things
are	going,	and	have	responded	by	putting	their	stuff,	grudgingly,
online.	But	they're	still	dragging	their	heels.	They	still	seem	to
wish	people	would	watch	shows	on	TV	instead,	just	as
newspapers	that	put	their	stories	online	still	seem	to	wish	people
would	wait	till	the	next	morning	and	read	them	printed	on	paper.
They	should	both	just	face	the	fact	that	the	Internet	is	the
primary	medium.

They'd	be	in	a	better	position	if	they'd	done	that	earlier.	When	a
new	medium	arises	that's	powerful	enough	to	make	incumbents
nervous,	then	it's	probably	powerful	enough	to	win,	and	the	best
thing	they	can	do	is	jump	in	immediately.

Whether	they	like	it	or	not,	big	changes	are	coming,	because	the
Internet	dissolves	the	two	cornerstones	of	broadcast	media:
synchronicity	and	locality.	On	the	Internet,	you	don't	have	to	send

everyone	the	same	signal,	and	you	don't	have	to	send	it	to	them
from	a	local	source.	People	will	watch	what	they	want	when	they
want	it,	and	group	themselves	according	to	whatever	shared
interest	they	feel	most	strongly.	Maybe	their	strongest	shared
interest	will	be	their	physical	location,	but	I'm	guessing	not.
Which	means	local	TV	is	probably	dead.	It	was	an	artifact	of
limitations	imposed	by	old	technology.	If	someone	were	creating
an	Internet-based	TV	company	from	scratch	now,	they	might
have	some	plan	for	shows	aimed	at	specific	regions,	but	it
wouldn't	be	a	top	priority.

Synchronicity	and	locality	are	tied	together.	TV	network	affiliates
care	what's	on	at	10	because	that	delivers	viewers	for	local	news
at	11.	This	connection	adds	more	brittleness	than	strength,
however:	people	don't	watch	what's	on	at	10	because	they	want
to	watch	the	news	afterward.

TV	networks	will	fight	these	trends,	because	they	don't	have
sufficient	flexibility	to	adapt	to	them.	They're	hemmed	in	by	local
affiliates	in	much	the	same	way	car	companies	are	hemmed	in	by
dealers	and	unions.	Inevitably,	the	people	running	the	networks
will	take	the	easy	route	and	try	to	keep	the	old	model	running	for
a	couple	more	years,	just	as	the	record	labels	have	done.

A	recent	article	in	the	Wall	Street	Journal	described	how	TV
networks	were	trying	to	add	more	live	shows,	partly	as	a	way	to
make	viewers	watch	TV	synchronously	instead	of	watching
recorded	shows	when	it	suited	them.	Instead	of	delivering	what
viewers	want,	they're	trying	to	force	them	to	change	their	habits
to	suit	the	networks'	obsolete	business	model.	That	never	works
unless	you	have	a	monopoly	or	cartel	to	enforce	it,	and	even	then
it	only	works	temporarily.

The	other	reason	networks	like	live	shows	is	that	they're	cheaper
to	produce.	There	they	have	the	right	idea,	but	they	haven't
followed	it	to	its	conclusion.	Live	content	can	be	way	cheaper
than	networks	realize,	and	the	way	to	take	advantage	of	dramatic
decreases	in	cost	is	to	increase	volume.	The	networks	are
prevented	from	seeing	this	whole	line	of	reasoning	because	they
still	think	of	themselves	as	being	in	the	broadcast	business—as
sending	one	signal	to	everyone.	[4]

http://justin.tv/
#f4n

Now	would	be	a	good	time	to	start	any	company	that	competes
with	TV	networks.	That's	what	a	lot	of	Internet	startups	are,
though	they	may	not	have	had	this	as	an	explicit	goal.	People
only	have	so	many	leisure	hours	a	day,	and	TV	is	premised	on
such	long	sessions	(unlike	Google,	which	prides	itself	on	sending
users	on	their	way	quickly)	that	anything	that	takes	up	their	time
is	competing	with	it.	But	in	addition	to	such	indirect	competitors,
I	think	TV	companies	will	increasingly	face	direct	ones.

Even	in	cable	TV,	the	long	tail	was	lopped	off	prematurely	by	the
threshold	you	had	to	get	over	to	start	a	new	channel.	It	will	be
longer	on	the	Internet,	and	there	will	be	more	mobility	within	it.
In	this	new	world,	the	existing	players	will	only	have	the
advantages	any	big	company	has	in	its	market.

That	will	change	the	balance	of	power	between	the	networks	and
the	people	who	produce	shows.	The	networks	used	to	be
gatekeepers.	They	distributed	your	work,	and	sold	advertising	on
it.	Now	the	people	who	produce	a	show	can	distribute	it
themselves.	The	main	value	networks	supply	now	is	ad	sales.
Which	will	tend	to	put	them	in	the	position	of	service	providers
rather	than	publishers.

Shows	will	change	even	more.	On	the	Internet	there's	no	reason
to	keep	their	current	format,	or	even	the	fact	that	they	have	a
single	format.	Indeed,	the	more	interesting	sort	of	convergence
that's	coming	is	between	shows	and	games.	But	on	the	question
of	what	sort	of	entertainment	gets	distributed	on	the	Internet	in
20	years,	I	wouldn't	dare	to	make	any	predictions,	except	that
things	will	change	a	lot.	We'll	get	whatever	the	most	imaginative
people	can	cook	up.	That's	why	the	Internet	won.

Notes

badeconomy.html

[1]	Thanks	to	Trevor	Blackwell	for	this	point.	He	adds:	"I
remember	the	eyes	of	phone	companies	gleaming	in	the	early	90s
when	they	talked	about	convergence.	They	thought	most
programming	would	be	on	demand,	and	they	would	implement	it
and	make	a	lot	of	money.	It	didn't	work	out.	They	assumed	that
their	local	network	infrastructure	would	be	critical	to	do	video
on-demand,	because	you	couldn't	possibly	stream	it	from	a	few
data	centers	over	the	internet.	At	the	time	(1992)	the	entire
cross-country	Internet	bandwidth	wasn't	enough	for	one	video
stream.	But	wide-area	bandwidth	increased	more	than	they
expected	and	they	were	beaten	by	iTunes	and	Hulu."

[2]	Copyright	owners	tend	to	focus	on	the	aspect	they	see	of
piracy,	which	is	the	lost	revenue.	They	therefore	think	what
drives	users	to	do	it	is	the	desire	to	get	something	for	free.	But
iTunes	shows	that	people	will	pay	for	stuff	online,	if	you	make	it
easy.	A	significant	component	of	piracy	is	simply	that	it	offers	a
better	user	experience.

[3]	Or	a	phone	that	is	actually	a	computer.	I'm	not	making	any
predictions	about	the	size	of	the	device	that	will	replace	TV,	just
that	it	will	have	a	browser	and	get	data	via	the	Internet.

[4]	Emmett	Shear	writes:	"I'd	argue	the	long	tail	for	sports	may
be	even	larger	than	the	long	tail	for	other	kinds	of	content.
Anyone	can	broadcast	a	high	school	football	game	that	will	be
interesting	to	10,000	people	or	so,	even	if	the	quality	of
production	is	not	so	good."

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Nancy	Cook,	Michael
Seibel,	Emmett	Shear,	and	Fred	Wilson	for	reading	drafts	of	this.

	

How	to	Be	an	Angel	Investor
March	2009

(This	essay	is	derived	from	a	talk	at	AngelConf.)

When	we	sold	our	startup	in	1998	I	thought	one	day	I'd	do	some
angel	investing.	Seven	years	later	I	still	hadn't	started.	I	put	it	off
because	it	seemed	mysterious	and	complicated.	It	turns	out	to	be
easier	than	I	expected,	and	also	more	interesting.

The	part	I	thought	was	hard,	the	mechanics	of	investing,	really
isn't.	You	give	a	startup	money	and	they	give	you	stock.	You'll
probably	get	either	preferred	stock,	which	means	stock	with
extra	rights	like	getting	your	money	back	first	in	a	sale,	or
convertible	debt,	which	means	(on	paper)	you're	lending	the
company	money,	and	the	debt	converts	to	stock	at	the	next
sufficiently	big	funding	round.	[1]

There	are	sometimes	minor	tactical	advantages	to	using	one	or
the	other.	The	paperwork	for	convertible	debt	is	simpler.	But
really	it	doesn't	matter	much	which	you	use.	Don't	spend	much
time	worrying	about	the	details	of	deal	terms,	especially	when
you	first	start	angel	investing.	That's	not	how	you	win	at	this
game.	When	you	hear	people	talking	about	a	successful	angel
investor,	they're	not	saying	"He	got	a	4x	liquidation	preference."
They're	saying	"He	invested	in	Google."

That's	how	you	win:	by	investing	in	the	right	startups.	That	is	so
much	more	important	than	anything	else	that	I	worry	I'm
misleading	you	by	even	talking	about	other	things.

Mechanics

Angel	investors	often	syndicate	deals,	which	means	they	join
together	to	invest	on	the	same	terms.	In	a	syndicate	there	is
usually	a	"lead"	investor	who	negotiates	the	terms	with	the

http://angelconf.org/
#f1n

startup.	But	not	always:	sometimes	the	startup	cobbles	together
a	syndicate	of	investors	who	approach	them	independently,	and
the	startup's	lawyer	supplies	the	paperwork.

The	easiest	way	to	get	started	in	angel	investing	is	to	find	a
friend	who	already	does	it,	and	try	to	get	included	in	his
syndicates.	Then	all	you	have	to	do	is	write	checks.

Don't	feel	like	you	have	to	join	a	syndicate,	though.	It's	not	that
hard	to	do	it	yourself.	You	can	just	use	the	standard	series	AA
documents	Wilson	Sonsini	and	Y	Combinator	published	online.
You	should	of	course	have	your	lawyer	review	everything.	Both
you	and	the	startup	should	have	lawyers.	But	the	lawyers	don't
have	to	create	the	agreement	from	scratch.	[2]

When	you	negotiate	terms	with	a	startup,	there	are	two	numbers
you	care	about:	how	much	money	you're	putting	in,	and	the
valuation	of	the	company.	The	valuation	determines	how	much
stock	you	get.	If	you	put	$50,000	into	a	company	at	a	pre-money
valuation	of	$1	million,	then	the	post-money	valuation	is	$1.05
million,	and	you	get	.05/1.05,	or	4.76%	of	the	company's	stock.

If	the	company	raises	more	money	later,	the	new	investor	will
take	a	chunk	of	the	company	away	from	all	the	existing
shareholders	just	as	you	did.	If	in	the	next	round	they	sell	10%	of
the	company	to	a	new	investor,	your	4.76%	will	be	reduced	to
4.28%.

That's	ok.	Dilution	is	normal.	What	saves	you	from	being
mistreated	in	future	rounds,	usually,	is	that	you're	in	the	same
boat	as	the	founders.	They	can't	dilute	you	without	diluting
themselves	just	as	much.	And	they	won't	dilute	themselves	unless
they	end	up	net	ahead.	So	in	theory,	each	further	round	of
investment	leaves	you	with	a	smaller	share	of	an	even	more
valuable	company,	till	after	several	more	rounds	you	end	up	with
.5%	of	the	company	at	the	point	where	it	IPOs,	and	you	are	very
happy	because	your	$50,000	has	become	$5	million.	[3]

The	agreement	by	which	you	invest	should	have	provisions	that
let	you	contribute	to	future	rounds	to	maintain	your	percentage.
So	it's	your	choice	whether	you	get	diluted.	[4]	If	the	company

http://ycombinator.com/seriesaa.html
#f2n
equity.html
#f3n
#f4n

does	really	well,	you	eventually	will,	because	eventually	the
valuations	will	get	so	high	it's	not	worth	it	for	you.

How	much	does	an	angel	invest?	That	varies	enormously,	from
$10,000	to	hundreds	of	thousands	or	in	rare	cases	even	millions.
The	upper	bound	is	obviously	the	total	amount	the	founders	want
to	raise.	The	lower	bound	is	5-10%	of	the	total	or	$10,000,
whichever	is	greater.	A	typical	angel	round	these	days	might	be
$150,000	raised	from	5	people.

Valuations	don't	vary	as	much.	For	angel	rounds	it's	rare	to	see	a
valuation	lower	than	half	a	million	or	higher	than	4	or	5	million.	4
million	is	starting	to	be	VC	territory.

How	do	you	decide	what	valuation	to	offer?	If	you're	part	of	a
round	led	by	someone	else,	that	problem	is	solved	for	you.	But
what	if	you're	investing	by	yourself?	There's	no	real	answer.
There	is	no	rational	way	to	value	an	early	stage	startup.	The
valuation	reflects	nothing	more	than	the	strength	of	the
company's	bargaining	position.	If	they	really	want	you,	either
because	they	desperately	need	money,	or	you're	someone	who
can	help	them	a	lot,	they'll	let	you	invest	at	a	low	valuation.	If
they	don't	need	you,	it	will	be	higher.	So	guess.	The	startup	may
not	have	any	more	idea	what	the	number	should	be	than	you	do.
[5]

Ultimately	it	doesn't	matter	much.	When	angels	make	a	lot	of
money	from	a	deal,	it's	not	because	they	invested	at	a	valuation
of	$1.5	million	instead	of	$3	million.	It's	because	the	company
was	really	successful.

I	can't	emphasize	that	too	much.	Don't	get	hung	up	on	mechanics
or	deal	terms.	What	you	should	spend	your	time	thinking	about	is
whether	the	company	is	good.

(Similarly,	founders	also	should	not	get	hung	up	on	deal	terms,
but	should	spend	their	time	thinking	about	how	to	make	the
company	good.)

There's	a	second	less	obvious	component	of	an	angel	investment:
how	much	you're	expected	to	help	the	startup.	Like	the	amount

#f5n

you	invest,	this	can	vary	a	lot.	You	don't	have	to	do	anything	if
you	don't	want	to;	you	could	simply	be	a	source	of	money.	Or	you
can	become	a	de	facto	employee	of	the	company.	Just	make	sure
that	you	and	the	startup	agree	in	advance	about	roughly	how
much	you'll	do	for	them.

Really	hot	companies	sometimes	have	high	standards	for	angels.
The	ones	everyone	wants	to	invest	in	practically	audition
investors,	and	only	take	money	from	people	who	are	famous
and/or	will	work	hard	for	them.	But	don't	feel	like	you	have	to	put
in	a	lot	of	time	or	you	won't	get	to	invest	in	any	good	startups.
There	is	a	surprising	lack	of	correlation	between	how	hot	a	deal	a
startup	is	and	how	well	it	ends	up	doing.	Lots	of	hot	startups	will
end	up	failing,	and	lots	of	startups	no	one	likes	will	end	up
succeeding.	And	the	latter	are	so	desperate	for	money	that	they'll
take	it	from	anyone	at	a	low	valuation.	[6]

Picking	Winners

It	would	be	nice	to	be	able	to	pick	those	out,	wouldn't	it?	The
part	of	angel	investing	that	has	most	effect	on	your	returns,
picking	the	right	companies,	is	also	the	hardest.	So	you	should
practically	ignore	(or	more	precisely,	archive,	in	the	Gmail	sense)
everything	I've	told	you	so	far.	You	may	need	to	refer	to	it	at
some	point,	but	it	is	not	the	central	issue.

The	central	issue	is	picking	the	right	startups.	What	"Make
something	people	want"	is	for	startups,	"Pick	the	right	startups"
is	for	investors.	Combined	they	yield	"Pick	the	startups	that	will
make	something	people	want."

How	do	you	do	that?	It's	not	as	simple	as	picking	startups	that
are	already	making	something	wildly	popular.	By	then	it's	too	late
for	angels.	VCs	will	already	be	onto	them.	As	an	angel,	you	have
to	pick	startups	before	they've	got	a	hit—either	because	they've
made	something	great	but	users	don't	realize	it	yet,	like	Google
early	on,	or	because	they're	still	an	iteration	or	two	away	from
the	big	hit,	like	Paypal	when	they	were	making	software	for
transferring	money	between	PDAs.

To	be	a	good	angel	investor,	you	have	to	be	a	good	judge	of

#f6n

potential.	That's	what	it	comes	down	to.	VCs	can	be	fast
followers.	Most	of	them	don't	try	to	predict	what	will	win.	They
just	try	to	notice	quickly	when	something	already	is	winning.	But
angels	have	to	be	able	to	predict.	[7]

One	interesting	consequence	of	this	fact	is	that	there	are	a	lot	of
people	out	there	who	have	never	even	made	an	angel	investment
and	yet	are	already	better	angel	investors	than	they	realize.
Someone	who	doesn't	know	the	first	thing	about	the	mechanics
of	venture	funding	but	knows	what	a	successful	startup	founder
looks	like	is	actually	far	ahead	of	someone	who	knows	termsheets
inside	out,	but	thinks	"hacker"	means	someone	who	breaks	into
computers.	If	you	can	recognize	good	startup	founders	by
empathizing	with	them—if	you	both	resonate	at	the	same
frequency—then	you	may	already	be	a	better	startup	picker	than
the	median	professional	VC.	[8]

Paul	Buchheit,	for	example,	started	angel	investing	about	a	year
after	me,	and	he	was	pretty	much	immediately	as	good	as	me	at
picking	startups.	My	extra	year	of	experience	was	rounding	error
compared	to	our	ability	to	empathize	with	founders.

What	makes	a	good	founder?	If	there	were	a	word	that	meant	the
opposite	of	hapless,	that	would	be	the	one.	Bad	founders	seem
hapless.	They	may	be	smart,	or	not,	but	somehow	events
overwhelm	them	and	they	get	discouraged	and	give	up.	Good
founders	make	things	happen	the	way	they	want.	Which	is	not	to
say	they	force	things	to	happen	in	a	predefined	way.	Good
founders	have	a	healthy	respect	for	reality.	But	they	are
relentlessly	resourceful.	That's	the	closest	I	can	get	to	the
opposite	of	hapless.	You	want	to	fund	people	who	are	relentlessly
resourceful.

Notice	we	started	out	talking	about	things,	and	now	we're	talking
about	people.	There	is	an	ongoing	debate	between	investors
which	is	more	important,	the	people,	or	the	idea—or	more
precisely,	the	market.	Some,	like	Ron	Conway,	say	it's	the	people
—that	the	idea	will	change,	but	the	people	are	the	foundation	of
the	company.	Whereas	Marc	Andreessen	says	he'd	back	ok
founders	in	a	hot	market	over	great	founders	in	a	bad	one.	[9]

#f7n
gba.html
#f8n
#f9n

These	two	positions	are	not	so	far	apart	as	they	seem,	because
good	people	find	good	markets.	Bill	Gates	would	probably	have
ended	up	pretty	rich	even	if	IBM	hadn't	happened	to	drop	the	PC
standard	in	his	lap.

I've	thought	a	lot	about	the	disagreement	between	the	investors
who	prefer	to	bet	on	people	and	those	who	prefer	to	bet	on
markets.	It's	kind	of	surprising	that	it	even	exists.	You'd	expect
opinions	to	have	converged	more.

But	I	think	I've	figured	out	what's	going	on.	The	three	most
prominent	people	I	know	who	favor	markets	are	Marc,	Jawed
Karim,	and	Joe	Kraus.	And	all	three	of	them,	in	their	own
startups,	basically	flew	into	a	thermal:	they	hit	a	market	growing
so	fast	that	it	was	all	they	could	do	to	keep	up	with	it.	That	kind
of	experience	is	hard	to	ignore.	Plus	I	think	they	underestimate
themselves:	they	think	back	to	how	easy	it	felt	to	ride	that	huge
thermal	upward,	and	they	think	"anyone	could	have	done	it."	But
that	isn't	true;	they	are	not	ordinary	people.

So	as	an	angel	investor	I	think	you	want	to	go	with	Ron	Conway
and	bet	on	people.	Thermals	happen,	yes,	but	no	one	can	predict
them—not	even	the	founders,	and	certainly	not	you	as	an
investor.	And	only	good	people	can	ride	the	thermals	if	they	hit
them	anyway.

Deal	Flow

Of	course	the	question	of	how	to	choose	startups	presumes	you
have	startups	to	choose	between.	How	do	you	find	them?	This	is
yet	another	problem	that	gets	solved	for	you	by	syndicates.	If	you
tag	along	on	a	friend's	investments,	you	don't	have	to	find
startups.

The	problem	is	not	finding	startups,	exactly,	but	finding	a	stream
of	reasonably	high	quality	ones.	The	traditional	way	to	do	this	is
through	contacts.	If	you're	friends	with	a	lot	of	investors	and
founders,	they'll	send	deals	your	way.	The	Valley	basically	runs
on	referrals.	And	once	you	start	to	become	known	as	reliable,
useful	investor,	people	will	refer	lots	of	deals	to	you.	I	certainly
will.

There's	also	a	newer	way	to	find	startups,	which	is	to	come	to
events	like	Y	Combinator's	Demo	Day,	where	a	batch	of	newly
created	startups	presents	to	investors	all	at	once.	We	have	two
Demo	Days	a	year,	one	in	March	and	one	in	August.	These	are
basically	mass	referrals.

But	events	like	Demo	Day	only	account	for	a	fraction	of	matches
between	startups	and	investors.	The	personal	referral	is	still	the
most	common	route.	So	if	you	want	to	hear	about	new	startups,
the	best	way	to	do	it	is	to	get	lots	of	referrals.

The	best	way	to	get	lots	of	referrals	is	to	invest	in	startups.	No
matter	how	smart	and	nice	you	seem,	insiders	will	be	reluctant	to
send	you	referrals	until	you've	proven	yourself	by	doing	a	couple
investments.	Some	smart,	nice	guys	turn	out	to	be	flaky,	high-
maintenance	investors.	But	once	you	prove	yourself	as	a	good
investor,	the	deal	flow,	as	they	call	it,	will	increase	rapidly	in	both
quality	and	quantity.	At	the	extreme,	for	someone	like	Ron
Conway,	it	is	basically	identical	with	the	deal	flow	of	the	whole
Valley.

So	if	you	want	to	invest	seriously,	the	way	to	get	started	is	to
bootstrap	yourself	off	your	existing	connections,	be	a	good
investor	in	the	startups	you	meet	that	way,	and	eventually	you'll
start	a	chain	reaction.	Good	investors	are	rare,	even	in	Silicon
Valley.	There	probably	aren't	more	than	a	couple	hundred	serious
angels	in	the	whole	Valley,	and	yet	they're	probably	the	single
most	important	ingredient	in	making	the	Valley	what	it	is.	Angels
are	the	limiting	reagent	in	startup	formation.

If	there	are	only	a	couple	hundred	serious	angels	in	the	Valley,
then	by	deciding	to	become	one	you	could	single-handedly	make
the	pipeline	for	startups	in	Silicon	Valley	significantly	wider.	That
is	kind	of	mind-blowing.

Being	Good

How	do	you	be	a	good	angel	investor?	The	first	thing	you	need	is
to	be	decisive.	When	we	talk	to	founders	about	good	and	bad
investors,	one	of	the	ways	we	describe	the	good	ones	is	to	say

"he	writes	checks."	That	doesn't	mean	the	investor	says	yes	to
everyone.	Far	from	it.	It	means	he	makes	up	his	mind	quickly,
and	follows	through.	You	may	be	thinking,	how	hard	could	that
be?	You'll	see	when	you	try	it.	It	follows	from	the	nature	of	angel
investing	that	the	decisions	are	hard.	You	have	to	guess	early,	at
the	stage	when	the	most	promising	ideas	still	seem
counterintuitive,	because	if	they	were	obviously	good,	VCs	would
already	have	funded	them.

Suppose	it's	1998.	You	come	across	a	startup	founded	by	a
couple	grad	students.	They	say	they're	going	to	work	on	Internet
search.	There	are	already	a	bunch	of	big	public	companies	doing
search.	How	can	these	grad	students	possibly	compete	with
them?	And	does	search	even	matter	anyway?	All	the	search
engines	are	trying	to	get	people	to	start	calling	them	"portals"
instead.	Why	would	you	want	to	invest	in	a	startup	run	by	a
couple	of	nobodies	who	are	trying	to	compete	with	large,
aggressive	companies	in	an	area	they	themselves	have	declared
passe?	And	yet	the	grad	students	seem	pretty	smart.	What	do	you
do?

There's	a	hack	for	being	decisive	when	you're	inexperienced:
ratchet	down	the	size	of	your	investment	till	it's	an	amount	you
wouldn't	care	too	much	about	losing.	For	every	rich	person	(you
probably	shouldn't	try	angel	investing	unless	you	think	of
yourself	as	rich)	there's	some	amount	that	would	be	painless,
though	annoying,	to	lose.	Till	you	feel	comfortable	investing,
don't	invest	more	than	that	per	startup.

For	example,	if	you	have	$5	million	in	investable	assets,	it	would
probably	be	painless	(though	annoying)	to	lose	$15,000.	That's
less	than	.3%	of	your	net	worth.	So	start	by	making	3	or	4
$15,000	investments.	Nothing	will	teach	you	about	angel
investing	like	experience.	Treat	the	first	few	as	an	educational
expense.	$60,000	is	less	than	a	lot	of	graduate	programs.	Plus
you	get	equity.

What's	really	uncool	is	to	be	strategically	indecisive:	to	string
founders	along	while	trying	to	gather	more	information	about	the
startup's	trajectory.	[10]	There's	always	a	temptation	to	do	that,
because	you	just	have	so	little	to	go	on,	but	you	have	to

#f10n

consciously	resist	it.	In	the	long	term	it's	to	your	advantage	to	be
good.

The	other	component	of	being	a	good	angel	investor	is	simply	to
be	a	good	person.	Angel	investing	is	not	a	business	where	you
make	money	by	screwing	people	over.	Startups	create	wealth,
and	creating	wealth	is	not	a	zero	sum	game.	No	one	has	to	lose
for	you	to	win.	In	fact,	if	you	mistreat	the	founders	you	invest	in,
they'll	just	get	demoralized	and	the	company	will	do	worse.	Plus
your	referrals	will	dry	up.	So	I	recommend	being	good.

The	most	successful	angel	investors	I	know	are	all	basically	good
people.	Once	they	invest	in	a	company,	all	they	want	to	do	is	help
it.	And	they'll	help	people	they	haven't	invested	in	too.	When	they
do	favors	they	don't	seem	to	keep	track	of	them.	It's	too	much
overhead.	They	just	try	to	help	everyone,	and	assume	good	things
will	flow	back	to	them	somehow.	Empirically	that	seems	to	work.

Notes

[1]	Convertible	debt	can	be	either	capped	at	a	particular
valuation,	or	can	be	done	at	a	discount	to	whatever	the	valuation
turns	out	to	be	when	it	converts.	E.g.	convertible	debt	at	a
discount	of	30%	means	when	it	converts	you	get	stock	as	if	you'd
invested	at	a	30%	lower	valuation.	That	can	be	useful	in	cases
where	you	can't	or	don't	want	to	figure	out	what	the	valuation
should	be.	You	leave	it	to	the	next	investor.	On	the	other	hand,	a
lot	of	investors	want	to	know	exactly	what	they're	getting,	so
they	will	only	do	convertible	debt	with	a	cap.

[2]	The	expensive	part	of	creating	an	agreement	from	scratch	is
not	writing	the	agreement,	but	bickering	at	several	hundred
dollars	an	hour	over	the	details.	That's	why	the	series	AA
paperwork	aims	at	a	middle	ground.	You	can	just	start	from	the
compromise	you'd	have	reached	after	lots	of	back	and	forth.

When	you	fund	a	startup,	both	your	lawyers	should	be	specialists
in	startups.	Do	not	use	ordinary	corporate	lawyers	for	this.	Their
inexperience	makes	them	overbuild:	they'll	create	huge,
overcomplicated	agreements,	and	spend	hours	arguing	over
irrelevant	things.

In	the	Valley,	the	top	startup	law	firms	are	Wilson	Sonsini,	Orrick,
Fenwick	&	West,	Gunderson	Dettmer,	and	Cooley	Godward.	In
Boston	the	best	are	Goodwin	Procter,	Wilmer	Hale,	and	Foley
Hoag.

[3]	Your	mileage	may	vary.

[4]	These	anti-dilution	provisions	also	protect	you	against	tricks
like	a	later	investor	trying	to	steal	the	company	by	doing	another
round	that	values	the	company	at	$1.	If	you	have	a	competent
startup	lawyer	handle	the	deal	for	you,	you	should	be	protected
against	such	tricks	initially.	But	it	could	become	a	problem	later.
If	a	big	VC	firm	wants	to	invest	in	the	startup	after	you,	they	may
try	to	make	you	take	out	your	anti-dilution	protections.	And	if
they	do	the	startup	will	be	pressuring	you	to	agree.	They'll	tell
you	that	if	you	don't,	you're	going	to	kill	their	deal	with	the	VC.	I
recommend	you	solve	this	problem	by	having	a	gentlemen's
agreement	with	the	founders:	agree	with	them	in	advance	that
you're	not	going	to	give	up	your	anti-dilution	protections.	Then
it's	up	to	them	to	tell	VCs	early	on.

The	reason	you	don't	want	to	give	them	up	is	the	following
scenario.	The	VCs	recapitalize	the	company,	meaning	they	give	it
additional	funding	at	a	pre-money	valuation	of	zero.	This	wipes
out	the	existing	shareholders,	including	both	you	and	the
founders.	They	then	grant	the	founders	lots	of	options,	because
they	need	them	to	stay	around,	but	you	get	nothing.

Obviously	this	is	not	a	nice	thing	to	do.	It	doesn't	happen	often.
Brand-name	VCs	wouldn't	recapitalize	a	company	just	to	steal	a
few	percent	from	an	angel.	But	there's	a	continuum	here.	A	less
upstanding,	lower-tier	VC	might	be	tempted	to	do	it	to	steal	a	big
chunk	of	stock.

I'm	not	saying	you	should	always	absolutely	refuse	to	give	up
your	anti-dilution	protections.	Everything	is	a	negotiation.	If
you're	part	of	a	powerful	syndicate,	you	might	be	able	to	give	up
legal	protections	and	rely	on	social	ones.	If	you	invest	in	a	deal
led	by	a	big	angel	like	Ron	Conway,	for	example,	you're	pretty
well	protected	against	being	mistreated,	because	any	VC	would
think	twice	before	crossing	him.	This	kind	of	protection	is	one	of
the	reasons	angels	like	to	invest	in	syndicates.

[5]	Don't	invest	so	much,	or	at	such	a	low	valuation,	that	you	end
up	with	an	excessively	large	share	of	a	startup,	unless	you're
sure	your	money	will	be	the	last	they	ever	need.	Later	stage
investors	won't	invest	in	a	company	if	the	founders	don't	have
enough	equity	left	to	motivate	them.	I	talked	to	a	VC	recently
who	said	he'd	met	with	a	company	he	really	liked,	but	he	turned
them	down	because	investors	already	owned	more	than	half	of	it.
Those	investors	probably	thought	they'd	been	pretty	clever	by
getting	such	a	large	chunk	of	this	desirable	company,	but	in	fact
they	were	shooting	themselves	in	the	foot.

[6]	At	any	given	time	I	know	of	at	least	3	or	4	YC	alumni	who	I
believe	will	be	big	successes	but	who	are	running	on	vapor,
financially,	because	investors	don't	yet	get	what	they're	doing.
(And	no,	unfortunately,	I	can't	tell	you	who	they	are.	I	can't	refer
a	startup	to	an	investor	I	don't	know.)

[7]	There	are	some	VCs	who	can	predict	instead	of	reacting.	Not
surprisingly,	these	are	the	most	successful	ones.

[8]	It's	somewhat	sneaky	of	me	to	put	it	this	way,	because	the
median	VC	loses	money.	That's	one	of	the	most	surprising	things
I've	learned	about	VC	while	working	on	Y	Combinator.	Only	a
fraction	of	VCs	even	have	positive	returns.	The	rest	exist	to
satisfy	demand	among	fund	managers	for	venture	capital	as	an
asset	class.	Learning	this	explained	a	lot	about	some	of	the	VCs	I
encountered	when	we	were	working	on	Viaweb.

[9]	VCs	also	generally	say	they	prefer	great	markets	to	great
people.	But	what	they're	really	saying	is	they	want	both.	They're
so	selective	that	they	only	even	consider	great	people.	So	when
they	say	they	care	above	all	about	big	markets,	they	mean	that's

how	they	choose	between	great	people.

[10]	Founders	rightly	dislike	the	sort	of	investor	who	says	he's
interested	in	investing	but	doesn't	want	to	lead.	There	are
circumstances	where	this	is	an	acceptable	excuse,	but	more	often
than	not	what	it	means	is	"No,	but	if	you	turn	out	to	be	a	hot
deal,	I	want	to	be	able	to	claim	retroactively	I	said	yes."

If	you	like	a	startup	enough	to	invest	in	it,	then	invest	in	it.	Just
use	the	standard	series	AA	terms	and	write	them	a	check.

Thanks	to	Sam	Altman,	Paul	Buchheit,	Jessica	Livingston,	Robert
Morris,	and	Fred	Wilson	for	reading	drafts	of	this.

	Comment	on	this	essay.

http://ycombinator.com/seriesaa.html
http://news.ycombinator.com/item?id=506671

	

Relentlessly	Resourceful
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Five	Founders
April	2009

Inc	recently	asked	me	who	I	thought	were	the	5	most	interesting
startup	founders	of	the	last	30	years.	How	do	you	decide	who's
the	most	interesting?	The	best	test	seemed	to	be	influence:	who
are	the	5	who've	influenced	me	most?	Who	do	I	use	as	examples
when	I'm	talking	to	companies	we	fund?	Who	do	I	find	myself
quoting?

1.	Steve	Jobs

I'd	guess	Steve	is	the	most	influential	founder	not	just	for	me	but
for	most	people	you	could	ask.	A	lot	of	startup	culture	is	Apple
culture.	He	was	the	original	young	founder.	And	while	the
concept	of	"insanely	great"	already	existed	in	the	arts,	it	was	a
novel	idea	to	introduce	into	a	company	in	the	1980s.

More	remarkable	still,	he's	stayed	interesting	for	30	years.
People	await	new	Apple	products	the	way	they'd	await	new	books
by	a	popular	novelist.	Steve	may	not	literally	design	them,	but
they	wouldn't	happen	if	he	weren't	CEO.

Steve	is	clever	and	driven,	but	so	are	a	lot	of	people	in	the	Valley.
What	makes	him	unique	is	his	sense	of	design.	Before	him,	most
companies	treated	design	as	a	frivolous	extra.	Apple's
competitors	now	know	better.

2.	TJ	Rodgers

TJ	Rodgers	isn't	as	famous	as	Steve	Jobs,	but	he	may	be	the	best
writer	among	Silicon	Valley	CEOs.	I've	probably	learned	more
from	him	about	the	startup	way	of	thinking	than	from	anyone
else.	Not	so	much	from	specific	things	he's	written	as	by
reconstructing	the	mind	that	produced	them:	brutally	candid;
aggressively	garbage-collecting	outdated	ideas;	and	yet	driven	by

taste.html

pragmatism	rather	than	ideology.

The	first	essay	of	his	that	I	read	was	so	electrifying	that	I
remember	exactly	where	I	was	at	the	time.	It	was	High
Technology	Innovation:	Free	Markets	or	Government	Subsidies?
and	I	was	downstairs	in	the	Harvard	Square	T	Station.	It	felt	as	if
someone	had	flipped	on	a	light	switch	inside	my	head.

3.	Larry	&	Sergey

I'm	sorry	to	treat	Larry	and	Sergey	as	one	person.	I've	always
thought	that	was	unfair	to	them.	But	it	does	seem	as	if	Google
was	a	collaboration.

Before	Google,	companies	in	Silicon	Valley	already	knew	it	was
important	to	have	the	best	hackers.	So	they	claimed,	at	least.	But
Google	pushed	this	idea	further	than	anyone	had	before.	Their
hypothesis	seems	to	have	been	that,	in	the	initial	stages	at	least,
all	you	need	is	good	hackers:	if	you	hire	all	the	smartest	people
and	put	them	to	work	on	a	problem	where	their	success	can	be
measured,	you	win.	All	the	other	stuff—which	includes	all	the
stuff	that	business	schools	think	business	consists	of—you	can
figure	out	along	the	way.	The	results	won't	be	perfect,	but	they'll
be	optimal.	If	this	was	their	hypothesis,	it's	now	been	verified
experimentally.

4.	Paul	Buchheit

Few	know	this,	but	one	person,	Paul	Buchheit,	is	responsible	for
three	of	the	best	things	Google	has	done.	He	was	the	original
author	of	GMail,	which	is	the	most	impressive	thing	Google	has
after	search.	He	also	wrote	the	first	prototype	of	AdSense,	and
was	the	author	of	Google's	mantra	"Don't	be	evil."

PB	made	a	point	in	a	talk	once	that	I	now	mention	to	every
startup	we	fund:	that	it's	better,	initially,	to	make	a	small	number
of	users	really	love	you	than	a	large	number	kind	of	like	you.	If	I
could	tell	startups	only	ten	sentences,	this	would	be	one	of	them.

Now	he's	cofounder	of	a	startup	called	Friendfeed.	It's	only	a
year	old,	but	already	everyone	in	the	Valley	is	watching	them.

http://www.cypress.com/?rID=34993
13sentences.html

Someone	responsible	for	three	of	the	biggest	ideas	at	Google	is
going	to	come	up	with	more.

5.	Sam	Altman

I	was	told	I	shouldn't	mention	founders	of	YC-funded	companies
in	this	list.	But	Sam	Altman	can't	be	stopped	by	such	flimsy	rules.
If	he	wants	to	be	on	this	list,	he's	going	to	be.

Honestly,	Sam	is,	along	with	Steve	Jobs,	the	founder	I	refer	to
most	when	I'm	advising	startups.	On	questions	of	design,	I	ask
"What	would	Steve	do?"	but	on	questions	of	strategy	or	ambition
I	ask	"What	would	Sama	do?"

What	I	learned	from	meeting	Sama	is	that	the	doctrine	of	the
elect	applies	to	startups.	It	applies	way	less	than	most	people
think:	startup	investing	does	not	consist	of	trying	to	pick	winners
the	way	you	might	in	a	horse	race.	But	there	are	a	few	people
with	such	force	of	will	that	they're	going	to	get	whatever	they
want.

	

The	Founder	Visa
April	2009

I	usually	avoid	politics,	but	since	we	now	seem	to	have	an
administration	that's	open	to	suggestions,	I'm	going	to	risk
making	one.	The	single	biggest	thing	the	government	could	do	to
increase	the	number	of	startups	in	this	country	is	a	policy	that
would	cost	nothing:	establish	a	new	class	of	visa	for	startup
founders.

The	biggest	constraint	on	the	number	of	new	startups	that	get
created	in	the	US	is	not	tax	policy	or	employment	law	or	even
Sarbanes-Oxley.	It's	that	we	won't	let	the	people	who	want	to
start	them	into	the	country.

Letting	just	10,000	startup	founders	into	the	country	each	year
could	have	a	visible	effect	on	the	economy.	If	we	assume	4	people
per	startup,	which	is	probably	an	overestimate,	that's	2500	new
companies.	Each	year.	They	wouldn't	all	grow	as	big	as	Google,
but	out	of	2500	some	would	come	close.

By	definition	these	10,000	founders	wouldn't	be	taking	jobs	from
Americans:	it	could	be	part	of	the	terms	of	the	visa	that	they
couldn't	work	for	existing	companies,	only	new	ones	they'd
founded.	In	fact	they'd	cause	there	to	be	more	jobs	for
Americans,	because	the	companies	they	started	would	hire	more
employees	as	they	grew.

The	tricky	part	might	seem	to	be	how	one	defined	a	startup.	But
that	could	be	solved	quite	easily:	let	the	market	decide.	Startup
investors	work	hard	to	find	the	best	startups.	The	government
could	not	do	better	than	to	piggyback	on	their	expertise,	and	use
investment	by	recognized	startup	investors	as	the	test	of	whether
a	company	was	a	real	startup.

How	would	the	government	decide	who's	a	startup	investor?	The

same	way	they	decide	what	counts	as	a	university	for	student
visas.	We'll	establish	our	own	accreditation	procedure.	We	know
who	one	another	are.

10,000	people	is	a	drop	in	the	bucket	by	immigration	standards,
but	would	represent	a	huge	increase	in	the	pool	of	startup
founders.	I	think	this	would	have	such	a	visible	effect	on	the
economy	that	it	would	make	the	legislator	who	introduced	the
bill	famous.	The	only	way	to	know	for	sure	would	be	to	try	it,	and
that	would	cost	practically	nothing.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Jeff	Clavier,	David
Hornik,	Jessica	Livingston,	Greg	Mcadoo,	Aydin	Senkut,	and	Fred
Wilson	for	reading	drafts	of	this.

Related:

The	United	States	of	Entrepreneurs

About	Half	of	VC-Backed	Company	Founders	are	Immigrants

http://www.economist.com/surveys/displaystory.cfm?story_id=13216037&fsrc=rss
http://venturebeat.com/2006/11/15/note-to-washington-about-half-of-vc-backed-company-founders-are-immigrants

	

Why	Twitter	is	a	Big	Deal
April	2009

Om	Malik	is	the	most	recent	of	many	people	to	ask	why	Twitter	is
such	a	big	deal.

The	reason	is	that	it's	a	new	messaging	protocol,	where	you	don't
specify	the	recipients.	New	protocols	are	rare.	Or	more	precisely,
new	protocols	that	take	off	are.	There	are	only	a	handful	of
commonly	used	ones:	TCP/IP	(the	Internet),	SMTP	(email),	HTTP
(the	web),	and	so	on.	So	any	new	protocol	is	a	big	deal.	But
Twitter	is	a	protocol	owned	by	a	private	company.	That's	even
rarer.

Curiously,	the	fact	that	the	founders	of	Twitter	have	been	slow	to
monetize	it	may	in	the	long	run	prove	to	be	an	advantage.
Because	they	haven't	tried	to	control	it	too	much,	Twitter	feels	to
everyone	like	previous	protocols.	One	forgets	it's	owned	by	a
private	company.	That	must	have	made	it	easier	for	Twitter	to
spread.

http://gigaom.com/2009/04/03/google-may-buy-twitter-or-not-but-why-is-twitter-so-hot/

	

A	Local	Revolution?
April	2009

Recently	I	realized	I'd	been	holding	two	ideas	in	my	head	that
would	explode	if	combined.

The	first	is	that	startups	may	represent	a	new	economic	phase,
on	the	scale	of	the	Industrial	Revolution.	I'm	not	sure	of	this,	but
there	seems	a	decent	chance	it's	true.	People	are	dramatically
more	productive	as	founders	or	early	employees	of	startups—
imagine	how	much	less	Larry	and	Sergey	would	have	achieved	if
they'd	gone	to	work	for	a	big	company—and	that	scale	of
improvement	can	change	social	customs.

The	second	idea	is	that	startups	are	a	type	of	business	that
flourishes	in	certain	places	that	specialize	in	it—that	Silicon
Valley	specializes	in	startups	in	the	same	way	Los	Angeles
specializes	in	movies,	or	New	York	in	finance.	[1]

What	if	both	are	true?	What	if	startups	are	both	a	new	economic
phase	and	also	a	type	of	business	that	only	flourishes	in	certain
centers?

If	so,	this	revolution	is	going	to	be	particularly	revolutionary.	All
previous	revolutions	have	spread.	Agriculture,	cities,	and
industrialization	all	spread	widely.	If	startups	end	up	being	like
the	movie	business,	with	just	a	handful	of	centers	and	one
dominant	one,	that's	going	to	have	novel	consequences.

There	are	already	signs	that	startups	may	not	spread	particularly
well.	The	spread	of	startups	seems	to	be	proceeding	slower	than
the	spread	of	the	Industrial	Revolution,	despite	the	fact	that
communication	is	so	much	faster	now.

Within	a	few	decades	of	the	founding	of	Boulton	&	Watt	there
were	steam	engines	scattered	over	northern	Europe	and	North

highres.html
startuphubs.html
#f1n

America.	Industrialization	didn't	spread	much	beyond	those
regions	for	a	while.	It	only	spread	to	places	where	there	was	a
strong	middle	class—countries	where	a	private	citizen	could
make	a	fortune	without	having	it	confiscated.	Otherwise	it	wasn't
worth	investing	in	factories.	But	in	a	country	with	a	strong
middle	class	it	was	easy	for	industrial	techniques	to	take	root.	An
individual	mine	or	factory	owner	could	decide	to	install	a	steam
engine,	and	within	a	few	years	he	could	probably	find	someone
local	to	make	him	one.	So	steam	engines	spread	fast.	And	they
spread	widely,	because	the	locations	of	mines	and	factories	were
determined	by	features	like	rivers,	harbors,	and	sources	of	raw
materials.	[2]

Startups	don't	seem	to	spread	so	well,	partly	because	they're
more	a	social	than	a	technical	phenomenon,	and	partly	because
they're	not	tied	to	geography.	An	individual	European
manufacturer	could	import	industrial	techniques	and	they'd	work
fine.	This	doesn't	seem	to	work	so	well	with	startups:	you	need	a
community	of	expertise,	as	you	do	in	the	movie	business.	[3]	Plus
there	aren't	the	same	forces	driving	startups	to	spread.	Once
railroads	or	electric	power	grids	were	invented,	every	region	had
to	have	them.	An	area	without	railroads	or	power	was	a	rich
potential	market.	But	this	isn't	true	with	startups.	There's	no
need	for	a	Microsoft	of	France	or	Google	of	Germany.

Governments	may	decide	they	want	to	encourage	startups	locally,
but	government	policy	can't	call	them	into	being	the	way	a
genuine	need	could.

How	will	this	all	play	out?	If	I	had	to	predict	now,	I'd	say	that
startups	will	spread,	but	very	slowly,	because	their	spread	will	be
driven	not	by	government	policies	(which	won't	work)	or	by
market	need	(which	doesn't	exist)	but,	to	the	extent	that	it
happens	at	all,	by	the	same	random	factors	that	have	caused
startup	culture	to	spread	thus	far.	And	such	random	factors	will
increasingly	be	outweighed	by	the	pull	of	existing	startup	hubs.

Silicon	Valley	is	where	it	is	because	William	Shockley	wanted	to
move	back	to	Palo	Alto,	where	he	grew	up,	and	the	experts	he
lured	west	to	work	with	him	liked	it	so	much	they	stayed.	Seattle
owes	much	of	its	position	as	a	tech	center	to	the	same	cause:

#f2n
#f3n

Gates	and	Allen	wanted	to	move	home.	Otherwise	Albuquerque
might	have	Seattle's	place	in	the	rankings.	Boston	is	a	tech
center	because	it's	the	intellectual	capital	of	the	US	and	probably
the	world.	And	if	Battery	Ventures	hadn't	turned	down	Facebook,
Boston	would	be	significantly	bigger	now	on	the	startup	radar
screen.

But	of	course	it's	not	a	coincidence	that	Facebook	got	funded	in
the	Valley	and	not	Boston.	There	are	more	and	bolder	investors
in	Silicon	Valley	than	in	Boston,	and	even	undergrads	know	it.

Boston's	case	illustrates	the	difficulty	you'd	have	establishing	a
new	startup	hub	this	late	in	the	game.	If	you	wanted	to	create	a
startup	hub	by	reproducing	the	way	existing	ones	happened,	the
way	to	do	it	would	be	to	establish	a	first-rate	research	university
in	a	place	so	nice	that	rich	people	wanted	to	live	there.	Then	the
town	would	be	hospitable	to	both	groups	you	need:	both	founders
and	investors.	That's	the	combination	that	yielded	Silicon	Valley.
But	Silicon	Valley	didn't	have	Silicon	Valley	to	compete	with.	If
you	tried	now	to	create	a	startup	hub	by	planting	a	great
university	in	a	nice	place,	it	would	have	a	harder	time	getting
started,	because	many	of	the	best	startups	it	produced	would	be
sucked	away	to	existing	startup	hubs.

Recently	I	suggested	a	potential	shortcut:	pay	startups	to	move.
Once	you	had	enough	good	startups	in	one	place,	it	would	create
a	self-sustaining	chain	reaction.	Founders	would	start	to	move
there	without	being	paid,	because	that	was	where	their	peers
were,	and	investors	would	appear	too,	because	that	was	where
the	deals	were.

In	practice	I	doubt	any	government	would	have	the	balls	to	try
this,	or	the	brains	to	do	it	right.	I	didn't	mean	it	as	a	practical
suggestion,	but	more	as	an	exploration	of	the	lower	bound	of
what	it	would	take	to	create	a	startup	hub	deliberately.

The	most	likely	scenario	is	(1)	that	no	government	will
successfully	establish	a	startup	hub,	and	(2)	that	the	spread	of
startup	culture	will	thus	be	driven	by	the	random	factors	that
have	driven	it	so	far,	but	(3)	that	these	factors	will	be
increasingly	outweighed	by	the	pull	of	existing	startup	hubs.

siliconvalley.html
maybe.html

Result:	this	revolution,	if	it	is	one,	will	be	unusually	localized.

Notes

[1]	There	are	two	very	different	types	of	startup:	one	kind	that
evolves	naturally,	and	one	kind	that's	called	into	being	to
"commercialize"	a	scientific	discovery.	Most	computer/software
startups	are	now	the	first	type,	and	most	pharmaceutical	startups
the	second.	When	I	talk	about	startups	in	this	essay,	I	mean	type
I	startups.	There	is	no	difficulty	making	type	II	startups	spread:
all	you	have	to	do	is	fund	medical	research	labs;	commercializing
whatever	new	discoveries	the	boffins	throw	off	is	as
straightforward	as	building	a	new	airport.	Type	II	startups
neither	require	nor	produce	startup	culture.	But	that	means
having	type	II	startups	won't	get	you	type	I	startups.	Philadelphia
is	a	case	in	point:	lots	of	type	II	startups,	but	hardly	any	type	I.

Incidentally,	Google	may	appear	to	be	an	instance	of	a	type	II
startup,	but	it	wasn't.	Google	is	not	pagerank	commercialized.
They	could	have	used	another	algorithm	and	everything	would
have	turned	out	the	same.	What	made	Google	Google	is	that	they
cared	about	doing	search	well	at	a	critical	point	in	the	evolution
of	the	web.

[2]	Watt	didn't	invent	the	steam	engine.	His	critical	invention	was
a	refinement	that	made	steam	engines	dramatically	more
efficient:	the	separate	condenser.	But	that	oversimplifies	his	role.
He	had	such	a	different	attitude	to	the	problem	and	approached
it	with	such	energy	that	he	transformed	the	field.	Perhaps	the
most	accurate	way	to	put	it	would	be	to	say	that	Watt	reinvented
the	steam	engine.

[3]	The	biggest	counterexample	here	is	Skype.	If	you're	doing
something	that	would	get	shut	down	in	the	US,	it	becomes	an
advantage	to	be	located	elsewhere.	That's	why	Kazaa	took	the
place	of	Napster.	And	the	expertise	and	connections	the	founders
gained	from	running	Kazaa	helped	ensure	the	success	of	Skype.

Thanks	to	Patrick	Collison,	Jessica	Livingston,	and	Fred	Wilson
for	reading	drafts	of	this.

	

Maker's	Schedule,	Manager's
Schedule
"...the	mere	consciousness	of	an	engagement	will	sometimes
worry	a	whole	day."

�	Charles	Dickens

	

Ramen	Profitable
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

July	2009

Now	that	the	term	"ramen	profitable"	has	become	widespread,	I
ought	to	explain	precisely	what	the	idea	entails.

Ramen	profitable	means	a	startup	makes	just	enough	to	pay	the
founders'	living	expenses.	This	is	a	different	form	of	profitability
than	startups	have	traditionally	aimed	for.	Traditional
profitability	means	a	big	bet	is	finally	paying	off,	whereas	the
main	importance	of	ramen	profitability	is	that	it	buys	you	time.
[1]

In	the	past,	a	startup	would	usually	become	profitable	only	after
raising	and	spending	quite	a	lot	of	money.	A	company	making
computer	hardware	might	not	become	profitable	for	5	years,
during	which	they	spent	$50	million.	But	when	they	did	they
might	have	revenues	of	$50	million	a	year.	This	kind	of
profitability	means	the	startup	has	succeeded.

Ramen	profitability	is	the	other	extreme:	a	startup	that	becomes
profitable	after	2	months,	even	though	its	revenues	are	only
$3000	a	month,	because	the	only	employees	are	a	couple	25	year
old	founders	who	can	live	on	practically	nothing.	Revenues	of
$3000	a	month	do	not	mean	the	company	has	succeeded.	But	it
does	share	something	with	the	one	that's	profitable	in	the
traditional	way:	they	don't	need	to	raise	money	to	survive.

Ramen	profitability	is	an	unfamiliar	idea	to	most	people	because
it	only	recently	became	feasible.	It's	still	not	feasible	for	a	lot	of
startups;	it	would	not	be	for	most	biotech	startups,	for	example;
but	it	is	for	many	software	startups	because	they're	now	so
cheap.	For	many,	the	only	real	cost	is	the	founders'	living
expenses.

http://ycombinator.com/apply.html
#f1n

The	main	significance	of	this	type	of	profitability	is	that	you're	no
longer	at	the	mercy	of	investors.	If	you're	still	losing	money,	then
eventually	you'll	either	have	to	raise	more	or	shut	down.	Once
you're	ramen	profitable	this	painful	choice	goes	away.	You	can
still	raise	money,	but	you	don't	have	to	do	it	now.

*	*	*

The	most	obvious	advantage	of	not	needing	money	is	that	you
can	get	better	terms.	If	investors	know	you	need	money,	they'll
sometimes	take	advantage	of	you.	Some	may	even	deliberately
stall,	because	they	know	that	as	you	run	out	of	money	you'll
become	increasingly	pliable.

But	there	are	also	three	less	obvious	advantages	of	ramen
profitability.	One	is	that	it	makes	you	more	attractive	to
investors.	If	you're	already	profitable,	on	however	small	a	scale,
it	shows	that	(a)	you	can	get	at	least	someone	to	pay	you,	(b)
you're	serious	about	building	things	people	want,	and	(c)	you're
disciplined	enough	to	keep	expenses	low.

This	is	reassuring	to	investors,	because	you've	addressed	three	of
their	biggest	worries.	It's	common	for	them	to	fund	companies
that	have	smart	founders	and	a	big	market,	and	yet	still	fail.
When	these	companies	fail,	it's	usually	because	(a)	people
wouldn't	pay	for	what	they	made,	e.g.	because	it	was	too	hard	to
sell	to	them,	or	the	market	wasn't	ready	yet,	(b)	the	founders
solved	the	wrong	problem,	instead	of	paying	attention	to	what
users	needed,	or	(c)	the	company	spent	too	much	and	burned
through	their	funding	before	they	started	to	make	money.	If
you're	ramen	profitable,	you're	already	avoiding	these	mistakes.

Another	advantage	of	ramen	profitability	is	that	it's	good	for
morale.	A	company	tends	to	feel	rather	theoretical	when	you	first
start	it.	It's	legally	a	company,	but	you	feel	like	you're	lying	when
you	call	it	one.	When	people	start	to	pay	you	significant	amounts,
the	company	starts	to	feel	real.	And	your	own	living	expenses	are
the	milestone	you	feel	most,	because	at	that	point	the	future	flips

state.	Now	survival	is	the	default,	instead	of	dying.

A	morale	boost	on	that	scale	is	very	valuable	in	a	startup,
because	the	moral	weight	of	running	a	startup	is	what	makes	it
hard.	Startups	are	still	very	rare.	Why	don't	more	people	do	it?
The	financial	risk?	Plenty	of	25	year	olds	save	nothing	anyway.
The	long	hours?	Plenty	of	people	work	just	as	long	hours	in
regular	jobs.	What	keeps	people	from	starting	startups	is	the	fear
of	having	so	much	responsibility.	And	this	is	not	an	irrational
fear:	it	really	is	hard	to	bear.	Anything	that	takes	some	of	that
weight	off	you	will	greatly	increase	your	chances	of	surviving.

A	startup	that	reaches	ramen	profitability	may	be	more	likely	to
succeed	than	not.	Which	is	pretty	exciting,	considering	the
bimodal	distribution	of	outcomes	in	startups:	you	either	fail	or
make	a	lot	of	money.

The	fourth	advantage	of	ramen	profitability	is	the	least	obvious
but	may	be	the	most	important.	If	you	don't	need	to	raise	money,
you	don't	have	to	interrupt	working	on	the	company	to	do	it.

Raising	money	is	terribly	distracting.	You're	lucky	if	your
productivity	is	a	third	of	what	it	was	before.	And	it	can	last	for
months.

I	didn't	understand	(or	rather,	remember)	precisely	why	raising
money	was	so	distracting	till	earlier	this	year.	I'd	noticed	that
startups	we	funded	would	usually	grind	to	a	halt	when	they
switched	to	raising	money,	but	I	didn't	remember	exactly	why	till
YC	raised	money	itself.	We	had	a	comparatively	easy	time	of	it;
the	first	people	I	asked	said	yes;	but	it	took	months	to	work	out
the	details,	and	during	that	time	I	got	hardly	any	real	work	done.
Why?	Because	I	thought	about	it	all	the	time.

At	any	given	time	there	tends	to	be	one	problem	that's	the	most
urgent	for	a	startup.	This	is	what	you	think	about	as	you	fall
asleep	at	night	and	when	you	take	a	shower	in	the	morning.	And
when	you	start	raising	money,	that	becomes	the	problem	you
think	about.	You	only	take	one	shower	in	the	morning,	and	if
you're	thinking	about	investors	during	it,	then	you're	not	thinking
about	the	product.

fundraising.html

Whereas	if	you	can	choose	when	you	raise	money,	you	can	pick	a
time	when	you're	not	in	the	middle	of	something	else,	and	you
can	probably	also	insist	that	the	round	close	fast.	You	may	even
be	able	to	avoid	having	the	round	occupy	your	thoughts,	if	you
don't	care	whether	it	closes.

*	*	*

Ramen	profitable	means	no	more	than	the	definition	implies.	It
does	not,	for	example,	imply	that	you're	"bootstrapping"	the
startup—that	you're	never	going	to	take	money	from	investors.
Empirically	that	doesn't	seem	to	work	very	well.	Few	startups
succeed	without	taking	investment.	Maybe	as	startups	get
cheaper	it	will	become	more	common.	On	the	other	hand,	the
money	is	there,	waiting	to	be	invested.	If	startups	need	it	less,
they'll	be	able	to	get	it	on	better	terms,	which	will	make	them
more	inclined	to	take	it.	That	will	tend	to	produce	an	equilibrium.
[2]

Another	thing	ramen	profitability	doesn't	imply	is	Joe	Kraus's
idea	that	you	should	put	your	business	model	in	beta	when	you
put	your	product	in	beta.	He	believes	you	should	get	people	to
pay	you	from	the	beginning.	I	think	that's	too	constraining.
Facebook	didn't,	and	they've	done	better	than	most	startups.
Making	money	right	away	was	not	only	unnecessary	for	them,
but	probably	would	have	been	harmful.	I	do	think	Joe's	rule	could
be	useful	for	many	startups,	though.	When	founders	seem
unfocused,	I	sometimes	suggest	they	try	to	get	customers	to	pay
them	for	something,	in	the	hope	that	this	constraint	will	prod
them	into	action.

The	difference	between	Joe's	idea	and	ramen	profitability	is	that
a	ramen	profitable	company	doesn't	have	to	be	making	money
the	way	it	ultimately	will.	It	just	has	to	be	making	money.	The
most	famous	example	is	Google,	which	initially	made	money	by
licensing	search	to	sites	like	Yahoo.

Is	there	a	downside	to	ramen	profitability?	Probably	the	biggest
danger	is	that	it	might	turn	you	into	a	consulting	firm.	Startups

#f2n
http://www.brendonwilson.com/blog/2006/04/30/joe-kraus-confessions-of-a-startup-addict/

have	to	be	product	companies,	in	the	sense	of	making	a	single
thing	that	everyone	uses.	The	defining	quality	of	startups	is	that
they	grow	fast,	and	consulting	just	can't	scale	the	way	a	product
can.	[3]	But	it's	pretty	easy	to	make	$3000	a	month	consulting;	in
fact,	that	would	be	a	low	rate	for	contract	programming.	So	there
could	be	a	temptation	to	slide	into	consulting,	and	telling
yourselves	you're	a	ramen	profitable	startup,	when	in	fact	you're
not	a	startup	at	all.

It's	ok	to	do	a	little	consulting-type	work	at	first.	Startups	usually
have	to	do	something	weird	at	first.	But	remember	that	ramen
profitability	is	not	the	destination.	A	startup's	destination	is	to
grow	really	big;	ramen	profitability	is	a	trick	for	not	dying	en
route.

Notes

[1]	The	"ramen"	in	"ramen	profitable"	refers	to	instant	ramen,
which	is	just	about	the	cheapest	food	available.

Please	do	not	take	the	term	literally.	Living	on	instant	ramen
would	be	very	unhealthy.	Rice	and	beans	are	a	better	source	of
food.	Start	by	investing	in	a	rice	cooker,	if	you	don't	have	one.

Rice	and	Beans	for	2n

		olive	oil	or	butter
		n	yellow	onions
		other	fresh	vegetables;	experiment
		3n	cloves	garlic
		n	12-oz	cans	white,	kidney,	or	black	beans
		n	cubes	Knorr	beef	or	vegetable	bouillon
		n	teaspoons	freshly	ground	black	pepper
		3n	teaspoons	ground	cumin
		n	cups	dry	rice,	preferably	brown

Put	rice	in	rice	cooker.	Add	water	as	specified	on	rice	package.

#f3n
die.html

(Default:	2	cups	water	per	cup	of	rice.)	Turn	on	rice	cooker	and
forget	about	it.

Chop	onions	and	other	vegetables	and	fry	in	oil,	over	fairly	low
heat,	till	onions	are	glassy.	Put	in	chopped	garlic,	pepper,	cumin,
and	a	little	more	fat,	and	stir.	Keep	heat	low.	Cook	another	2	or	3
minutes,	then	add	beans	(don't	drain	the	beans),	and	stir.	Throw
in	the	bouillon	cube(s),	cover,	and	cook	on	lowish	heat	for	at	least
10	minutes	more.	Stir	vigilantly	to	avoid	sticking.

If	you	want	to	save	money,	buy	beans	in	giant	cans	from	discount
stores.	Spices	are	also	much	cheaper	when	bought	in	bulk.	If
there's	an	Indian	grocery	store	near	you,	they'll	have	big	bags	of
cumin	for	the	same	price	as	the	little	jars	in	supermarkets.

[2]	There's	a	good	chance	that	a	shift	in	power	from	investors	to
founders	would	actually	increase	the	size	of	the	venture
business.	I	think	investors	currently	err	too	far	on	the	side	of
being	harsh	to	founders.	If	they	were	forced	to	stop,	the	whole
venture	business	would	work	better,	and	you	might	see
something	like	the	increase	in	trade	you	always	see	when
restrictive	laws	are	removed.

Investors	are	one	of	the	biggest	sources	of	pain	for	founders;	if
they	stopped	causing	so	much	pain,	it	would	be	better	to	be	a
founder;	and	if	it	were	better	to	be	a	founder,	more	people	would
do	it.

[3]	It's	conceivable	that	a	startup	could	grow	big	by	transforming
consulting	into	a	form	that	would	scale.	But	if	they	did	that
they'd	really	be	a	product	company.

Thanks	to	Jessica	Livingston	for	reading	drafts	of	this.

	

The	Trouble	with	the	Segway
July	2009

The	Segway	hasn't	delivered	on	its	initial	promise,	to	put	it
mildly.	There	are	several	reasons	why,	but	one	is	that	people
don't	want	to	be	seen	riding	them.	Someone	riding	a	Segway
looks	like	a	dork.

My	friend	Trevor	Blackwell	built	his	own	Segway,	which	we
called	the	Segwell.	He	also	built	a	one-wheeled	version,	the
Eunicycle,	which	looks	exactly	like	a	regular	unicycle	till	you
realize	the	rider	isn't	pedaling.	He	has	ridden	them	both	to
downtown	Mountain	View	to	get	coffee.	When	he	rides	the
Eunicycle,	people	smile	at	him.	But	when	he	rides	the	Segwell,
they	shout	abuse	from	their	cars:	"Too	lazy	to	walk,	ya	fuckin
homo?"

Why	do	Segways	provoke	this	reaction?	The	reason	you	look	like
a	dork	riding	a	Segway	is	that	you	look	smug.	You	don't	seem	to
be	working	hard	enough.

Someone	riding	a	motorcycle	isn't	working	any	harder.	But
because	he's	sitting	astride	it,	he	seems	to	be	making	an	effort.
When	you're	riding	a	Segway	you're	just	standing	there.	And
someone	who's	being	whisked	along	while	seeming	to	do	no	work
—	someone	in	a	sedan	chair,	for	example	—	can't	help	but	look
smug.

Try	this	thought	experiment	and	it	becomes	clear:	imagine
something	that	worked	like	the	Segway,	but	that	you	rode	with
one	foot	in	front	of	the	other,	like	a	skateboard.	That	wouldn't
seem	nearly	as	uncool.

So	there	may	be	a	way	to	capture	more	of	the	market	Segway
hoped	to	reach:	make	a	version	that	doesn't	look	so	easy	for	the
rider.	It	would	also	be	helpful	if	the	styling	was	in	the	tradition	of

http://tlb.org/#scooter
http://tlb.org/#eunicycle

skateboards	or	bicycles	rather	than	medical	devices.

Curiously	enough,	what	got	Segway	into	this	problem	was	that
the	company	was	itself	a	kind	of	Segway.	It	was	too	easy	for
them;	they	were	too	successful	raising	money.	If	they'd	had	to
grow	the	company	gradually,	by	iterating	through	several
versions	they	sold	to	real	users,	they'd	have	learned	pretty
quickly	that	people	looked	stupid	riding	them.	Instead	they	had
enough	to	work	in	secret.	They	had	focus	groups	aplenty,	I'm
sure,	but	they	didn't	have	the	people	yelling	insults	out	of	cars.
So	they	never	realized	they	were	zooming	confidently	down	a
blind	alley.

	

What	Kate	Saw	in	Silicon
Valley
August	2009

Kate	Courteau	is	the	architect	who	designed	Y	Combinator's
office.	Recently	we	managed	to	recruit	her	to	help	us	run	YC
when	she's	not	busy	with	architectural	projects.	Though	she'd
heard	a	lot	about	YC	since	the	beginning,	the	last	9	months	have
been	a	total	immersion.

I've	been	around	the	startup	world	for	so	long	that	it	seems
normal	to	me,	so	I	was	curious	to	hear	what	had	surprised	her
most	about	it.	This	was	her	list:

1.	How	many	startups	fail.

Kate	knew	in	principle	that	startups	were	very	risky,	but	she	was
surprised	to	see	how	constant	the	threat	of	failure	was	—	not	just
for	the	minnows,	but	even	for	the	famous	startups	whose
founders	came	to	speak	at	YC	dinners.

2.	How	much	startups'	ideas	change.

As	usual,	by	Demo	Day	about	half	the	startups	were	doing
something	significantly	different	than	they	started	with.	We
encourage	that.	Starting	a	startup	is	like	science	in	that	you	have
to	follow	the	truth	wherever	it	leads.	In	the	rest	of	the	world,
people	don't	start	things	till	they're	sure	what	they	want	to	do,
and	once	started	they	tend	to	continue	on	their	initial	path	even
if	it's	mistaken.

3.	How	little	money	it	can	take	to	start	a	startup.

In	Kate's	world,	everything	is	still	physical	and	expensive.	You
can	barely	renovate	a	bathroom	for	the	cost	of	starting	a	startup.

4.	How	scrappy	founders	are.

That	was	her	actual	word.	I	agree	with	her,	but	till	she	mentioned
this	it	never	occurred	to	me	how	little	this	quality	is	appreciated
in	most	of	the	rest	of	the	world.	It	wouldn't	be	a	compliment	in
most	organizations	to	call	someone	scrappy.

What	does	it	mean,	exactly?	It's	basically	the	diminutive	form	of
belligerent.	Someone	who's	scrappy	manages	to	be	both
threatening	and	undignified	at	the	same	time.	Which	seems	to
me	exactly	what	one	would	want	to	be,	in	any	kind	of	work.	If
you're	not	threatening,	you're	probably	not	doing	anything	new,
and	dignity	is	merely	a	sort	of	plaque.

5.	How	tech-saturated	Silicon	Valley	is.

"It	seems	like	everybody	here	is	in	the	industry."	That	isn't
literally	true,	but	there	is	a	qualitative	difference	between	Silicon
Valley	and	other	places.	You	tend	to	keep	your	voice	down,
because	there's	a	good	chance	the	person	at	the	next	table	would
know	some	of	the	people	you're	talking	about.	I	never	felt	that	in
Boston.	The	good	news	is,	there's	also	a	good	chance	the	person
at	the	next	table	could	help	you	in	some	way.

6.	That	the	speakers	at	YC	were	so	consistent	in	their	advice.

Actually,	I've	noticed	this	too.	I	always	worry	the	speakers	will
put	us	in	an	embarrassing	position	by	contradicting	what	we	tell
the	startups,	but	it	happens	surprisingly	rarely.

When	I	asked	her	what	specific	things	she	remembered	speakers
always	saying,	she	mentioned:	that	the	way	to	succeed	was	to
launch	something	fast,	listen	to	users,	and	then	iterate;	that
startups	required	resilience	because	they	were	always	an
emotional	rollercoaster;	and	that	most	VCs	were	sheep.

I've	been	impressed	by	how	consistently	the	speakers	advocate
launching	fast	and	iterating.	That	was	contrarian	advice	10	years

ago,	but	it's	clearly	now	the	established	practice.

7.	How	casual	successful	startup	founders	are.

Most	of	the	famous	founders	in	Silicon	Valley	are	people	you'd
overlook	on	the	street.	It's	not	merely	that	they	don't	dress	up.
They	don't	project	any	kind	of	aura	of	power	either.	"They're	not
trying	to	impress	anyone."

Interestingly,	while	Kate	said	that	she	could	never	pick	out
successful	founders,	she	could	recognize	VCs,	both	by	the	way
they	dressed	and	the	way	they	carried	themselves.

8.	How	important	it	is	for	founders	to	have	people	to	ask	for
advice.

(I	swear	I	didn't	prompt	this	one.)	Without	advice	"they'd	just	be
sort	of	lost."	Fortunately,	there	are	a	lot	of	people	to	help	them.
There's	a	strong	tradition	within	YC	of	helping	other	YC-funded
startups.	But	we	didn't	invent	that	idea:	it's	just	a	slightly	more
concentrated	form	of	existing	Valley	culture.

9.	What	a	solitary	task	startups	are.

Architects	are	constantly	interacting	face	to	face	with	other
people,	whereas	doing	a	technology	startup,	at	least,	tends	to
require	long	stretches	of	uninterrupted	time	to	work.	"You	could
do	it	in	a	box."

By	inverting	this	list,	we	can	get	a	portrait	of	the	"normal"	world.
It's	populated	by	people	who	talk	a	lot	with	one	another	as	they
work	slowly	but	harmoniously	on	conservative,	expensive
projects	whose	destinations	are	decided	in	advance,	and	who
carefully	adjust	their	manner	to	reflect	their	position	in	the
hierarchy.

That's	also	a	fairly	accurate	description	of	the	past.	So	startup
culture	may	not	merely	be	different	in	the	way	you'd	expect	any
subculture	to	be,	but	a	leading	indicator.

	

The	Anatomy	of
Determination
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	List	of	N	Things
September	2009

I	bet	you	the	current	issue	of	Cosmopolitan	has	an	article	whose
title	begins	with	a	number.	"7	Things	He	Won't	Tell	You	about
Sex,"	or	something	like	that.	Some	popular	magazines	feature
articles	of	this	type	on	the	cover	of	every	issue.	That	can't	be
happening	by	accident.	Editors	must	know	they	attract	readers.

Why	do	readers	like	the	list	of	n	things	so	much?	Mainly	because
it's	easier	to	read	than	a	regular	article.	[1]	Structurally,	the	list
of	n	things	is	a	degenerate	case	of	essay.	An	essay	can	go
anywhere	the	writer	wants.	In	a	list	of	n	things	the	writer	agrees
to	constrain	himself	to	a	collection	of	points	of	roughly	equal
importance,	and	he	tells	the	reader	explicitly	what	they	are.

Some	of	the	work	of	reading	an	article	is	understanding	its
structure—figuring	out	what	in	high	school	we'd	have	called	its
"outline."	Not	explicitly,	of	course,	but	someone	who	really
understands	an	article	probably	has	something	in	his	brain
afterward	that	corresponds	to	such	an	outline.	In	a	list	of	n
things,	this	work	is	done	for	you.	Its	structure	is	an	exoskeleton.

As	well	as	being	explicit,	the	structure	is	guaranteed	to	be	of	the
simplest	possible	type:	a	few	main	points	with	few	to	no
subordinate	ones,	and	no	particular	connection	between	them.

Because	the	main	points	are	unconnected,	the	list	of	n	things	is
random	access.	There's	no	thread	of	reasoning	you	have	to
follow.	You	could	read	the	list	in	any	order.	And	because	the
points	are	independent	of	one	another,	they	work	like	watertight
compartments	in	an	unsinkable	ship.	If	you	get	bored	with,	or
can't	understand,	or	don't	agree	with	one	point,	you	don't	have	to
give	up	on	the	article.	You	can	just	abandon	that	one	and	skip	to
the	next.	A	list	of	n	things	is	parallel	and	therefore	fault	tolerant.

#f1n

There	are	times	when	this	format	is	what	a	writer	wants.	One,
obviously,	is	when	what	you	have	to	say	actually	is	a	list	of	n
things.	I	once	wrote	an	essay	about	the	mistakes	that	kill
startups,	and	a	few	people	made	fun	of	me	for	writing	something
whose	title	began	with	a	number.	But	in	that	case	I	really	was
trying	to	make	a	complete	catalog	of	a	number	of	independent
things.	In	fact,	one	of	the	questions	I	was	trying	to	answer	was
how	many	there	were.

There	are	other	less	legitimate	reasons	for	using	this	format.	For
example,	I	use	it	when	I	get	close	to	a	deadline.	If	I	have	to	give	a
talk	and	I	haven't	started	it	a	few	days	beforehand,	I'll	sometimes
play	it	safe	and	make	the	talk	a	list	of	n	things.

The	list	of	n	things	is	easier	for	writers	as	well	as	readers.	When
you're	writing	a	real	essay,	there's	always	a	chance	you'll	hit	a
dead	end.	A	real	essay	is	a	train	of	thought,	and	some	trains	of
thought	just	peter	out.	That's	an	alarming	possibility	when	you
have	to	give	a	talk	in	a	few	days.	What	if	you	run	out	of	ideas?
The	compartmentalized	structure	of	the	list	of	n	things	protects
the	writer	from	his	own	stupidity	in	much	the	same	way	it
protects	the	reader.	If	you	run	out	of	ideas	on	one	point,	no
problem:	it	won't	kill	the	essay.	You	can	take	out	the	whole	point
if	you	need	to,	and	the	essay	will	still	survive.

Writing	a	list	of	n	things	is	so	relaxing.	You	think	of	n/2	of	them	in
the	first	5	minutes.	So	bang,	there's	the	structure,	and	you	just
have	to	fill	it	in.	As	you	think	of	more	points,	you	just	add	them	to
the	end.	Maybe	you	take	out	or	rearrange	or	combine	a	few,	but
at	every	stage	you	have	a	valid	(though	initially	low-res)	list	of	n
things.	It's	like	the	sort	of	programming	where	you	write	a
version	1	very	quickly	and	then	gradually	modify	it,	but	at	every
point	have	working	code—or	the	style	of	painting	where	you
begin	with	a	complete	but	very	blurry	sketch	done	in	an	hour,
then	spend	a	week	cranking	up	the	resolution.

Because	the	list	of	n	things	is	easier	for	writers	too,	it's	not
always	a	damning	sign	when	readers	prefer	it.	It's	not
necessarily	evidence	readers	are	lazy;	it	could	also	mean	they
don't	have	much	confidence	in	the	writer.	The	list	of	n	things	is	in
that	respect	the	cheeseburger	of	essay	forms.	If	you're	eating	at

startupmistakes.html

a	restaurant	you	suspect	is	bad,	your	best	bet	is	to	order	the
cheeseburger.	Even	a	bad	cook	can	make	a	decent	cheeseburger.
And	there	are	pretty	strict	conventions	about	what	a
cheeseburger	should	look	like.	You	can	assume	the	cook	isn't
going	to	try	something	weird	and	artistic.	The	list	of	n	things
similarly	limits	the	damage	that	can	be	done	by	a	bad	writer.	You
know	it's	going	to	be	about	whatever	the	title	says,	and	the
format	prevents	the	writer	from	indulging	in	any	flights	of	fancy.

Because	the	list	of	n	things	is	the	easiest	essay	form,	it	should	be
a	good	one	for	beginning	writers.	And	in	fact	it	is	what	most
beginning	writers	are	taught.	The	classic	5	paragraph	essay	is
really	a	list	of	n	things	for	n	=	3.	But	the	students	writing	them
don't	realize	they're	using	the	same	structure	as	the	articles	they
read	in	Cosmopolitan.	They're	not	allowed	to	include	the
numbers,	and	they're	expected	to	spackle	over	the	gaps	with
gratuitous	transitions	("Furthermore...")	and	cap	the	thing	at
either	end	with	introductory	and	concluding	paragraphs	so	it	will
look	superficially	like	a	real	essay.	[2]

It	seems	a	fine	plan	to	start	students	off	with	the	list	of	n	things.
It's	the	easiest	form.	But	if	we're	going	to	do	that,	why	not	do	it
openly?	Let	them	write	lists	of	n	things	like	the	pros,	with
numbers	and	no	transitions	or	"conclusion."

There	is	one	case	where	the	list	of	n	things	is	a	dishonest	format:
when	you	use	it	to	attract	attention	by	falsely	claiming	the	list	is
an	exhaustive	one.	I.e.	if	you	write	an	article	that	purports	to	be
about	the	7	secrets	of	success.	That	kind	of	title	is	the	same	sort
of	reflexive	challenge	as	a	whodunit.	You	have	to	at	least	look	at
the	article	to	check	whether	they're	the	same	7	you'd	list.	Are
you	overlooking	one	of	the	secrets	of	success?	Better	check.

It's	fine	to	put	"The"	before	the	number	if	you	really	believe
you've	made	an	exhaustive	list.	But	evidence	suggests	most
things	with	titles	like	this	are	linkbait.

The	greatest	weakness	of	the	list	of	n	things	is	that	there's	so
little	room	for	new	thought.	The	main	point	of	essay	writing,
when	done	right,	is	the	new	ideas	you	have	while	doing	it.	A	real
essay,	as	the	name	implies,	is	dynamic:	you	don't	know	what

#f2n
essay.html

you're	going	to	write	when	you	start.	It	will	be	about	whatever
you	discover	in	the	course	of	writing	it.

This	can	only	happen	in	a	very	limited	way	in	a	list	of	n	things.
You	make	the	title	first,	and	that's	what	it's	going	to	be	about.
You	can't	have	more	new	ideas	in	the	writing	than	will	fit	in	the
watertight	compartments	you	set	up	initially.	And	your	brain
seems	to	know	this:	because	you	don't	have	room	for	new	ideas,
you	don't	have	them.

Another	advantage	of	admitting	to	beginning	writers	that	the	5
paragraph	essay	is	really	a	list	of	n	things	is	that	we	can	warn
them	about	this.	It	only	lets	you	experience	the	defining
characteristic	of	essay	writing	on	a	small	scale:	in	thoughts	of	a
sentence	or	two.	And	it's	particularly	dangerous	that	the	5
paragraph	essay	buries	the	list	of	n	things	within	something	that
looks	like	a	more	sophisticated	type	of	essay.	If	you	don't	know
you're	using	this	form,	you	don't	know	you	need	to	escape	it.

Notes

[1]	Articles	of	this	type	are	also	startlingly	popular	on	Delicious,
but	I	think	that's	because	delicious/popular	is	driven	by
bookmarking,	not	because	Delicious	users	are	stupid.	Delicious
users	are	collectors,	and	a	list	of	n	things	seems	particularly
collectible	because	it's	a	collection	itself.

[2]	Most	"word	problems"	in	school	math	textbooks	are	similarly
misleading.	They	look	superficially	like	the	application	of	math	to
real	problems,	but	they're	not.	So	if	anything	they	reinforce	the
impression	that	math	is	merely	a	complicated	but	pointless
collection	of	stuff	to	be	memorized.

http://delicious.com/popular

	

Post-Medium	Publishing
September	2009

Publishers	of	all	types,	from	news	to	music,	are	unhappy	that
consumers	won't	pay	for	content	anymore.	At	least,	that's	how
they	see	it.

In	fact	consumers	never	really	were	paying	for	content,	and
publishers	weren't	really	selling	it	either.	If	the	content	was	what
they	were	selling,	why	has	the	price	of	books	or	music	or	movies
always	depended	mostly	on	the	format?	Why	didn't	better
content	cost	more?	[1]

A	copy	of	Time	costs	$5	for	58	pages,	or	8.6	cents	a	page.	The
Economist	costs	$7	for	86	pages,	or	8.1	cents	a	page.	Better
journalism	is	actually	slightly	cheaper.

Almost	every	form	of	publishing	has	been	organized	as	if	the
medium	was	what	they	were	selling,	and	the	content	was
irrelevant.	Book	publishers,	for	example,	set	prices	based	on	the
cost	of	producing	and	distributing	books.	They	treat	the	words
printed	in	the	book	the	same	way	a	textile	manufacturer	treats
the	patterns	printed	on	its	fabrics.

Economically,	the	print	media	are	in	the	business	of	marking	up
paper.	We	can	all	imagine	an	old-style	editor	getting	a	scoop	and
saying	"this	will	sell	a	lot	of	papers!"	Cross	out	that	final	S	and
you're	describing	their	business	model.	The	reason	they	make
less	money	now	is	that	people	don't	need	as	much	paper.

A	few	months	ago	I	ran	into	a	friend	in	a	cafe.	I	had	a	copy	of	the
New	York	Times,	which	I	still	occasionally	buy	on	weekends.	As	I
was	leaving	I	offered	it	to	him,	as	I've	done	countless	times
before	in	the	same	situation.	But	this	time	something	new
happened.	I	felt	that	sheepish	feeling	you	get	when	you	offer
someone	something	worthless.	"Do	you,	er,	want	a	printout	of

#f1n

yesterday's	news?"	I	asked.	(He	didn't.)

Now	that	the	medium	is	evaporating,	publishers	have	nothing	left
to	sell.	Some	seem	to	think	they're	going	to	sell	content—that
they	were	always	in	the	content	business,	really.	But	they
weren't,	and	it's	unclear	whether	anyone	could	be.

Selling

There	have	always	been	people	in	the	business	of	selling
information,	but	that	has	historically	been	a	distinct	business
from	publishing.	And	the	business	of	selling	information	to
consumers	has	always	been	a	marginal	one.	When	I	was	a	kid
there	were	people	who	used	to	sell	newsletters	containing	stock
tips,	printed	on	colored	paper	that	made	them	hard	for	the
copiers	of	the	day	to	reproduce.	That	is	a	different	world,	both
culturally	and	economically,	from	the	one	publishers	currently
inhabit.

People	will	pay	for	information	they	think	they	can	make	money
from.	That's	why	they	paid	for	those	stock	tip	newsletters,	and
why	companies	pay	now	for	Bloomberg	terminals	and	Economist
Intelligence	Unit	reports.	But	will	people	pay	for	information
otherwise?	History	offers	little	encouragement.

If	audiences	were	willing	to	pay	more	for	better	content,	why
wasn't	anyone	already	selling	it	to	them?	There	was	no	reason
you	couldn't	have	done	that	in	the	era	of	physical	media.	So	were
the	print	media	and	the	music	labels	simply	overlooking	this
opportunity?	Or	is	it,	rather,	nonexistent?

What	about	iTunes?	Doesn't	that	show	people	will	pay	for
content?	Well,	not	really.	iTunes	is	more	of	a	tollbooth	than	a
store.	Apple	controls	the	default	path	onto	the	iPod.	They	offer	a
convenient	list	of	songs,	and	whenever	you	choose	one	they	ding
your	credit	card	for	a	small	amount,	just	below	the	threshold	of
attention.	Basically,	iTunes	makes	money	by	taxing	people,	not
selling	them	stuff.	You	can	only	do	that	if	you	own	the	channel,
and	even	then	you	don't	make	much	from	it,	because	a	toll	has	to
be	ignorable	to	work.	Once	a	toll	becomes	painful,	people	start	to
find	ways	around	it,	and	that's	pretty	easy	with	digital	content.

The	situation	is	much	the	same	with	digital	books.	Whoever
controls	the	device	sets	the	terms.	It's	in	their	interest	for
content	to	be	as	cheap	as	possible,	and	since	they	own	the
channel,	there's	a	lot	they	can	do	to	drive	prices	down.	Prices
will	fall	even	further	once	writers	realize	they	don't	need
publishers.	Getting	a	book	printed	and	distributed	is	a	daunting
prospect	for	a	writer,	but	most	can	upload	a	file.

Is	software	a	counterexample?	People	pay	a	lot	for	desktop
software,	and	that's	just	information.	True,	but	I	don't	think
publishers	can	learn	much	from	software.	Software	companies
can	charge	a	lot	because	(a)	many	of	the	customers	are
businesses,	who	get	in	trouble	if	they	use	pirated	versions,	and
(b)	though	in	form	merely	information,	software	is	treated	by
both	maker	and	purchaser	as	a	different	type	of	thing	from	a
song	or	an	article.	A	Photoshop	user	needs	Photoshop	in	a	way
that	no	one	needs	a	particular	song	or	article.

That's	why	there's	a	separate	word,	"content,"	for	information
that's	not	software.	Software	is	a	different	business.	Software
and	content	blur	together	in	some	of	the	most	lightweight
software,	like	casual	games.	But	those	are	usually	free.	To	make
money	the	way	software	companies	do,	publishers	would	have	to
become	software	companies,	and	being	publishers	gives	them	no
particular	head	start	in	that	domain.	[2]

The	most	promising	countertrend	is	the	premium	cable	channel.
People	still	pay	for	those.	But	broadcasting	isn't	publishing:
you're	not	selling	a	copy	of	something.	That's	one	reason	the
movie	business	hasn't	seen	their	revenues	decline	the	way	the
news	and	music	businesses	have.	They	only	have	one	foot	in
publishing.

To	the	extent	the	movie	business	can	avoid	becoming	publishers,
they	may	avoid	publishing's	problems.	But	there	are	limits	to	how
well	they'll	be	able	to	do	that.	Once	publishing—giving	people
copies—becomes	the	most	natural	way	of	distributing	your
content,	it	probably	doesn't	work	to	stick	to	old	forms	of
distribution	just	because	you	make	more	that	way.	If	free	copies
of	your	content	are	available	online,	then	you're	competing	with

http://www.bsa.org/country/News%20and%20Events/News%20Archives/en/2009/en-08312009-mueller.aspx?sc_lang=en
#f2n

publishing's	form	of	distribution,	and	that's	just	as	bad	as	being	a
publisher.

Apparently	some	people	in	the	music	business	hope	to
retroactively	convert	it	away	from	publishing,	by	getting	listeners
to	pay	for	subscriptions.	It	seems	unlikely	that	will	work	if	they're
just	streaming	the	same	files	you	can	get	as	mp3s.

Next

What	happens	to	publishing	if	you	can't	sell	content?	You	have
two	choices:	give	it	away	and	make	money	from	it	indirectly,	or
find	ways	to	embody	it	in	things	people	will	pay	for.

The	first	is	probably	the	future	of	most	current	media.	Give	music
away	and	make	money	from	concerts	and	t-shirts.	Publish
articles	for	free	and	make	money	from	one	of	a	dozen
permutations	of	advertising.	Both	publishers	and	investors	are
down	on	advertising	at	the	moment,	but	it	has	more	potential
than	they	realize.

I'm	not	claiming	that	potential	will	be	realized	by	the	existing
players.	The	optimal	ways	to	make	money	from	the	written	word
probably	require	different	words	written	by	different	people.

It's	harder	to	say	what	will	happen	to	movies.	They	could	evolve
into	ads.	Or	they	could	return	to	their	roots	and	make	going	to
the	theater	a	treat.	If	they	made	the	experience	good	enough,
audiences	might	start	to	prefer	it	to	watching	pirated	movies	at
home.	[3]	Or	maybe	the	movie	business	will	dry	up,	and	the
people	working	in	it	will	go	to	work	for	game	developers.

I	don't	know	how	big	embodying	information	in	physical	form	will
be.	It	may	be	surprisingly	large;	people	overvalue	physical	stuff.
There	should	remain	some	market	for	printed	books,	at	least.

I	can	see	the	evolution	of	book	publishing	in	the	books	on	my
shelves.	Clearly	at	some	point	in	the	1960s	the	big	publishing
houses	started	to	ask:	how	cheaply	can	we	make	books	before
people	refuse	to	buy	them?	The	answer	turned	out	to	be	one	step
short	of	phonebooks.	As	long	as	it	isn't	floppy,	consumers	still

http://thesixtyone.com/
http://ycombinator.com/rfs1.html
#f3n
stuff.html

perceive	it	as	a	book.

That	worked	as	long	as	buying	printed	books	was	the	only	way	to
read	them.	If	printed	books	are	optional,	publishers	will	have	to
work	harder	to	entice	people	to	buy	them.	There	should	be	some
market,	but	it's	hard	to	foresee	how	big,	because	its	size	will
depend	not	on	macro	trends	like	the	amount	people	read,	but	on
the	ingenuity	of	individual	publishers.	[4]

Some	magazines	may	thrive	by	focusing	on	the	magazine	as	a
physical	object.	Fashion	magazines	could	be	made	lush	in	a	way
that	would	be	hard	to	match	digitally,	at	least	for	a	while.	But	this
is	probably	not	an	option	for	most	magazines.

I	don't	know	exactly	what	the	future	will	look	like,	but	I'm	not	too
worried	about	it.	This	sort	of	change	tends	to	create	as	many
good	things	as	it	kills.	Indeed,	the	really	interesting	question	is
not	what	will	happen	to	existing	forms,	but	what	new	forms	will
appear.

The	reason	I've	been	writing	about	existing	forms	is	that	I	don't
know	what	new	forms	will	appear.	But	though	I	can't	predict
specific	winners,	I	can	offer	a	recipe	for	recognizing	them.	When
you	see	something	that's	taking	advantage	of	new	technology	to
give	people	something	they	want	that	they	couldn't	have	before,
you're	probably	looking	at	a	winner.	And	when	you	see	something
that's	merely	reacting	to	new	technology	in	an	attempt	to
preserve	some	existing	source	of	revenue,	you're	probably
looking	at	a	loser.

Notes

[1]	I	don't	like	the	word	"content"	and	tried	for	a	while	to	avoid
using	it,	but	I	have	to	admit	there's	no	other	word	that	means	the
right	thing.	"Information"	is	too	general.

Ironically,	the	main	reason	I	don't	like	"content"	is	the	thesis	of

#f4n

this	essay.	The	word	suggests	an	undifferentiated	slurry,	but
economically	that's	how	both	publishers	and	audiences	treat	it.
Content	is	information	you	don't	need.

[2]	Some	types	of	publishers	would	be	at	a	disadvantage	trying	to
enter	the	software	business.	Record	labels,	for	example,	would
probably	find	it	more	natural	to	expand	into	casinos	than
software,	because	the	kind	of	people	who	run	them	would	be
more	at	home	at	the	mafia	end	of	the	business	spectrum	than	the
don't-be-evil	end.

[3]	I	never	watch	movies	in	theaters	anymore.	The	tipping	point
for	me	was	the	ads	they	show	first.

[4]	Unfortunately,	making	physically	nice	books	will	only	be	a
niche	within	a	niche.	Publishers	are	more	likely	to	resort	to
expedients	like	selling	autographed	copies,	or	editions	with	the
buyer's	picture	on	the	cover.

Thanks	to	Michael	Arrington,	Trevor	Blackwell,	Steven	Levy,
Robert	Morris,	and	Geoff	Ralston	for	reading	drafts	of	this.

	

Persuade	xor	Discover
September	2009

When	meeting	people	you	don't	know	very	well,	the	convention	is
to	seem	extra	friendly.	You	smile	and	say	"pleased	to	meet	you,"
whether	you	are	or	not.	There's	nothing	dishonest	about	this.
Everyone	knows	that	these	little	social	lies	aren't	meant	to	be
taken	literally,	just	as	everyone	knows	that	"Can	you	pass	the
salt?"	is	only	grammatically	a	question.

I'm	perfectly	willing	to	smile	and	say	"pleased	to	meet	you"	when
meeting	new	people.	But	there	is	another	set	of	customs	for
being	ingratiating	in	print	that	are	not	so	harmless.

The	reason	there's	a	convention	of	being	ingratiating	in	print	is
that	most	essays	are	written	to	persuade.	And	as	any	politician
could	tell	you,	the	way	to	persuade	people	is	not	just	to	baldly
state	the	facts.	You	have	to	add	a	spoonful	of	sugar	to	make	the
medicine	go	down.

For	example,	a	politician	announcing	the	cancellation	of	a
government	program	will	not	merely	say	"The	program	is
canceled."	That	would	seem	offensively	curt.	Instead	he'll	spend
most	of	his	time	talking	about	the	noble	effort	made	by	the
people	who	worked	on	it.

The	reason	these	conventions	are	more	dangerous	is	that	they
interact	with	the	ideas.	Saying	"pleased	to	meet	you"	is	just
something	you	prepend	to	a	conversation,	but	the	sort	of	spin
added	by	politicians	is	woven	through	it.	We're	starting	to	move
from	social	lies	to	real	lies.

Here's	an	example	of	a	paragraph	from	an	essay	I	wrote	about
labor	unions.	As	written,	it	tends	to	offend	people	who	like
unions.

People	who	think	the	labor	movement	was	the

unions.html

creation	of	heroic	union	organizers	have	a	problem
to	explain:	why	are	unions	shrinking	now?	The	best
they	can	do	is	fall	back	on	the	default	explanation	of
people	living	in	fallen	civilizations.	Our	ancestors
were	giants.	The	workers	of	the	early	twentieth
century	must	have	had	a	moral	courage	that's
lacking	today.

Now	here's	the	same	paragraph	rewritten	to	please	instead	of
offending	them:

Early	union	organizers	made	heroic	sacrifices	to
improve	conditions	for	workers.	But	though	labor
unions	are	shrinking	now,	it's	not	because	present
union	leaders	are	any	less	courageous.	An	employer
couldn't	get	away	with	hiring	thugs	to	beat	up	union
leaders	today,	but	if	they	did,	I	see	no	reason	to
believe	today's	union	leaders	would	shrink	from	the
challenge.	So	I	think	it	would	be	a	mistake	to
attribute	the	decline	of	unions	to	some	kind	of
decline	in	the	people	who	run	them.	Early	union
leaders	were	heroic,	certainly,	but	we	should	not
suppose	that	if	unions	have	declined,	it's	because
present	union	leaders	are	somehow	inferior.	The
cause	must	be	external.	[1]

It	makes	the	same	point:	that	it	can't	have	been	the	personal
qualities	of	early	union	organizers	that	made	unions	successful,
but	must	have	been	some	external	factor,	or	otherwise	present-
day	union	leaders	would	have	to	be	inferior	people.	But	written
this	way	it	seems	like	a	defense	of	present-day	union	organizers
rather	than	an	attack	on	early	ones.	That	makes	it	more
persuasive	to	people	who	like	unions,	because	it	seems
sympathetic	to	their	cause.

I	believe	everything	I	wrote	in	the	second	version.	Early	union
leaders	did	make	heroic	sacrifices.	And	present	union	leaders
probably	would	rise	to	the	occasion	if	necessary.	People	tend	to;
I'm	skeptical	about	the	idea	of	"the	greatest	generation."	[2]

If	I	believe	everything	I	said	in	the	second	version,	why	didn't	I

#f1n
#f2n

write	it	that	way?	Why	offend	people	needlessly?

Because	I'd	rather	offend	people	than	pander	to	them,	and	if	you
write	about	controversial	topics	you	have	to	choose	one	or	the
other.	The	degree	of	courage	of	past	or	present	union	leaders	is
beside	the	point;	all	that	matters	for	the	argument	is	that	they're
the	same.	But	if	you	want	to	please	people	who	are	mistaken,	you
can't	simply	tell	the	truth.	You're	always	going	to	have	to	add
some	sort	of	padding	to	protect	their	misconceptions	from
bumping	against	reality.

Most	writers	do.	Most	writers	write	to	persuade,	if	only	out	of
habit	or	politeness.	But	I	don't	write	to	persuade;	I	write	to	figure
out.	I	write	to	persuade	a	hypothetical	perfectly	unbiased	reader.

Since	the	custom	is	to	write	to	persuade	the	actual	reader,
someone	who	doesn't	will	seem	arrogant.	In	fact,	worse	than
arrogant:	since	readers	are	used	to	essays	that	try	to	please
someone,	an	essay	that	displeases	one	side	in	a	dispute	reads	as
an	attempt	to	pander	to	the	other.	To	a	lot	of	pro-union	readers,
the	first	paragraph	sounds	like	the	sort	of	thing	a	right-wing
radio	talk	show	host	would	say	to	stir	up	his	followers.	But	it's
not.	Something	that	curtly	contradicts	one's	beliefs	can	be	hard
to	distinguish	from	a	partisan	attack	on	them,	but	though	they
can	end	up	in	the	same	place	they	come	from	different	sources.

Would	it	be	so	bad	to	add	a	few	extra	words,	to	make	people	feel
better?	Maybe	not.	Maybe	I'm	excessively	attached	to
conciseness.	I	write	code	the	same	way	I	write	essays,	making
pass	after	pass	looking	for	anything	I	can	cut.	But	I	have	a
legitimate	reason	for	doing	this.	You	don't	know	what	the	ideas
are	until	you	get	them	down	to	the	fewest	words.	[3]

The	danger	of	the	second	paragraph	is	not	merely	that	it's	longer.
It's	that	you	start	to	lie	to	yourself.	The	ideas	start	to	get	mixed
together	with	the	spin	you've	added	to	get	them	past	the	readers'
misconceptions.

I	think	the	goal	of	an	essay	should	be	to	discover	surprising
things.	That's	my	goal,	at	least.	And	most	surprising	means	most
different	from	what	people	currently	believe.	So	writing	to

power.html
#f3n
essay.html

persuade	and	writing	to	discover	are	diametrically	opposed.	The
more	your	conclusions	disagree	with	readers'	present	beliefs,	the
more	effort	you'll	have	to	expend	on	selling	your	ideas	rather
than	having	them.	As	you	accelerate,	this	drag	increases,	till
eventually	you	reach	a	point	where	100%	of	your	energy	is
devoted	to	overcoming	it	and	you	can't	go	any	faster.

It's	hard	enough	to	overcome	one's	own	misconceptions	without
having	to	think	about	how	to	get	the	resulting	ideas	past	other
people's.	I	worry	that	if	I	wrote	to	persuade,	I'd	start	to	shy	away
unconsciously	from	ideas	I	knew	would	be	hard	to	sell.	When	I
notice	something	surprising,	it's	usually	very	faint	at	first.
There's	nothing	more	than	a	slight	stirring	of	discomfort.	I	don't
want	anything	to	get	in	the	way	of	noticing	it	consciously.

Notes

[1]	I	had	a	strange	feeling	of	being	back	in	high	school	writing
this.	To	get	a	good	grade	you	had	to	both	write	the	sort	of	pious
crap	you	were	expected	to,	but	also	seem	to	be	writing	with
conviction.	The	solution	was	a	kind	of	method	acting.	It	was
revoltingly	familiar	to	slip	back	into	it.

[2]	Exercise	for	the	reader:	rephrase	that	thought	to	please	the
same	people	the	first	version	would	offend.

[3]	Come	to	think	of	it,	there	is	one	way	in	which	I	deliberately
pander	to	readers,	because	it	doesn't	change	the	number	of
words:	I	switch	person.	This	flattering	distinction	seems	so
natural	to	the	average	reader	that	they	probably	don't	notice
even	when	I	switch	in	mid-sentence,	though	you	tend	to	notice
when	it's	done	as	conspicuously	as	this.

Thanks	to	Jessica	Livingston	and	Robert	Morris	for	reading	drafts
of	this.

Note:	An	earlier	version	of	this	essay	began	by	talking	about	why
people	dislike	Michael	Arrington.	I	now	believe	that	was
mistaken,	and	that	most	people	don't	dislike	him	for	the	same
reason	I	did	when	I	first	met	him,	but	simply	because	he	writes
about	controversial	things.

	

What	Startups	Are	Really	Like
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

October	2009

(This	essay	is	derived	from	a	talk	at	the	2009	Startup	School.)

I	wasn't	sure	what	to	talk	about	at	Startup	School,	so	I	decided	to
ask	the	founders	of	the	startups	we'd	funded.	What	hadn't	I
written	about	yet?

I'm	in	the	unusual	position	of	being	able	to	test	the	essays	I	write
about	startups.	I	hope	the	ones	on	other	topics	are	right,	but	I
have	no	way	to	test	them.	The	ones	on	startups	get	tested	by
about	70	people	every	6	months.

So	I	sent	all	the	founders	an	email	asking	what	surprised	them
about	starting	a	startup.	This	amounts	to	asking	what	I	got
wrong,	because	if	I'd	explained	things	well	enough,	nothing
should	have	surprised	them.

I'm	proud	to	report	I	got	one	response	saying:

What	surprised	me	the	most	is	that	everything	was
actually	fairly	predictable!

The	bad	news	is	that	I	got	over	100	other	responses	listing	the
surprises	they	encountered.

There	were	very	clear	patterns	in	the	responses;	it	was
remarkable	how	often	several	people	had	been	surprised	by
exactly	the	same	thing.	These	were	the	biggest:

1.	Be	Careful	with	Cofounders

This	was	the	surprise	mentioned	by	the	most	founders.	There
were	two	types	of	responses:	that	you	have	to	be	careful	who	you

http://ycombinator.com/apply.html

pick	as	a	cofounder,	and	that	you	have	to	work	hard	to	maintain
your	relationship.

What	people	wished	they'd	paid	more	attention	to	when	choosing
cofounders	was	character	and	commitment,	not	ability.	This	was
particularly	true	with	startups	that	failed.	The	lesson:	don't	pick
cofounders	who	will	flake.

Here's	a	typical	reponse:

You	haven't	seen	someone's	true	colors	unless	you've
worked	with	them	on	a	startup.

The	reason	character	is	so	important	is	that	it's	tested	more
severely	than	in	most	other	situations.	One	founder	said	explicitly
that	the	relationship	between	founders	was	more	important	than
ability:

I	would	rather	cofound	a	startup	with	a	friend	than	a
stranger	with	higher	output.	Startups	are	so	hard
and	emotional	that	the	bonds	and	emotional	and
social	support	that	come	with	friendship	outweigh
the	extra	output	lost.

We	learned	this	lesson	a	long	time	ago.	If	you	look	at	the	YC
application,	there	are	more	questions	about	the	commitment	and
relationship	of	the	founders	than	their	ability.

Founders	of	successful	startups	talked	less	about	choosing
cofounders	and	more	about	how	hard	they	worked	to	maintain
their	relationship.

One	thing	that	surprised	me	is	how	the	relationship
of	startup	founders	goes	from	a	friendship	to	a
marriage.	My	relationship	with	my	cofounder	went
from	just	being	friends	to	seeing	each	other	all	the
time,	fretting	over	the	finances	and	cleaning	up	shit.
And	the	startup	was	our	baby.	I	summed	it	up	once
like	this:	"It's	like	we're	married,	but	we're	not
fucking."

Several	people	used	that	word	"married."	It's	a	far	more	intense

relationship	than	you	usually	see	between	coworkers—partly
because	the	stresses	are	so	much	greater,	and	partly	because	at
first	the	founders	are	the	whole	company.	So	this	relationship	has
to	be	built	of	top	quality	materials	and	carefully	maintained.	It's
the	basis	of	everything.

2.	Startups	Take	Over	Your	Life

Just	as	the	relationship	between	cofounders	is	more	intense	than
it	usually	is	between	coworkers,	so	is	the	relationship	between
the	founders	and	the	company.	Running	a	startup	is	not	like
having	a	job	or	being	a	student,	because	it	never	stops.	This	is	so
foreign	to	most	people's	experience	that	they	don't	get	it	till	it
happens.	[1]

I	didn't	realize	I	would	spend	almost	every	waking
moment	either	working	or	thinking	about	our
startup.	You	enter	a	whole	different	way	of	life	when
it's	your	company	vs.	working	for	someone	else's
company.

It's	exacerbated	by	the	fast	pace	of	startups,	which	makes	it
seem	like	time	slows	down:

I	think	the	thing	that's	been	most	surprising	to	me	is
how	one's	perspective	on	time	shifts.	Working	on	our
startup,	I	remember	time	seeming	to	stretch	out,	so
that	a	month	was	a	huge	interval.

In	the	best	case,	total	immersion	can	be	exciting:

It's	surprising	how	much	you	become	consumed	by
your	startup,	in	that	you	think	about	it	day	and	night,
but	never	once	does	it	feel	like	"work."

Though	I	have	to	say,	that	quote	is	from	someone	we	funded	this
summer.	In	a	couple	years	he	may	not	sound	so	chipper.

3.	It's	an	Emotional	Roller-coaster

This	was	another	one	lots	of	people	were	surprised	about.	The
ups	and	downs	were	more	extreme	than	they	were	prepared	for.

#f1n

In	a	startup,	things	seem	great	one	moment	and	hopeless	the
next.	And	by	next,	I	mean	a	couple	hours	later.

The	emotional	ups	and	downs	were	the	biggest
surprise	for	me.	One	day,	we'd	think	of	ourselves	as
the	next	Google	and	dream	of	buying	islands;	the
next,	we'd	be	pondering	how	to	let	our	loved	ones
know	of	our	utter	failure;	and	on	and	on.

The	hard	part,	obviously,	is	the	lows.	For	a	lot	of	founders	that
was	the	big	surprise:

How	hard	it	is	to	keep	everyone	motivated	during
rough	days	or	weeks,	i.e.	how	low	the	lows	can	be.

After	a	while,	if	you	don't	have	significant	success	to	cheer	you
up,	it	wears	you	out:

Your	most	basic	advice	to	founders	is	"just	don't	die,"
but	the	energy	to	keep	a	company	going	in	lieu	of
unburdening	success	isn't	free;	it	is	siphoned	from
the	founders	themselves.

There's	a	limit	to	how	much	you	can	take.	If	you	get	to	the	point
where	you	can't	keep	working	anymore,	it's	not	the	end	of	the
world.	Plenty	of	famous	founders	have	had	some	failures	along
the	way.

4.	It	Can	Be	Fun

The	good	news	is,	the	highs	are	also	very	high.	Several	founders
said	what	surprised	them	most	about	doing	a	startup	was	how
fun	it	was:

I	think	you've	left	out	just	how	fun	it	is	to	do	a
startup.	I	am	more	fulfilled	in	my	work	than	pretty
much	any	of	my	friends	who	did	not	start	companies.

What	they	like	most	is	the	freedom:

I'm	surprised	by	how	much	better	it	feels	to	be
working	on	something	that	is	challenging	and

creative,	something	I	believe	in,	as	opposed	to	the
hired-gun	stuff	I	was	doing	before.	I	knew	it	would
feel	better;	what's	surprising	is	how	much	better.

Frankly,	though,	if	I've	misled	people	here,	I'm	not	eager	to	fix
that.	I'd	rather	have	everyone	think	starting	a	startup	is	grim	and
hard	than	have	founders	go	into	it	expecting	it	to	be	fun,	and	a
few	months	later	saying	"This	is	supposed	to	be	fun?	Are	you
kidding?"

The	truth	is,	it	wouldn't	be	fun	for	most	people.	A	lot	of	what	we
try	to	do	in	the	application	process	is	to	weed	out	the	people	who
wouldn't	like	it,	both	for	our	sake	and	theirs.

The	best	way	to	put	it	might	be	that	starting	a	startup	is	fun	the
way	a	survivalist	training	course	would	be	fun,	if	you're	into	that
sort	of	thing.	Which	is	to	say,	not	at	all,	if	you're	not.

5.	Persistence	Is	the	Key

A	lot	of	founders	were	surprised	how	important	persistence	was
in	startups.	It	was	both	a	negative	and	a	positive	surprise:	they
were	surprised	both	by	the	degree	of	persistence	required

Everyone	said	how	determined	and	resilient	you
must	be,	but	going	through	it	made	me	realize	that
the	determination	required	was	still	understated.

and	also	by	the	degree	to	which	persistence	alone	was	able	to
dissolve	obstacles:

If	you	are	persistent,	even	problems	that	seem	out	of
your	control	(i.e.	immigration)	seem	to	work
themselves	out.

Several	founders	mentioned	specifically	how	much	more
important	persistence	was	than	intelligence.

I've	been	surprised	again	and	again	by	just	how
much	more	important	persistence	is	than	raw
intelligence.

This	applies	not	just	to	intelligence	but	to	ability	in	general,	and
that's	why	so	many	people	said	character	was	more	important	in
choosing	cofounders.

6.	Think	Long-Term

You	need	persistence	because	everything	takes	longer	than	you
expect.	A	lot	of	people	were	surprised	by	that.

I'm	continually	surprised	by	how	long	everything	can
take.	Assuming	your	product	doesn't	experience	the
explosive	growth	that	very	few	products	do,
everything	from	development	to	dealmaking
(especially	dealmaking)	seems	to	take	2-3x	longer
than	I	always	imagine.

One	reason	founders	are	surprised	is	that	because	they	work
fast,	they	expect	everyone	else	to.	There's	a	shocking	amount	of
shear	stress	at	every	point	where	a	startup	touches	a	more
bureaucratic	organization,	like	a	big	company	or	a	VC	fund.
That's	why	fundraising	and	the	enterprise	market	kill	and	maim
so	many	startups.	[2]

But	I	think	the	reason	most	founders	are	surprised	by	how	long	it
takes	is	that	they're	overconfident.	They	think	they're	going	to	be
an	instant	success,	like	YouTube	or	Facebook.	You	tell	them	only
1	out	of	100	successful	startups	has	a	trajectory	like	that,	and
they	all	think	"we're	going	to	be	that	1."

Maybe	they'll	listen	to	one	of	the	more	successful	founders:

The	top	thing	I	didn't	understand	before	going	into	it
is	that	persistence	is	the	name	of	the	game.	For	the
vast	majority	of	startups	that	become	successful,	it's
going	to	be	a	really	long	journey,	at	least	3	years	and
probably	5+.

There	is	a	positive	side	to	thinking	longer-term.	It's	not	just	that
you	have	to	resign	yourself	to	everything	taking	longer	than	it
should.	If	you	work	patiently	it's	less	stressful,	and	you	can	do
better	work:

#f2n

Because	we're	relaxed,	it's	so	much	easier	to	have
fun	doing	what	we	do.	Gone	is	the	awkward	nervous
energy	fueled	by	the	desperate	need	to	not	fail
guiding	our	actions.	We	can	concentrate	on	doing
what's	best	for	our	company,	product,	employees	and
customers.

That's	why	things	get	so	much	better	when	you	hit	ramen
profitability.	You	can	shift	into	a	different	mode	of	working.

7.	Lots	of	Little	Things

We	often	emphasize	how	rarely	startups	win	simply	because	they
hit	on	some	magic	idea.	I	think	founders	have	now	gotten	that
into	their	heads.	But	a	lot	were	surprised	to	find	this	also	applies
within	startups.	You	have	to	do	lots	of	different	things:

It's	much	more	of	a	grind	than	glamorous.	A
timeslice	selected	at	random	would	more	likely	find
me	tracking	down	a	weird	DLL	loading	bug	on
Swedish	Windows,	or	tracking	down	a	bug	in	the
financial	model	Excel	spreadsheet	the	night	before	a
board	meeting,	rather	than	having	brilliant	flashes	of
strategic	insight.

Most	hacker-founders	would	like	to	spend	all	their	time
programming.	You	won't	get	to,	unless	you	fail.	Which	can	be
transformed	into:	If	you	spend	all	your	time	programming,	you
will	fail.

The	principle	extends	even	into	programming.	There	is	rarely	a
single	brilliant	hack	that	ensures	success:

I	learnt	never	to	bet	on	any	one	feature	or	deal	or
anything	to	bring	you	success.	It	is	never	a	single
thing.	Everything	is	just	incremental	and	you	just
have	to	keep	doing	lots	of	those	things	until	you
strike	something.

Even	in	the	rare	cases	where	a	clever	hack	makes	your	fortune,
you	probably	won't	know	till	later:

There	is	no	such	thing	as	a	killer	feature.	Or	at	least
you	won't	know	what	it	is.

So	the	best	strategy	is	to	try	lots	of	different	things.	The	reason
not	to	put	all	your	eggs	in	one	basket	is	not	the	usual	one,	which
applies	even	when	you	know	which	basket	is	best.	In	a	startup
you	don't	even	know	that.

8.	Start	with	Something	Minimal

Lots	of	founders	mentioned	how	important	it	was	to	launch	with
the	simplest	possible	thing.	By	this	point	everyone	knows	you
should	release	fast	and	iterate.	It's	practically	a	mantra	at	YC.
But	even	so	a	lot	of	people	seem	to	have	been	burned	by	not
doing	it:

Build	the	absolute	smallest	thing	that	can	be
considered	a	complete	application	and	ship	it.

Why	do	people	take	too	long	on	the	first	version?	Pride,	mostly.
They	hate	to	release	something	that	could	be	better.	They	worry
what	people	will	say	about	them.	But	you	have	to	overcome	this:

Doing	something	"simple"	at	first	glance	does	not
mean	you	aren't	doing	something	meaningful,
defensible,	or	valuable.

Don't	worry	what	people	will	say.	If	your	first	version	is	so
impressive	that	trolls	don't	make	fun	of	it,	you	waited	too	long	to
launch.	[3]

One	founder	said	this	should	be	your	approach	to	all
programming,	not	just	startups,	and	I	tend	to	agree.

Now,	when	coding,	I	try	to	think	"How	can	I	write
this	such	that	if	people	saw	my	code,	they'd	be
amazed	at	how	little	there	is	and	how	little	it	does?"

Over-engineering	is	poison.	It's	not	like	doing	extra	work	for
extra	credit.	It's	more	like	telling	a	lie	that	you	then	have	to
remember	so	you	don't	contradict	it.

#f3n

9.	Engage	Users

Product	development	is	a	conversation	with	the	user	that	doesn't
really	start	till	you	launch.	Before	you	launch,	you're	like	a	police
artist	before	he's	shown	the	first	version	of	his	sketch	to	the
witness.

It's	so	important	to	launch	fast	that	it	may	be	better	to	think	of
your	initial	version	not	as	a	product,	but	as	a	trick	for	getting
users	to	start	talking	to	you.

I	learned	to	think	about	the	initial	stages	of	a	startup
as	a	giant	experiment.	All	products	should	be
considered	experiments,	and	those	that	have	a
market	show	promising	results	extremely	quickly.

Once	you	start	talking	to	users,	I	guarantee	you'll	be	surprised	by
what	they	tell	you.

When	you	let	customers	tell	you	what	they're	after,
they	will	often	reveal	amazing	details	about	what
they	find	valuable	as	well	what	they're	willing	to	pay
for.

The	surprise	is	generally	positive	as	well	as	negative.	They	won't
like	what	you've	built,	but	there	will	be	other	things	they	would
like	that	would	be	trivially	easy	to	implement.	It's	not	till	you
start	the	conversation	by	launching	the	wrong	thing	that	they	can
express	(or	perhaps	even	realize)	what	they're	looking	for.

10.	Change	Your	Idea

To	benefit	from	engaging	with	users	you	have	to	be	willing	to
change	your	idea.	We've	always	encouraged	founders	to	see	a
startup	idea	as	a	hypothesis	rather	than	a	blueprint.	And	yet
they're	still	surprised	how	well	it	works	to	change	the	idea.

Normally	if	you	complain	about	something	being
hard,	the	general	advice	is	to	work	harder.	With	a
startup,	I	think	you	should	find	a	problem	that's	easy
for	you	to	solve.	Optimizing	in	solution-space	is
familiar	and	straightforward,	but	you	can	make

enormous	gains	playing	around	in	problem-space.

Whereas	mere	determination,	without	flexibility,	is	a	greedy
algorithm	that	may	get	you	nothing	more	than	a	mediocre	local
maximum:

When	someone	is	determined,	there's	still	a	danger
that	they'll	follow	a	long,	hard	path	that	ultimately
leads	nowhere.

You	want	to	push	forward,	but	at	the	same	time	twist	and	turn	to
find	the	most	promising	path.	One	founder	put	it	very	succinctly:

Fast	iteration	is	the	key	to	success.

One	reason	this	advice	is	so	hard	to	follow	is	that	people	don't
realize	how	hard	it	is	to	judge	startup	ideas,	particularly	their
own.	Experienced	founders	learn	to	keep	an	open	mind:

Now	I	don't	laugh	at	ideas	anymore,	because	I
realized	how	terrible	I	was	at	knowing	if	they	were
good	or	not.

You	can	never	tell	what	will	work.	You	just	have	to	do	whatever
seems	best	at	each	point.	We	do	this	with	YC	itself.	We	still	don't
know	if	it	will	work,	but	it	seems	like	a	decent	hypothesis.

11.	Don't	Worry	about	Competitors

When	you	think	you've	got	a	great	idea,	it's	sort	of	like	having	a
guilty	conscience	about	something.	All	someone	has	to	do	is	look
at	you	funny,	and	you	think	"Oh	my	God,	they	know."

These	alarms	are	almost	always	false:

Companies	that	seemed	like	competitors	and	threats
at	first	glance	usually	never	were	when	you	really
looked	at	it.	Even	if	they	were	operating	in	the	same
area,	they	had	a	different	goal.

One	reason	people	overreact	to	competitors	is	that	they
overvalue	ideas.	If	ideas	really	were	the	key,	a	competitor	with
the	same	idea	would	be	a	real	threat.	But	it's	usually	execution

that	matters:

All	the	scares	induced	by	seeing	a	new	competitor
pop	up	are	forgotten	weeks	later.	It	always	comes
down	to	your	own	product	and	approach	to	the
market.

This	is	generally	true	even	if	competitors	get	lots	of	attention.

Competitors	riding	on	lots	of	good	blogger
perception	aren't	really	the	winners	and	can
disappear	from	the	map	quickly.	You	need	consumers
after	all.

Hype	doesn't	make	satisfied	users,	at	least	not	for	something	as
complicated	as	technology.

12.	It's	Hard	to	Get	Users

A	lot	of	founders	complained	about	how	hard	it	was	to	get	users,
though.

I	had	no	idea	how	much	time	and	effort	needed	to	go
into	attaining	users.

This	is	a	complicated	topic.	When	you	can't	get	users,	it's	hard	to
say	whether	the	problem	is	lack	of	exposure,	or	whether	the
product's	simply	bad.	Even	good	products	can	be	blocked	by
switching	or	integration	costs:

Getting	people	to	use	a	new	service	is	incredibly
difficult.	This	is	especially	true	for	a	service	that
other	companies	can	use,	because	it	requires	their
developers	to	do	work.	If	you're	small,	they	don't
think	it	is	urgent.	[4]

The	sharpest	criticism	of	YC	came	from	a	founder	who	said	we
didn't	focus	enough	on	customer	acquisition:

YC	preaches	"make	something	people	want"	as	an
engineering	task,	a	never	ending	stream	of	feature
after	feature	until	enough	people	are	happy	and	the
application	takes	off.	There's	very	little	focus	on	the

#f4n

cost	of	customer	acquisition.

This	may	be	true;	this	may	be	something	we	need	to	fix,
especially	for	applications	like	games.	If	you	make	something
where	the	challenges	are	mostly	technical,	you	can	rely	on	word
of	mouth,	like	Google	did.	One	founder	was	surprised	by	how
well	that	worked	for	him:

There	is	an	irrational	fear	that	no	one	will	buy	your
product.	But	if	you	work	hard	and	incrementally
make	it	better,	there	is	no	need	to	worry.

But	with	other	types	of	startups	you	may	win	less	by	features	and
more	by	deals	and	marketing.

13.	Expect	the	Worst	with	Deals

Deals	fall	through.	That's	a	constant	of	the	startup	world.
Startups	are	powerless,	and	good	startup	ideas	generally	seem
wrong.	So	everyone	is	nervous	about	closing	deals	with	you,	and
you	have	no	way	to	make	them.

This	is	particularly	true	with	investors:

In	retrospect,	it	would	have	been	much	better	if	we
had	operated	under	the	assumption	that	we	would
never	get	any	additional	outside	investment.	That
would	have	focused	us	on	finding	revenue	streams
early.

My	advice	is	generally	pessimistic.	Assume	you	won't	get	money,
and	if	someone	does	offer	you	any,	assume	you'll	never	get	any
more.

If	someone	offers	you	money,	take	it.	You	say	it	a	lot,
but	I	think	it	needs	even	more	emphasizing.	We	had
the	opportunity	to	raise	a	lot	more	money	than	we
did	last	year	and	I	wish	we	had.

Why	do	founders	ignore	me?	Mostly	because	they're	optimistic
by	nature.	The	mistake	is	to	be	optimistic	about	things	you	can't
control.	By	all	means	be	optimistic	about	your	ability	to	make

something	great.	But	you're	asking	for	trouble	if	you're	optimistic
about	big	companies	or	investors.

14.	Investors	Are	Clueless

A	lot	of	founders	mentioned	how	surprised	they	were	by	the
cluelessness	of	investors:

They	don't	even	know	about	the	stuff	they've
invested	in.	I	met	some	investors	that	had	invested	in
a	hardware	device	and	when	I	asked	them	to	demo
the	device	they	had	difficulty	switching	it	on.

Angels	are	a	bit	better	than	VCs,	because	they	usually	have
startup	experience	themselves:

VC	investors	don't	know	half	the	time	what	they	are
talking	about	and	are	years	behind	in	their	thinking.
A	few	were	great,	but	95%	of	the	investors	we	dealt
with	were	unprofessional,	didn't	seem	to	be	very
good	at	business	or	have	any	kind	of	creative	vision.
Angels	were	generally	much	better	to	talk	to.

Why	are	founders	surprised	that	VCs	are	clueless?	I	think	it's
because	they	seem	so	formidable.

The	reason	VCs	seem	formidable	is	that	it's	their	profession	to.
You	get	to	be	a	VC	by	convincing	asset	managers	to	trust	you
with	hundreds	of	millions	of	dollars.	How	do	you	do	that?	You
have	to	seem	confident,	and	you	have	to	seem	like	you
understand	technology.	[5]

15.	You	May	Have	to	Play	Games

Because	investors	are	so	bad	at	judging	you,	you	have	to	work
harder	than	you	should	at	selling	yourself.	One	founder	said	the
thing	that	surprised	him	most	was

The	degree	to	which	feigning	certitude	impressed
investors.

This	is	the	thing	that	has	surprised	me	most	about	YC	founders'

#f5n

experiences.	This	summer	we	invited	some	of	the	alumni	to	talk
to	the	new	startups	about	fundraising,	and	pretty	much	100%	of
their	advice	was	about	investor	psychology.	I	thought	I	was
cynical	about	VCs,	but	the	founders	were	much	more	cynical.

A	lot	of	what	startup	founders	do	is	just	posturing.	It
works.

VCs	themselves	have	no	idea	of	the	extent	to	which	the	startups
they	like	are	the	ones	that	are	best	at	selling	themselves	to	VCs.
[6]	It's	exactly	the	same	phenomenon	we	saw	a	step	earlier.	VCs
get	money	by	seeming	confident	to	LPs,	and	founders	get	money
by	seeming	confident	to	VCs.

16.	Luck	Is	a	Big	Factor

With	two	such	random	linkages	in	the	path	between	startups	and
money,	it	shouldn't	be	surprising	that	luck	is	a	big	factor	in	deals.
And	yet	a	lot	of	founders	are	surprised	by	it.

I	didn't	realize	how	much	of	a	role	luck	plays	and
how	much	is	outside	of	our	control.

If	you	think	about	famous	startups,	it's	pretty	clear	how	big	a	role
luck	plays.	Where	would	Microsoft	be	if	IBM	insisted	on	an
exclusive	license	for	DOS?

Why	are	founders	fooled	by	this?	Business	guys	probably	aren't,
but	hackers	are	used	to	a	world	where	skill	is	paramount,	and
you	get	what	you	deserve.

When	we	started	our	startup,	I	had	bought	the	hype
of	the	startup	founder	dream:	that	this	is	a	game	of
skill.	It	is,	in	some	ways.	Having	skill	is	valuable.	So
is	being	determined	as	all	hell.	But	being	lucky	is	the
critical	ingredient.

Actually	the	best	model	would	be	to	say	that	the	outcome	is	the
product	of	skill,	determination,	and	luck.	No	matter	how	much
skill	and	determination	you	have,	if	you	roll	a	zero	for	luck,	the
outcome	is	zero.

#f6n

These	quotes	about	luck	are	not	from	founders	whose	startups
failed.	Founders	who	fail	quickly	tend	to	blame	themselves.
Founders	who	succeed	quickly	don't	usually	realize	how	lucky
they	were.	It's	the	ones	in	the	middle	who	see	how	important
luck	is.

17.	The	Value	of	Community

A	surprising	number	of	founders	said	what	surprised	them	most
about	starting	a	startup	was	the	value	of	community.	Some	meant
the	micro-community	of	YC	founders:

The	immense	value	of	the	peer	group	of	YC
companies,	and	facing	similar	obstacles	at	similar
times.

which	shouldn't	be	that	surprising,	because	that's	why	it's
structured	that	way.	Others	were	surprised	at	the	value	of	the
startup	community	in	the	larger	sense:

How	advantageous	it	is	to	live	in	Silicon	Valley,
where	you	can't	help	but	hear	all	the	cutting-edge
tech	and	startup	news,	and	run	into	useful	people
constantly.

The	specific	thing	that	surprised	them	most	was	the	general
spirit	of	benevolence:

One	of	the	most	surprising	things	I	saw	was	the
willingness	of	people	to	help	us.	Even	people	who
had	nothing	to	gain	went	out	of	their	way	to	help	our
startup	succeed.

and	particularly	how	it	extended	all	the	way	to	the	top:

The	surprise	for	me	was	how	accessible	important
and	interesting	people	are.	It's	amazing	how	easily
you	can	reach	out	to	people	and	get	immediate
feedback.

This	is	one	of	the	reasons	I	like	being	part	of	this	world.	Creating
wealth	is	not	a	zero-sum	game,	so	you	don't	have	to	stab	people

in	the	back	to	win.

18.	You	Get	No	Respect

There	was	one	surprise	founders	mentioned	that	I'd	forgotten
about:	that	outside	the	startup	world,	startup	founders	get	no
respect.

In	social	settings,	I	found	that	I	got	a	lot	more
respect	when	I	said,	"I	worked	on	Microsoft	Office"
instead	of	"I	work	at	a	small	startup	you've	never
heard	of	called	x."

Partly	this	is	because	the	rest	of	the	world	just	doesn't	get
startups,	and	partly	it's	yet	another	consequence	of	the	fact	that
most	good	startup	ideas	seem	bad:

If	you	pitch	your	idea	to	a	random	person,	95%	of	the
time	you'll	find	the	person	instinctively	thinks	the
idea	will	be	a	flop	and	you're	wasting	your	time
(although	they	probably	won't	say	this	directly).

Unfortunately	this	extends	even	to	dating:

It	surprised	me	that	being	a	startup	founder	does	not
get	you	more	admiration	from	women.

I	did	know	about	that,	but	I'd	forgotten.

19.	Things	Change	as	You	Grow

The	last	big	surprise	founders	mentioned	is	how	much	things
changed	as	they	grew.	The	biggest	change	was	that	you	got	to
program	even	less:

Your	job	description	as	technical	founder/CEO	is
completely	rewritten	every	6-12	months.	Less	coding,
more	managing/planning/company	building,	hiring,
cleaning	up	messes,	and	generally	getting	things	in
place	for	what	needs	to	happen	a	few	months	from
now.

In	particular,	you	now	have	to	deal	with	employees,	who	often
have	different	motivations:

I	knew	the	founder	equation	and	had	been	focused
on	it	since	I	knew	I	wanted	to	start	a	startup	as	a	19
year	old.	The	employee	equation	is	quite	different	so
it	took	me	a	while	to	get	it	down.

Fortunately,	it	can	become	a	lot	less	stressful	once	you	reach
cruising	altitude:

I'd	say	75%	of	the	stress	is	gone	now	from	when	we
first	started.	Running	a	business	is	so	much	more
enjoyable	now.	We're	more	confident.	We're	more
patient.	We	fight	less.	We	sleep	more.

I	wish	I	could	say	it	was	this	way	for	every	startup	that
succeeded,	but	75%	is	probably	on	the	high	side.

The	Super-Pattern

There	were	a	few	other	patterns,	but	these	were	the	biggest.
One's	first	thought	when	looking	at	them	all	is	to	ask	if	there's	a
super-pattern,	a	pattern	to	the	patterns.

I	saw	it	immediately,	and	so	did	a	YC	founder	I	read	the	list	to.
These	are	supposed	to	be	the	surprises,	the	things	I	didn't	tell
people.	What	do	they	all	have	in	common?	They're	all	things	I	tell
people.	If	I	wrote	a	new	essay	with	the	same	outline	as	this	that
wasn't	summarizing	the	founders'	responses,	everyone	would	say
I'd	run	out	of	ideas	and	was	just	repeating	myself.

What	is	going	on	here?

When	I	look	at	the	responses,	the	common	theme	is	that	starting
a	startup	was	like	I	said,	but	way	more	so.	People	just	don't	seem
to	get	how	different	it	is	till	they	do	it.	Why?	The	key	to	that
mystery	is	to	ask,	how	different	from	what?	Once	you	phrase	it
that	way,	the	answer	is	obvious:	from	a	job.	Everyone's	model	of
work	is	a	job.	It's	completely	pervasive.	Even	if	you've	never	had
a	job,	your	parents	probably	did,	along	with	practically	every

other	adult	you've	met.

Unconsciously,	everyone	expects	a	startup	to	be	like	a	job,	and
that	explains	most	of	the	surprises.	It	explains	why	people	are
surprised	how	carefully	you	have	to	choose	cofounders	and	how
hard	you	have	to	work	to	maintain	your	relationship.	You	don't
have	to	do	that	with	coworkers.	It	explains	why	the	ups	and
downs	are	surprisingly	extreme.	In	a	job	there	is	much	more
damping.	But	it	also	explains	why	the	good	times	are	surprisingly
good:	most	people	can't	imagine	such	freedom.	As	you	go	down
the	list,	almost	all	the	surprises	are	surprising	in	how	much	a
startup	differs	from	a	job.

You	probably	can't	overcome	anything	so	pervasive	as	the	model
of	work	you	grew	up	with.	So	the	best	solution	is	to	be
consciously	aware	of	that.	As	you	go	into	a	startup,	you'll	be
thinking	"everyone	says	it's	really	extreme."	Your	next	thought
will	probably	be	"but	I	can't	believe	it	will	be	that	bad."	If	you
want	to	avoid	being	surprised,	the	next	thought	after	that	should
be:	"and	the	reason	I	can't	believe	it	will	be	that	bad	is	that	my
model	of	work	is	a	job."

Notes

[1]	Graduate	students	might	understand	it.	In	grad	school	you
always	feel	you	should	be	working	on	your	thesis.	It	doesn't	end
every	semester	like	classes	do.

[2]	The	best	way	for	a	startup	to	engage	with	slow-moving
organizations	is	to	fork	off	separate	processes	to	deal	with	them.
It's	when	they're	on	the	critical	path	that	they	kill	you—when	you
depend	on	closing	a	deal	to	move	forward.	It's	worth	taking
extreme	measures	to	avoid	that.

[3]	This	is	a	variant	of	Reid	Hoffman's	principle	that	if	you	aren't

embarrassed	by	what	you	launch	with,	you	waited	too	long	to
launch.

[4]	The	question	to	ask	about	what	you've	built	is	not	whether	it's
good,	but	whether	it's	good	enough	to	supply	the	activation
energy	required.

[5]	Some	VCs	seem	to	understand	technology	because	they
actually	do,	but	that's	overkill;	the	defining	test	is	whether	you
can	talk	about	it	well	enough	to	convince	limited	partners.

[6]	This	is	the	same	phenomenon	you	see	with	defense
contractors	or	fashion	brands.	The	dumber	the	customers,	the
more	effort	you	expend	on	the	process	of	selling	things	to	them
rather	than	making	the	things	you	sell.

Thanks:	to	Jessica	Livingston	for	reading	drafts	of	this,	and	to	all
the	founders	who	responded	to	my	email.

Related:

	

Apple's	Mistake
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

November	2009

I	don't	think	Apple	realizes	how	badly	the	App	Store	approval
process	is	broken.	Or	rather,	I	don't	think	they	realize	how	much
it	matters	that	it's	broken.

The	way	Apple	runs	the	App	Store	has	harmed	their	reputation
with	programmers	more	than	anything	else	they've	ever	done.
Their	reputation	with	programmers	used	to	be	great.	It	used	to
be	the	most	common	complaint	you	heard	about	Apple	was	that
their	fans	admired	them	too	uncritically.	The	App	Store	has
changed	that.	Now	a	lot	of	programmers	have	started	to	see
Apple	as	evil.

How	much	of	the	goodwill	Apple	once	had	with	programmers
have	they	lost	over	the	App	Store?	A	third?	Half?	And	that's	just
so	far.	The	App	Store	is	an	ongoing	karma	leak.

*	*	*

How	did	Apple	get	into	this	mess?	Their	fundamental	problem	is
that	they	don't	understand	software.

They	treat	iPhone	apps	the	way	they	treat	the	music	they	sell
through	iTunes.	Apple	is	the	channel;	they	own	the	user;	if	you
want	to	reach	users,	you	do	it	on	their	terms.	The	record	labels
agreed,	reluctantly.	But	this	model	doesn't	work	for	software.	It
doesn't	work	for	an	intermediary	to	own	the	user.	The	software
business	learned	that	in	the	early	1980s,	when	companies	like
VisiCorp	showed	that	although	the	words	"software"	and
"publisher"	fit	together,	the	underlying	concepts	don't.	Software

http://ycombinator.com/apply.html

isn't	like	music	or	books.	It's	too	complicated	for	a	third	party	to
act	as	an	intermediary	between	developer	and	user.	And	yet
that's	what	Apple	is	trying	to	be	with	the	App	Store:	a	software
publisher.	And	a	particularly	overreaching	one	at	that,	with	fussy
tastes	and	a	rigidly	enforced	house	style.

If	software	publishing	didn't	work	in	1980,	it	works	even	less	now
that	software	development	has	evolved	from	a	small	number	of
big	releases	to	a	constant	stream	of	small	ones.	But	Apple	doesn't
understand	that	either.	Their	model	of	product	development
derives	from	hardware.	They	work	on	something	till	they	think
it's	finished,	then	they	release	it.	You	have	to	do	that	with
hardware,	but	because	software	is	so	easy	to	change,	its	design
can	benefit	from	evolution.	The	standard	way	to	develop
applications	now	is	to	launch	fast	and	iterate.	Which	means	it's	a
disaster	to	have	long,	random	delays	each	time	you	release	a	new
version.

Apparently	Apple's	attitude	is	that	developers	should	be	more
careful	when	they	submit	a	new	version	to	the	App	Store.	They
would	say	that.	But	powerful	as	they	are,	they're	not	powerful
enough	to	turn	back	the	evolution	of	technology.	Programmers
don't	use	launch-fast-and-iterate	out	of	laziness.	They	use	it
because	it	yields	the	best	results.	By	obstructing	that	process,
Apple	is	making	them	do	bad	work,	and	programmers	hate	that
as	much	as	Apple	would.

How	would	Apple	like	it	if	when	they	discovered	a	serious	bug	in
OS	X,	instead	of	releasing	a	software	update	immediately,	they
had	to	submit	their	code	to	an	intermediary	who	sat	on	it	for	a
month	and	then	rejected	it	because	it	contained	an	icon	they
didn't	like?

By	breaking	software	development,	Apple	gets	the	opposite	of
what	they	intended:	the	version	of	an	app	currently	available	in
the	App	Store	tends	to	be	an	old	and	buggy	one.	One	developer
told	me:

As	a	result	of	their	process,	the	App	Store	is	full	of
half-baked	applications.	I	make	a	new	version	almost
every	day	that	I	release	to	beta	users.	The	version	on

the	App	Store	feels	old	and	crappy.	I'm	sure	that	a	lot
of	developers	feel	this	way:	One	emotion	is	"I'm	not
really	proud	about	what's	in	the	App	Store",	and	it's
combined	with	the	emotion	"Really,	it's	Apple's	fault."

Another	wrote:

I	believe	that	they	think	their	approval	process	helps
users	by	ensuring	quality.	In	reality,	bugs	like	ours
get	through	all	the	time	and	then	it	can	take	4-8
weeks	to	get	that	bug	fix	approved,	leaving	users	to
think	that	iPhone	apps	sometimes	just	don't	work.
Worse	for	Apple,	these	apps	work	just	fine	on	other
platforms	that	have	immediate	approval	processes.

Actually	I	suppose	Apple	has	a	third	misconception:	that	all	the
complaints	about	App	Store	approvals	are	not	a	serious	problem.
They	must	hear	developers	complaining.	But	partners	and
suppliers	are	always	complaining.	It	would	be	a	bad	sign	if	they
weren't;	it	would	mean	you	were	being	too	easy	on	them.
Meanwhile	the	iPhone	is	selling	better	than	ever.	So	why	do	they
need	to	fix	anything?

They	get	away	with	maltreating	developers,	in	the	short	term,
because	they	make	such	great	hardware.	I	just	bought	a	new	27"
iMac	a	couple	days	ago.	It's	fabulous.	The	screen's	too	shiny,	and
the	disk	is	surprisingly	loud,	but	it's	so	beautiful	that	you	can't
make	yourself	care.

So	I	bought	it,	but	I	bought	it,	for	the	first	time,	with	misgivings.
I	felt	the	way	I'd	feel	buying	something	made	in	a	country	with	a
bad	human	rights	record.	That	was	new.	In	the	past	when	I
bought	things	from	Apple	it	was	an	unalloyed	pleasure.	Oh	boy!
They	make	such	great	stuff.	This	time	it	felt	like	a	Faustian
bargain.	They	make	such	great	stuff,	but	they're	such	assholes.
Do	I	really	want	to	support	this	company?

*	*	*

Should	Apple	care	what	people	like	me	think?	What	difference

does	it	make	if	they	alienate	a	small	minority	of	their	users?

There	are	a	couple	reasons	they	should	care.	One	is	that	these
users	are	the	people	they	want	as	employees.	If	your	company
seems	evil,	the	best	programmers	won't	work	for	you.	That	hurt
Microsoft	a	lot	starting	in	the	90s.	Programmers	started	to	feel
sheepish	about	working	there.	It	seemed	like	selling	out.	When
people	from	Microsoft	were	talking	to	other	programmers	and
they	mentioned	where	they	worked,	there	were	a	lot	of	self-
deprecating	jokes	about	having	gone	over	to	the	dark	side.	But
the	real	problem	for	Microsoft	wasn't	the	embarrassment	of	the
people	they	hired.	It	was	the	people	they	never	got.	And	you
know	who	got	them?	Google	and	Apple.	If	Microsoft	was	the
Empire,	they	were	the	Rebel	Alliance.	And	it's	largely	because
they	got	more	of	the	best	people	that	Google	and	Apple	are	doing
so	much	better	than	Microsoft	today.

Why	are	programmers	so	fussy	about	their	employers'	morals?
Partly	because	they	can	afford	to	be.	The	best	programmers	can
work	wherever	they	want.	They	don't	have	to	work	for	a	company
they	have	qualms	about.

But	the	other	reason	programmers	are	fussy,	I	think,	is	that	evil
begets	stupidity.	An	organization	that	wins	by	exercising	power
starts	to	lose	the	ability	to	win	by	doing	better	work.	And	it's	not
fun	for	a	smart	person	to	work	in	a	place	where	the	best	ideas
aren't	the	ones	that	win.	I	think	the	reason	Google	embraced
"Don't	be	evil"	so	eagerly	was	not	so	much	to	impress	the	outside
world	as	to	inoculate	themselves	against	arrogance.	[1]

That	has	worked	for	Google	so	far.	They've	become	more
bureaucratic,	but	otherwise	they	seem	to	have	held	true	to	their
original	principles.	With	Apple	that	seems	less	the	case.	When
you	look	at	the	famous	1984	ad	now,	it's	easier	to	imagine	Apple
as	the	dictator	on	the	screen	than	the	woman	with	the	hammer.
[2]	In	fact,	if	you	read	the	dictator's	speech	it	sounds	uncannily
like	a	prophecy	of	the	App	Store.

We	have	triumphed	over	the	unprincipled
dissemination	of	facts.

#f1n
http://www.uriahcarpenter.info/1984.html
#f2n

We	have	created,	for	the	first	time	in	all	history,	a
garden	of	pure	ideology,	where	each	worker	may
bloom	secure	from	the	pests	of	contradictory	and
confusing	truths.

The	other	reason	Apple	should	care	what	programmers	think	of
them	is	that	when	you	sell	a	platform,	developers	make	or	break
you.	If	anyone	should	know	this,	Apple	should.	VisiCalc	made	the
Apple	II.

And	programmers	build	applications	for	the	platforms	they	use.
Most	applications—most	startups,	probably—grow	out	of
personal	projects.	Apple	itself	did.	Apple	made	microcomputers
because	that's	what	Steve	Wozniak	wanted	for	himself.	He
couldn't	have	afforded	a	minicomputer.	[3]	Microsoft	likewise
started	out	making	interpreters	for	little	microcomputers
because	Bill	Gates	and	Paul	Allen	were	interested	in	using	them.
It's	a	rare	startup	that	doesn't	build	something	the	founders	use.

The	main	reason	there	are	so	many	iPhone	apps	is	that	so	many
programmers	have	iPhones.	They	may	know,	because	they	read	it
in	an	article,	that	Blackberry	has	such	and	such	market	share.
But	in	practice	it's	as	if	RIM	didn't	exist.	If	they're	going	to	build
something,	they	want	to	be	able	to	use	it	themselves,	and	that
means	building	an	iPhone	app.

So	programmers	continue	to	develop	iPhone	apps,	even	though
Apple	continues	to	maltreat	them.	They're	like	someone	stuck	in
an	abusive	relationship.	They're	so	attracted	to	the	iPhone	that
they	can't	leave.	But	they're	looking	for	a	way	out.	One	wrote:

While	I	did	enjoy	developing	for	the	iPhone,	the
control	they	place	on	the	App	Store	does	not	give	me
the	drive	to	develop	applications	as	I	would	like.	In
fact	I	don't	intend	to	make	any	more	iPhone
applications	unless	absolutely	necessary.	[4]

Can	anything	break	this	cycle?	No	device	I've	seen	so	far	could.
Palm	and	RIM	haven't	a	hope.	The	only	credible	contender	is
Android.	But	Android	is	an	orphan;	Google	doesn't	really	care
about	it,	not	the	way	Apple	cares	about	the	iPhone.	Apple	cares

#f3n
#f4n

about	the	iPhone	the	way	Google	cares	about	search.

*	*	*

Is	the	future	of	handheld	devices	one	locked	down	by	Apple?	It's
a	worrying	prospect.	It	would	be	a	bummer	to	have	another	grim
monoculture	like	we	had	in	the	1990s.	In	1995,	writing	software
for	end	users	was	effectively	identical	with	writing	Windows
applications.	Our	horror	at	that	prospect	was	the	single	biggest
thing	that	drove	us	to	start	building	web	apps.

At	least	we	know	now	what	it	would	take	to	break	Apple's	lock.
You'd	have	to	get	iPhones	out	of	programmers'	hands.	If
programmers	used	some	other	device	for	mobile	web	access,
they'd	start	to	develop	apps	for	that	instead.

How	could	you	make	a	device	programmers	liked	better	than	the
iPhone?	It's	unlikely	you	could	make	something	better	designed.
Apple	leaves	no	room	there.	So	this	alternative	device	probably
couldn't	win	on	general	appeal.	It	would	have	to	win	by	virtue	of
some	appeal	it	had	to	programmers	specifically.

One	way	to	appeal	to	programmers	is	with	software.	If	you	could
think	of	an	application	programmers	had	to	have,	but	that	would
be	impossible	in	the	circumscribed	world	of	the	iPhone,	you
could	presumably	get	them	to	switch.

That	would	definitely	happen	if	programmers	started	to	use
handhelds	as	development	machines—if	handhelds	displaced
laptops	the	way	laptops	displaced	desktops.	You	need	more
control	of	a	development	machine	than	Apple	will	let	you	have
over	an	iPhone.

Could	anyone	make	a	device	that	you'd	carry	around	in	your
pocket	like	a	phone,	and	yet	would	also	work	as	a	development
machine?	It's	hard	to	imagine	what	it	would	look	like.	But	I've
learned	never	to	say	never	about	technology.	A	phone-sized
device	that	would	work	as	a	development	machine	is	no	more
miraculous	by	present	standards	than	the	iPhone	itself	would
have	seemed	by	the	standards	of	1995.

road.html

My	current	development	machine	is	a	MacBook	Air,	which	I	use
with	an	external	monitor	and	keyboard	in	my	office,	and	by	itself
when	traveling.	If	there	was	a	version	half	the	size	I'd	prefer	it.
That	still	wouldn't	be	small	enough	to	carry	around	everywhere
like	a	phone,	but	we're	within	a	factor	of	4	or	so.	Surely	that	gap
is	bridgeable.	In	fact,	let's	make	it	an	RFS.	Wanted:	Woman	with
hammer.

Notes

[1]	When	Google	adopted	"Don't	be	evil,"	they	were	still	so	small
that	no	one	would	have	expected	them	to	be,	yet.

[2]	The	dictator	in	the	1984	ad	isn't	Microsoft,	incidentally;	it's
IBM.	IBM	seemed	a	lot	more	frightening	in	those	days,	but	they
were	friendlier	to	developers	than	Apple	is	now.

[3]	He	couldn't	even	afford	a	monitor.	That's	why	the	Apple	I
used	a	TV	as	a	monitor.

[4]	Several	people	I	talked	to	mentioned	how	much	they	liked	the
iPhone	SDK.	The	problem	is	not	Apple's	products	but	their
policies.	Fortunately	policies	are	software;	Apple	can	change
them	instantly	if	they	want	to.	Handy	that,	isn't	it?

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Ross	Boucher,	James
Bracy,	Gabor	Cselle,	Patrick	Collison,	Jason	Freedman,	John
Gruber,	Joe	Hewitt,	Jessica	Livingston,	Robert	Morris,	Teng	Siong
Ong,	Nikhil	Pandit,	Savraj	Singh,	and	Jared	Tame	for	reading
drafts	of	this.

http://ycombinator.com/rfs5.html

	

Organic	Startup	Ideas
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	to	Lose	Time	and	Money
July	2010

When	we	sold	our	startup	in	1998	I	suddenly	got	a	lot	of	money.	I
now	had	to	think	about	something	I	hadn't	had	to	think	about
before:	how	not	to	lose	it.	I	knew	it	was	possible	to	go	from	rich
to	poor,	just	as	it	was	possible	to	go	from	poor	to	rich.	But	while
I'd	spent	a	lot	of	the	past	several	years	studying	the	paths	from
poor	to	rich,	I	knew	practically	nothing	about	the	paths	from	rich
to	poor.	Now,	in	order	to	avoid	them,	I	had	to	learn	where	they
were.

So	I	started	to	pay	attention	to	how	fortunes	are	lost.	If	you'd
asked	me	as	a	kid	how	rich	people	became	poor,	I'd	have	said	by
spending	all	their	money.	That's	how	it	happens	in	books	and
movies,	because	that's	the	colorful	way	to	do	it.	But	in	fact	the
way	most	fortunes	are	lost	is	not	through	excessive	expenditure,
but	through	bad	investments.

It's	hard	to	spend	a	fortune	without	noticing.	Someone	with
ordinary	tastes	would	find	it	hard	to	blow	through	more	than	a
few	tens	of	thousands	of	dollars	without	thinking	"wow,	I'm
spending	a	lot	of	money."	Whereas	if	you	start	trading
derivatives,	you	can	lose	a	million	dollars	(as	much	as	you	want,
really)	in	the	blink	of	an	eye.

In	most	people's	minds,	spending	money	on	luxuries	sets	off
alarms	that	making	investments	doesn't.	Luxuries	seem	self-
indulgent.	And	unless	you	got	the	money	by	inheriting	it	or
winning	a	lottery,	you've	already	been	thoroughly	trained	that
self-indulgence	leads	to	trouble.	Investing	bypasses	those	alarms.
You're	not	spending	the	money;	you're	just	moving	it	from	one
asset	to	another.	Which	is	why	people	trying	to	sell	you	expensive
things	say	"it's	an	investment."

The	solution	is	to	develop	new	alarms.	This	can	be	a	tricky

wealth.html

business,	because	while	the	alarms	that	prevent	you	from
overspending	are	so	basic	that	they	may	even	be	in	our	DNA,	the
ones	that	prevent	you	from	making	bad	investments	have	to	be
learned,	and	are	sometimes	fairly	counterintuitive.

A	few	days	ago	I	realized	something	surprising:	the	situation	with
time	is	much	the	same	as	with	money.	The	most	dangerous	way
to	lose	time	is	not	to	spend	it	having	fun,	but	to	spend	it	doing
fake	work.	When	you	spend	time	having	fun,	you	know	you're
being	self-indulgent.	Alarms	start	to	go	off	fairly	quickly.	If	I	woke
up	one	morning	and	sat	down	on	the	sofa	and	watched	TV	all	day,
I'd	feel	like	something	was	terribly	wrong.	Just	thinking	about	it
makes	me	wince.	I'd	start	to	feel	uncomfortable	after	sitting	on	a
sofa	watching	TV	for	2	hours,	let	alone	a	whole	day.

And	yet	I've	definitely	had	days	when	I	might	as	well	have	sat	in
front	of	a	TV	all	day	—	days	at	the	end	of	which,	if	I	asked	myself
what	I	got	done	that	day,	the	answer	would	have	been:	basically,
nothing.	I	feel	bad	after	these	days	too,	but	nothing	like	as	bad	as
I'd	feel	if	I	spent	the	whole	day	on	the	sofa	watching	TV.	If	I	spent
a	whole	day	watching	TV	I'd	feel	like	I	was	descending	into
perdition.	But	the	same	alarms	don't	go	off	on	the	days	when	I
get	nothing	done,	because	I'm	doing	stuff	that	seems,
superficially,	like	real	work.	Dealing	with	email,	for	example.	You
do	it	sitting	at	a	desk.	It's	not	fun.	So	it	must	be	work.

With	time,	as	with	money,	avoiding	pleasure	is	no	longer	enough
to	protect	you.	It	probably	was	enough	to	protect	hunter-
gatherers,	and	perhaps	all	pre-industrial	societies.	So	nature	and
nurture	combine	to	make	us	avoid	self-indulgence.	But	the	world
has	gotten	more	complicated:	the	most	dangerous	traps	now	are
new	behaviors	that	bypass	our	alarms	about	self-indulgence	by
mimicking	more	virtuous	types.	And	the	worst	thing	is,	they're
not	even	fun.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Patrick	Collison,	Jessica
Livingston,	and	Robert	Morris	for	reading	drafts	of	this.

	

The	Top	Idea	in	Your	Mind
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

July	2010

I	realized	recently	that	what	one	thinks	about	in	the	shower	in
the	morning	is	more	important	than	I'd	thought.	I	knew	it	was	a
good	time	to	have	ideas.	Now	I'd	go	further:	now	I'd	say	it's	hard
to	do	a	really	good	job	on	anything	you	don't	think	about	in	the
shower.

Everyone	who's	worked	on	difficult	problems	is	probably	familiar
with	the	phenomenon	of	working	hard	to	figure	something	out,
failing,	and	then	suddenly	seeing	the	answer	a	bit	later	while
doing	something	else.	There's	a	kind	of	thinking	you	do	without
trying	to.	I'm	increasingly	convinced	this	type	of	thinking	is	not
merely	helpful	in	solving	hard	problems,	but	necessary.	The
tricky	part	is,	you	can	only	control	it	indirectly.	[1]

I	think	most	people	have	one	top	idea	in	their	mind	at	any	given
time.	That's	the	idea	their	thoughts	will	drift	toward	when	they're
allowed	to	drift	freely.	And	this	idea	will	thus	tend	to	get	all	the
benefit	of	that	type	of	thinking,	while	others	are	starved	of	it.
Which	means	it's	a	disaster	to	let	the	wrong	idea	become	the	top
one	in	your	mind.

What	made	this	clear	to	me	was	having	an	idea	I	didn't	want	as
the	top	one	in	my	mind	for	two	long	stretches.

I'd	noticed	startups	got	way	less	done	when	they	started	raising
money,	but	it	was	not	till	we	ourselves	raised	money	that	I
understood	why.	The	problem	is	not	the	actual	time	it	takes	to
meet	with	investors.	The	problem	is	that	once	you	start	raising
money,	raising	money	becomes	the	top	idea	in	your	mind.	That
becomes	what	you	think	about	when	you	take	a	shower	in	the
morning.	And	that	means	other	questions	aren't.

http://ycombinator.com/apply.html
#f1n

I'd	hated	raising	money	when	I	was	running	Viaweb,	but	I'd
forgotten	why	I	hated	it	so	much.	When	we	raised	money	for	Y
Combinator,	I	remembered.	Money	matters	are	particularly	likely
to	become	the	top	idea	in	your	mind.	The	reason	is	that	they	have
to	be.	It's	hard	to	get	money.	It's	not	the	sort	of	thing	that
happens	by	default.	It's	not	going	to	happen	unless	you	let	it
become	the	thing	you	think	about	in	the	shower.	And	then	you'll
make	little	progress	on	anything	else	you'd	rather	be	working	on.
[2]

(I	hear	similar	complaints	from	friends	who	are	professors.
Professors	nowadays	seem	to	have	become	professional
fundraisers	who	do	a	little	research	on	the	side.	It	may	be	time	to
fix	that.)

The	reason	this	struck	me	so	forcibly	is	that	for	most	of	the
preceding	10	years	I'd	been	able	to	think	about	what	I	wanted.
So	the	contrast	when	I	couldn't	was	sharp.	But	I	don't	think	this
problem	is	unique	to	me,	because	just	about	every	startup	I've
seen	grinds	to	a	halt	when	they	start	raising	money	�	or	talking
to	acquirers.

You	can't	directly	control	where	your	thoughts	drift.	If	you're
controlling	them,	they're	not	drifting.	But	you	can	control	them
indirectly,	by	controlling	what	situations	you	let	yourself	get	into.
That	has	been	the	lesson	for	me:	be	careful	what	you	let	become
critical	to	you.	Try	to	get	yourself	into	situations	where	the	most
urgent	problems	are	ones	you	want	to	think	about.

You	don't	have	complete	control,	of	course.	An	emergency	could
push	other	thoughts	out	of	your	head.	But	barring	emergencies
you	have	a	good	deal	of	indirect	control	over	what	becomes	the
top	idea	in	your	mind.

I've	found	there	are	two	types	of	thoughts	especially	worth
avoiding	�	thoughts	like	the	Nile	Perch	in	the	way	they	push	out
more	interesting	ideas.	One	I've	already	mentioned:	thoughts
about	money.	Getting	money	is	almost	by	definition	an	attention
sink.	The	other	is	disputes.	These	too	are	engaging	in	the	wrong
way:	they	have	the	same	velcro-like	shape	as	genuinely

#f2n
corpdev.html

interesting	ideas,	but	without	the	substance.	So	avoid	disputes	if
you	want	to	get	real	work	done.	[3]

Even	Newton	fell	into	this	trap.	After	publishing	his	theory	of
colors	in	1672	he	found	himself	distracted	by	disputes	for	years,
finally	concluding	that	the	only	solution	was	to	stop	publishing:

I	see	I	have	made	myself	a	slave	to	Philosophy,	but	if
I	get	free	of	Mr	Linus's	business	I	will	resolutely	bid
adew	to	it	eternally,	excepting	what	I	do	for	my	privat
satisfaction	or	leave	to	come	out	after	me.	For	I	see	a
man	must	either	resolve	to	put	out	nothing	new	or
become	a	slave	to	defend	it.	[4]

Linus	and	his	students	at	Liege	were	among	the	more	tenacious
critics.	Newton's	biographer	Westfall	seems	to	feel	he	was
overreacting:

Recall	that	at	the	time	he	wrote,	Newton's	"slavery"
consisted	of	five	replies	to	Liege,	totalling	fourteen
printed	pages,	over	the	course	of	a	year.

I'm	more	sympathetic	to	Newton.	The	problem	was	not	the	14
pages,	but	the	pain	of	having	this	stupid	controversy	constantly
reintroduced	as	the	top	idea	in	a	mind	that	wanted	so	eagerly	to
think	about	other	things.

Turning	the	other	cheek	turns	out	to	have	selfish	advantages.
Someone	who	does	you	an	injury	hurts	you	twice:	first	by	the
injury	itself,	and	second	by	taking	up	your	time	afterward
thinking	about	it.	If	you	learn	to	ignore	injuries	you	can	at	least
avoid	the	second	half.	I've	found	I	can	to	some	extent	avoid
thinking	about	nasty	things	people	have	done	to	me	by	telling
myself:	this	doesn't	deserve	space	in	my	head.	I'm	always
delighted	to	find	I've	forgotten	the	details	of	disputes,	because
that	means	I	hadn't	been	thinking	about	them.	My	wife	thinks	I'm
more	forgiving	than	she	is,	but	my	motives	are	purely	selfish.

I	suspect	a	lot	of	people	aren't	sure	what's	the	top	idea	in	their
mind	at	any	given	time.	I'm	often	mistaken	about	it.	I	tend	to
think	it's	the	idea	I'd	want	to	be	the	top	one,	rather	than	the	one

#f3n
#f4n

that	is.	But	it's	easy	to	figure	this	out:	just	take	a	shower.	What
topic	do	your	thoughts	keep	returning	to?	If	it's	not	what	you
want	to	be	thinking	about,	you	may	want	to	change	something.

Notes

[1]	No	doubt	there	are	already	names	for	this	type	of	thinking,
but	I	call	it	"ambient	thought."

[2]	This	was	made	particularly	clear	in	our	case,	because	neither
of	the	funds	we	raised	was	difficult,	and	yet	in	both	cases	the
process	dragged	on	for	months.	Moving	large	amounts	of	money
around	is	never	something	people	treat	casually.	The	attention
required	increases	with	the	amount—maybe	not	linearly,	but
definitely	monotonically.

[3]	Corollary:	Avoid	becoming	an	administrator,	or	your	job	will
consist	of	dealing	with	money	and	disputes.

[4]	Letter	to	Oldenburg,	quoted	in	Westfall,	Richard,	Life	of	Isaac
Newton,	p.	107.

Thanks	to	Sam	Altman,	Patrick	Collison,	Jessica	Livingston,	and
Robert	Morris	for	reading	drafts	of	this.

	

The	Acceleration	of
Addictiveness
July	2010

What	hard	liquor,	cigarettes,	heroin,	and	crack	have	in	common
is	that	they're	all	more	concentrated	forms	of	less	addictive
predecessors.	Most	if	not	all	the	things	we	describe	as	addictive
are.	And	the	scary	thing	is,	the	process	that	created	them	is
accelerating.

We	wouldn't	want	to	stop	it.	It's	the	same	process	that	cures
diseases:	technological	progress.	Technological	progress	means
making	things	do	more	of	what	we	want.	When	the	thing	we	want
is	something	we	want	to	want,	we	consider	technological
progress	good.	If	some	new	technique	makes	solar	cells	x%	more
efficient,	that	seems	strictly	better.	When	progress	concentrates
something	we	don't	want	to	want	—	when	it	transforms	opium
into	heroin	—	it	seems	bad.	But	it's	the	same	process	at	work.	[1]

No	one	doubts	this	process	is	accelerating,	which	means
increasing	numbers	of	things	we	like	will	be	transformed	into
things	we	like	too	much.	[2]

As	far	as	I	know	there's	no	word	for	something	we	like	too	much.
The	closest	is	the	colloquial	sense	of	"addictive."	That	usage	has
become	increasingly	common	during	my	lifetime.	And	it's	clear
why:	there	are	an	increasing	number	of	things	we	need	it	for.	At
the	extreme	end	of	the	spectrum	are	crack	and	meth.	Food	has
been	transformed	by	a	combination	of	factory	farming	and
innovations	in	food	processing	into	something	with	way	more
immediate	bang	for	the	buck,	and	you	can	see	the	results	in	any
town	in	America.	Checkers	and	solitaire	have	been	replaced	by
World	of	Warcraft	and	FarmVille.	TV	has	become	much	more
engaging,	and	even	so	it	can't	compete	with	Facebook.

#f1n
#f2n
convergence.html

The	world	is	more	addictive	than	it	was	40	years	ago.	And	unless
the	forms	of	technological	progress	that	produced	these	things
are	subject	to	different	laws	than	technological	progress	in
general,	the	world	will	get	more	addictive	in	the	next	40	years
than	it	did	in	the	last	40.

The	next	40	years	will	bring	us	some	wonderful	things.	I	don't
mean	to	imply	they're	all	to	be	avoided.	Alcohol	is	a	dangerous
drug,	but	I'd	rather	live	in	a	world	with	wine	than	one	without.
Most	people	can	coexist	with	alcohol;	but	you	have	to	be	careful.
More	things	we	like	will	mean	more	things	we	have	to	be	careful
about.

Most	people	won't,	unfortunately.	Which	means	that	as	the	world
becomes	more	addictive,	the	two	senses	in	which	one	can	live	a
normal	life	will	be	driven	ever	further	apart.	One	sense	of
"normal"	is	statistically	normal:	what	everyone	else	does.	The
other	is	the	sense	we	mean	when	we	talk	about	the	normal
operating	range	of	a	piece	of	machinery:	what	works	best.

These	two	senses	are	already	quite	far	apart.	Already	someone
trying	to	live	well	would	seem	eccentrically	abstemious	in	most
of	the	US.	That	phenomenon	is	only	going	to	become	more
pronounced.	You	can	probably	take	it	as	a	rule	of	thumb	from
now	on	that	if	people	don't	think	you're	weird,	you're	living	badly.

Societies	eventually	develop	antibodies	to	addictive	new	things.
I've	seen	that	happen	with	cigarettes.	When	cigarettes	first
appeared,	they	spread	the	way	an	infectious	disease	spreads
through	a	previously	isolated	population.	Smoking	rapidly
became	a	(statistically)	normal	thing.	There	were	ashtrays
everywhere.	We	had	ashtrays	in	our	house	when	I	was	a	kid,	even
though	neither	of	my	parents	smoked.	You	had	to	for	guests.

As	knowledge	spread	about	the	dangers	of	smoking,	customs
changed.	In	the	last	20	years,	smoking	has	been	transformed
from	something	that	seemed	totally	normal	into	a	rather	seedy
habit:	from	something	movie	stars	did	in	publicity	shots	to
something	small	huddles	of	addicts	do	outside	the	doors	of	office
buildings.	A	lot	of	the	change	was	due	to	legislation,	of	course,
but	the	legislation	couldn't	have	happened	if	customs	hadn't

already	changed.

It	took	a	while	though—on	the	order	of	100	years.	And	unless	the
rate	at	which	social	antibodies	evolve	can	increase	to	match	the
accelerating	rate	at	which	technological	progress	throws	off	new
addictions,	we'll	be	increasingly	unable	to	rely	on	customs	to
protect	us.	[3]	Unless	we	want	to	be	canaries	in	the	coal	mine	of
each	new	addiction—the	people	whose	sad	example	becomes	a
lesson	to	future	generations—we'll	have	to	figure	out	for
ourselves	what	to	avoid	and	how.	It	will	actually	become	a
reasonable	strategy	(or	a	more	reasonable	strategy)	to	suspect
everything	new.

In	fact,	even	that	won't	be	enough.	We'll	have	to	worry	not	just
about	new	things,	but	also	about	existing	things	becoming	more
addictive.	That's	what	bit	me.	I've	avoided	most	addictions,	but
the	Internet	got	me	because	it	became	addictive	while	I	was
using	it.	[4]

Most	people	I	know	have	problems	with	Internet	addiction.	We're
all	trying	to	figure	out	our	own	customs	for	getting	free	of	it.
That's	why	I	don't	have	an	iPhone,	for	example;	the	last	thing	I
want	is	for	the	Internet	to	follow	me	out	into	the	world.	[5]	My
latest	trick	is	taking	long	hikes.	I	used	to	think	running	was	a
better	form	of	exercise	than	hiking	because	it	took	less	time.
Now	the	slowness	of	hiking	seems	an	advantage,	because	the
longer	I	spend	on	the	trail,	the	longer	I	have	to	think	without
interruption.

Sounds	pretty	eccentric,	doesn't	it?	It	always	will	when	you're
trying	to	solve	problems	where	there	are	no	customs	yet	to	guide
you.	Maybe	I	can't	plead	Occam's	razor;	maybe	I'm	simply
eccentric.	But	if	I'm	right	about	the	acceleration	of	addictiveness,
then	this	kind	of	lonely	squirming	to	avoid	it	will	increasingly	be
the	fate	of	anyone	who	wants	to	get	things	done.	We'll
increasingly	be	defined	by	what	we	say	no	to.

#f3n
http://en.wikipedia.org/wiki/Paleolithic_diet
#f4n
#f5n

Notes

[1]	Could	you	restrict	technological	progress	to	areas	where	you
wanted	it?	Only	in	a	limited	way,	without	becoming	a	police	state.
And	even	then	your	restrictions	would	have	undesirable	side
effects.	"Good"	and	"bad"	technological	progress	aren't	sharply
differentiated,	so	you'd	find	you	couldn't	slow	the	latter	without
also	slowing	the	former.	And	in	any	case,	as	Prohibition	and	the
"war	on	drugs"	show,	bans	often	do	more	harm	than	good.

[2]	Technology	has	always	been	accelerating.	By	Paleolithic
standards,	technology	evolved	at	a	blistering	pace	in	the
Neolithic	period.

[3]	Unless	we	mass	produce	social	customs.	I	suspect	the	recent
resurgence	of	evangelical	Christianity	in	the	US	is	partly	a
reaction	to	drugs.	In	desperation	people	reach	for	the
sledgehammer;	if	their	kids	won't	listen	to	them,	maybe	they'll
listen	to	God.	But	that	solution	has	broader	consequences	than
just	getting	kids	to	say	no	to	drugs.	You	end	up	saying	no	to
science	as	well.	

I	worry	we	may	be	heading	for	a	future	in	which	only	a	few
people	plot	their	own	itinerary	through	no-land,	while	everyone
else	books	a	package	tour.	Or	worse	still,	has	one	booked	for
them	by	the	government.

[4]	People	commonly	use	the	word	"procrastination"	to	describe
what	they	do	on	the	Internet.	It	seems	to	me	too	mild	to	describe
what's	happening	as	merely	not-doing-work.	We	don't	call	it
procrastination	when	someone	gets	drunk	instead	of	working.

[5]	Several	people	have	told	me	they	like	the	iPad	because	it	lets
them	bring	the	Internet	into	situations	where	a	laptop	would	be
too	conspicuous.	In	other	words,	it's	a	hip	flask.	(This	is	true	of
the	iPhone	too,	of	course,	but	this	advantage	isn't	as	obvious
because	it	reads	as	a	phone,	and	everyone's	used	to	those.)

Thanks	to	Sam	Altman,	Patrick	Collison,	Jessica	Livingston,	and

https://www.youtube.com/watch?v=GbXgsMxOPtI

Robert	Morris	for	reading	drafts	of	this.

	

The	Future	of	Startup
Funding
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

August	2010

Two	years	ago	I	wrote	about	what	I	called	"a	huge,	unexploited
opportunity	in	startup	funding:"	the	growing	disconnect	between
VCs,	whose	current	business	model	requires	them	to	invest	large
amounts,	and	a	large	class	of	startups	that	need	less	than	they
used	to.	Increasingly,	startups	want	a	couple	hundred	thousand
dollars,	not	a	couple	million.	[1]

The	opportunity	is	a	lot	less	unexploited	now.	Investors	have
poured	into	this	territory	from	both	directions.	VCs	are	much
more	likely	to	make	angel-sized	investments	than	they	were	a
year	ago.	And	meanwhile	the	past	year	has	seen	a	dramatic
increase	in	a	new	type	of	investor:	the	super-angel,	who	operates
like	an	angel,	but	using	other	people's	money,	like	a	VC.

Though	a	lot	of	investors	are	entering	this	territory,	there	is	still
room	for	more.	The	distribution	of	investors	should	mirror	the
distribution	of	startups,	which	has	the	usual	power	law	dropoff.
So	there	should	be	a	lot	more	people	investing	tens	or	hundreds
of	thousands	than	millions.	[2]

In	fact,	it	may	be	good	for	angels	that	there	are	more	people
doing	angel-sized	deals,	because	if	angel	rounds	become	more
legitimate,	then	startups	may	start	to	opt	for	angel	rounds	even
when	they	could,	if	they	wanted,	raise	series	A	rounds	from	VCs.
One	reason	startups	prefer	series	A	rounds	is	that	they're	more
prestigious.	But	if	angel	investors	become	more	active	and	better
known,	they'll	increasingly	be	able	to	compete	with	VCs	in	brand.

Of	course,	prestige	isn't	the	main	reason	to	prefer	a	series	A

http://ycombinator.com/apply.html
http://www.paulgraham.com/googles.html#next
#f1n
#f2n

round.	A	startup	will	probably	get	more	attention	from	investors
in	a	series	A	round	than	an	angel	round.	So	if	a	startup	is
choosing	between	an	angel	round	and	an	A	round	from	a	good
VC	fund,	I	usually	advise	them	to	take	the	A	round.	[3]

But	while	series	A	rounds	aren't	going	away,	I	think	VCs	should
be	more	worried	about	super-angels	than	vice	versa.	Despite
their	name,	the	super-angels	are	really	mini	VC	funds,	and	they
clearly	have	existing	VCs	in	their	sights.

They	would	seem	to	have	history	on	their	side.	The	pattern	here
seems	the	same	one	we	see	when	startups	and	established
companies	enter	a	new	market.	Online	video	becomes	possible,
and	YouTube	plunges	right	in,	while	existing	media	companies
embrace	it	only	half-willingly,	driven	more	by	fear	than	hope,	and
aiming	more	to	protect	their	turf	than	to	do	great	things	for
users.	Ditto	for	PayPal.	This	pattern	is	repeated	over	and	over,
and	it's	usually	the	invaders	who	win.	In	this	case	the	super-
angels	are	the	invaders.	Angel	rounds	are	their	whole	business,
as	online	video	was	for	YouTube.	Whereas	VCs	who	make	angel
investments	mostly	do	it	as	a	way	to	generate	deal	flow	for	series
A	rounds.	[4]

On	the	other	hand,	startup	investing	is	a	very	strange	business.
Nearly	all	the	returns	are	concentrated	in	a	few	big	winners.	If
the	super-angels	merely	fail	to	invest	in	(and	to	some	extent
produce)	the	big	winners,	they'll	be	out	of	business,	even	if	they
invest	in	all	the	others.

VCs

Why	don't	VCs	start	doing	smaller	series	A	rounds?	The	sticking
point	is	board	seats.	In	a	traditional	series	A	round,	the	partner
whose	deal	it	is	takes	a	seat	on	the	startup's	board.	If	we	assume
the	average	startup	runs	for	6	years	and	a	partner	can	bear	to	be
on	12	boards	at	once,	then	a	VC	fund	can	do	2	series	A	deals	per
partner	per	year.

It	has	always	seemed	to	me	the	solution	is	to	take	fewer	board
seats.	You	don't	have	to	be	on	the	board	to	help	a	startup.	Maybe
VCs	feel	they	need	the	power	that	comes	with	board	membership

#f3n
#f4n

to	ensure	their	money	isn't	wasted.	But	have	they	tested	that
theory?	Unless	they've	tried	not	taking	board	seats	and	found
their	returns	are	lower,	they're	not	bracketing	the	problem.

I'm	not	saying	VCs	don't	help	startups.	The	good	ones	help	them
a	lot.	What	I'm	saying	is	that	the	kind	of	help	that	matters,	you
may	not	have	to	be	a	board	member	to	give.	[5]

How	will	this	all	play	out?	Some	VCs	will	probably	adapt,	by
doing	more,	smaller	deals.	I	wouldn't	be	surprised	if	by
streamlining	their	selection	process	and	taking	fewer	board
seats,	VC	funds	could	do	2	to	3	times	as	many	series	A	rounds
with	no	loss	of	quality.

But	other	VCs	will	make	no	more	than	superficial	changes.	VCs
are	conservative,	and	the	threat	to	them	isn't	mortal.	The	VC
funds	that	don't	adapt	won't	be	violently	displaced.	They'll	edge
gradually	into	a	different	business	without	realizing	it.	They'll
still	do	what	they	will	call	series	A	rounds,	but	these	will
increasingly	be	de	facto	series	B	rounds.	[6]

In	such	rounds	they	won't	get	the	25	to	40%	of	the	company	they
do	now.	You	don't	give	up	as	much	of	the	company	in	later	rounds
unless	something	is	seriously	wrong.	Since	the	VCs	who	don't
adapt	will	be	investing	later,	their	returns	from	winners	may	be
smaller.	But	investing	later	should	also	mean	they	have	fewer
losers.	So	their	ratio	of	risk	to	return	may	be	the	same	or	even
better.	They'll	just	have	become	a	different,	more	conservative,
type	of	investment.

Angels

In	the	big	angel	rounds	that	increasingly	compete	with	series	A
rounds,	the	investors	won't	take	as	much	equity	as	VCs	do	now.
And	VCs	who	try	to	compete	with	angels	by	doing	more,	smaller
deals	will	probably	find	they	have	to	take	less	equity	to	do	it.
Which	is	good	news	for	founders:	they'll	get	to	keep	more	of	the
company.

The	deal	terms	of	angel	rounds	will	become	less	restrictive	too—
not	just	less	restrictive	than	series	A	terms,	but	less	restrictive

#f5n
#f6n

than	angel	terms	have	traditionally	been.

In	the	future,	angel	rounds	will	less	often	be	for	specific	amounts
or	have	a	lead	investor.	In	the	old	days,	the	standard	m.o.	for
startups	was	to	find	one	angel	to	act	as	the	lead	investor.	You'd
negotiate	a	round	size	and	valuation	with	the	lead,	who'd	supply
some	but	not	all	of	the	money.	Then	the	startup	and	the	lead
would	cooperate	to	find	the	rest.

The	future	of	angel	rounds	looks	more	like	this:	instead	of	a	fixed
round	size,	startups	will	do	a	rolling	close,	where	they	take
money	from	investors	one	at	a	time	till	they	feel	they	have
enough.	[7]	And	though	there's	going	to	be	one	investor	who
gives	them	the	first	check,	and	his	or	her	help	in	recruiting	other
investors	will	certainly	be	welcome,	this	initial	investor	will	no
longer	be	the	lead	in	the	old	sense	of	managing	the	round.	The
startup	will	now	do	that	themselves.

There	will	continue	to	be	lead	investors	in	the	sense	of	investors
who	take	the	lead	in	advising	a	startup.	They	may	also	make	the
biggest	investment.	But	they	won't	always	have	to	be	the	one
terms	are	negotiated	with,	or	be	the	first	money	in,	as	they	have
in	the	past.	Standardized	paperwork	will	do	away	with	the	need
to	negotiate	anything	except	the	valuation,	and	that	will	get
easier	too.

If	multiple	investors	have	to	share	a	valuation,	it	will	be	whatever
the	startup	can	get	from	the	first	one	to	write	a	check,	limited	by
their	guess	at	whether	this	will	make	later	investors	balk.	But
there	may	not	have	to	be	just	one	valuation.	Startups	are
increasingly	raising	money	on	convertible	notes,	and	convertible
notes	have	not	valuations	but	at	most	valuation	caps:	caps	on
what	the	effective	valuation	will	be	when	the	debt	converts	to
equity	(in	a	later	round,	or	upon	acquisition	if	that	happens	first).
That's	an	important	difference	because	it	means	a	startup	could
do	multiple	notes	at	once	with	different	caps.	This	is	now	starting
to	happen,	and	I	predict	it	will	become	more	common.

Sheep

The	reason	things	are	moving	this	way	is	that	the	old	way	sucked

#f7n

for	startups.	Leads	could	(and	did)	use	a	fixed	size	round	as	a
legitimate-seeming	way	of	saying	what	all	founders	hate	to	hear:
I'll	invest	if	other	people	will.	Most	investors,	unable	to	judge
startups	for	themselves,	rely	instead	on	the	opinions	of	other
investors.	If	everyone	wants	in,	they	want	in	too;	if	not,	not.
Founders	hate	this	because	it's	a	recipe	for	deadlock,	and	delay
is	the	thing	a	startup	can	least	afford.	Most	investors	know	this
m.o.	is	lame,	and	few	say	openly	that	they're	doing	it.	But	the
craftier	ones	achieve	the	same	result	by	offering	to	lead	rounds
of	fixed	size	and	supplying	only	part	of	the	money.	If	the	startup
can't	raise	the	rest,	the	lead	is	out	too.	How	could	they	go	ahead
with	the	deal?	The	startup	would	be	underfunded!

In	the	future,	investors	will	increasingly	be	unable	to	offer
investment	subject	to	contingencies	like	other	people	investing.
Or	rather,	investors	who	do	that	will	get	last	place	in	line.
Startups	will	go	to	them	only	to	fill	up	rounds	that	are	mostly
subscribed.	And	since	hot	startups	tend	to	have	rounds	that	are
oversubscribed,	being	last	in	line	means	they'll	probably	miss	the
hot	deals.	Hot	deals	and	successful	startups	are	not	identical,	but
there	is	a	significant	correlation.	[8]	So	investors	who	won't
invest	unilaterally	will	have	lower	returns.

Investors	will	probably	find	they	do	better	when	deprived	of	this
crutch	anyway.	Chasing	hot	deals	doesn't	make	investors	choose
better;	it	just	makes	them	feel	better	about	their	choices.	I've
seen	feeding	frenzies	both	form	and	fall	apart	many	times,	and	as
far	as	I	can	tell	they're	mostly	random.	[9]	If	investors	can	no
longer	rely	on	their	herd	instincts,	they'll	have	to	think	more
about	each	startup	before	investing.	They	may	be	surprised	how
well	this	works.

Deadlock	wasn't	the	only	disadvantage	of	letting	a	lead	investor
manage	an	angel	round.	The	investors	would	not	infrequently
collude	to	push	down	the	valuation.	And	rounds	took	too	long	to
close,	because	however	motivated	the	lead	was	to	get	the	round
closed,	he	was	not	a	tenth	as	motivated	as	the	startup.

Increasingly,	startups	are	taking	charge	of	their	own	angel
rounds.	Only	a	few	do	so	far,	but	I	think	we	can	already	declare
the	old	way	dead,	because	those	few	are	the	best	startups.

#f8n
#f9n

They're	the	ones	in	a	position	to	tell	investors	how	the	round	is
going	to	work.	And	if	the	startups	you	want	to	invest	in	do	things
a	certain	way,	what	difference	does	it	make	what	the	others	do?

Traction

In	fact,	it	may	be	slightly	misleading	to	say	that	angel	rounds	will
increasingly	take	the	place	of	series	A	rounds.	What's	really
happening	is	that	startup-controlled	rounds	are	taking	the	place
of	investor-controlled	rounds.

This	is	an	instance	of	a	very	important	meta-trend,	one	that	Y
Combinator	itself	has	been	based	on	from	the	beginning:
founders	are	becoming	increasingly	powerful	relative	to
investors.	So	if	you	want	to	predict	what	the	future	of	venture
funding	will	be	like,	just	ask:	how	would	founders	like	it	to	be?
One	by	one,	all	the	things	founders	dislike	about	raising	money
are	going	to	get	eliminated.	[10]

Using	that	heuristic,	I'll	predict	a	couple	more	things.	One	is	that
investors	will	increasingly	be	unable	to	wait	for	startups	to	have
"traction"	before	they	put	in	significant	money.	It's	hard	to
predict	in	advance	which	startups	will	succeed.	So	most	investors
prefer,	if	they	can,	to	wait	till	the	startup	is	already	succeeding,
then	jump	in	quickly	with	an	offer.	Startups	hate	this	as	well,
partly	because	it	tends	to	create	deadlock,	and	partly	because	it
seems	kind	of	slimy.	If	you're	a	promising	startup	but	don't	yet
have	significant	growth,	all	the	investors	are	your	friends	in
words,	but	few	are	in	actions.	They	all	say	they	love	you,	but	they
all	wait	to	invest.	Then	when	you	start	to	see	growth,	they	claim
they	were	your	friend	all	along,	and	are	aghast	at	the	thought
you'd	be	so	disloyal	as	to	leave	them	out	of	your	round.	If
founders	become	more	powerful,	they'll	be	able	to	make
investors	give	them	more	money	upfront.

(The	worst	variant	of	this	behavior	is	the	tranched	deal,	where
the	investor	makes	a	small	initial	investment,	with	more	to	follow
if	the	startup	does	well.	In	effect,	this	structure	gives	the	investor
a	free	option	on	the	next	round,	which	they'll	only	take	if	it's
worse	for	the	startup	than	they	could	get	in	the	open	market.
Tranched	deals	are	an	abuse.	They're	increasingly	rare,	and

#f10n

they're	going	to	get	rarer.)	[11]

Investors	don't	like	trying	to	predict	which	startups	will	succeed,
but	increasingly	they'll	have	to.	Though	the	way	that	happens
won't	necessarily	be	that	the	behavior	of	existing	investors	will
change;	it	may	instead	be	that	they'll	be	replaced	by	other
investors	with	different	behavior—that	investors	who	understand
startups	well	enough	to	take	on	the	hard	problem	of	predicting
their	trajectory	will	tend	to	displace	suits	whose	skills	lie	more	in
raising	money	from	LPs.

Speed

The	other	thing	founders	hate	most	about	fundraising	is	how	long
it	takes.	So	as	founders	become	more	powerful,	rounds	should
start	to	close	faster.

Fundraising	is	still	terribly	distracting	for	startups.	If	you're	a
founder	in	the	middle	of	raising	a	round,	the	round	is	the	top	idea
in	your	mind,	which	means	working	on	the	company	isn't.	If	a
round	takes	2	months	to	close,	which	is	reasonably	fast	by
present	standards,	that	means	2	months	during	which	the
company	is	basically	treading	water.	That's	the	worst	thing	a
startup	could	do.

So	if	investors	want	to	get	the	best	deals,	the	way	to	do	it	will	be
to	close	faster.	Investors	don't	need	weeks	to	make	up	their
minds	anyway.	We	decide	based	on	about	10	minutes	of	reading
an	application	plus	10	minutes	of	in	person	interview,	and	we
only	regret	about	10%	of	our	decisions.	If	we	can	decide	in	20
minutes,	surely	the	next	round	of	investors	can	decide	in	a	couple
days.	[12]

There	are	a	lot	of	institutionalized	delays	in	startup	funding:	the
multi-week	mating	dance	with	investors;	the	distinction	between
termsheets	and	deals;	the	fact	that	each	series	A	has	enormously
elaborate,	custom	paperwork.	Both	founders	and	investors	tend
to	take	these	for	granted.	It's	the	way	things	have	always	been.
But	ultimately	the	reason	these	delays	exist	is	that	they're	to	the
advantage	of	investors.	More	time	gives	investors	more
information	about	a	startup's	trajectory,	and	it	also	tends	to	make

#f11n
top.html
#f12n

startups	more	pliable	in	negotiations,	since	they're	usually	short
of	money.

These	conventions	weren't	designed	to	drag	out	the	funding
process,	but	that's	why	they're	allowed	to	persist.	Slowness	is	to
the	advantage	of	investors,	who	have	in	the	past	been	the	ones
with	the	most	power.	But	there	is	no	need	for	rounds	to	take
months	or	even	weeks	to	close,	and	once	founders	realize	that,
it's	going	to	stop.	Not	just	in	angel	rounds,	but	in	series	A	rounds
too.	The	future	is	simple	deals	with	standard	terms,	done	quickly.

One	minor	abuse	that	will	get	corrected	in	the	process	is	option
pools.	In	a	traditional	series	A	round,	before	the	VCs	invest	they
make	the	company	set	aside	a	block	of	stock	for	future	hires—
usually	between	10	and	30%	of	the	company.	The	point	is	to
ensure	this	dilution	is	borne	by	the	existing	shareholders.	The
practice	isn't	dishonest;	founders	know	what's	going	on.	But	it
makes	deals	unnecessarily	complicated.	In	effect	the	valuation	is
2	numbers.	There's	no	need	to	keep	doing	this.	[13]

The	final	thing	founders	want	is	to	be	able	to	sell	some	of	their
own	stock	in	later	rounds.	This	won't	be	a	change,	because	the
practice	is	now	quite	common.	A	lot	of	investors	hated	the	idea,
but	the	world	hasn't	exploded	as	a	result,	so	it	will	happen	more,
and	more	openly.

Surprise

I've	talked	here	about	a	bunch	of	changes	that	will	be	forced	on
investors	as	founders	become	more	powerful.	Now	the	good
news:	investors	may	actually	make	more	money	as	a	result.

A	couple	days	ago	an	interviewer	asked	me	if	founders	having
more	power	would	be	better	or	worse	for	the	world.	I	was
surprised,	because	I'd	never	considered	that	question.	Better	or
worse,	it's	happening.	But	after	a	second's	reflection,	the	answer
seemed	obvious.	Founders	understand	their	companies	better
than	investors,	and	it	has	to	be	better	if	the	people	with	more
knowledge	have	more	power.

One	of	the	mistakes	novice	pilots	make	is	overcontrolling	the

#f13n
http://techcrunch.tv/watch?id=Q3amZtMTryrpiP80cbUtsV2ah92eZP2m

aircraft:	applying	corrections	too	vigorously,	so	the	aircraft
oscillates	about	the	desired	configuration	instead	of	approaching
it	asymptotically.	It	seems	probable	that	investors	have	till	now
on	average	been	overcontrolling	their	portfolio	companies.	In	a
lot	of	startups,	the	biggest	source	of	stress	for	the	founders	is	not
competitors	but	investors.	Certainly	it	was	for	us	at	Viaweb.	And
this	is	not	a	new	phenomenon:	investors	were	James	Watt's
biggest	problem	too.	If	having	less	power	prevents	investors	from
overcontrolling	startups,	it	should	be	better	not	just	for	founders
but	for	investors	too.

Investors	may	end	up	with	less	stock	per	startup,	but	startups
will	probably	do	better	with	founders	more	in	control,	and	there
will	almost	certainly	be	more	of	them.	Investors	all	compete	with
one	another	for	deals,	but	they	aren't	one	another's	main
competitor.	Our	main	competitor	is	employers.	And	so	far	that
competitor	is	crushing	us.	Only	a	tiny	fraction	of	people	who
could	start	a	startup	do.	Nearly	all	customers	choose	the
competing	product,	a	job.	Why?	Well,	let's	look	at	the	product
we're	offering.	An	unbiased	review	would	go	something	like	this:

Starting	a	startup	gives	you	more	freedom	and	the
opportunity	to	make	a	lot	more	money	than	a	job,	but
it's	also	hard	work	and	at	times	very	stressful.

Much	of	the	stress	comes	from	dealing	with	investors.	If
reforming	the	investment	process	removed	that	stress,	we'd
make	our	product	much	more	attractive.	The	kind	of	people	who
make	good	startup	founders	don't	mind	dealing	with	technical
problems—they	enjoy	technical	problems—but	they	hate	the	type
of	problems	investors	cause.

Investors	have	no	idea	that	when	they	maltreat	one	startup,
they're	preventing	10	others	from	happening,	but	they	are.
Indirectly,	but	they	are.	So	when	investors	stop	trying	to	squeeze
a	little	more	out	of	their	existing	deals,	they'll	find	they're	net
ahead,	because	so	many	more	new	deals	appear.

One	of	our	axioms	at	Y	Combinator	is	not	to	think	of	deal	flow	as
a	zero-sum	game.	Our	main	focus	is	to	encourage	more	startups
to	happen,	not	to	win	a	larger	share	of	the	existing	stream.	We've

found	this	principle	very	useful,	and	we	think	as	it	spreads
outward	it	will	help	later	stage	investors	as	well.

"Make	something	people	want"	applies	to	us	too.

Notes

[1]	In	this	essay	I'm	talking	mainly	about	software	startups.
These	points	don't	apply	to	types	of	startups	that	are	still
expensive	to	start,	e.g.	in	energy	or	biotech.

Even	the	cheap	kinds	of	startups	will	generally	raise	large
amounts	at	some	point,	when	they	want	to	hire	a	lot	of	people.
What	has	changed	is	how	much	they	can	get	done	before	that.

[2]	It's	not	the	distribution	of	good	startups	that	has	a	power	law
dropoff,	but	the	distribution	of	potentially	good	startups,	which	is
to	say,	good	deals.	There	are	lots	of	potential	winners,	from
which	a	few	actual	winners	emerge	with	superlinear	certainty.

[3]	As	I	was	writing	this,	I	asked	some	founders	who'd	taken
series	A	rounds	from	top	VC	funds	whether	it	was	worth	it,	and
they	unanimously	said	yes.

The	quality	of	investor	is	more	important	than	the	type	of	round,
though.	I'd	take	an	angel	round	from	good	angels	over	a	series	A
from	a	mediocre	VC.

[4]	Founders	also	worry	that	taking	an	angel	investment	from	a
VC	means	they'll	look	bad	if	the	VC	declines	to	participate	in	the
next	round.	The	trend	of	VC	angel	investing	is	so	new	that	it's
hard	to	say	how	justified	this	worry	is.

Another	danger,	pointed	out	by	Mitch	Kapor,	is	that	if	VCs	are
only	doing	angel	deals	to	generate	series	A	deal	flow,	then	their
incentives	aren't	aligned	with	the	founders'.	The	founders	want
the	valuation	of	the	next	round	to	be	high,	and	the	VCs	want	it	to

be	low.	Again,	hard	to	say	yet	how	much	of	a	problem	this	will	be.

[5]	Josh	Kopelman	pointed	out	that	another	way	to	be	on	fewer
boards	at	once	is	to	take	board	seats	for	shorter	periods.

[6]	Google	was	in	this	respect	as	so	many	others	the	pattern	for
the	future.	It	would	be	great	for	VCs	if	the	similarity	extended	to
returns.	That's	probably	too	much	to	hope	for,	but	the	returns
may	be	somewhat	higher,	as	I	explain	later.

[7]	Doing	a	rolling	close	doesn't	mean	the	company	is	always
raising	money.	That	would	be	a	distraction.	The	point	of	a	rolling
close	is	to	make	fundraising	take	less	time,	not	more.	With	a
classic	fixed	sized	round,	you	don't	get	any	money	till	all	the
investors	agree,	and	that	often	creates	a	situation	where	they	all
sit	waiting	for	the	others	to	act.	A	rolling	close	usually	prevents
this.

[8]	There	are	two	(non-exclusive)	causes	of	hot	deals:	the	quality
of	the	company,	and	domino	effects	among	investors.	The	former
is	obviously	a	better	predictor	of	success.

[9]	Some	of	the	randomness	is	concealed	by	the	fact	that
investment	is	a	self	fulfilling	prophecy.

[10]	The	shift	in	power	to	founders	is	exaggerated	now	because
it's	a	seller's	market.	On	the	next	downtick	it	will	seem	like	I
overstated	the	case.	But	on	the	next	uptick	after	that,	founders
will	seem	more	powerful	than	ever.

[11]	More	generally,	it	will	become	less	common	for	the	same
investor	to	invest	in	successive	rounds,	except	when	exercising
an	option	to	maintain	their	percentage.	When	the	same	investor
invests	in	successive	rounds,	it	often	means	the	startup	isn't
getting	market	price.	They	may	not	care;	they	may	prefer	to	work
with	an	investor	they	already	know;	but	as	the	investment	market
becomes	more	efficient,	it	will	become	increasingly	easy	to	get
market	price	if	they	want	it.	Which	in	turn	means	the	investment
community	will	tend	to	become	more	stratified.

[12]	The	two	10	minuteses	have	3	weeks	between	them	so

founders	can	get	cheap	plane	tickets,	but	except	for	that	they
could	be	adjacent.

[13]	I'm	not	saying	option	pools	themselves	will	go	away.	They're
an	administrative	convenience.	What	will	go	away	is	investors
requiring	them.

Thanks	to	Sam	Altman,	John	Bautista,	Trevor	Blackwell,	Paul
Buchheit,	Jeff	Clavier,	Patrick	Collison,	Ron	Conway,	Matt	Cohler,
Chris	Dixon,	Mitch	Kapor,	Josh	Kopelman,	Pete	Koomen,
Carolynn	Levy,	Jessica	Livingston,	Ariel	Poler,	Geoff	Ralston,
Naval	Ravikant,	Dan	Siroker,	Harj	Taggar,	and	Fred	Wilson	for
reading	drafts	of	this.

	

What	Happened	to	Yahoo
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

High	Resolution	Fundraising
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Where	to	See	Silicon	Valley
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

The	New	Funding	Landscape
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

What	We	Look	for	in	Founders
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

October	2010

http://ycombinator.com/apply.html

	

Tablets
December	2010

I	was	thinking	recently	how	inconvenient	it	was	not	to	have	a
general	term	for	iPhones,	iPads,	and	the	corresponding	things
running	Android.	The	closest	to	a	general	term	seems	to	be
"mobile	devices,"	but	that	(a)	applies	to	any	mobile	phone,	and
(b)	doesn't	really	capture	what's	distinctive	about	the	iPad.

After	a	few	seconds	it	struck	me	that	what	we'll	end	up	calling
these	things	is	tablets.	The	only	reason	we	even	consider	calling
them	"mobile	devices"	is	that	the	iPhone	preceded	the	iPad.	If	the
iPad	had	come	first,	we	wouldn't	think	of	the	iPhone	as	a	phone;
we'd	think	of	it	as	a	tablet	small	enough	to	hold	up	to	your	ear.

The	iPhone	isn't	so	much	a	phone	as	a	replacement	for	a	phone.
That's	an	important	distinction,	because	it's	an	early	instance	of
what	will	become	a	common	pattern.	Many	if	not	most	of	the
special-purpose	objects	around	us	are	going	to	be	replaced	by
apps	running	on	tablets.

This	is	already	clear	in	cases	like	GPSes,	music	players,	and
cameras.	But	I	think	it	will	surprise	people	how	many	things	are
going	to	get	replaced.	We	funded	one	startup	that's	replacing
keys.	The	fact	that	you	can	change	font	sizes	easily	means	the
iPad	effectively	replaces	reading	glasses.	I	wouldn't	be	surprised
if	by	playing	some	clever	tricks	with	the	accelerometer	you	could
even	replace	the	bathroom	scale.

The	advantages	of	doing	things	in	software	on	a	single	device	are
so	great	that	everything	that	can	get	turned	into	software	will.	So
for	the	next	couple	years,	a	good	recipe	for	startups	will	be	to
look	around	you	for	things	that	people	haven't	realized	yet	can	be
made	unnecessary	by	a	tablet	app.

In	1938	Buckminster	Fuller	coined	the	term	ephemeralization	to

http://lockitron.com/
http://ycombinator.com/rfs8.html
http://en.wikipedia.org/wiki/Ephemeralization

describe	the	increasing	tendency	of	physical	machinery	to	be
replaced	by	what	we	would	now	call	software.	The	reason	tablets
are	going	to	take	over	the	world	is	not	(just)	that	Steve	Jobs	and
Co	are	industrial	design	wizards,	but	because	they	have	this
force	behind	them.	The	iPhone	and	the	iPad	have	effectively
drilled	a	hole	that	will	allow	ephemeralization	to	flow	into	a	lot	of
new	areas.	No	one	who	has	studied	the	history	of	technology
would	want	to	underestimate	the	power	of	that	force.

I	worry	about	the	power	Apple	could	have	with	this	force	behind
them.	I	don't	want	to	see	another	era	of	client	monoculture	like
the	Microsoft	one	in	the	80s	and	90s.	But	if	ephemeralization	is
one	of	the	main	forces	driving	the	spread	of	tablets,	that
suggests	a	way	to	compete	with	Apple:	be	a	better	platform	for	it.

It	has	turned	out	to	be	a	great	thing	that	Apple	tablets	have
accelerometers	in	them.	Developers	have	used	the	accelerometer
in	ways	Apple	could	never	have	imagined.	That's	the	nature	of
platforms.	The	more	versatile	the	tool,	the	less	you	can	predict
how	people	will	use	it.	So	tablet	makers	should	be	thinking:	what
else	can	we	put	in	there?	Not	merely	hardware,	but	software	too.
What	else	can	we	give	developers	access	to?	Give	hackers	an
inch	and	they'll	take	you	a	mile.

Thanks	to	Sam	Altman,	Paul	Buchheit,	Jessica	Livingston,	and
Robert	Morris	for	reading	drafts	of	this.

	

Founder	Control
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Subject:	Airbnb
March	2011

Yesterday	Fred	Wilson	published	a	remarkable	post	about
missing	Airbnb.	VCs	miss	good	startups	all	the	time,	but	it's
extraordinarily	rare	for	one	to	talk	about	it	publicly	till	long
afterward.	So	that	post	is	further	evidence	what	a	rare	bird	Fred
is.	He's	probably	the	nicest	VC	I	know.

Reading	Fred's	post	made	me	go	back	and	look	at	the	emails	I
exchanged	with	him	at	the	time,	trying	to	convince	him	to	invest
in	Airbnb.	It	was	quite	interesting	to	read.	You	can	see	Fred's
mind	at	work	as	he	circles	the	deal.

Fred	and	the	Airbnb	founders	have	generously	agreed	to	let	me
publish	this	email	exchange	(with	one	sentence	redacted	about
something	that's	strategically	important	to	Airbnb	and	not	an
important	part	of	the	conversation).	It's	an	interesting	illustration
of	an	element	of	the	startup	ecosystem	that	few	except	the
participants	ever	see:	investors	trying	to	convince	one	another	to
invest	in	their	portfolio	companies.	Hundreds	if	not	thousands	of
conversations	of	this	type	are	happening	now,	but	if	one	has	ever
been	published,	I	haven't	seen	it.	The	Airbnbs	themselves	never
even	saw	these	emails	at	the	time.

We	do	a	lot	of	this	behind	the	scenes	stuff	at	YC,	because	we
invest	in	such	a	large	number	of	companies,	and	we	invest	so
early	that	investors	sometimes	need	a	lot	of	convincing	to	see
their	merits.	I	don't	always	try	as	hard	as	this	though.	Fred	must
have	found	me	quite	annoying.

from:	Paul	Graham
to:	Fred	Wilson,	AirBedAndBreakfast	Founders

http://avc.com/2011/03/airbnb
http://airbnb.com/

date:	Fri,	Jan	23,	2009	at	11:42	AM
subject:	meet	the	airbeds

One	of	the	startups	from	the	batch	that	just	started,	AirbedAndBreakfast,
is	in	NYC	right	now	meeting	their	users.		(NYC	is	their	biggest
market.)	I'd	recommend	meeting	them	if	your	schedule	allows.

I'd	been	thinking	to	myself	that	though	these	guys	were	going	to
do	really	well,	I	should	introduce	them	to	angels,	because	VCs	would
never	go	for	it.		But	then	I	thought	maybe	I	should	give	you	more
credit.		You'll	certainly	like	meeting	them.		Be	sure	to	ask	about
how	they	funded	themselves	with	breakfast	cereal.

There's	no	reason	this	couldn't	be	as	big	as	Ebay.		And	this	team
is	the	right	one	to	do	it.

--pg

from:	Brian	Chesky
to:	Paul	Graham
cc:	Nathan	Blecharczyk,	Joe	Gebbia
date:	Fri,	Jan	23,	2009	at	11:40	AM
subject:	Re:	meet	the	airbeds

PG,

Thanks	for	the	intro!

Brian

from:	Paul	Graham
to:	Brian	Chesky
cc:	Nathan	Blecharczyk,	Joe	Gebbia
date:	Fri,	Jan	23,	2009	at	12:38	PM
subject:	Re:	meet	the	airbeds

It's	a	longshot,	at	this	stage,	but	if	there	was	any	VC	who'd	get

you	guys,	it	would	be	Fred.		He	is	the	least	suburban-golf-playing
VC	I	know.

He	likes	to	observe	startups	for	a	while	before	acting,	so	don't
be	bummed	if	he	seems	ambivalent.

--pg

from:	Fred	Wilson
to:	Paul	Graham,
date:	Sun,	Jan	25,	2009	at	5:28	PM
subject:	Re:	meet	the	airbeds

Thanks	Paul

We	are	having	a	bit	of	a	debate	inside	our	partnership	about	the
airbed	concept.	We'll	finish	that	debate	tomorrow	in	our	weekly
meeting	and	get	back	to	you	with	our	thoughts

Thanks

Fred

from:	Paul	Graham
to:	Fred	Wilson
date:	Sun,	Jan	25,	2009	at	10:48	PM
subject:	Re:	meet	the	airbeds

I'd	recommend	having	the	debate	after	meeting	them	instead	of	before.
We	had	big	doubts	about	this	idea,	but	they	vanished	on	meeting	the
guys.

from:	Fred	Wilson
to:	Paul	Graham
date:	Mon,	Jan	26,	2009	at	11:08	AM

subject:	RE:	meet	the	airbeds

We	are	still	very	suspect	of	this	idea	but	will	take	a	meeting	as
you	suggest

Thanks

fred

from:	Fred	Wilson
to:	Paul	Graham,	AirBedAndBreakfast	Founders
date:	Mon,	Jan	26,	2009	at	11:09	AM
subject:	RE:	meet	the	airbeds

Airbed	team	-

Are	you	still	in	NYC?

We'd	like	to	meet	if	you	are

Thanks

fred

from:	Paul	Graham
to:	Fred	Wilson
date:	Mon,	Jan	26,	2009	at	1:42	PM
subject:	Re:	meet	the	airbeds

Ideas	can	morph.		Practically	every	really	big	startup	could	say,
five	years	later,	"believe	it	or	not,	we	started	out	doing	___."
It	just	seemed	a	very	good	sign	to	me	that	these	guys	were	actually
on	the	ground	in	NYC	hunting	down	(and	understanding)	their	users.
On	top	of	several	previous	good	signs.

--pg

from:	Fred	Wilson
to:	Paul	Graham
date:	Sun,	Feb	1,	2009	at	7:15	AM
subject:	Re:	meet	the	airbeds

It's	interesting

Our	two	junior	team	members	were	enthusiastic

The	three	"old	guys"	didn't	get	it

from:	Paul	Graham
to:	Fred	Wilson
date:	Mon,	Feb	9,	2009	at	5:58	PM
subject:	airbnb

The	Airbeds	just	won	the	first	poll	among	all	the	YC	startups	in
their	batch	by	a	landslide.		In	the	past	this	has	not	been	a	100%
indicator	of	success	(if	only	anything	were)	but	much	better	than
random.

--pg

from:	Fred	Wilson
to:	Paul	Graham
date:	Fri,	Feb	13,	2009	at	5:29	PM
subject:	Re:	airbnb

I	met	them	today

They	have	an	interesting	business

I'm	just	not	sure	how	big	it's	going	to	be

fred

from:	Paul	Graham
to:	Fred	Wilson
date:	Sat,	Feb	14,	2009	at	9:50	AM
subject:	Re:	airbnb

Did	they	explain	the	long-term	goal	of	being	the	market	in	accommodation
the	way	eBay	is	in	stuff?		That	seems	like	it	would	be	huge.		Hotels
now	are	like	airlines	in	the	1970s	before	they	figured	out	how	to
increase	their	load	factors.

from:	Fred	Wilson
to:	Paul	Graham
date:	Tue,	Feb	17,	2009	at	2:05	PM
subject:	Re:	airbnb

They	did	but	I	am	not	sure	I	buy	that

ABNB	reminds	me	of	Etsy	in	that	it	facilitates	real	commerce	in	a
marketplace	model	directly	between	two	people

So	I	think	it	can	scale	all	the	way	to	the	bed	and	breakfast	market

But	I	am	not	sure	they	can	take	on	the	hotel	market

I	could	be	wrong

But	even	so,	if	you	include	short	term	room	rental,	second	home
rental,	bed	and	breakfast,	and	other	similar	classes	of	accommodations,
you	get	to	a	pretty	big	opportunity

fred

from:	Paul	Graham
to:	Fred	Wilson

date:	Wed,	Feb	18,	2009	at	12:21	AM
subject:	Re:	airbnb

So	invest	in	them!		They're	very	capital	efficient.		They	would
make	an	investor's	money	go	a	long	way.

It's	also	counter-cyclical.		They	just	arrived	back	from	NYC,	and
when	I	asked	them	what	was	the	most	significant	thing	they'd	observed,
it	was	how	many	of	their	users	actually	needed	to	do	these	rentals
to	pay	their	rents.

--pg

from:	Fred	Wilson
to:	Paul	Graham
date:	Wed,	Feb	18,	2009	at	2:21	AM
subject:	Re:	airbnb

There's	a	lot	to	like

I've	done	a	few	things,	like	intro	it	to	my	friends	at	Foundry	who
were	investors	in	Service	Metrics	and	understand	this	model

I	am	also	talking	to	my	friend	Mark	Pincus	who	had	an	idea	like
this	a	few	years	ago.

So	we	are	working	on	it

Thanks	for	the	lead

Fred

from:	Paul	Graham
to:	Fred	Wilson
date:	Fri,	Feb	20,	2009	at	10:00	PM
subject:	airbnb	already	spreading	to	pros

I	know	you're	skeptical	they'll	ever	get	hotels,	but	there's	a
continuum	between	private	sofas	and	hotel	rooms,	and	they	just	moved
one	step	further	along	it.

[link	to	an	airbnb	user]

This	is	after	only	a	few	months.		I	bet	you	they	will	get	hotels
eventually.		It	will	start	with	small	ones.		Just	wait	till	all	the
10-room	pensiones	in	Rome	discover	this	site.		And	once	it	spreads
to	hotels,	where	is	the	point	(in	size	of	chain)	at	which	it	stops?
Once	something	becomes	a	big	marketplace,	you	ignore	it	at	your
peril.

--pg

from:	Fred	Wilson
to:	Paul	Graham
date:	Sat,	Feb	21,	2009	at	4:26	AM
subject:	Re:	airbnb	already	spreading	to	pros

That's	true.	It's	also	true	that	there	are	quite	a	few	marketplaces
out	there	that	serve	this	same	market

If	you	look	at	many	of	the	people	who	list	at	ABNB,	they	list
elsewhere	too

I	am	not	negative	on	this	one,	I	am	interested,	but	we	are	still
in	the	gathering	data	phase.

fred

	

The	Patent	Pledge
August	2011

I	realized	recently	that	we	may	be	able	to	solve	part	of	the	patent
problem	without	waiting	for	the	government.

I've	never	been	100%	sure	whether	patents	help	or	hinder
technological	progress.	When	I	was	a	kid	I	thought	they	helped.	I
thought	they	protected	inventors	from	having	their	ideas	stolen
by	big	companies.	Maybe	that	was	truer	in	the	past,	when	more
things	were	physical.	But	regardless	of	whether	patents	are	in
general	a	good	thing,	there	do	seem	to	be	bad	ways	of	using
them.	And	since	bad	uses	of	patents	seem	to	be	increasing,	there
is	an	increasing	call	for	patent	reform.

The	problem	with	patent	reform	is	that	it	has	to	go	through	the
government.	That	tends	to	be	slow.	But	recently	I	realized	we	can
also	attack	the	problem	downstream.	As	well	as	pinching	off	the
stream	of	patents	at	the	point	where	they're	issued,	we	may	in
some	cases	be	able	to	pinch	it	off	at	the	point	where	they're	used.

One	way	of	using	patents	that	clearly	does	not	encourage
innovation	is	when	established	companies	with	bad	products	use
patents	to	suppress	small	competitors	with	good	products.	This	is
the	type	of	abuse	we	may	be	able	to	decrease	without	having	to
go	through	the	government.

The	way	to	do	it	is	to	get	the	companies	that	are	above	pulling
this	sort	of	trick	to	pledge	publicly	not	to.	Then	the	ones	that
won't	make	such	a	pledge	will	be	very	conspicuous.	Potential
employees	won't	want	to	work	for	them.	And	investors,	too,	will
be	able	to	see	that	they're	the	sort	of	company	that	competes	by
litigation	rather	than	by	making	good	products.

Here's	the	pledge:

No	first	use	of	software	patents	against	companies

with	less	than	25	people.

I've	deliberately	traded	precision	for	brevity.	The	patent	pledge	is
not	legally	binding.	It's	like	Google's	"Don't	be	evil."	They	don't
define	what	evil	is,	but	by	publicly	saying	that,	they're	saying
they're	willing	to	be	held	to	a	standard	that,	say,	Altria	is	not.
And	though	constraining,	"Don't	be	evil"	has	been	good	for
Google.	Technology	companies	win	by	attracting	the	most
productive	people,	and	the	most	productive	people	are	attracted
to	employers	who	hold	themselves	to	a	higher	standard	than	the
law	requires.	[1]

The	patent	pledge	is	in	effect	a	narrower	but	open	source	"Don't
be	evil."	I	encourage	every	technology	company	to	adopt	it.	If	you
want	to	help	fix	patents,	encourage	your	employer	to.

Already	most	technology	companies	wouldn't	sink	to	using
patents	on	startups.	You	don't	see	Google	or	Facebook	suing
startups	for	patent	infringement.	They	don't	need	to.	So	for	the
better	technology	companies,	the	patent	pledge	requires	no
change	in	behavior.	They're	just	promising	to	do	what	they'd	do
anyway.	And	when	all	the	companies	that	won't	use	patents	on
startups	have	said	so,	the	holdouts	will	be	very	conspicuous.

The	patent	pledge	doesn't	fix	every	problem	with	patents.	It
won't	stop	patent	trolls,	for	example;	they're	already	pariahs.	But
the	problem	the	patent	pledge	does	fix	may	be	more	serious	than
the	problem	of	patent	trolls.	Patent	trolls	are	just	parasites.	A
clumsy	parasite	may	occasionally	kill	the	host,	but	that's	not	its
goal.	Whereas	companies	that	sue	startups	for	patent
infringement	generally	do	it	with	explicit	goal	of	keeping	their
product	off	the	market.

Companies	that	use	patents	on	startups	are	attacking	innovation
at	the	root.	Now	there's	something	any	individual	can	do	about
this	problem,	without	waiting	for	the	government:	ask	companies
where	they	stand.

Patent	Pledge	Site

#f1n
http://thepatentpledge.org/

Notes:

[1]	Because	the	pledge	is	deliberately	vague,	we're	going	to	need
common	sense	when	intepreting	it.	And	even	more	vice	versa:
the	pledge	is	vague	in	order	to	make	people	use	common	sense
when	interpreting	it.

So	for	example	I've	deliberately	avoided	saying	whether	the	25
people	have	to	be	employees,	or	whether	contractors	count	too.
If	a	company	has	to	split	hairs	that	fine	about	whether	a	suit
would	violate	the	patent	pledge,	it's	probably	still	a	dick	move.

	

Why	Startup	Hubs	Work
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Snapshot:	Viaweb,	June	1998
January	2012

A	few	hours	before	the	Yahoo	acquisition	was	announced	in	June
1998	I	took	a	snapshot	of	Viaweb's	site.	I	thought	it	might	be
interesting	to	look	at	one	day.

The	first	thing	one	notices	is	is	how	tiny	the	pages	are.	Screens
were	a	lot	smaller	in	1998.	If	I	remember	correctly,	our	frontpage
used	to	just	fit	in	the	size	window	people	typically	used	then.

Browsers	then	(IE	6	was	still	3	years	in	the	future)	had	few	fonts
and	they	weren't	antialiased.	If	you	wanted	to	make	pages	that
looked	good,	you	had	to	render	display	text	as	images.

You	may	notice	a	certain	similarity	between	the	Viaweb	and	Y
Combinator	logos.	We	did	that	as	an	inside	joke	when	we	started
YC.	Considering	how	basic	a	red	circle	is,	it	seemed	surprising	to
me	when	we	started	Viaweb	how	few	other	companies	used	one
as	their	logo.	A	bit	later	I	realized	why.

On	the	Company	page	you'll	notice	a	mysterious	individual	called
John	McArtyem.	Robert	Morris	(aka	Rtm)	was	so	publicity	averse
after	the	Worm	that	he	didn't	want	his	name	on	the	site.	I
managed	to	get	him	to	agree	to	a	compromise:	we	could	use	his
bio	but	not	his	name.	He	has	since	relaxed	a	bit	on	that	point.

Trevor	graduated	at	about	the	same	time	the	acquisition	closed,
so	in	the	course	of	4	days	he	went	from	impecunious	grad
student	to	millionaire	PhD.	The	culmination	of	my	career	as	a
writer	of	press	releases	was	one	celebrating	his	graduation,
illustrated	with	a	drawing	I	did	of	him	during	a	meeting.

(Trevor	also	appears	as	Trevino	Bagwell	in	our	directory	of	web
designers	merchants	could	hire	to	build	stores	for	them.	We
inserted	him	as	a	ringer	in	case	some	competitor	tried	to	spam

http://ycombinator.com/viaweb
http://ycombinator.com/
zero.html
http://www.ycombinator.com/viaweb/com.html
http://en.wikipedia.org/wiki/Morris_worm
http://ycombinator.com/people.html
http://ycombinator.com/viaweb/trevor.html
http://ycombinator.com/viaweb/tlbwebdesign.html

our	web	designers.	We	assumed	his	logo	would	deter	any	actual
customers,	but	it	did	not.)

Back	in	the	90s,	to	get	users	you	had	to	get	mentioned	in
magazines	and	newspapers.	There	were	not	the	same	ways	to	get
found	online	that	there	are	today.	So	we	used	to	pay	a	PR	firm
$16,000	a	month	to	get	us	mentioned	in	the	press.	Fortunately
reporters	liked	us.

In	our	advice	about	getting	traffic	from	search	engines	(I	don't
think	the	term	SEO	had	been	coined	yet),	we	say	there	are	only	7
that	matter:	Yahoo,	AltaVista,	Excite,	WebCrawler,	InfoSeek,
Lycos,	and	HotBot.	Notice	anything	missing?	Google	was
incorporated	that	September.

We	supported	online	transactions	via	a	company	called
Cybercash,	since	if	we	lacked	that	feature	we'd	have	gotten
beaten	up	in	product	comparisons.	But	Cybercash	was	so	bad
and	most	stores'	order	volumes	were	so	low	that	it	was	better	if
merchants	processed	orders	like	phone	orders.	We	had	a	page	in
our	site	trying	to	talk	merchants	out	of	doing	real	time
authorizations.

The	whole	site	was	organized	like	a	funnel,	directing	people	to
the	test	drive.	It	was	a	novel	thing	to	be	able	to	try	out	software
online.	We	put	cgi-bin	in	our	dynamic	urls	to	fool	competitors
about	how	our	software	worked.

We	had	some	well	known	users.	Needless	to	say,	Frederick's	of
Hollywood	got	the	most	traffic.	We	charged	a	flat	fee	of
$300/month	for	big	stores,	so	it	was	a	little	alarming	to	have
users	who	got	lots	of	traffic.	I	once	calculated	how	much
Frederick's	was	costing	us	in	bandwidth,	and	it	was	about
$300/month.

Since	we	hosted	all	the	stores,	which	together	were	getting	just
over	10	million	page	views	per	month	in	June	1998,	we	consumed
what	at	the	time	seemed	a	lot	of	bandwidth.	We	had	2	T1s	(3
Mb/sec)	coming	into	our	offices.	In	those	days	there	was	no	AWS.
Even	colocating	servers	seemed	too	risky,	considering	how	often
things	went	wrong	with	them.	So	we	had	our	servers	in	our

submarine.html
http://ycombinator.com/viaweb/presquot.html
http://ycombinator.com/viaweb/se.html
http://en.wikipedia.org/wiki/CyberCash,_Inc.
http://www.ycombinator.com/viaweb/cybercash.html
http://ycombinator.com/viaweb/tesdriv.html
http://ycombinator.com/viaweb/us.html

offices.	Or	more	precisely,	in	Trevor's	office.	In	return	for	the
unique	privilege	of	sharing	his	office	with	no	other	humans,	he
had	to	share	it	with	6	shrieking	tower	servers.	His	office	was
nicknamed	the	Hot	Tub	on	account	of	the	heat	they	generated.
Most	days	his	stack	of	window	air	conditioners	could	keep	up.

For	describing	pages,	we	had	a	template	language	called	RTML,
which	supposedly	stood	for	something,	but	which	in	fact	I	named
after	Rtm.	RTML	was	Common	Lisp	augmented	by	some	macros
and	libraries,	and	concealed	under	a	structure	editor	that	made
it	look	like	it	had	syntax.

Since	we	did	continuous	releases,	our	software	didn't	actually
have	versions.	But	in	those	days	the	trade	press	expected
versions,	so	we	made	them	up.	If	we	wanted	to	get	lots	of
attention,	we	made	the	version	number	an	integer.	That	"version
4.0"	icon	was	generated	by	our	own	button	generator,
incidentally.	The	whole	Viaweb	site	was	made	with	our	software,
even	though	it	wasn't	an	online	store,	because	we	wanted	to
experience	what	our	users	did.

At	the	end	of	1997,	we	released	a	general	purpose	shopping
search	engine	called	Shopfind.	It	was	pretty	advanced	for	the
time.	It	had	a	programmable	crawler	that	could	crawl	most	of	the
different	stores	online	and	pick	out	the	products.

http://ycombinator.com/viaweb/rtml.html
http://www.ycombinator.com/viaweb/rel4.html
http://ycombinator.com/viaweb/shoprel.html

	

Schlep	Blindness
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

A	Word	to	the	Resourceful
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Frighteningly	Ambitious
Startup	Ideas
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

March	2012

One	of	the	more	surprising	things	I've	noticed	while	working	on
Y	Combinator	is	how	frightening	the	most	ambitious	startup
ideas	are.	In	this	essay	I'm	going	to	demonstrate	this
phenomenon	by	describing	some.	Any	one	of	them	could	make
you	a	billionaire.	That	might	sound	like	an	attractive	prospect,
and	yet	when	I	describe	these	ideas	you	may	notice	you	find
yourself	shrinking	away	from	them.

Don't	worry,	it's	not	a	sign	of	weakness.	Arguably	it's	a	sign	of
sanity.	The	biggest	startup	ideas	are	terrifying.	And	not	just
because	they'd	be	a	lot	of	work.	The	biggest	ideas	seem	to
threaten	your	identity:	you	wonder	if	you'd	have	enough	ambition
to	carry	them	through.

There's	a	scene	in	Being	John	Malkovich	where	the	nerdy	hero
encounters	a	very	attractive,	sophisticated	woman.	She	says	to
him:

Here's	the	thing:	If	you	ever	got	me,	you	wouldn't
have	a	clue	what	to	do	with	me.

That's	what	these	ideas	say	to	us.

This	phenomenon	is	one	of	the	most	important	things	you	can
understand	about	startups.	[1]	You'd	expect	big	startup	ideas	to
be	attractive,	but	actually	they	tend	to	repel	you.	And	that	has	a
bunch	of	consequences.	It	means	these	ideas	are	invisible	to
most	people	who	try	to	think	of	startup	ideas,	because	their
subconscious	filters	them	out.	Even	the	most	ambitious	people
are	probably	best	off	approaching	them	obliquely.

http://ycombinator.com/apply.html
#f1n

1.	A	New	Search	Engine

The	best	ideas	are	just	on	the	right	side	of	impossible.	I	don't
know	if	this	one	is	possible,	but	there	are	signs	it	might	be.
Making	a	new	search	engine	means	competing	with	Google,	and
recently	I've	noticed	some	cracks	in	their	fortress.

The	point	when	it	became	clear	to	me	that	Microsoft	had	lost
their	way	was	when	they	decided	to	get	into	the	search	business.
That	was	not	a	natural	move	for	Microsoft.	They	did	it	because
they	were	afraid	of	Google,	and	Google	was	in	the	search
business.	But	this	meant	(a)	Google	was	now	setting	Microsoft's
agenda,	and	(b)	Microsoft's	agenda	consisted	of	stuff	they
weren't	good	at.

Microsoft	:	Google	::	Google	:	Facebook.

That	does	not	by	itself	mean	there's	room	for	a	new	search
engine,	but	lately	when	using	Google	search	I've	found	myself
nostalgic	for	the	old	days,	when	Google	was	true	to	its	own
slightly	aspy	self.	Google	used	to	give	me	a	page	of	the	right
answers,	fast,	with	no	clutter.	Now	the	results	seem	inspired	by
the	Scientologist	principle	that	what's	true	is	what's	true	for	you.
And	the	pages	don't	have	the	clean,	sparse	feel	they	used	to.
Google	search	results	used	to	look	like	the	output	of	a	Unix
utility.	Now	if	I	accidentally	put	the	cursor	in	the	wrong	place,
anything	might	happen.

The	way	to	win	here	is	to	build	the	search	engine	all	the	hackers
use.	A	search	engine	whose	users	consisted	of	the	top	10,000
hackers	and	no	one	else	would	be	in	a	very	powerful	position
despite	its	small	size,	just	as	Google	was	when	it	was	that	search
engine.	And	for	the	first	time	in	over	a	decade	the	idea	of
switching	seems	thinkable	to	me.

Since	anyone	capable	of	starting	this	company	is	one	of	those
10,000	hackers,	the	route	is	at	least	straightforward:	make	the
search	engine	you	yourself	want.	Feel	free	to	make	it	excessively
hackerish.	Make	it	really	good	for	code	search,	for	example.
Would	you	like	search	queries	to	be	Turing	complete?	Anything

that	gets	you	those	10,000	users	is	ipso	facto	good.

Don't	worry	if	something	you	want	to	do	will	constrain	you	in	the
long	term,	because	if	you	don't	get	that	initial	core	of	users,
there	won't	be	a	long	term.	If	you	can	just	build	something	that
you	and	your	friends	genuinely	prefer	to	Google,	you're	already
about	10%	of	the	way	to	an	IPO,	just	as	Facebook	was	(though
they	probably	didn't	realize	it)	when	they	got	all	the	Harvard
undergrads.

2.	Replace	Email

Email	was	not	designed	to	be	used	the	way	we	use	it	now.	Email
is	not	a	messaging	protocol.	It's	a	todo	list.	Or	rather,	my	inbox	is
a	todo	list,	and	email	is	the	way	things	get	onto	it.	But	it	is	a
disastrously	bad	todo	list.

I'm	open	to	different	types	of	solutions	to	this	problem,	but	I
suspect	that	tweaking	the	inbox	is	not	enough,	and	that	email	has
to	be	replaced	with	a	new	protocol.	This	new	protocol	should	be
a	todo	list	protocol,	not	a	messaging	protocol,	although	there	is	a
degenerate	case	where	what	someone	wants	you	to	do	is:	read
the	following	text.

As	a	todo	list	protocol,	the	new	protocol	should	give	more	power
to	the	recipient	than	email	does.	I	want	there	to	be	more
restrictions	on	what	someone	can	put	on	my	todo	list.	And	when
someone	can	put	something	on	my	todo	list,	I	want	them	to	tell
me	more	about	what	they	want	from	me.	Do	they	want	me	to	do
something	beyond	just	reading	some	text?	How	important	is	it?
(There	obviously	has	to	be	some	mechanism	to	prevent	people
from	saying	everything	is	important.)	When	does	it	have	to	be
done?

This	is	one	of	those	ideas	that's	like	an	irresistible	force	meeting
an	immovable	object.	On	one	hand,	entrenched	protocols	are
impossible	to	replace.	On	the	other,	it	seems	unlikely	that	people
in	100	years	will	still	be	living	in	the	same	email	hell	we	do	now.
And	if	email	is	going	to	get	replaced	eventually,	why	not	now?

If	you	do	it	right,	you	may	be	able	to	avoid	the	usual	chicken	and

egg	problem	new	protocols	face,	because	some	of	the	most
powerful	people	in	the	world	will	be	among	the	first	to	switch	to
it.	They're	all	at	the	mercy	of	email	too.

Whatever	you	build,	make	it	fast.	GMail	has	become	painfully
slow.	[2]	If	you	made	something	no	better	than	GMail,	but	fast,
that	alone	would	let	you	start	to	pull	users	away	from	GMail.

GMail	is	slow	because	Google	can't	afford	to	spend	a	lot	on	it.
But	people	will	pay	for	this.	I'd	have	no	problem	paying	$50	a
month.	Considering	how	much	time	I	spend	in	email,	it's	kind	of
scary	to	think	how	much	I'd	be	justified	in	paying.	At	least	$1000
a	month.	If	I	spend	several	hours	a	day	reading	and	writing
email,	that	would	be	a	cheap	way	to	make	my	life	better.

3.	Replace	Universities

People	are	all	over	this	idea	lately,	and	I	think	they're	onto
something.	I'm	reluctant	to	suggest	that	an	institution	that's	been
around	for	a	millennium	is	finished	just	because	of	some
mistakes	they	made	in	the	last	few	decades,	but	certainly	in	the
last	few	decades	US	universities	seem	to	have	been	headed	down
the	wrong	path.	One	could	do	a	lot	better	for	a	lot	less	money.

I	don't	think	universities	will	disappear.	They	won't	be	replaced
wholesale.	They'll	just	lose	the	de	facto	monopoly	on	certain
types	of	learning	that	they	once	had.	There	will	be	many	different
ways	to	learn	different	things,	and	some	may	look	quite	different
from	universities.	Y	Combinator	itself	is	arguably	one	of	them.

Learning	is	such	a	big	problem	that	changing	the	way	people	do
it	will	have	a	wave	of	secondary	effects.	For	example,	the	name
of	the	university	one	went	to	is	treated	by	a	lot	of	people
(correctly	or	not)	as	a	credential	in	its	own	right.	If	learning
breaks	up	into	many	little	pieces,	credentialling	may	separate
from	it.	There	may	even	need	to	be	replacements	for	campus
social	life	(and	oddly	enough,	YC	even	has	aspects	of	that).

You	could	replace	high	schools	too,	but	there	you	face
bureaucratic	obstacles	that	would	slow	down	a	startup.
Universities	seem	the	place	to	start.

#f2n

4.	Internet	Drama

Hollywood	has	been	slow	to	embrace	the	Internet.	That	was	a
mistake,	because	I	think	we	can	now	call	a	winner	in	the	race
between	delivery	mechanisms,	and	it	is	the	Internet,	not	cable.

A	lot	of	the	reason	is	the	horribleness	of	cable	clients,	also	known
as	TVs.	Our	family	didn't	wait	for	Apple	TV.	We	hated	our	last	TV
so	much	that	a	few	months	ago	we	replaced	it	with	an	iMac
bolted	to	the	wall.	It's	a	little	inconvenient	to	control	it	with	a
wireless	mouse,	but	the	overall	experience	is	much	better	than
the	nightmare	UI	we	had	to	deal	with	before.

Some	of	the	attention	people	currently	devote	to	watching
movies	and	TV	can	be	stolen	by	things	that	seem	completely
unrelated,	like	social	networking	apps.	More	can	be	stolen	by
things	that	are	a	little	more	closely	related,	like	games.	But	there
will	probably	always	remain	some	residual	demand	for
conventional	drama,	where	you	sit	passively	and	watch	as	a	plot
happens.	So	how	do	you	deliver	drama	via	the	Internet?
Whatever	you	make	will	have	to	be	on	a	larger	scale	than
Youtube	clips.	When	people	sit	down	to	watch	a	show,	they	want
to	know	what	they're	going	to	get:	either	part	of	a	series	with
familiar	characters,	or	a	single	longer	"movie"	whose	basic
premise	they	know	in	advance.

There	are	two	ways	delivery	and	payment	could	play	out.	Either
some	company	like	Netflix	or	Apple	will	be	the	app	store	for
entertainment,	and	you'll	reach	audiences	through	them.	Or	the
would-be	app	stores	will	be	too	overreaching,	or	too	technically
inflexible,	and	companies	will	arise	to	supply	payment	and
streaming	a	la	carte	to	the	producers	of	drama.	If	that's	the	way
things	play	out,	there	will	also	be	a	need	for	such	infrastructure
companies.

5.	The	Next	Steve	Jobs

I	was	talking	recently	to	someone	who	knew	Apple	well,	and	I
asked	him	if	the	people	now	running	the	company	would	be	able
to	keep	creating	new	things	the	way	Apple	had	under	Steve	Jobs.

His	answer	was	simply	"no."	I	already	feared	that	would	be	the
answer.	I	asked	more	to	see	how	he'd	qualify	it.	But	he	didn't
qualify	it	at	all.	No,	there	will	be	no	more	great	new	stuff	beyond
whatever's	currently	in	the	pipeline.	Apple's	revenues	may
continue	to	rise	for	a	long	time,	but	as	Microsoft	shows,	revenue
is	a	lagging	indicator	in	the	technology	business.

So	if	Apple's	not	going	to	make	the	next	iPad,	who	is?	None	of	the
existing	players.	None	of	them	are	run	by	product	visionaries,
and	empirically	you	can't	seem	to	get	those	by	hiring	them.
Empirically	the	way	you	get	a	product	visionary	as	CEO	is	for	him
to	found	the	company	and	not	get	fired.	So	the	company	that
creates	the	next	wave	of	hardware	is	probably	going	to	have	to
be	a	startup.

I	realize	it	sounds	preposterously	ambitious	for	a	startup	to	try	to
become	as	big	as	Apple.	But	no	more	ambitious	than	it	was	for
Apple	to	become	as	big	as	Apple,	and	they	did	it.	Plus	a	startup
taking	on	this	problem	now	has	an	advantage	the	original	Apple
didn't:	the	example	of	Apple.	Steve	Jobs	has	shown	us	what's
possible.	That	helps	would-be	successors	both	directly,	as	Roger
Bannister	did,	by	showing	how	much	better	you	can	do	than
people	did	before,	and	indirectly,	as	Augustus	did,	by	lodging	the
idea	in	users'	minds	that	a	single	person	could	unroll	the	future
for	them.	[3]

Now	Steve	is	gone	there's	a	vacuum	we	can	all	feel.	If	a	new
company	led	boldly	into	the	future	of	hardware,	users	would
follow.	The	CEO	of	that	company,	the	"next	Steve	Jobs,"	might	not
measure	up	to	Steve	Jobs.	But	he	wouldn't	have	to.	He'd	just
have	to	do	a	better	job	than	Samsung	and	HP	and	Nokia,	and
that	seems	pretty	doable.

6.	Bring	Back	Moore's	Law

The	last	10	years	have	reminded	us	what	Moore's	Law	actually
says.	Till	about	2002	you	could	safely	misinterpret	it	as
promising	that	clock	speeds	would	double	every	18	months.
Actually	what	it	says	is	that	circuit	densities	will	double	every	18
months.	It	used	to	seem	pedantic	to	point	that	out.	Not	any	more.
Intel	can	no	longer	give	us	faster	CPUs,	just	more	of	them.

#f3n

This	Moore's	Law	is	not	as	good	as	the	old	one.	Moore's	Law
used	to	mean	that	if	your	software	was	slow,	all	you	had	to	do
was	wait,	and	the	inexorable	progress	of	hardware	would	solve
your	problems.	Now	if	your	software	is	slow	you	have	to	rewrite
it	to	do	more	things	in	parallel,	which	is	a	lot	more	work	than
waiting.

It	would	be	great	if	a	startup	could	give	us	something	of	the	old
Moore's	Law	back,	by	writing	software	that	could	make	a	large
number	of	CPUs	look	to	the	developer	like	one	very	fast	CPU.
There	are	several	ways	to	approach	this	problem.	The	most
ambitious	is	to	try	to	do	it	automatically:	to	write	a	compiler	that
will	parallelize	our	code	for	us.	There's	a	name	for	this	compiler,
the	sufficiently	smart	compiler,	and	it	is	a	byword	for
impossibility.	But	is	it	really	impossible?	Is	there	no	configuration
of	the	bits	in	memory	of	a	present	day	computer	that	is	this
compiler?	If	you	really	think	so,	you	should	try	to	prove	it,
because	that	would	be	an	interesting	result.	And	if	it's	not
impossible	but	simply	very	hard,	it	might	be	worth	trying	to	write
it.	The	expected	value	would	be	high	even	if	the	chance	of
succeeding	was	low.

The	reason	the	expected	value	is	so	high	is	web	services.	If	you
could	write	software	that	gave	programmers	the	convenience	of
the	way	things	were	in	the	old	days,	you	could	offer	it	to	them	as
a	web	service.	And	that	would	in	turn	mean	that	you	got
practically	all	the	users.

Imagine	there	was	another	processor	manufacturer	that	could
still	translate	increased	circuit	densities	into	increased	clock
speeds.	They'd	take	most	of	Intel's	business.	And	since	web
services	mean	that	no	one	sees	their	processors	anymore,	by
writing	the	sufficiently	smart	compiler	you	could	create	a
situation	indistinguishable	from	you	being	that	manufacturer,	at
least	for	the	server	market.

The	least	ambitious	way	of	approaching	the	problem	is	to	start
from	the	other	end,	and	offer	programmers	more	parallelizable
Lego	blocks	to	build	programs	out	of,	like	Hadoop	and
MapReduce.	Then	the	programmer	still	does	much	of	the	work	of

optimization.

There's	an	intriguing	middle	ground	where	you	build	a	semi-
automatic	weapon—where	there's	a	human	in	the	loop.	You	make
something	that	looks	to	the	user	like	the	sufficiently	smart
compiler,	but	inside	has	people,	using	highly	developed
optimization	tools	to	find	and	eliminate	bottlenecks	in	users'
programs.	These	people	might	be	your	employees,	or	you	might
create	a	marketplace	for	optimization.

An	optimization	marketplace	would	be	a	way	to	generate	the
sufficiently	smart	compiler	piecemeal,	because	participants
would	immediately	start	writing	bots.	It	would	be	a	curious	state
of	affairs	if	you	could	get	to	the	point	where	everything	could	be
done	by	bots,	because	then	you'd	have	made	the	sufficiently
smart	compiler,	but	no	one	person	would	have	a	complete	copy	of
it.

I	realize	how	crazy	all	this	sounds.	In	fact,	what	I	like	about	this
idea	is	all	the	different	ways	in	which	it's	wrong.	The	whole	idea
of	focusing	on	optimization	is	counter	to	the	general	trend	in
software	development	for	the	last	several	decades.	Trying	to
write	the	sufficiently	smart	compiler	is	by	definition	a	mistake.
And	even	if	it	weren't,	compilers	are	the	sort	of	software	that's
supposed	to	be	created	by	open	source	projects,	not	companies.
Plus	if	this	works	it	will	deprive	all	the	programmers	who	take
pleasure	in	making	multithreaded	apps	of	so	much	amusing
complexity.	The	forum	troll	I	have	by	now	internalized	doesn't
even	know	where	to	begin	in	raising	objections	to	this	project.
Now	that's	what	I	call	a	startup	idea.

7.	Ongoing	Diagnosis

But	wait,	here's	another	that	could	face	even	greater	resistance:
ongoing,	automatic	medical	diagnosis.

One	of	my	tricks	for	generating	startup	ideas	is	to	imagine	the
ways	in	which	we'll	seem	backward	to	future	generations.	And
I'm	pretty	sure	that	to	people	50	or	100	years	in	the	future,	it	will
seem	barbaric	that	people	in	our	era	waited	till	they	had
symptoms	to	be	diagnosed	with	conditions	like	heart	disease	and

cancer.

For	example,	in	2004	Bill	Clinton	found	he	was	feeling	short	of
breath.	Doctors	discovered	that	several	of	his	arteries	were	over
90%	blocked	and	3	days	later	he	had	a	quadruple	bypass.	It
seems	reasonable	to	assume	Bill	Clinton	has	the	best	medical
care	available.	And	yet	even	he	had	to	wait	till	his	arteries	were
over	90%	blocked	to	learn	that	the	number	was	over	90%.	Surely
at	some	point	in	the	future	we'll	know	these	numbers	the	way	we
now	know	something	like	our	weight.	Ditto	for	cancer.	It	will
seem	preposterous	to	future	generations	that	we	wait	till	patients
have	physical	symptoms	to	be	diagnosed	with	cancer.	Cancer	will
show	up	on	some	sort	of	radar	screen	immediately.

(Of	course,	what	shows	up	on	the	radar	screen	may	be	different
from	what	we	think	of	now	as	cancer.	I	wouldn't	be	surprised	if	at
any	given	time	we	have	ten	or	even	hundreds	of	microcancers
going	at	once,	none	of	which	normally	amount	to	anything.)

A	lot	of	the	obstacles	to	ongoing	diagnosis	will	come	from	the
fact	that	it's	going	against	the	grain	of	the	medical	profession.
The	way	medicine	has	always	worked	is	that	patients	come	to
doctors	with	problems,	and	the	doctors	figure	out	what's	wrong.
A	lot	of	doctors	don't	like	the	idea	of	going	on	the	medical
equivalent	of	what	lawyers	call	a	"fishing	expedition,"	where	you
go	looking	for	problems	without	knowing	what	you're	looking	for.
They	call	the	things	that	get	discovered	this	way
"incidentalomas,"	and	they	are	something	of	a	nuisance.

For	example,	a	friend	of	mine	once	had	her	brain	scanned	as	part
of	a	study.	She	was	horrified	when	the	doctors	running	the	study
discovered	what	appeared	to	be	a	large	tumor.	After	further
testing,	it	turned	out	to	be	a	harmless	cyst.	But	it	cost	her	a	few
days	of	terror.	A	lot	of	doctors	worry	that	if	you	start	scanning
people	with	no	symptoms,	you'll	get	this	on	a	giant	scale:	a	huge
number	of	false	alarms	that	make	patients	panic	and	require
expensive	and	perhaps	even	dangerous	tests	to	resolve.	But	I
think	that's	just	an	artifact	of	current	limitations.	If	people	were
scanned	all	the	time	and	we	got	better	at	deciding	what	was	a
real	problem,	my	friend	would	have	known	about	this	cyst	her
whole	life	and	known	it	was	harmless,	just	as	we	do	a	birthmark.

There	is	room	for	a	lot	of	startups	here.	In	addition	to	the
technical	obstacles	all	startups	face,	and	the	bureaucratic
obstacles	all	medical	startups	face,	they'll	be	going	against
thousands	of	years	of	medical	tradition.	But	it	will	happen,	and	it
will	be	a	great	thing—so	great	that	people	in	the	future	will	feel
as	sorry	for	us	as	we	do	for	the	generations	that	lived	before
anaesthesia	and	antibiotics.

Tactics

Let	me	conclude	with	some	tactical	advice.	If	you	want	to	take	on
a	problem	as	big	as	the	ones	I've	discussed,	don't	make	a	direct
frontal	attack	on	it.	Don't	say,	for	example,	that	you're	going	to
replace	email.	If	you	do	that	you	raise	too	many	expectations.
Your	employees	and	investors	will	constantly	be	asking	"are	we
there	yet?"	and	you'll	have	an	army	of	haters	waiting	to	see	you
fail.	Just	say	you're	building	todo-list	software.	That	sounds
harmless.	People	can	notice	you've	replaced	email	when	it's	a	fait
accompli.	[4]

Empirically,	the	way	to	do	really	big	things	seems	to	be	to	start
with	deceptively	small	things.	Want	to	dominate	microcomputer
software?	Start	by	writing	a	Basic	interpreter	for	a	machine	with
a	few	thousand	users.	Want	to	make	the	universal	web	site?	Start
by	building	a	site	for	Harvard	undergrads	to	stalk	one	another.

Empirically,	it's	not	just	for	other	people	that	you	need	to	start
small.	You	need	to	for	your	own	sake.	Neither	Bill	Gates	nor
Mark	Zuckerberg	knew	at	first	how	big	their	companies	were
going	to	get.	All	they	knew	was	that	they	were	onto	something.
Maybe	it's	a	bad	idea	to	have	really	big	ambitions	initially,
because	the	bigger	your	ambition,	the	longer	it's	going	to	take,
and	the	further	you	project	into	the	future,	the	more	likely	you'll
get	it	wrong.

I	think	the	way	to	use	these	big	ideas	is	not	to	try	to	identify	a
precise	point	in	the	future	and	then	ask	yourself	how	to	get	from
here	to	there,	like	the	popular	image	of	a	visionary.	You'll	be
better	off	if	you	operate	like	Columbus	and	just	head	in	a	general
westerly	direction.	Don't	try	to	construct	the	future	like	a

#f4n

building,	because	your	current	blueprint	is	almost	certainly
mistaken.	Start	with	something	you	know	works,	and	when	you
expand,	expand	westward.

The	popular	image	of	the	visionary	is	someone	with	a	clear	view
of	the	future,	but	empirically	it	may	be	better	to	have	a	blurry
one.

Notes

[1]	It's	also	one	of	the	most	important	things	VCs	fail	to
understand	about	startups.	Most	expect	founders	to	walk	in	with
a	clear	plan	for	the	future,	and	judge	them	based	on	that.	Few
consciously	realize	that	in	the	biggest	successes	there	is	the	least
correlation	between	the	initial	plan	and	what	the	startup
eventually	becomes.

[2]	This	sentence	originally	read	"GMail	is	painfully	slow."	Thanks
to	Paul	Buchheit	for	the	correction.

[3]	Roger	Bannister	is	famous	as	the	first	person	to	run	a	mile	in
under	4	minutes.	But	his	world	record	only	lasted	46	days.	Once
he	showed	it	could	be	done,	lots	of	others	followed.	Ten	years
later	Jim	Ryun	ran	a	3:59	mile	as	a	high	school	junior.

[4]	If	you	want	to	be	the	next	Apple,	maybe	you	don't	even	want
to	start	with	consumer	electronics.	Maybe	at	first	you	make
something	hackers	use.	Or	you	make	something	popular	but
apparently	unimportant,	like	a	headset	or	router.	All	you	need	is
a	bridgehead.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Paul	Buchheit,	Patrick
Collison,	Aaron	Iba,	Jessica	Livingston,	Robert	Morris,	Harj
Taggar	and	Garry	Tan	for	reading	drafts	of	this.

	

Defining	Property
March	2012

As	a	child	I	read	a	book	of	stories	about	a	famous	judge	in
eighteenth	century	Japan	called	Ooka	Tadasuke.	One	of	the	cases
he	decided	was	brought	by	the	owner	of	a	food	shop.	A	poor
student	who	could	afford	only	rice	was	eating	his	rice	while
enjoying	the	delicious	cooking	smells	coming	from	the	food	shop.
The	owner	wanted	the	student	to	pay	for	the	smells	he	was
enjoying.

The	student	was	stealing	his	smells!

This	story	often	comes	to	mind	when	I	hear	the	RIAA	and	MPAA
accusing	people	of	stealing	music	and	movies.

It	sounds	ridiculous	to	us	to	treat	smells	as	property.	But	I	can
imagine	scenarios	in	which	one	could	charge	for	smells.	Imagine
we	were	living	on	a	moon	base	where	we	had	to	buy	air	by	the
liter.	I	could	imagine	air	suppliers	adding	scents	at	an	extra
charge.

The	reason	it	seems	ridiculous	to	us	to	treat	smells	as	property	is
that	it	wouldn't	work	to.	It	would	work	on	a	moon	base,	though.

What	counts	as	property	depends	on	what	works	to	treat	as
property.	And	that	not	only	can	change,	but	has	changed.
Humans	may	always	(for	some	definition	of	human	and	always)
have	treated	small	items	carried	on	one's	person	as	property.	But
hunter	gatherers	didn't	treat	land,	for	example,	as	property	in
the	way	we	do.	[1]

The	reason	so	many	people	think	of	property	as	having	a	single
unchanging	definition	is	that	its	definition	changes	very	slowly.
[2]	But	we	are	in	the	midst	of	such	a	change	now.	The	record
labels	and	movie	studios	used	to	distribute	what	they	made	like

#f1n
#f2n

air	shipped	through	tubes	on	a	moon	base.	But	with	the	arrival	of
networks,	it's	as	if	we've	moved	to	a	planet	with	a	breathable
atmosphere.	Data	moves	like	smells	now.	And	through	a
combination	of	wishful	thinking	and	short-term	greed,	the	labels
and	studios	have	put	themselves	in	the	position	of	the	food	shop
owner,	accusing	us	all	of	stealing	their	smells.

(The	reason	I	say	short-term	greed	is	that	the	underlying
problem	with	the	labels	and	studios	is	that	the	people	who	run
them	are	driven	by	bonuses	rather	than	equity.	If	they	were
driven	by	equity	they'd	be	looking	for	ways	to	take	advantage	of
technological	change	instead	of	fighting	it.	But	building	new
things	takes	too	long.	Their	bonuses	depend	on	this	year's
revenues,	and	the	best	way	to	increase	those	is	to	extract	more
money	from	stuff	they	do	already.)

So	what	does	this	mean?	Should	people	not	be	able	to	charge	for
content?	There's	not	a	single	yes	or	no	answer	to	that	question.
People	should	be	able	to	charge	for	content	when	it	works	to
charge	for	content.

But	by	"works"	I	mean	something	more	subtle	than	"when	they
can	get	away	with	it."	I	mean	when	people	can	charge	for	content
without	warping	society	in	order	to	do	it.	After	all,	the	companies
selling	smells	on	the	moon	base	could	continue	to	sell	them	on
the	Earth,	if	they	lobbied	successfully	for	laws	requiring	us	all	to
continue	to	breathe	through	tubes	down	here	too,	even	though
we	no	longer	needed	to.

The	crazy	legal	measures	that	the	labels	and	studios	have	been
taking	have	a	lot	of	that	flavor.	Newspapers	and	magazines	are
just	as	screwed,	but	they	are	at	least	declining	gracefully.	The
RIAA	and	MPAA	would	make	us	breathe	through	tubes	if	they
could.

Ultimately	it	comes	down	to	common	sense.	When	you're	abusing
the	legal	system	by	trying	to	use	mass	lawsuits	against	randomly
chosen	people	as	a	form	of	exemplary	punishment,	or	lobbying
for	laws	that	would	break	the	Internet	if	they	passed,	that's	ipso
facto	evidence	you're	using	a	definition	of	property	that	doesn't
work.

This	is	where	it's	helpful	to	have	working	democracies	and
multiple	sovereign	countries.	If	the	world	had	a	single,	autocratic
government,	the	labels	and	studios	could	buy	laws	making	the
definition	of	property	be	whatever	they	wanted.	But	fortunately
there	are	still	some	countries	that	are	not	copyright	colonies	of
the	US,	and	even	in	the	US,	politicians	still	seem	to	be	afraid	of
actual	voters,	in	sufficient	numbers.	[3]

The	people	running	the	US	may	not	like	it	when	voters	or	other
countries	refuse	to	bend	to	their	will,	but	ultimately	it's	in	all	our
interest	that	there's	not	a	single	point	of	attack	for	people	trying
to	warp	the	law	to	serve	their	own	purposes.	Private	property	is
an	extremely	useful	idea	—	arguably	one	of	our	greatest
inventions.	So	far,	each	new	definition	of	it	has	brought	us
increasing	material	wealth.	[4]	It	seems	reasonable	to	suppose
the	newest	one	will	too.	It	would	be	a	disaster	if	we	all	had	to
keep	running	an	obsolete	version	just	because	a	few	powerful
people	were	too	lazy	to	upgrade.

Notes

[1]	If	you	want	to	learn	more	about	hunter	gatherers	I	strongly
recommend	Elizabeth	Marshall	Thomas's	The	Harmless	People
and	The	Old	Way.

[2]	Change	in	the	definition	of	property	is	driven	mostly	by
technological	progress,	however,	and	since	technological
progress	is	accelerating,	so	presumably	will	the	rate	of	change	in
the	definition	of	property.	Which	means	it's	all	the	more
important	for	societies	to	be	able	to	respond	gracefully	to	such
changes,	because	they	will	come	at	an	ever	increasing	rate.

[3]	As	far	as	I	know,	the	term	"copyright	colony"	was	first	used	by
Myles	Peterson.

http://tctechcrunch2011.files.wordpress.com/2012/01/congress-on-sopa-done.png
#f3n
#f4n
http://www.amazon.com/Harmless-People-Elizabeth-Marshall-Thomas/dp/0394427793
http://www.amazon.com/Old-Way-Story-First-People/dp/0374225524
http://torrentfreak.com/australia-us-copyright-colony-or-just-a-good-friend-120121/

[4]	The	state	of	technology	isn't	simply	a	function	of	the
definition	of	property.	They	each	constrain	the	other.	But	that
being	so,	you	can't	mess	with	the	definition	of	property	without
affecting	(and	probably	harming)	the	state	of	technology.	The
history	of	the	USSR	offers	a	vivid	illustration	of	that.

Thanks	to	Sam	Altman	and	Geoff	Ralston	for	reading	drafts	of
this.

	

How	Y	Combinator	Started
March	2012

Y	Combinator's	7th	birthday	was	March	11.	As	usual	we	were	so
busy	we	didn't	notice	till	a	few	days	after.	I	don't	think	we've	ever
managed	to	remember	our	birthday	on	our	birthday.

On	March	11	2005,	Jessica	and	I	were	walking	home	from	dinner
in	Harvard	Square.	Jessica	was	working	at	an	investment	bank	at
the	time,	but	she	didn't	like	it	much,	so	she	had	interviewed	for	a
job	as	director	of	marketing	at	a	Boston	VC	fund.	The	VC	fund
was	doing	what	now	seems	a	comically	familiar	thing	for	a	VC
fund	to	do:	taking	a	long	time	to	make	up	their	mind.	Meanwhile
I	had	been	telling	Jessica	all	the	things	they	should	change	about
the	VC	business	�	essentially	the	ideas	now	underlying
Y	Combinator:	investors	should	be	making	more,	smaller
investments,	they	should	be	funding	hackers	instead	of	suits,
they	should	be	willing	to	fund	younger	founders,	etc.

At	the	time	I	had	been	thinking	about	doing	some	angel
investing.	I	had	just	given	a	talk	to	the	undergraduate	computer
club	at	Harvard	about	how	to	start	a	startup,	and	it	hit	me
afterward	that	although	I	had	always	meant	to	do	angel
investing,	7	years	had	now	passed	since	I	got	enough	money	to
do	it,	and	I	still	hadn't	started.	I	had	also	been	thinking	about
ways	to	work	with	Robert	Morris	and	Trevor	Blackwell	again.	A
few	hours	before	I	had	sent	them	an	email	trying	to	figure	out
what	we	could	do	together.

Between	Harvard	Square	and	my	house	the	idea	gelled.	We'd
start	our	own	investment	firm	and	Jessica	could	work	for	that
instead.	As	we	turned	onto	Walker	Street	we	decided	to	do	it.	I
agreed	to	put	$100k	into	the	new	fund	and	Jessica	agreed	to	quit
her	job	to	work	for	it.	Over	the	next	couple	days	I	recruited
Robert	and	Trevor,	who	put	in	another	$50k	each.	So	YC	started
with	$200k.

start.html

Jessica	was	so	happy	to	be	able	to	quit	her	job	and	start	her	own
company	that	I	took	her	picture	when	we	got	home.

The	company	wasn't	called	Y	Combinator	yet.	At	first	we	called	it
Cambridge	Seed.	But	that	name	never	saw	the	light	of	day,
because	by	the	time	we	announced	it	a	few	days	later,	we'd
changed	the	name	to	Y	Combinator.	We	realized	early	on	that
what	we	were	doing	could	be	national	in	scope	and	we	didn't
want	a	name	that	tied	us	to	one	place.

Initially	we	only	had	part	of	the	idea.	We	were	going	to	do	seed
funding	with	standardized	terms.	Before	YC,	seed	funding	was
very	haphazard.	You'd	get	that	first	$10k	from	your	friend's	rich
uncle.	The	deal	terms	were	often	a	disaster;	often	neither	the
investor	nor	the	founders	nor	the	lawyer	knew	what	the
documents	should	look	like.	Facebook's	early	history	as	a	Florida
LLC	shows	how	random	things	could	be	in	those	days.	We	were
going	to	be	something	there	had	not	been	before:	a	standard
source	of	seed	funding.

We	modelled	YC	on	the	seed	funding	we	ourselves	had	taken
when	we	started	Viaweb.	We	started	Viaweb	with	$10k	we	got
from	our	friend	Julian	Weber,	the	husband	of	Idelle	Weber,	whose
painting	class	I	took	as	a	grad	student	at	Harvard.	Julian	knew
about	business,	but	you	would	not	describe	him	as	a	suit.	Among
other	things	he'd	been	president	of	the	National	Lampoon.	He
was	also	a	lawyer,	and	got	all	our	paperwork	set	up	properly.	In
return	for	$10k,	getting	us	set	up	as	a	company,	teaching	us	what
business	was	about,	and	remaining	calm	in	times	of	crisis,	Julian
got	10%	of	Viaweb.	I	remember	thinking	once	what	a	good	deal
Julian	got.	And	then	a	second	later	I	realized	that	without	Julian,
Viaweb	would	never	have	made	it.	So	even	though	it	was	a	good
deal	for	him,	it	was	a	good	deal	for	us	too.	That's	why	I	knew
there	was	room	for	something	like	Y	Combinator.

Initially	we	didn't	have	what	turned	out	to	be	the	most	important
idea:	funding	startups	synchronously,	instead	of	asynchronously
as	it	had	always	been	done	before.	Or	rather	we	had	the	idea,	but
we	didn't	realize	its	significance.	We	decided	very	early	that	the
first	thing	we'd	do	would	be	to	fund	a	bunch	of	startups	over	the
coming	summer.	But	we	didn't	realize	initially	that	this	would	be

https://web.archive.org/web/20170609055553/http://www.ycombinator.com/yc05.html
julian.html

the	way	we'd	do	all	our	investing.	The	reason	we	began	by
funding	a	bunch	of	startups	at	once	was	not	that	we	thought	it
would	be	a	better	way	to	fund	startups,	but	simply	because	we
wanted	to	learn	how	to	be	angel	investors,	and	a	summer
program	for	undergrads	seemed	the	fastest	way	to	do	it.	No	one
takes	summer	jobs	that	seriously.	The	opportunity	cost	for	a
bunch	of	undergrads	to	spend	a	summer	working	on	startups	was
low	enough	that	we	wouldn't	feel	guilty	encouraging	them	to	do
it.

We	knew	students	would	already	be	making	plans	for	the
summer,	so	we	did	what	we're	always	telling	startups	to	do:	we
launched	fast.	Here	are	the	initial	announcement	and	description
of	what	was	at	the	time	called	the	Summer	Founders	Program.

We	got	lucky	in	that	the	length	and	structure	of	a	summer
program	turns	out	to	be	perfect	for	what	we	do.	The	structure	of
the	YC	cycle	is	still	almost	identical	to	what	it	was	that	first
summer.

We	also	got	lucky	in	who	the	first	batch	of	founders	were.	We
never	expected	to	make	any	money	from	that	first	batch.	We
thought	of	the	money	we	were	investing	as	a	combination	of	an
educational	expense	and	a	charitable	donation.	But	the	founders
in	the	first	batch	turned	out	to	be	surprisingly	good.	And	great
people	too.	We're	still	friends	with	a	lot	of	them	today.

It's	hard	for	people	to	realize	now	how	inconsequential	YC
seemed	at	the	time.	I	can't	blame	people	who	didn't	take	us
seriously,	because	we	ourselves	didn't	take	that	first	summer
program	seriously	in	the	very	beginning.	But	as	the	summer
progressed	we	were	increasingly	impressed	by	how	well	the
startups	were	doing.	Other	people	started	to	be	impressed	too.
Jessica	and	I	invented	a	term,	"the	Y	Combinator	effect,"	to
describe	the	moment	when	the	realization	hit	someone	that	YC
was	not	totally	lame.	When	people	came	to	YC	to	speak	at	the
dinners	that	first	summer,	they	came	in	the	spirit	of	someone
coming	to	address	a	Boy	Scout	troop.	By	the	time	they	left	the
building	they	were	all	saying	some	variant	of	"Wow,	these
companies	might	actually	succeed."

Now	YC	is	well	enough	known	that	people	are	no	longer

summerfounder.html
https://web.archive.org/web/20170609055553/http://ycombinator.com/old/sfp.html

surprised	when	the	companies	we	fund	are	legit,	but	it	took	a
while	for	reputation	to	catch	up	with	reality.	That's	one	of	the
reasons	we	especially	like	funding	ideas	that	might	be	dismissed
as	"toys"	�	because	YC	itself	was	dismissed	as	one	initially.

When	we	saw	how	well	it	worked	to	fund	companies
synchronously,	we	decided	we'd	keep	doing	that.	We'd	fund	two
batches	of	startups	a	year.

We	funded	the	second	batch	in	Silicon	Valley.	That	was	a	last
minute	decision.	In	retrospect	I	think	what	pushed	me	over	the
edge	was	going	to	Foo	Camp	that	fall.	The	density	of	startup
people	in	the	Bay	Area	was	so	much	greater	than	in	Boston,	and
the	weather	was	so	nice.	I	remembered	that	from	living	there	in
the	90s.	Plus	I	didn't	want	someone	else	to	copy	us	and	describe
it	as	the	Y	Combinator	of	Silicon	Valley.	I	wanted	YC	to	be	the
Y	Combinator	of	Silicon	Valley.	So	doing	the	winter	batch	in
California	seemed	like	one	of	those	rare	cases	where	the	self-
indulgent	choice	and	the	ambitious	one	were	the	same.

	

Writing	and	Speaking
March	2012

I'm	not	a	very	good	speaker.	I	say	"um"	a	lot.	Sometimes	I	have	to
pause	when	I	lose	my	train	of	thought.	I	wish	I	were	a	better
speaker.	But	I	don't	wish	I	were	a	better	speaker	like	I	wish	I
were	a	better	writer.	What	I	really	want	is	to	have	good	ideas,
and	that's	a	much	bigger	part	of	being	a	good	writer	than	being	a
good	speaker.

Having	good	ideas	is	most	of	writing	well.	If	you	know	what
you're	talking	about,	you	can	say	it	in	the	plainest	words	and
you'll	be	perceived	as	having	a	good	style.	With	speaking	it's	the
opposite:	having	good	ideas	is	an	alarmingly	small	component	of
being	a	good	speaker.

I	first	noticed	this	at	a	conference	several	years	ago.	There	was
another	speaker	who	was	much	better	than	me.	He	had	all	of	us
roaring	with	laughter.	I	seemed	awkward	and	halting	by
comparison.	Afterward	I	put	my	talk	online	like	I	usually	do.	As	I
was	doing	it	I	tried	to	imagine	what	a	transcript	of	the	other
guy's	talk	would	be	like,	and	it	was	only	then	I	realized	he	hadn't
said	very	much.

Maybe	this	would	have	been	obvious	to	someone	who	knew	more
about	speaking,	but	it	was	a	revelation	to	me	how	much	less
ideas	mattered	in	speaking	than	writing.	[1]

A	few	years	later	I	heard	a	talk	by	someone	who	was	not	merely	a
better	speaker	than	me,	but	a	famous	speaker.	Boy	was	he	good.
So	I	decided	I'd	pay	close	attention	to	what	he	said,	to	learn	how
he	did	it.	After	about	ten	sentences	I	found	myself	thinking	"I
don't	want	to	be	a	good	speaker."

Being	a	really	good	speaker	is	not	merely	orthogonal	to	having
good	ideas,	but	in	many	ways	pushes	you	in	the	opposite

#f1n

direction.	For	example,	when	I	give	a	talk,	I	usually	write	it	out
beforehand.	I	know	that's	a	mistake;	I	know	delivering	a
prewritten	talk	makes	it	harder	to	engage	with	an	audience.	The
way	to	get	the	attention	of	an	audience	is	to	give	them	your	full
attention,	and	when	you're	delivering	a	prewritten	talk,	your
attention	is	always	divided	between	the	audience	and	the	talk	—
even	if	you've	memorized	it.	If	you	want	to	engage	an	audience,
it's	better	to	start	with	no	more	than	an	outline	of	what	you	want
to	say	and	ad	lib	the	individual	sentences.	But	if	you	do	that,	you
might	spend	no	more	time	thinking	about	each	sentence	than	it
takes	to	say	it.	[2]	Occasionally	the	stimulation	of	talking	to	a	live
audience	makes	you	think	of	new	things,	but	in	general	this	is	not
going	to	generate	ideas	as	well	as	writing	does,	where	you	can
spend	as	long	on	each	sentence	as	you	want.

If	you	rehearse	a	prewritten	speech	enough,	you	can	get
asymptotically	close	to	the	sort	of	engagement	you	get	when
speaking	ad	lib.	Actors	do.	But	here	again	there's	a	tradeoff
between	smoothness	and	ideas.	All	the	time	you	spend	practicing
a	talk,	you	could	instead	spend	making	it	better.	Actors	don't	face
that	temptation,	except	in	the	rare	cases	where	they've	written
the	script,	but	any	speaker	does.	Before	I	give	a	talk	I	can	usually
be	found	sitting	in	a	corner	somewhere	with	a	copy	printed	out
on	paper,	trying	to	rehearse	it	in	my	head.	But	I	always	end	up
spending	most	of	the	time	rewriting	it	instead.	Every	talk	I	give
ends	up	being	given	from	a	manuscript	full	of	things	crossed	out
and	rewritten.	Which	of	course	makes	me	um	even	more,
because	I	haven't	had	any	time	to	practice	the	new	bits.	[3]

Depending	on	your	audience,	there	are	even	worse	tradeoffs	than
these.	Audiences	like	to	be	flattered;	they	like	jokes;	they	like	to
be	swept	off	their	feet	by	a	vigorous	stream	of	words.	As	you
decrease	the	intelligence	of	the	audience,	being	a	good	speaker
is	increasingly	a	matter	of	being	a	good	bullshitter.	That's	true	in
writing	too	of	course,	but	the	descent	is	steeper	with	talks.	Any
given	person	is	dumber	as	a	member	of	an	audience	than	as	a
reader.	Just	as	a	speaker	ad	libbing	can	only	spend	as	long
thinking	about	each	sentence	as	it	takes	to	say	it,	a	person
hearing	a	talk	can	only	spend	as	long	thinking	about	each
sentence	as	it	takes	to	hear	it.	Plus	people	in	an	audience	are
always	affected	by	the	reactions	of	those	around	them,	and	the

#f2n
#f3n

reactions	that	spread	from	person	to	person	in	an	audience	are
disproportionately	the	more	brutish	sort,	just	as	low	notes	travel
through	walls	better	than	high	ones.	Every	audience	is	an
incipient	mob,	and	a	good	speaker	uses	that.	Part	of	the	reason	I
laughed	so	much	at	the	talk	by	the	good	speaker	at	that
conference	was	that	everyone	else	did.	[4]

So	are	talks	useless?	They're	certainly	inferior	to	the	written
word	as	a	source	of	ideas.	But	that's	not	all	talks	are	good	for.
When	I	go	to	a	talk,	it's	usually	because	I'm	interested	in	the
speaker.	Listening	to	a	talk	is	the	closest	most	of	us	can	get	to
having	a	conversation	with	someone	like	the	president,	who
doesn't	have	time	to	meet	individually	with	all	the	people	who
want	to	meet	him.

Talks	are	also	good	at	motivating	me	to	do	things.	It's	probably
no	coincidence	that	so	many	famous	speakers	are	described	as
motivational	speakers.	That	may	be	what	public	speaking	is
really	for.	It's	probably	what	it	was	originally	for.	The	emotional
reactions	you	can	elicit	with	a	talk	can	be	a	powerful	force.	I	wish
I	could	say	that	this	force	was	more	often	used	for	good	than	ill,
but	I'm	not	sure.

Notes

[1]	I'm	not	talking	here	about	academic	talks,	which	are	a
different	type	of	thing.	While	the	audience	at	an	academic	talk
might	appreciate	a	joke,	they	will	(or	at	least	should)	make	a
conscious	effort	to	see	what	new	ideas	you're	presenting.

[2]	That's	the	lower	bound.	In	practice	you	can	often	do	better,
because	talks	are	usually	about	things	you've	written	or	talked
about	before,	and	when	you	ad	lib,	you	end	up	reproducing	some
of	those	sentences.	Like	early	medieval	architecture,	impromptu
talks	are	made	of	spolia.	Which	feels	a	bit	dishonest,	incidentally,

#f4n

because	you	have	to	deliver	these	sentences	as	if	you'd	just
thought	of	them.

[3]	Robert	Morris	points	out	that	there	is	a	way	in	which
practicing	talks	makes	them	better:	reading	a	talk	out	loud	can
expose	awkward	parts.	I	agree	and	in	fact	I	read	most	things	I
write	out	loud	at	least	once	for	that	reason.

[4]	For	sufficiently	small	audiences,	it	may	not	be	true	that	being
part	of	an	audience	makes	people	dumber.	The	real	decline
seems	to	set	in	when	the	audience	gets	too	big	for	the	talk	to	feel
like	a	conversation	—	maybe	around	10	people.

Thanks	to	Sam	Altman	and	Robert	Morris	for	reading	drafts	of
this.

	

The	Top	of	My	Todo	List
April	2012

A	palliative	care	nurse	called	Bronnie	Ware	made	a	list	of	the
biggest	regrets	of	the	dying.	Her	list	seems	plausible.	I	could	see
myself	—	can	see	myself	—	making	at	least	4	of	these	5	mistakes.

If	you	had	to	compress	them	into	a	single	piece	of	advice,	it
might	be:	don't	be	a	cog.	The	5	regrets	paint	a	portrait	of	post-
industrial	man,	who	shrinks	himself	into	a	shape	that	fits	his
circumstances,	then	turns	dutifully	till	he	stops.

The	alarming	thing	is,	the	mistakes	that	produce	these	regrets
are	all	errors	of	omission.	You	forget	your	dreams,	ignore	your
family,	suppress	your	feelings,	neglect	your	friends,	and	forget	to
be	happy.	Errors	of	omission	are	a	particularly	dangerous	type	of
mistake,	because	you	make	them	by	default.

I	would	like	to	avoid	making	these	mistakes.	But	how	do	you
avoid	mistakes	you	make	by	default?	Ideally	you	transform	your
life	so	it	has	other	defaults.	But	it	may	not	be	possible	to	do	that
completely.	As	long	as	these	mistakes	happen	by	default,	you
probably	have	to	be	reminded	not	to	make	them.	So	I	inverted
the	5	regrets,	yielding	a	list	of	5	commands

Don't	ignore	your	dreams;	don't	work	too	much;	say
what	you	think;	cultivate	friendships;	be	happy.

which	I	then	put	at	the	top	of	the	file	I	use	as	a	todo	list.

http://bronnieware.com/regrets-of-the-dying/

	

Black	Swan	Farming
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Startup	=	Growth
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

September	2012

A	startup	is	a	company	designed	to	grow	fast.	Being	newly
founded	does	not	in	itself	make	a	company	a	startup.	Nor	is	it
necessary	for	a	startup	to	work	on	technology,	or	take	venture
funding,	or	have	some	sort	of	"exit."	The	only	essential	thing	is
growth.	Everything	else	we	associate	with	startups	follows	from
growth.

If	you	want	to	start	one	it's	important	to	understand	that.
Startups	are	so	hard	that	you	can't	be	pointed	off	to	the	side	and
hope	to	succeed.	You	have	to	know	that	growth	is	what	you're
after.	The	good	news	is,	if	you	get	growth,	everything	else	tends
to	fall	into	place.	Which	means	you	can	use	growth	like	a
compass	to	make	almost	every	decision	you	face.

Redwoods

Let's	start	with	a	distinction	that	should	be	obvious	but	is	often
overlooked:	not	every	newly	founded	company	is	a	startup.
Millions	of	companies	are	started	every	year	in	the	US.	Only	a
tiny	fraction	are	startups.	Most	are	service	businesses	—
restaurants,	barbershops,	plumbers,	and	so	on.	These	are	not
startups,	except	in	a	few	unusual	cases.	A	barbershop	isn't
designed	to	grow	fast.	Whereas	a	search	engine,	for	example,	is.

When	I	say	startups	are	designed	to	grow	fast,	I	mean	it	in	two
senses.	Partly	I	mean	designed	in	the	sense	of	intended,	because
most	startups	fail.	But	I	also	mean	startups	are	different	by
nature,	in	the	same	way	a	redwood	seedling	has	a	different
destiny	from	a	bean	sprout.

That	difference	is	why	there's	a	distinct	word,	"startup,"	for

http://ycombinator.com/apply.html

companies	designed	to	grow	fast.	If	all	companies	were
essentially	similar,	but	some	through	luck	or	the	efforts	of	their
founders	ended	up	growing	very	fast,	we	wouldn't	need	a
separate	word.	We	could	just	talk	about	super-successful
companies	and	less	successful	ones.	But	in	fact	startups	do	have
a	different	sort	of	DNA	from	other	businesses.	Google	is	not	just
a	barbershop	whose	founders	were	unusually	lucky	and	hard-
working.	Google	was	different	from	the	beginning.

To	grow	rapidly,	you	need	to	make	something	you	can	sell	to	a
big	market.	That's	the	difference	between	Google	and	a
barbershop.	A	barbershop	doesn't	scale.

For	a	company	to	grow	really	big,	it	must	(a)	make	something
lots	of	people	want,	and	(b)	reach	and	serve	all	those	people.
Barbershops	are	doing	fine	in	the	(a)	department.	Almost
everyone	needs	their	hair	cut.	The	problem	for	a	barbershop,	as
for	any	retail	establishment,	is	(b).	A	barbershop	serves
customers	in	person,	and	few	will	travel	far	for	a	haircut.	And
even	if	they	did,	the	barbershop	couldn't	accomodate	them.	[1]

Writing	software	is	a	great	way	to	solve	(b),	but	you	can	still	end
up	constrained	in	(a).	If	you	write	software	to	teach	Tibetan	to
Hungarian	speakers,	you'll	be	able	to	reach	most	of	the	people
who	want	it,	but	there	won't	be	many	of	them.	If	you	make
software	to	teach	English	to	Chinese	speakers,	however,	you're	in
startup	territory.

Most	businesses	are	tightly	constrained	in	(a)	or	(b).	The
distinctive	feature	of	successful	startups	is	that	they're	not.

Ideas

It	might	seem	that	it	would	always	be	better	to	start	a	startup
than	an	ordinary	business.	If	you're	going	to	start	a	company,
why	not	start	the	type	with	the	most	potential?	The	catch	is	that
this	is	a	(fairly)	efficient	market.	If	you	write	software	to	teach
Tibetan	to	Hungarians,	you	won't	have	much	competition.	If	you
write	software	to	teach	English	to	Chinese	speakers,	you'll	face
ferocious	competition,	precisely	because	that's	such	a	larger
prize.	[2]

#f1n
#f2n

The	constraints	that	limit	ordinary	companies	also	protect	them.
That's	the	tradeoff.	If	you	start	a	barbershop,	you	only	have	to
compete	with	other	local	barbers.	If	you	start	a	search	engine
you	have	to	compete	with	the	whole	world.

The	most	important	thing	that	the	constraints	on	a	normal
business	protect	it	from	is	not	competition,	however,	but	the
difficulty	of	coming	up	with	new	ideas.	If	you	open	a	bar	in	a
particular	neighborhood,	as	well	as	limiting	your	potential	and
protecting	you	from	competitors,	that	geographic	constraint	also
helps	define	your	company.	Bar	+	neighborhood	is	a	sufficient
idea	for	a	small	business.	Similarly	for	companies	constrained	in
(a).	Your	niche	both	protects	and	defines	you.

Whereas	if	you	want	to	start	a	startup,	you're	probably	going	to
have	to	think	of	something	fairly	novel.	A	startup	has	to	make
something	it	can	deliver	to	a	large	market,	and	ideas	of	that	type
are	so	valuable	that	all	the	obvious	ones	are	already	taken.

That	space	of	ideas	has	been	so	thoroughly	picked	over	that	a
startup	generally	has	to	work	on	something	everyone	else	has
overlooked.	I	was	going	to	write	that	one	has	to	make	a
conscious	effort	to	find	ideas	everyone	else	has	overlooked.	But
that's	not	how	most	startups	get	started.	Usually	successful
startups	happen	because	the	founders	are	sufficiently	different
from	other	people	that	ideas	few	others	can	see	seem	obvious	to
them.	Perhaps	later	they	step	back	and	notice	they've	found	an
idea	in	everyone	else's	blind	spot,	and	from	that	point	make	a
deliberate	effort	to	stay	there.	[3]	But	at	the	moment	when
successful	startups	get	started,	much	of	the	innovation	is
unconscious.

What's	different	about	successful	founders	is	that	they	can	see
different	problems.	It's	a	particularly	good	combination	both	to
be	good	at	technology	and	to	face	problems	that	can	be	solved	by
it,	because	technology	changes	so	rapidly	that	formerly	bad	ideas
often	become	good	without	anyone	noticing.	Steve	Wozniak's
problem	was	that	he	wanted	his	own	computer.	That	was	an
unusual	problem	to	have	in	1975.	But	technological	change	was
about	to	make	it	a	much	more	common	one.	Because	he	not	only

#f3n

wanted	a	computer	but	knew	how	to	build	them,	Wozniak	was
able	to	make	himself	one.	And	the	problem	he	solved	for	himself
became	one	that	Apple	solved	for	millions	of	people	in	the
coming	years.	But	by	the	time	it	was	obvious	to	ordinary	people
that	this	was	a	big	market,	Apple	was	already	established.

Google	has	similar	origins.	Larry	Page	and	Sergey	Brin	wanted	to
search	the	web.	But	unlike	most	people	they	had	the	technical
expertise	both	to	notice	that	existing	search	engines	were	not	as
good	as	they	could	be,	and	to	know	how	to	improve	them.	Over
the	next	few	years	their	problem	became	everyone's	problem,	as
the	web	grew	to	a	size	where	you	didn't	have	to	be	a	picky	search
expert	to	notice	the	old	algorithms	weren't	good	enough.	But	as
happened	with	Apple,	by	the	time	everyone	else	realized	how
important	search	was,	Google	was	entrenched.

That's	one	connection	between	startup	ideas	and	technology.
Rapid	change	in	one	area	uncovers	big,	soluble	problems	in	other
areas.	Sometimes	the	changes	are	advances,	and	what	they
change	is	solubility.	That	was	the	kind	of	change	that	yielded
Apple;	advances	in	chip	technology	finally	let	Steve	Wozniak
design	a	computer	he	could	afford.	But	in	Google's	case	the	most
important	change	was	the	growth	of	the	web.	What	changed
there	was	not	solubility	but	bigness.

The	other	connection	between	startups	and	technology	is	that
startups	create	new	ways	of	doing	things,	and	new	ways	of	doing
things	are,	in	the	broader	sense	of	the	word,	new	technology.
When	a	startup	both	begins	with	an	idea	exposed	by
technological	change	and	makes	a	product	consisting	of
technology	in	the	narrower	sense	(what	used	to	be	called	"high
technology"),	it's	easy	to	conflate	the	two.	But	the	two
connections	are	distinct	and	in	principle	one	could	start	a	startup
that	was	neither	driven	by	technological	change,	nor	whose
product	consisted	of	technology	except	in	the	broader	sense.	[4]

Rate

How	fast	does	a	company	have	to	grow	to	be	considered	a
startup?	There's	no	precise	answer	to	that.	"Startup"	is	a	pole,
not	a	threshold.	Starting	one	is	at	first	no	more	than	a

#f4n

declaration	of	one's	ambitions.	You're	committing	not	just	to
starting	a	company,	but	to	starting	a	fast	growing	one,	and	you're
thus	committing	to	search	for	one	of	the	rare	ideas	of	that	type.
But	at	first	you	have	no	more	than	commitment.	Starting	a
startup	is	like	being	an	actor	in	that	respect.	"Actor"	too	is	a	pole
rather	than	a	threshold.	At	the	beginning	of	his	career,	an	actor
is	a	waiter	who	goes	to	auditions.	Getting	work	makes	him	a
successful	actor,	but	he	doesn't	only	become	an	actor	when	he's
successful.

So	the	real	question	is	not	what	growth	rate	makes	a	company	a
startup,	but	what	growth	rate	successful	startups	tend	to	have.
For	founders	that's	more	than	a	theoretical	question,	because	it's
equivalent	to	asking	if	they're	on	the	right	path.

The	growth	of	a	successful	startup	usually	has	three	phases:

1.	 There's	an	initial	period	of	slow	or	no	growth	while	the
startup	tries	to	figure	out	what	it's	doing.

2.	 As	the	startup	figures	out	how	to	make	something	lots	of
people	want	and	how	to	reach	those	people,	there's	a
period	of	rapid	growth.

3.	 Eventually	a	successful	startup	will	grow	into	a	big
company.	Growth	will	slow,	partly	due	to	internal	limits	and
partly	because	the	company	is	starting	to	bump	up	against
the	limits	of	the	markets	it	serves.	[5]

Together	these	three	phases	produce	an	S-curve.	The	phase
whose	growth	defines	the	startup	is	the	second	one,	the	ascent.
Its	length	and	slope	determine	how	big	the	company	will	be.

The	slope	is	the	company's	growth	rate.	If	there's	one	number
every	founder	should	always	know,	it's	the	company's	growth
rate.	That's	the	measure	of	a	startup.	If	you	don't	know	that
number,	you	don't	even	know	if	you're	doing	well	or	badly.

When	I	first	meet	founders	and	ask	what	their	growth	rate	is,
sometimes	they	tell	me	"we	get	about	a	hundred	new	customers
a	month."	That's	not	a	rate.	What	matters	is	not	the	absolute

#f5n

number	of	new	customers,	but	the	ratio	of	new	customers	to
existing	ones.	If	you're	really	getting	a	constant	number	of	new
customers	every	month,	you're	in	trouble,	because	that	means
your	growth	rate	is	decreasing.

During	Y	Combinator	we	measure	growth	rate	per	week,	partly
because	there	is	so	little	time	before	Demo	Day,	and	partly
because	startups	early	on	need	frequent	feedback	from	their
users	to	tweak	what	they're	doing.	[6]

A	good	growth	rate	during	YC	is	5-7%	a	week.	If	you	can	hit	10%
a	week	you're	doing	exceptionally	well.	If	you	can	only	manage
1%,	it's	a	sign	you	haven't	yet	figured	out	what	you're	doing.

The	best	thing	to	measure	the	growth	rate	of	is	revenue.	The
next	best,	for	startups	that	aren't	charging	initially,	is	active
users.	That's	a	reasonable	proxy	for	revenue	growth	because
whenever	the	startup	does	start	trying	to	make	money,	their
revenues	will	probably	be	a	constant	multiple	of	active	users.	[7]

Compass

We	usually	advise	startups	to	pick	a	growth	rate	they	think	they
can	hit,	and	then	just	try	to	hit	it	every	week.	The	key	word	here
is	"just."	If	they	decide	to	grow	at	7%	a	week	and	they	hit	that
number,	they're	successful	for	that	week.	There's	nothing	more
they	need	to	do.	But	if	they	don't	hit	it,	they've	failed	in	the	only
thing	that	mattered,	and	should	be	correspondingly	alarmed.

Programmers	will	recognize	what	we're	doing	here.	We're
turning	starting	a	startup	into	an	optimization	problem.	And
anyone	who	has	tried	optimizing	code	knows	how	wonderfully
effective	that	sort	of	narrow	focus	can	be.	Optimizing	code
means	taking	an	existing	program	and	changing	it	to	use	less	of
something,	usually	time	or	memory.	You	don't	have	to	think	about
what	the	program	should	do,	just	make	it	faster.	For	most
programmers	this	is	very	satisfying	work.	The	narrow	focus
makes	it	a	sort	of	puzzle,	and	you're	generally	surprised	how	fast
you	can	solve	it.

Focusing	on	hitting	a	growth	rate	reduces	the	otherwise

#f6n
#f7n

bewilderingly	multifarious	problem	of	starting	a	startup	to	a
single	problem.	You	can	use	that	target	growth	rate	to	make	all
your	decisions	for	you;	anything	that	gets	you	the	growth	you
need	is	ipso	facto	right.	Should	you	spend	two	days	at	a
conference?	Should	you	hire	another	programmer?	Should	you
focus	more	on	marketing?	Should	you	spend	time	courting	some
big	customer?	Should	you	add	x	feature?	Whatever	gets	you	your
target	growth	rate.	[8]

Judging	yourself	by	weekly	growth	doesn't	mean	you	can	look	no
more	than	a	week	ahead.	Once	you	experience	the	pain	of
missing	your	target	one	week	(it	was	the	only	thing	that
mattered,	and	you	failed	at	it),	you	become	interested	in	anything
that	could	spare	you	such	pain	in	the	future.	So	you'll	be	willing
for	example	to	hire	another	programmer,	who	won't	contribute	to
this	week's	growth	but	perhaps	in	a	month	will	have
implemented	some	new	feature	that	will	get	you	more	users.	But
only	if	(a)	the	distraction	of	hiring	someone	won't	make	you	miss
your	numbers	in	the	short	term,	and	(b)	you're	sufficiently
worried	about	whether	you	can	keep	hitting	your	numbers
without	hiring	someone	new.

It's	not	that	you	don't	think	about	the	future,	just	that	you	think
about	it	no	more	than	necessary.

In	theory	this	sort	of	hill-climbing	could	get	a	startup	into
trouble.	They	could	end	up	on	a	local	maximum.	But	in	practice
that	never	happens.	Having	to	hit	a	growth	number	every	week
forces	founders	to	act,	and	acting	versus	not	acting	is	the	high
bit	of	succeeding.	Nine	times	out	of	ten,	sitting	around
strategizing	is	just	a	form	of	procrastination.	Whereas	founders'
intuitions	about	which	hill	to	climb	are	usually	better	than	they
realize.	Plus	the	maxima	in	the	space	of	startup	ideas	are	not
spiky	and	isolated.	Most	fairly	good	ideas	are	adjacent	to	even
better	ones.

The	fascinating	thing	about	optimizing	for	growth	is	that	it	can
actually	discover	startup	ideas.	You	can	use	the	need	for	growth
as	a	form	of	evolutionary	pressure.	If	you	start	out	with	some
initial	plan	and	modify	it	as	necessary	to	keep	hitting,	say,	10%
weekly	growth,	you	may	end	up	with	a	quite	different	company

#f8n

than	you	meant	to	start.	But	anything	that	grows	consistently	at
10%	a	week	is	almost	certainly	a	better	idea	than	you	started
with.

There's	a	parallel	here	to	small	businesses.	Just	as	the	constraint
of	being	located	in	a	particular	neighborhood	helps	define	a	bar,
the	constraint	of	growing	at	a	certain	rate	can	help	define	a
startup.

You'll	generally	do	best	to	follow	that	constraint	wherever	it
leads	rather	than	being	influenced	by	some	initial	vision,	just	as	a
scientist	is	better	off	following	the	truth	wherever	it	leads	rather
than	being	influenced	by	what	he	wishes	were	the	case.	When
Richard	Feynman	said	that	the	imagination	of	nature	was	greater
than	the	imagination	of	man,	he	meant	that	if	you	just	keep
following	the	truth	you'll	discover	cooler	things	than	you	could
ever	have	made	up.	For	startups,	growth	is	a	constraint	much
like	truth.	Every	successful	startup	is	at	least	partly	a	product	of
the	imagination	of	growth.	[9]

Value

It's	hard	to	find	something	that	grows	consistently	at	several
percent	a	week,	but	if	you	do	you	may	have	found	something
surprisingly	valuable.	If	we	project	forward	we	see	why.

weekly yearly

1% 1.7x

2% 2.8x

5% 12.6x

7% 33.7x

10% 142.0x

#f9n

	

The	Hardware	Renaissance
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	to	Get	Startup	Ideas
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

November	2012

The	way	to	get	startup	ideas	is	not	to	try	to	think	of	startup
ideas.	It's	to	look	for	problems,	preferably	problems	you	have
yourself.

The	very	best	startup	ideas	tend	to	have	three	things	in	common:
they're	something	the	founders	themselves	want,	that	they
themselves	can	build,	and	that	few	others	realize	are	worth
doing.	Microsoft,	Apple,	Yahoo,	Google,	and	Facebook	all	began
this	way.

Problems

Why	is	it	so	important	to	work	on	a	problem	you	have?	Among
other	things,	it	ensures	the	problem	really	exists.	It	sounds
obvious	to	say	you	should	only	work	on	problems	that	exist.	And
yet	by	far	the	most	common	mistake	startups	make	is	to	solve
problems	no	one	has.

I	made	it	myself.	In	1995	I	started	a	company	to	put	art	galleries
online.	But	galleries	didn't	want	to	be	online.	It's	not	how	the	art
business	works.	So	why	did	I	spend	6	months	working	on	this
stupid	idea?	Because	I	didn't	pay	attention	to	users.	I	invented	a
model	of	the	world	that	didn't	correspond	to	reality,	and	worked
from	that.	I	didn't	notice	my	model	was	wrong	until	I	tried	to
convince	users	to	pay	for	what	we'd	built.	Even	then	I	took
embarrassingly	long	to	catch	on.	I	was	attached	to	my	model	of
the	world,	and	I'd	spent	a	lot	of	time	on	the	software.	They	had	to
want	it!

Why	do	so	many	founders	build	things	no	one	wants?	Because
they	begin	by	trying	to	think	of	startup	ideas.	That	m.o.	is	doubly

http://ycombinator.com/apply.html

dangerous:	it	doesn't	merely	yield	few	good	ideas;	it	yields	bad
ideas	that	sound	plausible	enough	to	fool	you	into	working	on
them.

At	YC	we	call	these	"made-up"	or	"sitcom"	startup	ideas.	Imagine
one	of	the	characters	on	a	TV	show	was	starting	a	startup.	The
writers	would	have	to	invent	something	for	it	to	do.	But	coming
up	with	good	startup	ideas	is	hard.	It's	not	something	you	can	do
for	the	asking.	So	(unless	they	got	amazingly	lucky)	the	writers
would	come	up	with	an	idea	that	sounded	plausible,	but	was
actually	bad.

For	example,	a	social	network	for	pet	owners.	It	doesn't	sound
obviously	mistaken.	Millions	of	people	have	pets.	Often	they	care
a	lot	about	their	pets	and	spend	a	lot	of	money	on	them.	Surely
many	of	these	people	would	like	a	site	where	they	could	talk	to
other	pet	owners.	Not	all	of	them	perhaps,	but	if	just	2	or	3
percent	were	regular	visitors,	you	could	have	millions	of	users.
You	could	serve	them	targeted	offers,	and	maybe	charge	for
premium	features.	[1]

The	danger	of	an	idea	like	this	is	that	when	you	run	it	by	your
friends	with	pets,	they	don't	say	"I	would	never	use	this."	They
say	"Yeah,	maybe	I	could	see	using	something	like	that."	Even
when	the	startup	launches,	it	will	sound	plausible	to	a	lot	of
people.	They	don't	want	to	use	it	themselves,	at	least	not	right
now,	but	they	could	imagine	other	people	wanting	it.	Sum	that
reaction	across	the	entire	population,	and	you	have	zero	users.
[2]

Well

When	a	startup	launches,	there	have	to	be	at	least	some	users
who	really	need	what	they're	making	—	not	just	people	who
could	see	themselves	using	it	one	day,	but	who	want	it	urgently.
Usually	this	initial	group	of	users	is	small,	for	the	simple	reason
that	if	there	were	something	that	large	numbers	of	people
urgently	needed	and	that	could	be	built	with	the	amount	of	effort
a	startup	usually	puts	into	a	version	one,	it	would	probably
already	exist.	Which	means	you	have	to	compromise	on	one
dimension:	you	can	either	build	something	a	large	number	of

#f1n
#f2n

people	want	a	small	amount,	or	something	a	small	number	of
people	want	a	large	amount.	Choose	the	latter.	Not	all	ideas	of
that	type	are	good	startup	ideas,	but	nearly	all	good	startup	ideas
are	of	that	type.

Imagine	a	graph	whose	x	axis	represents	all	the	people	who
might	want	what	you're	making	and	whose	y	axis	represents	how
much	they	want	it.	If	you	invert	the	scale	on	the	y	axis,	you	can
envision	companies	as	holes.	Google	is	an	immense	crater:
hundreds	of	millions	of	people	use	it,	and	they	need	it	a	lot.	A
startup	just	starting	out	can't	expect	to	excavate	that	much
volume.	So	you	have	two	choices	about	the	shape	of	hole	you
start	with.	You	can	either	dig	a	hole	that's	broad	but	shallow,	or
one	that's	narrow	and	deep,	like	a	well.

Made-up	startup	ideas	are	usually	of	the	first	type.	Lots	of	people
are	mildly	interested	in	a	social	network	for	pet	owners.

Nearly	all	good	startup	ideas	are	of	the	second	type.	Microsoft
was	a	well	when	they	made	Altair	Basic.	There	were	only	a
couple	thousand	Altair	owners,	but	without	this	software	they
were	programming	in	machine	language.	Thirty	years	later
Facebook	had	the	same	shape.	Their	first	site	was	exclusively	for
Harvard	students,	of	which	there	are	only	a	few	thousand,	but
those	few	thousand	users	wanted	it	a	lot.

When	you	have	an	idea	for	a	startup,	ask	yourself:	who	wants	this
right	now?	Who	wants	this	so	much	that	they'll	use	it	even	when
it's	a	crappy	version	one	made	by	a	two-person	startup	they've
never	heard	of?	If	you	can't	answer	that,	the	idea	is	probably
bad.	[3]

You	don't	need	the	narrowness	of	the	well	per	se.	It's	depth	you
need;	you	get	narrowness	as	a	byproduct	of	optimizing	for	depth
(and	speed).	But	you	almost	always	do	get	it.	In	practice	the	link
between	depth	and	narrowness	is	so	strong	that	it's	a	good	sign
when	you	know	that	an	idea	will	appeal	strongly	to	a	specific
group	or	type	of	user.

But	while	demand	shaped	like	a	well	is	almost	a	necessary
condition	for	a	good	startup	idea,	it's	not	a	sufficient	one.	If	Mark

#f3n

Zuckerberg	had	built	something	that	could	only	ever	have
appealed	to	Harvard	students,	it	would	not	have	been	a	good
startup	idea.	Facebook	was	a	good	idea	because	it	started	with	a
small	market	there	was	a	fast	path	out	of.	Colleges	are	similar
enough	that	if	you	build	a	facebook	that	works	at	Harvard,	it	will
work	at	any	college.	So	you	spread	rapidly	through	all	the
colleges.	Once	you	have	all	the	college	students,	you	get
everyone	else	simply	by	letting	them	in.

Similarly	for	Microsoft:	Basic	for	the	Altair;	Basic	for	other
machines;	other	languages	besides	Basic;	operating	systems;
applications;	IPO.

Self

How	do	you	tell	whether	there's	a	path	out	of	an	idea?	How	do
you	tell	whether	something	is	the	germ	of	a	giant	company,	or
just	a	niche	product?	Often	you	can't.	The	founders	of	Airbnb
didn't	realize	at	first	how	big	a	market	they	were	tapping.
Initially	they	had	a	much	narrower	idea.	They	were	going	to	let
hosts	rent	out	space	on	their	floors	during	conventions.	They
didn't	foresee	the	expansion	of	this	idea;	it	forced	itself	upon
them	gradually.	All	they	knew	at	first	is	that	they	were	onto
something.	That's	probably	as	much	as	Bill	Gates	or	Mark
Zuckerberg	knew	at	first.

Occasionally	it's	obvious	from	the	beginning	when	there's	a	path
out	of	the	initial	niche.	And	sometimes	I	can	see	a	path	that's	not
immediately	obvious;	that's	one	of	our	specialties	at	YC.	But
there	are	limits	to	how	well	this	can	be	done,	no	matter	how
much	experience	you	have.	The	most	important	thing	to
understand	about	paths	out	of	the	initial	idea	is	the	meta-fact
that	these	are	hard	to	see.

So	if	you	can't	predict	whether	there's	a	path	out	of	an	idea,	how
do	you	choose	between	ideas?	The	truth	is	disappointing	but
interesting:	if	you're	the	right	sort	of	person,	you	have	the	right
sort	of	hunches.	If	you're	at	the	leading	edge	of	a	field	that's
changing	fast,	when	you	have	a	hunch	that	something	is	worth
doing,	you're	more	likely	to	be	right.

In	Zen	and	the	Art	of	Motorcycle	Maintenance,	Robert	Pirsig
says:

You	want	to	know	how	to	paint	a	perfect	painting?
It's	easy.	Make	yourself	perfect	and	then	just	paint
naturally.

I've	wondered	about	that	passage	since	I	read	it	in	high	school.
I'm	not	sure	how	useful	his	advice	is	for	painting	specifically,	but
it	fits	this	situation	well.	Empirically,	the	way	to	have	good
startup	ideas	is	to	become	the	sort	of	person	who	has	them.

Being	at	the	leading	edge	of	a	field	doesn't	mean	you	have	to	be
one	of	the	people	pushing	it	forward.	You	can	also	be	at	the
leading	edge	as	a	user.	It	was	not	so	much	because	he	was	a
programmer	that	Facebook	seemed	a	good	idea	to	Mark
Zuckerberg	as	because	he	used	computers	so	much.	If	you'd
asked	most	40	year	olds	in	2004	whether	they'd	like	to	publish
their	lives	semi-publicly	on	the	Internet,	they'd	have	been
horrified	at	the	idea.	But	Mark	already	lived	online;	to	him	it
seemed	natural.

Paul	Buchheit	says	that	people	at	the	leading	edge	of	a	rapidly
changing	field	"live	in	the	future."	Combine	that	with	Pirsig	and
you	get:

Live	in	the	future,	then	build	what's	missing.

That	describes	the	way	many	if	not	most	of	the	biggest	startups
got	started.	Neither	Apple	nor	Yahoo	nor	Google	nor	Facebook
were	even	supposed	to	be	companies	at	first.	They	grew	out	of
things	their	founders	built	because	there	seemed	a	gap	in	the
world.

If	you	look	at	the	way	successful	founders	have	had	their	ideas,
it's	generally	the	result	of	some	external	stimulus	hitting	a
prepared	mind.	Bill	Gates	and	Paul	Allen	hear	about	the	Altair
and	think	"I	bet	we	could	write	a	Basic	interpreter	for	it."	Drew
Houston	realizes	he's	forgotten	his	USB	stick	and	thinks	"I	really
need	to	make	my	files	live	online."	Lots	of	people	heard	about	the
Altair.	Lots	forgot	USB	sticks.	The	reason	those	stimuli	caused

those	founders	to	start	companies	was	that	their	experiences	had
prepared	them	to	notice	the	opportunities	they	represented.

The	verb	you	want	to	be	using	with	respect	to	startup	ideas	is	not
"think	up"	but	"notice."	At	YC	we	call	ideas	that	grow	naturally
out	of	the	founders'	own	experiences	"organic"	startup	ideas.	The
most	successful	startups	almost	all	begin	this	way.

That	may	not	have	been	what	you	wanted	to	hear.	You	may	have
expected	recipes	for	coming	up	with	startup	ideas,	and	instead
I'm	telling	you	that	the	key	is	to	have	a	mind	that's	prepared	in
the	right	way.	But	disappointing	though	it	may	be,	this	is	the
truth.	And	it	is	a	recipe	of	a	sort,	just	one	that	in	the	worst	case
takes	a	year	rather	than	a	weekend.

If	you're	not	at	the	leading	edge	of	some	rapidly	changing	field,
you	can	get	to	one.	For	example,	anyone	reasonably	smart	can
probably	get	to	an	edge	of	programming	(e.g.	building	mobile
apps)	in	a	year.	Since	a	successful	startup	will	consume	at	least
3-5	years	of	your	life,	a	year's	preparation	would	be	a	reasonable
investment.	Especially	if	you're	also	looking	for	a	cofounder.	[4]

You	don't	have	to	learn	programming	to	be	at	the	leading	edge	of
a	domain	that's	changing	fast.	Other	domains	change	fast.	But
while	learning	to	hack	is	not	necessary,	it	is	for	the	forseeable
future	sufficient.	As	Marc	Andreessen	put	it,	software	is	eating
the	world,	and	this	trend	has	decades	left	to	run.

Knowing	how	to	hack	also	means	that	when	you	have	ideas,	you'll
be	able	to	implement	them.	That's	not	absolutely	necessary	(Jeff
Bezos	couldn't)	but	it's	an	advantage.	It's	a	big	advantage,	when
you're	considering	an	idea	like	putting	a	college	facebook	online,
if	instead	of	merely	thinking	"That's	an	interesting	idea,"	you	can
think	instead	"That's	an	interesting	idea.	I'll	try	building	an	initial
version	tonight."	It's	even	better	when	you're	both	a	programmer
and	the	target	user,	because	then	the	cycle	of	generating	new
versions	and	testing	them	on	users	can	happen	inside	one	head.

Noticing

Once	you're	living	in	the	future	in	some	respect,	the	way	to

#f4n

notice	startup	ideas	is	to	look	for	things	that	seem	to	be	missing.
If	you're	really	at	the	leading	edge	of	a	rapidly	changing	field,
there	will	be	things	that	are	obviously	missing.	What	won't	be
obvious	is	that	they're	startup	ideas.	So	if	you	want	to	find
startup	ideas,	don't	merely	turn	on	the	filter	"What's	missing?"
Also	turn	off	every	other	filter,	particularly	"Could	this	be	a	big
company?"	There's	plenty	of	time	to	apply	that	test	later.	But	if
you're	thinking	about	that	initially,	it	may	not	only	filter	out	lots
of	good	ideas,	but	also	cause	you	to	focus	on	bad	ones.

Most	things	that	are	missing	will	take	some	time	to	see.	You
almost	have	to	trick	yourself	into	seeing	the	ideas	around	you.

But	you	know	the	ideas	are	out	there.	This	is	not	one	of	those
problems	where	there	might	not	be	an	answer.	It's	impossibly
unlikely	that	this	is	the	exact	moment	when	technological
progress	stops.	You	can	be	sure	people	are	going	to	build	things
in	the	next	few	years	that	will	make	you	think	"What	did	I	do
before	x?"

And	when	these	problems	get	solved,	they	will	probably	seem
flamingly	obvious	in	retrospect.	What	you	need	to	do	is	turn	off
the	filters	that	usually	prevent	you	from	seeing	them.	The	most
powerful	is	simply	taking	the	current	state	of	the	world	for
granted.	Even	the	most	radically	open-minded	of	us	mostly	do
that.	You	couldn't	get	from	your	bed	to	the	front	door	if	you
stopped	to	question	everything.

But	if	you're	looking	for	startup	ideas	you	can	sacrifice	some	of
the	efficiency	of	taking	the	status	quo	for	granted	and	start	to
question	things.	Why	is	your	inbox	overflowing?	Because	you	get
a	lot	of	email,	or	because	it's	hard	to	get	email	out	of	your	inbox?
Why	do	you	get	so	much	email?	What	problems	are	people	trying
to	solve	by	sending	you	email?	Are	there	better	ways	to	solve
them?	And	why	is	it	hard	to	get	emails	out	of	your	inbox?	Why	do
you	keep	emails	around	after	you've	read	them?	Is	an	inbox	the
optimal	tool	for	that?

Pay	particular	attention	to	things	that	chafe	you.	The	advantage
of	taking	the	status	quo	for	granted	is	not	just	that	it	makes	life
(locally)	more	efficient,	but	also	that	it	makes	life	more	tolerable.

If	you	knew	about	all	the	things	we'll	get	in	the	next	50	years	but
don't	have	yet,	you'd	find	present	day	life	pretty	constraining,
just	as	someone	from	the	present	would	if	they	were	sent	back	50
years	in	a	time	machine.	When	something	annoys	you,	it	could	be
because	you're	living	in	the	future.

When	you	find	the	right	sort	of	problem,	you	should	probably	be
able	to	describe	it	as	obvious,	at	least	to	you.	When	we	started
Viaweb,	all	the	online	stores	were	built	by	hand,	by	web
designers	making	individual	HTML	pages.	It	was	obvious	to	us	as
programmers	that	these	sites	would	have	to	be	generated	by
software.	[5]

Which	means,	strangely	enough,	that	coming	up	with	startup
ideas	is	a	question	of	seeing	the	obvious.	That	suggests	how
weird	this	process	is:	you're	trying	to	see	things	that	are	obvious,
and	yet	that	you	hadn't	seen.

Since	what	you	need	to	do	here	is	loosen	up	your	own	mind,	it
may	be	best	not	to	make	too	much	of	a	direct	frontal	attack	on
the	problem	—	i.e.	to	sit	down	and	try	to	think	of	ideas.	The	best
plan	may	be	just	to	keep	a	background	process	running,	looking
for	things	that	seem	to	be	missing.	Work	on	hard	problems,
driven	mainly	by	curiosity,	but	have	a	second	self	watching	over
your	shoulder,	taking	note	of	gaps	and	anomalies.	[6]

Give	yourself	some	time.	You	have	a	lot	of	control	over	the	rate	at
which	you	turn	yours	into	a	prepared	mind,	but	you	have	less
control	over	the	stimuli	that	spark	ideas	when	they	hit	it.	If	Bill
Gates	and	Paul	Allen	had	constrained	themselves	to	come	up
with	a	startup	idea	in	one	month,	what	if	they'd	chosen	a	month
before	the	Altair	appeared?	They	probably	would	have	worked	on
a	less	promising	idea.	Drew	Houston	did	work	on	a	less
promising	idea	before	Dropbox:	an	SAT	prep	startup.	But
Dropbox	was	a	much	better	idea,	both	in	the	absolute	sense	and
also	as	a	match	for	his	skills.	[7]

A	good	way	to	trick	yourself	into	noticing	ideas	is	to	work	on
projects	that	seem	like	they'd	be	cool.	If	you	do	that,	you'll
naturally	tend	to	build	things	that	are	missing.	It	wouldn't	seem
as	interesting	to	build	something	that	already	existed.

#f5n
#f6n
#f7n

Just	as	trying	to	think	up	startup	ideas	tends	to	produce	bad
ones,	working	on	things	that	could	be	dismissed	as	"toys"	often
produces	good	ones.	When	something	is	described	as	a	toy,	that
means	it	has	everything	an	idea	needs	except	being	important.
It's	cool;	users	love	it;	it	just	doesn't	matter.	But	if	you're	living	in
the	future	and	you	build	something	cool	that	users	love,	it	may
matter	more	than	outsiders	think.	Microcomputers	seemed	like
toys	when	Apple	and	Microsoft	started	working	on	them.	I'm	old
enough	to	remember	that	era;	the	usual	term	for	people	with
their	own	microcomputers	was	"hobbyists."	BackRub	seemed	like
an	inconsequential	science	project.	The	Facebook	was	just	a	way
for	undergrads	to	stalk	one	another.

At	YC	we're	excited	when	we	meet	startups	working	on	things
that	we	could	imagine	know-it-alls	on	forums	dismissing	as	toys.
To	us	that's	positive	evidence	an	idea	is	good.

If	you	can	afford	to	take	a	long	view	(and	arguably	you	can't
afford	not	to),	you	can	turn	"Live	in	the	future	and	build	what's
missing"	into	something	even	better:

Live	in	the	future	and	build	what	seems	interesting.

School

That's	what	I'd	advise	college	students	to	do,	rather	than	trying
to	learn	about	"entrepreneurship."	"Entrepreneurship"	is
something	you	learn	best	by	doing	it.	The	examples	of	the	most
successful	founders	make	that	clear.	What	you	should	be
spending	your	time	on	in	college	is	ratcheting	yourself	into	the
future.	College	is	an	incomparable	opportunity	to	do	that.	What	a
waste	to	sacrifice	an	opportunity	to	solve	the	hard	part	of
starting	a	startup	—	becoming	the	sort	of	person	who	can	have
organic	startup	ideas	—	by	spending	time	learning	about	the	easy
part.	Especially	since	you	won't	even	really	learn	about	it,	any
more	than	you'd	learn	about	sex	in	a	class.	All	you'll	learn	is	the
words	for	things.

The	clash	of	domains	is	a	particularly	fruitful	source	of	ideas.	If
you	know	a	lot	about	programming	and	you	start	learning	about
some	other	field,	you'll	probably	see	problems	that	software
could	solve.	In	fact,	you're	doubly	likely	to	find	good	problems	in
another	domain:	(a)	the	inhabitants	of	that	domain	are	not	as
likely	as	software	people	to	have	already	solved	their	problems
with	software,	and	(b)	since	you	come	into	the	new	domain
totally	ignorant,	you	don't	even	know	what	the	status	quo	is	to
take	it	for	granted.

So	if	you're	a	CS	major	and	you	want	to	start	a	startup,	instead	of
taking	a	class	on	entrepreneurship	you're	better	off	taking	a
class	on,	say,	genetics.	Or	better	still,	go	work	for	a	biotech
company.	CS	majors	normally	get	summer	jobs	at	computer
hardware	or	software	companies.	But	if	you	want	to	find	startup
ideas,	you	might	do	better	to	get	a	summer	job	in	some	unrelated
field.	[8]

Or	don't	take	any	extra	classes,	and	just	build	things.	It's	no
coincidence	that	Microsoft	and	Facebook	both	got	started	in
January.	At	Harvard	that	is	(or	was)	Reading	Period,	when
students	have	no	classes	to	attend	because	they're	supposed	to
be	studying	for	finals.	[9]

But	don't	feel	like	you	have	to	build	things	that	will	become
startups.	That's	premature	optimization.	Just	build	things.
Preferably	with	other	students.	It's	not	just	the	classes	that	make
a	university	such	a	good	place	to	crank	oneself	into	the	future.
You're	also	surrounded	by	other	people	trying	to	do	the	same
thing.	If	you	work	together	with	them	on	projects,	you'll	end	up
producing	not	just	organic	ideas,	but	organic	ideas	with	organic
founding	teams	—	and	that,	empirically,	is	the	best	combination.

Beware	of	research.	If	an	undergrad	writes	something	all	his
friends	start	using,	it's	quite	likely	to	represent	a	good	startup
idea.	Whereas	a	PhD	dissertation	is	extremely	unlikely	to.	For
some	reason,	the	more	a	project	has	to	count	as	research,	the
less	likely	it	is	to	be	something	that	could	be	turned	into	a
startup.	[10]	I	think	the	reason	is	that	the	subset	of	ideas	that
count	as	research	is	so	narrow	that	it's	unlikely	that	a	project
that	satisfied	that	constraint	would	also	satisfy	the	orthogonal

#f8n
#f9n
#f10n

constraint	of	solving	users'	problems.	Whereas	when	students	(or
professors)	build	something	as	a	side-project,	they	automatically
gravitate	toward	solving	users'	problems	—	perhaps	even	with	an
additional	energy	that	comes	from	being	freed	from	the
constraints	of	research.

Competition

Because	a	good	idea	should	seem	obvious,	when	you	have	one
you'll	tend	to	feel	that	you're	late.	Don't	let	that	deter	you.
Worrying	that	you're	late	is	one	of	the	signs	of	a	good	idea.	Ten
minutes	of	searching	the	web	will	usually	settle	the	question.
Even	if	you	find	someone	else	working	on	the	same	thing,	you're
probably	not	too	late.	It's	exceptionally	rare	for	startups	to	be
killed	by	competitors	—	so	rare	that	you	can	almost	discount	the
possibility.	So	unless	you	discover	a	competitor	with	the	sort	of
lock-in	that	would	prevent	users	from	choosing	you,	don't	discard
the	idea.

If	you're	uncertain,	ask	users.	The	question	of	whether	you're	too
late	is	subsumed	by	the	question	of	whether	anyone	urgently
needs	what	you	plan	to	make.	If	you	have	something	that	no
competitor	does	and	that	some	subset	of	users	urgently	need,
you	have	a	beachhead.	[11]

The	question	then	is	whether	that	beachhead	is	big	enough.	Or
more	importantly,	who's	in	it:	if	the	beachhead	consists	of	people
doing	something	lots	more	people	will	be	doing	in	the	future,
then	it's	probably	big	enough	no	matter	how	small	it	is.	For
example,	if	you're	building	something	differentiated	from
competitors	by	the	fact	that	it	works	on	phones,	but	it	only	works
on	the	newest	phones,	that's	probably	a	big	enough	beachhead.

Err	on	the	side	of	doing	things	where	you'll	face	competitors.
Inexperienced	founders	usually	give	competitors	more	credit
than	they	deserve.	Whether	you	succeed	depends	far	more	on
you	than	on	your	competitors.	So	better	a	good	idea	with
competitors	than	a	bad	one	without.

You	don't	need	to	worry	about	entering	a	"crowded	market"	so
long	as	you	have	a	thesis	about	what	everyone	else	in	it	is

#f11n

overlooking.	In	fact	that's	a	very	promising	starting	point.	Google
was	that	type	of	idea.	Your	thesis	has	to	be	more	precise	than
"we're	going	to	make	an	x	that	doesn't	suck"	though.	You	have	to
be	able	to	phrase	it	in	terms	of	something	the	incumbents	are
overlooking.	Best	of	all	is	when	you	can	say	that	they	didn't	have
the	courage	of	their	convictions,	and	that	your	plan	is	what
they'd	have	done	if	they'd	followed	through	on	their	own	insights.
Google	was	that	type	of	idea	too.	The	search	engines	that
preceded	them	shied	away	from	the	most	radical	implications	of
what	they	were	doing	—	particularly	that	the	better	a	job	they
did,	the	faster	users	would	leave.

A	crowded	market	is	actually	a	good	sign,	because	it	means	both
that	there's	demand	and	that	none	of	the	existing	solutions	are
good	enough.	A	startup	can't	hope	to	enter	a	market	that's
obviously	big	and	yet	in	which	they	have	no	competitors.	So	any
startup	that	succeeds	is	either	going	to	be	entering	a	market
with	existing	competitors,	but	armed	with	some	secret	weapon
that	will	get	them	all	the	users	(like	Google),	or	entering	a
market	that	looks	small	but	which	will	turn	out	to	be	big	(like
Microsoft).	[12]

Filters

There	are	two	more	filters	you'll	need	to	turn	off	if	you	want	to
notice	startup	ideas:	the	unsexy	filter	and	the	schlep	filter.

Most	programmers	wish	they	could	start	a	startup	by	just	writing
some	brilliant	code,	pushing	it	to	a	server,	and	having	users	pay
them	lots	of	money.	They'd	prefer	not	to	deal	with	tedious
problems	or	get	involved	in	messy	ways	with	the	real	world.
Which	is	a	reasonable	preference,	because	such	things	slow	you
down.	But	this	preference	is	so	widespread	that	the	space	of
convenient	startup	ideas	has	been	stripped	pretty	clean.	If	you
let	your	mind	wander	a	few	blocks	down	the	street	to	the	messy,
tedious	ideas,	you'll	find	valuable	ones	just	sitting	there	waiting
to	be	implemented.

The	schlep	filter	is	so	dangerous	that	I	wrote	a	separate	essay
about	the	condition	it	induces,	which	I	called	schlep	blindness.	I
gave	Stripe	as	an	example	of	a	startup	that	benefited	from

#f12n
schlep.html

turning	off	this	filter,	and	a	pretty	striking	example	it	is.
Thousands	of	programmers	were	in	a	position	to	see	this	idea;
thousands	of	programmers	knew	how	painful	it	was	to	process
payments	before	Stripe.	But	when	they	looked	for	startup	ideas
they	didn't	see	this	one,	because	unconsciously	they	shrank	from
having	to	deal	with	payments.	And	dealing	with	payments	is	a
schlep	for	Stripe,	but	not	an	intolerable	one.	In	fact	they	might
have	had	net	less	pain;	because	the	fear	of	dealing	with
payments	kept	most	people	away	from	this	idea,	Stripe	has	had
comparatively	smooth	sailing	in	other	areas	that	are	sometimes
painful,	like	user	acquisition.	They	didn't	have	to	try	very	hard	to
make	themselves	heard	by	users,	because	users	were
desperately	waiting	for	what	they	were	building.

The	unsexy	filter	is	similar	to	the	schlep	filter,	except	it	keeps	you
from	working	on	problems	you	despise	rather	than	ones	you	fear.
We	overcame	this	one	to	work	on	Viaweb.	There	were	interesting
things	about	the	architecture	of	our	software,	but	we	weren't
interested	in	ecommerce	per	se.	We	could	see	the	problem	was
one	that	needed	to	be	solved	though.

Turning	off	the	schlep	filter	is	more	important	than	turning	off
the	unsexy	filter,	because	the	schlep	filter	is	more	likely	to	be	an
illusion.	And	even	to	the	degree	it	isn't,	it's	a	worse	form	of	self-
indulgence.	Starting	a	successful	startup	is	going	to	be	fairly
laborious	no	matter	what.	Even	if	the	product	doesn't	entail	a	lot
of	schleps,	you'll	still	have	plenty	dealing	with	investors,	hiring
and	firing	people,	and	so	on.	So	if	there's	some	idea	you	think
would	be	cool	but	you're	kept	away	from	by	fear	of	the	schleps
involved,	don't	worry:	any	sufficiently	good	idea	will	have	as
many.

The	unsexy	filter,	while	still	a	source	of	error,	is	not	as	entirely
useless	as	the	schlep	filter.	If	you're	at	the	leading	edge	of	a	field
that's	changing	rapidly,	your	ideas	about	what's	sexy	will	be
somewhat	correlated	with	what's	valuable	in	practice.
Particularly	as	you	get	older	and	more	experienced.	Plus	if	you
find	an	idea	sexy,	you'll	work	on	it	more	enthusiastically.	[13]

Recipes

#f13n

While	the	best	way	to	discover	startup	ideas	is	to	become	the
sort	of	person	who	has	them	and	then	build	whatever	interests
you,	sometimes	you	don't	have	that	luxury.	Sometimes	you	need
an	idea	now.	For	example,	if	you're	working	on	a	startup	and	your
initial	idea	turns	out	to	be	bad.

For	the	rest	of	this	essay	I'll	talk	about	tricks	for	coming	up	with
startup	ideas	on	demand.	Although	empirically	you're	better	off
using	the	organic	strategy,	you	could	succeed	this	way.	You	just
have	to	be	more	disciplined.	When	you	use	the	organic	method,
you	don't	even	notice	an	idea	unless	it's	evidence	that	something
is	truly	missing.	But	when	you	make	a	conscious	effort	to	think	of
startup	ideas,	you	have	to	replace	this	natural	constraint	with
self-discipline.	You'll	see	a	lot	more	ideas,	most	of	them	bad,	so
you	need	to	be	able	to	filter	them.

One	of	the	biggest	dangers	of	not	using	the	organic	method	is	the
example	of	the	organic	method.	Organic	ideas	feel	like
inspirations.	There	are	a	lot	of	stories	about	successful	startups
that	began	when	the	founders	had	what	seemed	a	crazy	idea	but
"just	knew"	it	was	promising.	When	you	feel	that	about	an	idea
you've	had	while	trying	to	come	up	with	startup	ideas,	you're
probably	mistaken.

When	searching	for	ideas,	look	in	areas	where	you	have	some
expertise.	If	you're	a	database	expert,	don't	build	a	chat	app	for
teenagers	(unless	you're	also	a	teenager).	Maybe	it's	a	good	idea,
but	you	can't	trust	your	judgment	about	that,	so	ignore	it.	There
have	to	be	other	ideas	that	involve	databases,	and	whose	quality
you	can	judge.	Do	you	find	it	hard	to	come	up	with	good	ideas
involving	databases?	That's	because	your	expertise	raises	your
standards.	Your	ideas	about	chat	apps	are	just	as	bad,	but	you're
giving	yourself	a	Dunning-Kruger	pass	in	that	domain.

The	place	to	start	looking	for	ideas	is	things	you	need.	There
must	be	things	you	need.	[14]

One	good	trick	is	to	ask	yourself	whether	in	your	previous	job
you	ever	found	yourself	saying	"Why	doesn't	someone	make	x?	If
someone	made	x	we'd	buy	it	in	a	second."	If	you	can	think	of	any
x	people	said	that	about,	you	probably	have	an	idea.	You	know

#f14n

there's	demand,	and	people	don't	say	that	about	things	that	are
impossible	to	build.

More	generally,	try	asking	yourself	whether	there's	something
unusual	about	you	that	makes	your	needs	different	from	most
other	people's.	You're	probably	not	the	only	one.	It's	especially
good	if	you're	different	in	a	way	people	will	increasingly	be.

If	you're	changing	ideas,	one	unusual	thing	about	you	is	the	idea
you'd	previously	been	working	on.	Did	you	discover	any	needs
while	working	on	it?	Several	well-known	startups	began	this	way.
Hotmail	began	as	something	its	founders	wrote	to	talk	about
their	previous	startup	idea	while	they	were	working	at	their	day
jobs.	[15]

A	particularly	promising	way	to	be	unusual	is	to	be	young.	Some
of	the	most	valuable	new	ideas	take	root	first	among	people	in
their	teens	and	early	twenties.	And	while	young	founders	are	at	a
disadvantage	in	some	respects,	they're	the	only	ones	who	really
understand	their	peers.	It	would	have	been	very	hard	for
someone	who	wasn't	a	college	student	to	start	Facebook.	So	if
you're	a	young	founder	(under	23	say),	are	there	things	you	and
your	friends	would	like	to	do	that	current	technology	won't	let
you?

The	next	best	thing	to	an	unmet	need	of	your	own	is	an	unmet
need	of	someone	else.	Try	talking	to	everyone	you	can	about	the
gaps	they	find	in	the	world.	What's	missing?	What	would	they
like	to	do	that	they	can't?	What's	tedious	or	annoying,
particularly	in	their	work?	Let	the	conversation	get	general;	don't
be	trying	too	hard	to	find	startup	ideas.	You're	just	looking	for
something	to	spark	a	thought.	Maybe	you'll	notice	a	problem	they
didn't	consciously	realize	they	had,	because	you	know	how	to
solve	it.

When	you	find	an	unmet	need	that	isn't	your	own,	it	may	be
somewhat	blurry	at	first.	The	person	who	needs	something	may
not	know	exactly	what	they	need.	In	that	case	I	often	recommend
that	founders	act	like	consultants	—	that	they	do	what	they'd	do
if	they'd	been	retained	to	solve	the	problems	of	this	one	user.
People's	problems	are	similar	enough	that	nearly	all	the	code	you

#f15n

write	this	way	will	be	reusable,	and	whatever	isn't	will	be	a	small
price	to	start	out	certain	that	you've	reached	the	bottom	of	the
well.	[16]

One	way	to	ensure	you	do	a	good	job	solving	other	people's
problems	is	to	make	them	your	own.	When	Rajat	Suri	of	E	la
Carte	decided	to	write	software	for	restaurants,	he	got	a	job	as	a
waiter	to	learn	how	restaurants	worked.	That	may	seem	like
taking	things	to	extremes,	but	startups	are	extreme.	We	love	it
when	founders	do	such	things.

In	fact,	one	strategy	I	recommend	to	people	who	need	a	new	idea
is	not	merely	to	turn	off	their	schlep	and	unsexy	filters,	but	to
seek	out	ideas	that	are	unsexy	or	involve	schleps.	Don't	try	to
start	Twitter.	Those	ideas	are	so	rare	that	you	can't	find	them	by
looking	for	them.	Make	something	unsexy	that	people	will	pay
you	for.

A	good	trick	for	bypassing	the	schlep	and	to	some	extent	the
unsexy	filter	is	to	ask	what	you	wish	someone	else	would	build,
so	that	you	could	use	it.	What	would	you	pay	for	right	now?

Since	startups	often	garbage-collect	broken	companies	and
industries,	it	can	be	a	good	trick	to	look	for	those	that	are	dying,
or	deserve	to,	and	try	to	imagine	what	kind	of	company	would
profit	from	their	demise.	For	example,	journalism	is	in	free	fall	at
the	moment.	But	there	may	still	be	money	to	be	made	from
something	like	journalism.	What	sort	of	company	might	cause
people	in	the	future	to	say	"this	replaced	journalism"	on	some
axis?

But	imagine	asking	that	in	the	future,	not	now.	When	one
company	or	industry	replaces	another,	it	usually	comes	in	from
the	side.	So	don't	look	for	a	replacement	for	x;	look	for	something
that	people	will	later	say	turned	out	to	be	a	replacement	for	x.
And	be	imaginative	about	the	axis	along	which	the	replacement
occurs.	Traditional	journalism,	for	example,	is	a	way	for	readers
to	get	information	and	to	kill	time,	a	way	for	writers	to	make
money	and	to	get	attention,	and	a	vehicle	for	several	different
types	of	advertising.	It	could	be	replaced	on	any	of	these	axes	(it
has	already	started	to	be	on	most).

#f16n

When	startups	consume	incumbents,	they	usually	start	by
serving	some	small	but	important	market	that	the	big	players
ignore.	It's	particularly	good	if	there's	an	admixture	of	disdain	in
the	big	players'	attitude,	because	that	often	misleads	them.	For
example,	after	Steve	Wozniak	built	the	computer	that	became	the
Apple	I,	he	felt	obliged	to	give	his	then-employer	Hewlett-
Packard	the	option	to	produce	it.	Fortunately	for	him,	they	turned
it	down,	and	one	of	the	reasons	they	did	was	that	it	used	a	TV	for
a	monitor,	which	seemed	intolerably	d�class�	to	a	high-end
hardware	company	like	HP	was	at	the	time.	[17]

Are	there	groups	of	scruffy	but	sophisticated	users	like	the	early
microcomputer	"hobbyists"	that	are	currently	being	ignored	by
the	big	players?	A	startup	with	its	sights	set	on	bigger	things	can
often	capture	a	small	market	easily	by	expending	an	effort	that
wouldn't	be	justified	by	that	market	alone.

Similarly,	since	the	most	successful	startups	generally	ride	some
wave	bigger	than	themselves,	it	could	be	a	good	trick	to	look	for
waves	and	ask	how	one	could	benefit	from	them.	The	prices	of
gene	sequencing	and	3D	printing	are	both	experiencing	Moore's
Law-like	declines.	What	new	things	will	we	be	able	to	do	in	the
new	world	we'll	have	in	a	few	years?	What	are	we	unconsciously
ruling	out	as	impossible	that	will	soon	be	possible?

Organic

But	talking	about	looking	explicitly	for	waves	makes	it	clear	that
such	recipes	are	plan	B	for	getting	startup	ideas.	Looking	for
waves	is	essentially	a	way	to	simulate	the	organic	method.	If
you're	at	the	leading	edge	of	some	rapidly	changing	field,	you
don't	have	to	look	for	waves;	you	are	the	wave.

Finding	startup	ideas	is	a	subtle	business,	and	that's	why	most
people	who	try	fail	so	miserably.	It	doesn't	work	well	simply	to	try
to	think	of	startup	ideas.	If	you	do	that,	you	get	bad	ones	that
sound	dangerously	plausible.	The	best	approach	is	more	indirect:
if	you	have	the	right	sort	of	background,	good	startup	ideas	will
seem	obvious	to	you.	But	even	then,	not	immediately.	It	takes
time	to	come	across	situations	where	you	notice	something

#f17n
marginal.html

missing.	And	often	these	gaps	won't	seem	to	be	ideas	for
companies,	just	things	that	would	be	interesting	to	build.	Which
is	why	it's	good	to	have	the	time	and	the	inclination	to	build
things	just	because	they're	interesting.

Live	in	the	future	and	build	what	seems	interesting.	Strange	as	it
sounds,	that's	the	real	recipe.

Notes

[1]	This	form	of	bad	idea	has	been	around	as	long	as	the	web.	It
was	common	in	the	1990s,	except	then	people	who	had	it	used	to
say	they	were	going	to	create	a	portal	for	x	instead	of	a	social
network	for	x.	Structurally	the	idea	is	stone	soup:	you	post	a	sign
saying	"this	is	the	place	for	people	interested	in	x,"	and	all	those
people	show	up	and	you	make	money	from	them.	What	lures
founders	into	this	sort	of	idea	are	statistics	about	the	millions	of
people	who	might	be	interested	in	each	type	of	x.	What	they
forget	is	that	any	given	person	might	have	20	affinities	by	this
standard,	and	no	one	is	going	to	visit	20	different	communities
regularly.

[2]	I'm	not	saying,	incidentally,	that	I	know	for	sure	a	social
network	for	pet	owners	is	a	bad	idea.	I	know	it's	a	bad	idea	the
way	I	know	randomly	generated	DNA	would	not	produce	a	viable
organism.	The	set	of	plausible	sounding	startup	ideas	is	many
times	larger	than	the	set	of	good	ones,	and	many	of	the	good
ones	don't	even	sound	that	plausible.	So	if	all	you	know	about	a
startup	idea	is	that	it	sounds	plausible,	you	have	to	assume	it's
bad.

[3]	More	precisely,	the	users'	need	has	to	give	them	sufficient
activation	energy	to	start	using	whatever	you	make,	which	can
vary	a	lot.	For	example,	the	activation	energy	for	enterprise
software	sold	through	traditional	channels	is	very	high,	so	you'd

have	to	be	a	lot	better	to	get	users	to	switch.	Whereas	the
activation	energy	required	to	switch	to	a	new	search	engine	is
low.	Which	in	turn	is	why	search	engines	are	so	much	better	than
enterprise	software.

[4]	This	gets	harder	as	you	get	older.	While	the	space	of	ideas
doesn't	have	dangerous	local	maxima,	the	space	of	careers	does.
There	are	fairly	high	walls	between	most	of	the	paths	people	take
through	life,	and	the	older	you	get,	the	higher	the	walls	become.

[5]	It	was	also	obvious	to	us	that	the	web	was	going	to	be	a	big
deal.	Few	non-programmers	grasped	that	in	1995,	but	the
programmers	had	seen	what	GUIs	had	done	for	desktop
computers.

[6]	Maybe	it	would	work	to	have	this	second	self	keep	a	journal,
and	each	night	to	make	a	brief	entry	listing	the	gaps	and
anomalies	you'd	noticed	that	day.	Not	startup	ideas,	just	the	raw
gaps	and	anomalies.

[7]	Sam	Altman	points	out	that	taking	time	to	come	up	with	an
idea	is	not	merely	a	better	strategy	in	an	absolute	sense,	but	also
like	an	undervalued	stock	in	that	so	few	founders	do	it.

There's	comparatively	little	competition	for	the	best	ideas,
because	few	founders	are	willing	to	put	in	the	time	required	to
notice	them.	Whereas	there	is	a	great	deal	of	competition	for
mediocre	ideas,	because	when	people	make	up	startup	ideas,
they	tend	to	make	up	the	same	ones.

[8]	For	the	computer	hardware	and	software	companies,	summer
jobs	are	the	first	phase	of	the	recruiting	funnel.	But	if	you're
good	you	can	skip	the	first	phase.	If	you're	good	you'll	have	no
trouble	getting	hired	by	these	companies	when	you	graduate,
regardless	of	how	you	spent	your	summers.

[9]	The	empirical	evidence	suggests	that	if	colleges	want	to	help
their	students	start	startups,	the	best	thing	they	can	do	is	leave
them	alone	in	the	right	way.

[10]	I'm	speaking	here	of	IT	startups;	in	biotech	things	are

different.

[11]	This	is	an	instance	of	a	more	general	rule:	focus	on	users,
not	competitors.	The	most	important	information	about
competitors	is	what	you	learn	via	users	anyway.

[12]	In	practice	most	successful	startups	have	elements	of	both.
And	you	can	describe	each	strategy	in	terms	of	the	other	by
adjusting	the	boundaries	of	what	you	call	the	market.	But	it's
useful	to	consider	these	two	ideas	separately.

[13]	I	almost	hesitate	to	raise	that	point	though.	Startups	are
businesses;	the	point	of	a	business	is	to	make	money;	and	with
that	additional	constraint,	you	can't	expect	you'll	be	able	to
spend	all	your	time	working	on	what	interests	you	most.

[14]	The	need	has	to	be	a	strong	one.	You	can	retroactively
describe	any	made-up	idea	as	something	you	need.	But	do	you
really	need	that	recipe	site	or	local	event	aggregator	as	much	as
Drew	Houston	needed	Dropbox,	or	Brian	Chesky	and	Joe	Gebbia
needed	Airbnb?

Quite	often	at	YC	I	find	myself	asking	founders	"Would	you	use
this	thing	yourself,	if	you	hadn't	written	it?"	and	you'd	be
surprised	how	often	the	answer	is	no.

[15]	Paul	Buchheit	points	out	that	trying	to	sell	something	bad
can	be	a	source	of	better	ideas:

"The	best	technique	I've	found	for	dealing	with	YC	companies
that	have	bad	ideas	is	to	tell	them	to	go	sell	the	product	ASAP
(before	wasting	time	building	it).	Not	only	do	they	learn	that
nobody	wants	what	they	are	building,	they	very	often	come	back
with	a	real	idea	that	they	discovered	in	the	process	of	trying	to
sell	the	bad	idea."

[16]	Here's	a	recipe	that	might	produce	the	next	Facebook,	if
you're	college	students.	If	you	have	a	connection	to	one	of	the
more	powerful	sororities	at	your	school,	approach	the	queen	bees
thereof	and	offer	to	be	their	personal	IT	consultants,	building
anything	they	could	imagine	needing	in	their	social	lives	that

didn't	already	exist.	Anything	that	got	built	this	way	would	be
very	promising,	because	such	users	are	not	just	the	most
demanding	but	also	the	perfect	point	to	spread	from.

I	have	no	idea	whether	this	would	work.

[17]	And	the	reason	it	used	a	TV	for	a	monitor	is	that	Steve
Wozniak	started	out	by	solving	his	own	problems.	He,	like	most
of	his	peers,	couldn't	afford	a	monitor.

Thanks	to	Sam	Altman,	Mike	Arrington,	Paul	Buchheit,	John
Collison,	Patrick	Collison,	Garry	Tan,	and	Harj	Taggar	for	reading
drafts	of	this,	and	Marc	Andreessen,	Joe	Gebbia,	Reid	Hoffman,
Shel	Kaphan,	Mike	Moritz	and	Kevin	Systrom	for	answering	my
questions	about	startup	history.

	

Startup	Investing	Trends
June	2013

(This	talk	was	written	for	an	audience	of	investors.)

Y	Combinator	has	now	funded	564	startups	including	the	current
batch,	which	has	53.	The	total	valuation	of	the	287	that	have
valuations	(either	by	raising	an	equity	round,	getting	acquired,	or
dying)	is	about	$11.7	billion,	and	the	511	prior	to	the	current
batch	have	collectively	raised	about	$1.7	billion.	[1]

As	usual	those	numbers	are	dominated	by	a	few	big	winners.	The
top	10	startups	account	for	8.6	of	that	11.7	billion.	But	there	is	a
peloton	of	younger	startups	behind	them.	There	are	about	40
more	that	have	a	shot	at	being	really	big.

Things	got	a	little	out	of	hand	last	summer	when	we	had	84
companies	in	the	batch,	so	we	tightened	up	our	filter	to	decrease
the	batch	size.	[2]	Several	journalists	have	tried	to	interpret	that
as	evidence	for	some	macro	story	they	were	telling,	but	the
reason	had	nothing	to	do	with	any	external	trend.	The	reason
was	that	we	discovered	we	were	using	an	n²	algorithm,	and	we
needed	to	buy	time	to	fix	it.	Fortunately	we've	come	up	with
several	techniques	for	sharding	YC,	and	the	problem	now	seems
to	be	fixed.	With	a	new	more	scaleable	model	and	only	53
companies,	the	current	batch	feels	like	a	walk	in	the	park.	I'd
guess	we	can	grow	another	2	or	3x	before	hitting	the	next
bottleneck.	[3]

One	consequence	of	funding	such	a	large	number	of	startups	is
that	we	see	trends	early.	And	since	fundraising	is	one	of	the	main
things	we	help	startups	with,	we're	in	a	good	position	to	notice
trends	in	investing.

I'm	going	to	take	a	shot	at	describing	where	these	trends	are
leading.	Let's	start	with	the	most	basic	question:	will	the	future

#f1n
#f2n
#f3n

be	better	or	worse	than	the	past?	Will	investors,	in	the
aggregate,	make	more	money	or	less?

I	think	more.	There	are	multiple	forces	at	work,	some	of	which
will	decrease	returns,	and	some	of	which	will	increase	them.	I
can't	predict	for	sure	which	forces	will	prevail,	but	I'll	describe
them	and	you	can	decide	for	yourself.

There	are	two	big	forces	driving	change	in	startup	funding:	it's
becoming	cheaper	to	start	a	startup,	and	startups	are	becoming	a
more	normal	thing	to	do.

When	I	graduated	from	college	in	1986,	there	were	essentially
two	options:	get	a	job	or	go	to	grad	school.	Now	there's	a	third:
start	your	own	company.	That's	a	big	change.	In	principle	it	was
possible	to	start	your	own	company	in	1986	too,	but	it	didn't
seem	like	a	real	possibility.	It	seemed	possible	to	start	a
consulting	company,	or	a	niche	product	company,	but	it	didn't
seem	possible	to	start	a	company	that	would	become	big.	[4]

That	kind	of	change,	from	2	paths	to	3,	is	the	sort	of	big	social
shift	that	only	happens	once	every	few	generations.	I	think	we're
still	at	the	beginning	of	this	one.	It's	hard	to	predict	how	big	a
deal	it	will	be.	As	big	a	deal	as	the	Industrial	Revolution?	Maybe.
Probably	not.	But	it	will	be	a	big	enough	deal	that	it	takes	almost
everyone	by	surprise,	because	those	big	social	shifts	always	do.

One	thing	we	can	say	for	sure	is	that	there	will	be	a	lot	more
startups.	The	monolithic,	hierarchical	companies	of	the	mid	20th
century	are	being	replaced	by	networks	of	smaller	companies.
This	process	is	not	just	something	happening	now	in	Silicon
Valley.	It	started	decades	ago,	and	it's	happening	as	far	afield	as
the	car	industry.	It	has	a	long	way	to	run.	[5]

The	other	big	driver	of	change	is	that	startups	are	becoming
cheaper	to	start.	And	in	fact	the	two	forces	are	related:	the
decreasing	cost	of	starting	a	startup	is	one	of	the	reasons
startups	are	becoming	a	more	normal	thing	to	do.

The	fact	that	startups	need	less	money	means	founders	will
increasingly	have	the	upper	hand	over	investors.	You	still	need

#f4n
highres.html
#f5n

just	as	much	of	their	energy	and	imagination,	but	they	don't	need
as	much	of	your	money.	Because	founders	have	the	upper	hand,
they'll	retain	an	increasingly	large	share	of	the	stock	in,	and
control	of,	their	companies.	Which	means	investors	will	get	less
stock	and	less	control.

Does	that	mean	investors	will	make	less	money?	Not	necessarily,
because	there	will	be	more	good	startups.	The	total	amount	of
desirable	startup	stock	available	to	investors	will	probably
increase,	because	the	number	of	desirable	startups	will	probably
grow	faster	than	the	percentage	they	sell	to	investors	shrinks.

There's	a	rule	of	thumb	in	the	VC	business	that	there	are	about
15	companies	a	year	that	will	be	really	successful.	Although	a	lot
of	investors	unconsciously	treat	this	number	as	if	it	were	some
sort	of	cosmological	constant,	I'm	certain	it	isn't.	There	are
probably	limits	on	the	rate	at	which	technology	can	develop,	but
that's	not	the	limiting	factor	now.	If	it	were,	each	successful
startup	would	be	founded	the	month	it	became	possible,	and	that
is	not	the	case.	Right	now	the	limiting	factor	on	the	number	of
big	hits	is	the	number	of	sufficiently	good	founders	starting
companies,	and	that	number	can	and	will	increase.	There	are	still
a	lot	of	people	who'd	make	great	founders	who	never	end	up
starting	a	company.	You	can	see	that	from	how	randomly	some	of
the	most	successful	startups	got	started.	So	many	of	the	biggest
startups	almost	didn't	happen	that	there	must	be	a	lot	of	equally
good	startups	that	actually	didn't	happen.

There	might	be	10x	or	even	50x	more	good	founders	out	there.
As	more	of	them	go	ahead	and	start	startups,	those	15	big	hits	a
year	could	easily	become	50	or	even	100.	[6]

What	about	returns,	though?	Are	we	heading	for	a	world	in	which
returns	will	be	pinched	by	increasingly	high	valuations?	I	think
the	top	firms	will	actually	make	more	money	than	they	have	in
the	past.	High	returns	don't	come	from	investing	at	low
valuations.	They	come	from	investing	in	the	companies	that	do
really	well.	So	if	there	are	more	of	those	to	be	had	each	year,	the
best	pickers	should	have	more	hits.

This	means	there	should	be	more	variability	in	the	VC	business.

control.html
#f6n

The	firms	that	can	recognize	and	attract	the	best	startups	will	do
even	better,	because	there	will	be	more	of	them	to	recognize	and
attract.	Whereas	the	bad	firms	will	get	the	leftovers,	as	they	do
now,	and	yet	pay	a	higher	price	for	them.

Nor	do	I	think	it	will	be	a	problem	that	founders	keep	control	of
their	companies	for	longer.	The	empirical	evidence	on	that	is
already	clear:	investors	make	more	money	as	founders'	bitches
than	their	bosses.	Though	somewhat	humiliating,	this	is	actually
good	news	for	investors,	because	it	takes	less	time	to	serve
founders	than	to	micromanage	them.

What	about	angels?	I	think	there	is	a	lot	of	opportunity	there.	It
used	to	suck	to	be	an	angel	investor.	You	couldn't	get	access	to
the	best	deals,	unless	you	got	lucky	like	Andy	Bechtolsheim,	and
when	you	did	invest	in	a	startup,	VCs	might	try	to	strip	you	of
your	stock	when	they	arrived	later.	Now	an	angel	can	go	to
something	like	Demo	Day	or	AngelList	and	have	access	to	the
same	deals	VCs	do.	And	the	days	when	VCs	could	wash	angels
out	of	the	cap	table	are	long	gone.

I	think	one	of	the	biggest	unexploited	opportunities	in	startup
investing	right	now	is	angel-sized	investments	made	quickly.	Few
investors	understand	the	cost	that	raising	money	from	them
imposes	on	startups.	When	the	company	consists	only	of	the
founders,	everything	grinds	to	a	halt	during	fundraising,	which
can	easily	take	6	weeks.	The	current	high	cost	of	fundraising
means	there	is	room	for	low-cost	investors	to	undercut	the	rest.
And	in	this	context,	low-cost	means	deciding	quickly.	If	there
were	a	reputable	investor	who	invested	$100k	on	good	terms	and
promised	to	decide	yes	or	no	within	24	hours,	they'd	get	access
to	almost	all	the	best	deals,	because	every	good	startup	would
approach	them	first.	It	would	be	up	to	them	to	pick,	because
every	bad	startup	would	approach	them	first	too,	but	at	least
they'd	see	everything.	Whereas	if	an	investor	is	notorious	for
taking	a	long	time	to	make	up	their	mind	or	negotiating	a	lot
about	valuation,	founders	will	save	them	for	last.	And	in	the	case
of	the	most	promising	startups,	which	tend	to	have	an	easy	time
raising	money,	last	can	easily	become	never.

Will	the	number	of	big	hits	grow	linearly	with	the	total	number	of

new	startups?	Probably	not,	for	two	reasons.	One	is	that	the
scariness	of	starting	a	startup	in	the	old	days	was	a	pretty
effective	filter.	Now	that	the	cost	of	failing	is	becoming	lower,	we
should	expect	founders	to	do	it	more.	That's	not	a	bad	thing.	It's
common	in	technology	for	an	innovation	that	decreases	the	cost
of	failure	to	increase	the	number	of	failures	and	yet	leave	you	net
ahead.

The	other	reason	the	number	of	big	hits	won't	grow
proportionately	to	the	number	of	startups	is	that	there	will	start
to	be	an	increasing	number	of	idea	clashes.	Although	the
finiteness	of	the	number	of	good	ideas	is	not	the	reason	there	are
only	15	big	hits	a	year,	the	number	has	to	be	finite,	and	the	more
startups	there	are,	the	more	we'll	see	multiple	companies	doing
the	same	thing	at	the	same	time.	It	will	be	interesting,	in	a	bad
way,	if	idea	clashes	become	a	lot	more	common.	[7]

Mostly	because	of	the	increasing	number	of	early	failures,	the
startup	business	of	the	future	won't	simply	be	the	same	shape,
scaled	up.	What	used	to	be	an	obelisk	will	become	a	pyramid.	It
will	be	a	little	wider	at	the	top,	but	a	lot	wider	at	the	bottom.

What	does	that	mean	for	investors?	One	thing	it	means	is	that
there	will	be	more	opportunities	for	investors	at	the	earliest
stage,	because	that's	where	the	volume	of	our	imaginary	solid	is
growing	fastest.	Imagine	the	obelisk	of	investors	that
corresponds	to	the	obelisk	of	startups.	As	it	widens	out	into	a
pyramid	to	match	the	startup	pyramid,	all	the	contents	are
adhering	to	the	top,	leaving	a	vacuum	at	the	bottom.

That	opportunity	for	investors	mostly	means	an	opportunity	for
new	investors,	because	the	degree	of	risk	an	existing	investor	or
firm	is	comfortable	taking	is	one	of	the	hardest	things	for	them	to
change.	Different	types	of	investors	are	adapted	to	different
degrees	of	risk,	but	each	has	its	specific	degree	of	risk	deeply
imprinted	on	it,	not	just	in	the	procedures	they	follow	but	in	the
personalities	of	the	people	who	work	there.

I	think	the	biggest	danger	for	VCs,	and	also	the	biggest
opportunity,	is	at	the	series	A	stage.	Or	rather,	what	used	to	be
the	series	A	stage	before	series	As	turned	into	de	facto	series	B

#f7n

rounds.

Right	now,	VCs	often	knowingly	invest	too	much	money	at	the
series	A	stage.	They	do	it	because	they	feel	they	need	to	get	a	big
chunk	of	each	series	A	company	to	compensate	for	the
opportunity	cost	of	the	board	seat	it	consumes.	Which	means
when	there	is	a	lot	of	competition	for	a	deal,	the	number	that
moves	is	the	valuation	(and	thus	amount	invested)	rather	than
the	percentage	of	the	company	being	sold.	Which	means,
especially	in	the	case	of	more	promising	startups,	that	series	A
investors	often	make	companies	take	more	money	than	they
want.

Some	VCs	lie	and	claim	the	company	really	needs	that	much.
Others	are	more	candid,	and	admit	their	financial	models	require
them	to	own	a	certain	percentage	of	each	company.	But	we	all
know	the	amounts	being	raised	in	series	A	rounds	are	not
determined	by	asking	what	would	be	best	for	the	companies.
They're	determined	by	VCs	starting	from	the	amount	of	the
company	they	want	to	own,	and	the	market	setting	the	valuation
and	thus	the	amount	invested.

Like	a	lot	of	bad	things,	this	didn't	happen	intentionally.	The	VC
business	backed	into	it	as	their	initial	assumptions	gradually
became	obsolete.	The	traditions	and	financial	models	of	the	VC
business	were	established	when	founders	needed	investors	more.
In	those	days	it	was	natural	for	founders	to	sell	VCs	a	big	chunk
of	their	company	in	the	series	A	round.	Now	founders	would
prefer	to	sell	less,	and	VCs	are	digging	in	their	heels	because
they're	not	sure	if	they	can	make	money	buying	less	than	20%	of
each	series	A	company.

The	reason	I	describe	this	as	a	danger	is	that	series	A	investors
are	increasingly	at	odds	with	the	startups	they	supposedly	serve,
and	that	tends	to	come	back	to	bite	you	eventually.	The	reason	I
describe	it	as	an	opportunity	is	that	there	is	now	a	lot	of	potential
energy	built	up,	as	the	market	has	moved	away	from	VCs'
traditional	business	model.	Which	means	the	first	VC	to	break
ranks	and	start	to	do	series	A	rounds	for	as	much	equity	as
founders	want	to	sell	(and	with	no	"option	pool"	that	comes	only
from	the	founders'	shares)	stands	to	reap	huge	benefits.

What	will	happen	to	the	VC	business	when	that	happens?	Hell	if	I
know.	But	I	bet	that	particular	firm	will	end	up	ahead.	If	one	top-
tier	VC	firm	started	to	do	series	A	rounds	that	started	from	the
amount	the	company	needed	to	raise	and	let	the	percentage
acquired	vary	with	the	market,	instead	of	the	other	way	around,
they'd	instantly	get	almost	all	the	best	startups.	And	that's	where
the	money	is.

You	can't	fight	market	forces	forever.	Over	the	last	decade	we've
seen	the	percentage	of	the	company	sold	in	series	A	rounds
creep	inexorably	downward.	40%	used	to	be	common.	Now	VCs
are	fighting	to	hold	the	line	at	20%.	But	I	am	daily	waiting	for	the
line	to	collapse.	It's	going	to	happen.	You	may	as	well	anticipate
it,	and	look	bold.

Who	knows,	maybe	VCs	will	make	more	money	by	doing	the	right
thing.	It	wouldn't	be	the	first	time	that	happened.	Venture	capital
is	a	business	where	occasional	big	successes	generate
hundredfold	returns.	How	much	confidence	can	you	really	have
in	financial	models	for	something	like	that	anyway?	The	big
successes	only	have	to	get	a	tiny	bit	less	occasional	to
compensate	for	a	2x	decrease	in	the	stock	sold	in	series	A
rounds.

If	you	want	to	find	new	opportunities	for	investing,	look	for
things	founders	complain	about.	Founders	are	your	customers,
and	the	things	they	complain	about	are	unsatisfied	demand.	I've
given	two	examples	of	things	founders	complain	about	most—
investors	who	take	too	long	to	make	up	their	minds,	and
excessive	dilution	in	series	A	rounds—so	those	are	good	places	to
look	now.	But	the	more	general	recipe	is:	do	something	founders
want.

Notes

[1]	I	realize	revenue	and	not	fundraising	is	the	proper	test	of

success	for	a	startup.	The	reason	we	quote	statistics	about
fundraising	is	because	those	are	the	numbers	we	have.	We
couldn't	talk	meaningfully	about	revenues	without	including	the
numbers	from	the	most	successful	startups,	and	we	don't	have
those.	We	often	discuss	revenue	growth	with	the	earlier	stage
startups,	because	that's	how	we	gauge	their	progress,	but	when
companies	reach	a	certain	size	it	gets	presumptuous	for	a	seed
investor	to	do	that.

In	any	case,	companies'	market	caps	do	eventually	become	a
function	of	revenues,	and	post-money	valuations	of	funding
rounds	are	at	least	guesses	by	pros	about	where	those	market
caps	will	end	up.

The	reason	only	287	have	valuations	is	that	the	rest	have	mostly
raised	money	on	convertible	notes,	and	although	convertible
notes	often	have	valuation	caps,	a	valuation	cap	is	merely	an
upper	bound	on	a	valuation.

[2]	We	didn't	try	to	accept	a	particular	number.	We	have	no	way
of	doing	that	even	if	we	wanted	to.	We	just	tried	to	be
significantly	pickier.

[3]	Though	you	never	know	with	bottlenecks,	I'm	guessing	the
next	one	will	be	coordinating	efforts	among	partners.

[4]	I	realize	starting	a	company	doesn't	have	to	mean	starting	a
startup.	There	will	be	lots	of	people	starting	normal	companies
too.	But	that's	not	relevant	to	an	audience	of	investors.

Geoff	Ralston	reports	that	in	Silicon	Valley	it	seemed	thinkable	to
start	a	startup	in	the	mid	1980s.	It	would	have	started	there.	But
I	know	it	didn't	to	undergraduates	on	the	East	Coast.

[5]	This	trend	is	one	of	the	main	causes	of	the	increase	in
economic	inequality	in	the	US	since	the	mid	twentieth	century.
The	person	who	would	in	1950	have	been	the	general	manager	of
the	x	division	of	Megacorp	is	now	the	founder	of	the	x	company,
and	owns	significant	equity	in	it.

[6]	If	Congress	passes	the	founder	visa	in	a	non-broken	form,	that

growth.html
foundervisa.html

alone	could	in	principle	get	us	up	to	20x,	since	95%	of	the
world's	population	lives	outside	the	US.

[7]	If	idea	clashes	got	bad	enough,	it	could	change	what	it	means
to	be	a	startup.	We	currently	advise	startups	mostly	to	ignore
competitors.	We	tell	them	startups	are	competitive	like	running,
not	like	soccer;	you	don't	have	to	go	and	steal	the	ball	away	from
the	other	team.	But	if	idea	clashes	became	common	enough,
maybe	you'd	start	to	have	to.	That	would	be	unfortunate.

Thanks	to	Sam	Altman,	Paul	Buchheit,	Dalton	Caldwell,	Patrick
Collison,	Jessica	Livingston,	Andrew	Mason,	Geoff	Ralston,	and
Garry	Tan	for	reading	drafts	of	this.

	

Do	Things	that	Don't	Scale
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	to	Convince	Investors
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

August	2013

When	people	hurt	themselves	lifting	heavy	things,	it's	usually
because	they	try	to	lift	with	their	back.	The	right	way	to	lift	heavy
things	is	to	let	your	legs	do	the	work.	Inexperienced	founders
make	the	same	mistake	when	trying	to	convince	investors.	They
try	to	convince	with	their	pitch.	Most	would	be	better	off	if	they
let	their	startup	do	the	work	—	if	they	started	by	understanding
why	their	startup	is	worth	investing	in,	then	simply	explained	this
well	to	investors.

Investors	are	looking	for	startups	that	will	be	very	successful.
But	that	test	is	not	as	simple	as	it	sounds.	In	startups,	as	in	a	lot
of	other	domains,	the	distribution	of	outcomes	follows	a	power
law,	but	in	startups	the	curve	is	startlingly	steep.	The	big
successes	are	so	big	they	dwarf	the	rest.	And	since	there	are	only
a	handful	each	year	(the	conventional	wisdom	is	15),	investors
treat	"big	success"	as	if	it	were	binary.	Most	are	interested	in	you
if	you	seem	like	you	have	a	chance,	however	small,	of	being	one
of	the	15	big	successes,	and	otherwise	not.	[1]

(There	are	a	handful	of	angels	who'd	be	interested	in	a	company
with	a	high	probability	of	being	moderately	successful.	But	angel
investors	like	big	successes	too.)

How	do	you	seem	like	you'll	be	one	of	the	big	successes?	You
need	three	things:	formidable	founders,	a	promising	market,	and
(usually)	some	evidence	of	success	so	far.

Formidable

The	most	important	ingredient	is	formidable	founders.	Most
investors	decide	in	the	first	few	minutes	whether	you	seem	like	a

http://ycombinator.com/apply.html
swan.html
#f1n

winner	or	a	loser,	and	once	their	opinion	is	set	it's	hard	to
change.	[2]	Every	startup	has	reasons	both	to	invest	and	not	to
invest.	If	investors	think	you're	a	winner	they	focus	on	the
former,	and	if	not	they	focus	on	the	latter.	For	example,	it	might
be	a	rich	market,	but	with	a	slow	sales	cycle.	If	investors	are
impressed	with	you	as	founders,	they	say	they	want	to	invest
because	it's	a	rich	market,	and	if	not,	they	say	they	can't	invest
because	of	the	slow	sales	cycle.

They're	not	necessarily	trying	to	mislead	you.	Most	investors	are
genuinely	unclear	in	their	own	minds	why	they	like	or	dislike
startups.	If	you	seem	like	a	winner,	they'll	like	your	idea	more.
But	don't	be	too	smug	about	this	weakness	of	theirs,	because	you
have	it	too;	almost	everyone	does.

There	is	a	role	for	ideas	of	course.	They're	fuel	for	the	fire	that
starts	with	liking	the	founders.	Once	investors	like	you,	you'll	see
them	reaching	for	ideas:	they'll	be	saying	"yes,	and	you	could
also	do	x."	(Whereas	when	they	don't	like	you,	they'll	be	saying
"but	what	about	y?")

But	the	foundation	of	convincing	investors	is	to	seem	formidable,
and	since	this	isn't	a	word	most	people	use	in	conversation	much,
I	should	explain	what	it	means.	A	formidable	person	is	one	who
seems	like	they'll	get	what	they	want,	regardless	of	whatever
obstacles	are	in	the	way.	Formidable	is	close	to	confident,	except
that	someone	could	be	confident	and	mistaken.	Formidable	is
roughly	justifiably	confident.

There	are	a	handful	of	people	who	are	really	good	at	seeming
formidable	—	some	because	they	actually	are	very	formidable
and	just	let	it	show,	and	others	because	they	are	more	or	less	con
artists.	[3]	But	most	founders,	including	many	who	will	go	on	to
start	very	successful	companies,	are	not	that	good	at	seeming
formidable	the	first	time	they	try	fundraising.	What	should	they
do?	[4]

What	they	should	not	do	is	try	to	imitate	the	swagger	of	more
experienced	founders.	Investors	are	not	always	that	good	at
judging	technology,	but	they're	good	at	judging	confidence.	If	you
try	to	act	like	something	you're	not,	you'll	just	end	up	in	an

#f2n
#f3n
#f4n

uncanny	valley.	You'll	depart	from	sincere,	but	never	arrive	at
convincing.

Truth

The	way	to	seem	most	formidable	as	an	inexperienced	founder	is
to	stick	to	the	truth.	How	formidable	you	seem	isn't	a	constant.	It
varies	depending	on	what	you're	saying.	Most	people	can	seem
confident	when	they're	saying	"one	plus	one	is	two,"	because
they	know	it's	true.	The	most	diffident	person	would	be	puzzled
and	even	slightly	contemptuous	if	they	told	a	VC	"one	plus	one	is
two"	and	the	VC	reacted	with	skepticism.	The	magic	ability	of
people	who	are	good	at	seeming	formidable	is	that	they	can	do
this	with	the	sentence	"we're	going	to	make	a	billion	dollars	a
year."	But	you	can	do	the	same,	if	not	with	that	sentence	with
some	fairly	impressive	ones,	so	long	as	you	convince	yourself
first.

That's	the	secret.	Convince	yourself	that	your	startup	is	worth
investing	in,	and	then	when	you	explain	this	to	investors	they'll
believe	you.	And	by	convince	yourself,	I	don't	mean	play	mind
games	with	yourself	to	boost	your	confidence.	I	mean	truly
evaluate	whether	your	startup	is	worth	investing	in.	If	it	isn't,
don't	try	to	raise	money.	[5]	But	if	it	is,	you'll	be	telling	the	truth
when	you	tell	investors	it's	worth	investing	in,	and	they'll	sense
that.	You	don't	have	to	be	a	smooth	presenter	if	you	understand
something	well	and	tell	the	truth	about	it.

To	evaluate	whether	your	startup	is	worth	investing	in,	you	have
to	be	a	domain	expert.	If	you're	not	a	domain	expert,	you	can	be
as	convinced	as	you	like	about	your	idea,	and	it	will	seem	to
investors	no	more	than	an	instance	of	the	Dunning-Kruger	effect.
Which	in	fact	it	will	usually	be.	And	investors	can	tell	fairly
quickly	whether	you're	a	domain	expert	by	how	well	you	answer
their	questions.	Know	everything	about	your	market.	[6]

Why	do	founders	persist	in	trying	to	convince	investors	of	things
they're	not	convinced	of	themselves?	Partly	because	we've	all
been	trained	to.

When	my	friends	Robert	Morris	and	Trevor	Blackwell	were	in

#f5n
#f6n

grad	school,	one	of	their	fellow	students	was	on	the	receiving	end
of	a	question	from	their	faculty	advisor	that	we	still	quote	today.
When	the	unfortunate	fellow	got	to	his	last	slide,	the	professor
burst	out:

Which	one	of	these	conclusions	do	you	actually
believe?

One	of	the	artifacts	of	the	way	schools	are	organized	is	that	we
all	get	trained	to	talk	even	when	we	have	nothing	to	say.	If	you
have	a	ten	page	paper	due,	then	ten	pages	you	must	write,	even
if	you	only	have	one	page	of	ideas.	Even	if	you	have	no	ideas.	You
have	to	produce	something.	And	all	too	many	startups	go	into
fundraising	in	the	same	spirit.	When	they	think	it's	time	to	raise
money,	they	try	gamely	to	make	the	best	case	they	can	for	their
startup.	Most	never	think	of	pausing	beforehand	to	ask	whether
what	they're	saying	is	actually	convincing,	because	they've	all
been	trained	to	treat	the	need	to	present	as	a	given	—	as	an	area
of	fixed	size,	over	which	however	much	truth	they	have	must
needs	be	spread,	however	thinly.

The	time	to	raise	money	is	not	when	you	need	it,	or	when	you
reach	some	artificial	deadline	like	a	Demo	Day.	It's	when	you	can
convince	investors,	and	not	before.	[7]

And	unless	you're	a	good	con	artist,	you'll	never	convince
investors	if	you're	not	convinced	yourself.	They're	far	better	at
detecting	bullshit	than	you	are	at	producing	it,	even	if	you're
producing	it	unknowingly.	If	you	try	to	convince	investors	before
you've	convinced	yourself,	you'll	be	wasting	both	your	time.

But	pausing	first	to	convince	yourself	will	do	more	than	save	you
from	wasting	your	time.	It	will	force	you	to	organize	your
thoughts.	To	convince	yourself	that	your	startup	is	worth
investing	in,	you'll	have	to	figure	out	why	it's	worth	investing	in.
And	if	you	can	do	that	you'll	end	up	with	more	than	added
confidence.	You'll	also	have	a	provisional	roadmap	of	how	to
succeed.

Market

#f7n

Notice	I've	been	careful	to	talk	about	whether	a	startup	is	worth
investing	in,	rather	than	whether	it's	going	to	succeed.	No	one
knows	whether	a	startup	is	going	to	succeed.	And	it's	a	good
thing	for	investors	that	this	is	so,	because	if	you	could	know	in
advance	whether	a	startup	would	succeed,	the	stock	price	would
already	be	the	future	price,	and	there	would	be	no	room	for
investors	to	make	money.	Startup	investors	know	that	every
investment	is	a	bet,	and	against	pretty	long	odds.

So	to	prove	you're	worth	investing	in,	you	don't	have	to	prove
you're	going	to	succeed,	just	that	you're	a	sufficiently	good	bet.
What	makes	a	startup	a	sufficiently	good	bet?	In	addition	to
formidable	founders,	you	need	a	plausible	path	to	owning	a	big
piece	of	a	big	market.	Founders	think	of	startups	as	ideas,	but
investors	think	of	them	as	markets.	If	there	are	x	number	of
customers	who'd	pay	an	average	of	$y	per	year	for	what	you're
making,	then	the	total	addressable	market,	or	TAM,	of	your
company	is	$xy.	Investors	don't	expect	you	to	collect	all	that
money,	but	it's	an	upper	bound	on	how	big	you	can	get.

Your	target	market	has	to	be	big,	and	it	also	has	to	be	capturable
by	you.	But	the	market	doesn't	have	to	be	big	yet,	nor	do	you
necessarily	have	to	be	in	it	yet.	Indeed,	it's	often	better	to	start	in
a	small	market	that	will	either	turn	into	a	big	one	or	from	which
you	can	move	into	a	big	one.	There	just	has	to	be	some	plausible
sequence	of	hops	that	leads	to	dominating	a	big	market	a	few
years	down	the	line.

The	standard	of	plausibility	varies	dramatically	depending	on	the
age	of	the	startup.	A	three	month	old	company	at	Demo	Day	only
needs	to	be	a	promising	experiment	that's	worth	funding	to	see
how	it	turns	out.	Whereas	a	two	year	old	company	raising	a
series	A	round	needs	to	be	able	to	show	the	experiment	worked.
[8]

But	every	company	that	gets	really	big	is	"lucky"	in	the	sense
that	their	growth	is	due	mostly	to	some	external	wave	they're
riding,	so	to	make	a	convincing	case	for	becoming	huge,	you
have	to	identify	some	specific	trend	you'll	benefit	from.	Usually
you	can	find	this	by	asking	"why	now?"	If	this	is	such	a	great
idea,	why	hasn't	someone	else	already	done	it?	Ideally	the

ds.html
#f8n

answer	is	that	it	only	recently	became	a	good	idea,	because
something	changed,	and	no	one	else	has	noticed	yet.

Microsoft	for	example	was	not	going	to	grow	huge	selling	Basic
interpreters.	But	by	starting	there	they	were	perfectly	poised	to
expand	up	the	stack	of	microcomputer	software	as
microcomputers	grew	powerful	enough	to	support	one.	And
microcomputers	turned	out	to	be	a	really	huge	wave,	bigger	than
even	the	most	optimistic	observers	would	have	predicted	in
1975.

But	while	Microsoft	did	really	well	and	there	is	thus	a	temptation
to	think	they	would	have	seemed	a	great	bet	a	few	months	in,
they	probably	didn't.	Good,	but	not	great.	No	company,	however
successful,	ever	looks	more	than	a	pretty	good	bet	a	few	months
in.	Microcomputers	turned	out	to	be	a	big	deal,	and	Microsoft
both	executed	well	and	got	lucky.	But	it	was	by	no	means	obvious
that	this	was	how	things	would	play	out.	Plenty	of	companies
seem	as	good	a	bet	a	few	months	in.	I	don't	know	about	startups
in	general,	but	at	least	half	the	startups	we	fund	could	make	as
good	a	case	as	Microsoft	could	have	for	being	on	a	path	to
dominating	a	large	market.	And	who	can	reasonably	expect	more
of	a	startup	than	that?

Rejection

If	you	can	make	as	good	a	case	as	Microsoft	could	have,	will	you
convince	investors?	Not	always.	A	lot	of	VCs	would	have	rejected
Microsoft.	[9]	Certainly	some	rejected	Google.	And	getting
rejected	will	put	you	in	a	slightly	awkward	position,	because	as
you'll	see	when	you	start	fundraising,	the	most	common	question
you'll	get	from	investors	will	be	"who	else	is	investing?"	What	do
you	say	if	you've	been	fundraising	for	a	while	and	no	one	has
committed	yet?	[10]

The	people	who	are	really	good	at	acting	formidable	often	solve
this	problem	by	giving	investors	the	impression	that	while	no
investors	have	committed	yet,	several	are	about	to.	This	is
arguably	a	permissible	tactic.	It's	slightly	dickish	of	investors	to
care	more	about	who	else	is	investing	than	any	other	aspect	of
your	startup,	and	misleading	them	about	how	far	along	you	are

#f9n
#f10n

with	other	investors	seems	the	complementary	countermove.	It's
arguably	an	instance	of	scamming	a	scammer.	But	I	don't
recommend	this	approach	to	most	founders,	because	most
founders	wouldn't	be	able	to	carry	it	off.	This	is	the	single	most
common	lie	told	to	investors,	and	you	have	to	be	really	good	at
lying	to	tell	members	of	some	profession	the	most	common	lie
they're	told.

If	you're	not	a	master	of	negotiation	(and	perhaps	even	if	you
are)	the	best	solution	is	to	tackle	the	problem	head-on,	and	to
explain	why	investors	have	turned	you	down	and	why	they're
mistaken.	If	you	know	you're	on	the	right	track,	then	you	also
know	why	investors	were	wrong	to	reject	you.	Experienced
investors	are	well	aware	that	the	best	ideas	are	also	the	scariest.
They	all	know	about	the	VCs	who	rejected	Google.	If	instead	of
seeming	evasive	and	ashamed	about	having	been	turned	down
(and	thereby	implicitly	agreeing	with	the	verdict)	you	talk
candidly	about	what	scared	investors	about	you,	you'll	seem
more	confident,	which	they	like,	and	you'll	probably	also	do	a
better	job	of	presenting	that	aspect	of	your	startup.	At	the	very
least,	that	worry	will	now	be	out	in	the	open	instead	of	being	a
gotcha	left	to	be	discovered	by	the	investors	you're	currently
talking	to,	who	will	be	proud	of	and	thus	attached	to	their
discovery.	[11]

This	strategy	will	work	best	with	the	best	investors,	who	are	both
hard	to	bluff	and	who	already	believe	most	other	investors	are
conventional-minded	drones	doomed	always	to	miss	the	big
outliers.	Raising	money	is	not	like	applying	to	college,	where	you
can	assume	that	if	you	can	get	into	MIT,	you	can	also	get	into
Foobar	State.	Because	the	best	investors	are	much	smarter	than
the	rest,	and	the	best	startup	ideas	look	initially	like	bad	ideas,
it's	not	uncommon	for	a	startup	to	be	rejected	by	all	the	VCs
except	the	best	ones.	That's	what	happened	to	Dropbox.	Y
Combinator	started	in	Boston,	and	for	the	first	3	years	we	ran
alternating	batches	in	Boston	and	Silicon	Valley.	Because	Boston
investors	were	so	few	and	so	timid,	we	used	to	ship	Boston
batches	out	for	a	second	Demo	Day	in	Silicon	Valley.	Dropbox
was	part	of	a	Boston	batch,	which	means	all	those	Boston
investors	got	the	first	look	at	Dropbox,	and	none	of	them	closed
the	deal.	Yet	another	backup	and	syncing	thing,	they	all	thought.

#f11n
startupideas.html

A	couple	weeks	later,	Dropbox	raised	a	series	A	round	from
Sequoia.	[12]

Different

Not	understanding	that	investors	view	investments	as	bets
combines	with	the	ten	page	paper	mentality	to	prevent	founders
from	even	considering	the	possibility	of	being	certain	of	what
they're	saying.	They	think	they're	trying	to	convince	investors	of
something	very	uncertain	—	that	their	startup	will	be	huge	—	and
convincing	anyone	of	something	like	that	must	obviously	entail
some	wild	feat	of	salesmanship.	But	in	fact	when	you	raise	money
you're	trying	to	convince	investors	of	something	so	much	less
speculative	—	whether	the	company	has	all	the	elements	of	a
good	bet	—	that	you	can	approach	the	problem	in	a	qualitatively
different	way.	You	can	convince	yourself,	then	convince	them.

And	when	you	convince	them,	use	the	same	matter-of-fact
language	you	used	to	convince	yourself.	You	wouldn't	use	vague,
grandiose	marketing-speak	among	yourselves.	Don't	use	it	with
investors	either.	It	not	only	doesn't	work	on	them,	but	seems	a
mark	of	incompetence.	Just	be	concise.	Many	investors	explicitly
use	that	as	a	test,	reasoning	(correctly)	that	if	you	can't	explain
your	plans	concisely,	you	don't	really	understand	them.	But	even
investors	who	don't	have	a	rule	about	this	will	be	bored	and
frustrated	by	unclear	explanations.	[13]

So	here's	the	recipe	for	impressing	investors	when	you're	not
already	good	at	seeming	formidable:

1.	 Make	something	worth	investing	in.

2.	 Understand	why	it's	worth	investing	in.

3.	 Explain	that	clearly	to	investors.

If	you're	saying	something	you	know	is	true,	you'll	seem
confident	when	you're	saying	it.	Conversely,	never	let	pitching
draw	you	into	bullshitting.	As	long	as	you	stay	on	the	territory	of
truth,	you're	strong.	Make	the	truth	good,	then	just	tell	it.

#f12n
#f13n

Notes

[1]	There's	no	reason	to	believe	this	number	is	a	constant.	In	fact
it's	our	explicit	goal	at	Y	Combinator	to	increase	it,	by
encouraging	people	to	start	startups	who	otherwise	wouldn't
have.

[2]	Or	more	precisely,	investors	decide	whether	you're	a	loser	or
possibly	a	winner.	If	you	seem	like	a	winner,	they	may	then,
depending	on	how	much	you're	raising,	have	several	more
meetings	with	you	to	test	whether	that	initial	impression	holds
up.

But	if	you	seem	like	a	loser	they're	done,	at	least	for	the	next
year	or	so.	And	when	they	decide	you're	a	loser	they	usually
decide	in	way	less	than	the	50	minutes	they	may	have	allotted	for
the	first	meeting.	Which	explains	the	astonished	stories	one
always	hears	about	VC	inattentiveness.	How	could	these	people
make	investment	decisions	well	when	they're	checking	their
messages	during	startups'	presentations?	The	solution	to	that
mystery	is	that	they've	already	made	the	decision.

[3]	The	two	are	not	mutually	exclusive.	There	are	people	who	are
both	genuinely	formidable,	and	also	really	good	at	acting	that
way.

[4]	How	can	people	who	will	go	on	to	create	giant	companies	not
seem	formidable	early	on?	I	think	the	main	reason	is	that	their
experience	so	far	has	trained	them	to	keep	their	wings	folded,	as
it	were.	Family,	school,	and	jobs	encourage	cooperation,	not
conquest.	And	it's	just	as	well	they	do,	because	even	being
Genghis	Khan	is	probably	99%	cooperation.	But	the	result	is	that
most	people	emerge	from	the	tube	of	their	upbringing	in	their

early	twenties	compressed	into	the	shape	of	the	tube.	Some	find
they	have	wings	and	start	to	spread	them.	But	this	takes	a	few
years.	In	the	beginning	even	they	don't	know	yet	what	they're
capable	of.

[5]	In	fact,	change	what	you're	doing.	You're	investing	your	own
time	in	your	startup.	If	you're	not	convinced	that	what	you're
working	on	is	a	sufficiently	good	bet,	why	are	you	even	working
on	that?

[6]	When	investors	ask	you	a	question	you	don't	know	the	answer
to,	the	best	response	is	neither	to	bluff	nor	give	up,	but	instead	to
explain	how	you'd	figure	out	the	answer.	If	you	can	work	out	a
preliminary	answer	on	the	spot,	so	much	the	better,	but	explain
that's	what	you're	doing.

[7]	At	YC	we	try	to	ensure	startups	are	ready	to	raise	money	on
Demo	Day	by	encouraging	them	to	ignore	investors	and	instead
focus	on	their	companies	till	about	a	week	before.	That	way	most
reach	the	stage	where	they're	sufficiently	convincing	well	before
Demo	Day.	But	not	all	do,	so	we	also	give	any	startup	that	wants
to	the	option	of	deferring	to	a	later	Demo	Day.

[8]	Founders	are	often	surprised	by	how	much	harder	it	is	to
raise	the	next	round.	There	is	a	qualitative	difference	in
investors'	attitudes.	It's	like	the	difference	between	being	judged
as	a	kid	and	as	an	adult.	The	next	time	you	raise	money,	it's	not
enough	to	be	promising.	You	have	to	be	delivering	results.

So	although	it	works	well	to	show	growth	graphs	at	either	stage,
investors	treat	them	differently.	At	three	months,	a	growth	graph
is	mostly	evidence	that	the	founders	are	effective.	At	two	years,	it
has	to	be	evidence	of	a	promising	market	and	a	company	tuned
to	exploit	it.

[9]	By	this	I	mean	that	if	the	present	day	equivalent	of	the	3
month	old	Microsoft	presented	at	a	Demo	Day,	there	would	be
investors	who	turned	them	down.	Microsoft	itself	didn't	raise
outside	money,	and	indeed	the	venture	business	barely	existed
when	they	got	started	in	1975.

[10]	The	best	investors	rarely	care	who	else	is	investing,	but
mediocre	investors	almost	all	do.	So	you	can	use	this	question	as
a	test	of	investor	quality.

[11]	To	use	this	technique,	you'll	have	to	find	out	why	investors
who	rejected	you	did	so,	or	at	least	what	they	claim	was	the
reason.	That	may	require	asking,	because	investors	don't	always
volunteer	a	lot	of	detail.	Make	it	clear	when	you	ask	that	you're
not	trying	to	dispute	their	decision	—	just	that	if	there	is	some
weakness	in	your	plans,	you	need	to	know	about	it.	You	won't
always	get	a	real	reason	out	of	them,	but	you	should	at	least	try.

[12]	Dropbox	wasn't	rejected	by	all	the	East	Coast	VCs.	There
was	one	firm	that	wanted	to	invest	but	tried	to	lowball	them.

[13]	Alfred	Lin	points	out	that	it's	doubly	important	for	the
explanation	of	a	startup	to	be	clear	and	concise,	because	it	has	to
convince	at	one	remove:	it	has	to	work	not	just	on	the	partner
you	talk	to,	but	when	that	partner	re-tells	it	to	colleagues.

We	consciously	optimize	for	this	at	YC.	When	we	work	with
founders	create	a	Demo	Day	pitch,	the	last	step	is	to	imagine
how	an	investor	would	sell	it	to	colleagues.

Thanks	to	Marc	Andreessen,	Sam	Altman,	Patrick	Collison,	Ron
Conway,	Chris	Dixon,	Alfred	Lin,	Ben	Horowitz,	Steve	Huffman,
Jessica	Livingston,	Greg	Mcadoo,	Andrew	Mason,	Geoff	Ralston,
Yuri	Sagalov,	Emmett	Shear,	Rajat	Suri,	Garry	Tan,	Albert
Wenger,	Fred	Wilson,	and	Qasar	Younis	for	reading	drafts	of	this.

	

Investor	Herd	Dynamics
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

How	to	Raise	Money
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

September	2013

Most	startups	that	raise	money	do	it	more	than	once.	A	typical
trajectory	might	be	(1)	to	get	started	with	a	few	tens	of
thousands	from	something	like	Y	Combinator	or	individual
angels,	then	(2)	raise	a	few	hundred	thousand	to	a	few	million	to
build	the	company,	and	then	(3)	once	the	company	is	clearly
succeeding,	raise	one	or	more	later	rounds	to	accelerate	growth.

Reality	can	be	messier.	Some	companies	raise	money	twice	in
phase	2.	Others	skip	phase	1	and	go	straight	to	phase	2.	And	at
Y	Combinator	we	get	an	increasing	number	of	companies	that
have	already	raised	amounts	in	the	hundreds	of	thousands.	But
the	three	phase	path	is	at	least	the	one	about	which	individual
startups'	paths	oscillate.

This	essay	focuses	on	phase	2	fundraising.	That's	the	type	the
startups	we	fund	are	doing	on	Demo	Day,	and	this	essay	is	the
advice	we	give	them.

Forces

Fundraising	is	hard	in	both	senses:	hard	like	lifting	a	heavy
weight,	and	hard	like	solving	a	puzzle.	It's	hard	like	lifting	a
weight	because	it's	intrinsically	hard	to	convince	people	to	part
with	large	sums	of	money.	That	problem	is	irreducible;	it	should
be	hard.	But	much	of	the	other	kind	of	difficulty	can	be
eliminated.	Fundraising	only	seems	a	puzzle	because	it's	an	alien
world	to	most	founders,	and	I	hope	to	fix	that	by	supplying	a	map
through	it.

To	founders,	the	behavior	of	investors	is	often	opaque	—	partly
because	their	motivations	are	obscure,	but	partly	because	they

http://ycombinator.com/apply.html

deliberately	mislead	you.	And	the	misleading	ways	of	investors
combine	horribly	with	the	wishful	thinking	of	inexperienced
founders.	At	YC	we're	always	warning	founders	about	this
danger,	and	investors	are	probably	more	circumspect	with	YC
startups	than	with	other	companies	they	talk	to,	and	even	so	we
witness	a	constant	series	of	explosions	as	these	two	volatile
components	combine.	[1]

If	you're	an	inexperienced	founder,	the	only	way	to	survive	is	by
imposing	external	constraints	on	yourself.	You	can't	trust	your
intuitions.	I'm	going	to	give	you	a	set	of	rules	here	that	will	get
you	through	this	process	if	anything	will.	At	certain	moments
you'll	be	tempted	to	ignore	them.	So	rule	number	zero	is:	these
rules	exist	for	a	reason.	You	wouldn't	need	a	rule	to	keep	you
going	in	one	direction	if	there	weren't	powerful	forces	pushing
you	in	another.

The	ultimate	source	of	the	forces	acting	on	you	are	the	forces
acting	on	investors.	Investors	are	pinched	between	two	kinds	of
fear:	fear	of	investing	in	startups	that	fizzle,	and	fear	of	missing
out	on	startups	that	take	off.	The	cause	of	all	this	fear	is	the	very
thing	that	makes	startups	such	attractive	investments:	the
successful	ones	grow	very	fast.	But	that	fast	growth	means
investors	can't	wait	around.	If	you	wait	till	a	startup	is	obviously
a	success,	it's	too	late.	To	get	the	really	high	returns,	you	have	to
invest	in	startups	when	it's	still	unclear	how	they'll	do.	But	that
in	turn	makes	investors	nervous	they're	about	to	invest	in	a	flop.
As	indeed	they	often	are.

What	investors	would	like	to	do,	if	they	could,	is	wait.	When	a
startup	is	only	a	few	months	old,	every	week	that	passes	gives
you	significantly	more	information	about	them.	But	if	you	wait
too	long,	other	investors	might	take	the	deal	away	from	you.	And
of	course	the	other	investors	are	all	subject	to	the	same	forces.
So	what	tends	to	happen	is	that	they	all	wait	as	long	as	they	can,
then	when	some	act	the	rest	have	to.

Don't	raise	money	unless	you	want	it	and	it	wants	you.

Such	a	high	proportion	of	successful	startups	raise	money	that	it
might	seem	fundraising	is	one	of	the	defining	qualities	of	a

#f1n

startup.	Actually	it	isn't.	Rapid	growth	is	what	makes	a	company
a	startup.	Most	companies	in	a	position	to	grow	rapidly	find	that
(a)	taking	outside	money	helps	them	grow	faster,	and	(b)	their
growth	potential	makes	it	easy	to	attract	such	money.	It's	so
common	for	both	(a)	and	(b)	to	be	true	of	a	successful	startup
that	practically	all	do	raise	outside	money.	But	there	may	be
cases	where	a	startup	either	wouldn't	want	to	grow	faster,	or
outside	money	wouldn't	help	them	to,	and	if	you're	one	of	them,
don't	raise	money.

The	other	time	not	to	raise	money	is	when	you	won't	be	able	to.	If
you	try	to	raise	money	before	you	can	convince	investors,	you'll
not	only	waste	your	time,	but	also	burn	your	reputation	with
those	investors.

Be	in	fundraising	mode	or	not.

One	of	the	things	that	surprises	founders	most	about	fundraising
is	how	distracting	it	is.	When	you	start	fundraising,	everything
else	grinds	to	a	halt.	The	problem	is	not	the	time	fundraising
consumes	but	that	it	becomes	the	top	idea	in	your	mind.	A
startup	can't	endure	that	level	of	distraction	for	long.	An	early
stage	startup	grows	mostly	because	the	founders	make	it	grow,
and	if	the	founders	look	away,	growth	usually	drops	sharply.

Because	fundraising	is	so	distracting,	a	startup	should	either	be
in	fundraising	mode	or	not.	And	when	you	do	decide	to	raise
money,	you	should	focus	your	whole	attention	on	it	so	you	can	get
it	done	quickly	and	get	back	to	work.	[2]

You	can	take	money	from	investors	when	you're	not	in
fundraising	mode.	You	just	can't	expend	any	attention	on	it.
There	are	two	things	that	take	attention:	convincing	investors,
and	negotiating	with	them.	So	when	you're	not	in	fundraising
mode,	you	should	take	money	from	investors	only	if	they	require
no	convincing,	and	are	willing	to	invest	on	terms	you'll	take
without	negotiation.	For	example,	if	a	reputable	investor	is
willing	to	invest	on	a	convertible	note,	using	standard
paperwork,	that	is	either	uncapped	or	capped	at	a	good
valuation,	you	can	take	that	without	having	to	think.	[3]	The
terms	will	be	whatever	they	turn	out	to	be	in	your	next	equity

growth.html
convince.html
top.html
ds.html
#f2n
#f3n

round.	And	"no	convincing"	means	just	that:	zero	time	spent
meeting	with	investors	or	preparing	materials	for	them.	If	an
investor	says	they're	ready	to	invest,	but	they	need	you	to	come
in	for	one	meeting	to	meet	some	of	the	partners,	tell	them	no,	if
you're	not	in	fundraising	mode,	because	that's	fundraising.	[4]
Tell	them	politely;	tell	them	you're	focusing	on	the	company	right
now,	and	that	you'll	get	back	to	them	when	you're	fundraising;
but	do	not	get	sucked	down	the	slippery	slope.

Investors	will	try	to	lure	you	into	fundraising	when	you're	not.
It's	great	for	them	if	they	can,	because	they	can	thereby	get	a
shot	at	you	before	everyone	else.	They'll	send	you	emails	saying
they	want	to	meet	to	learn	more	about	you.	If	you	get	cold-
emailed	by	an	associate	at	a	VC	firm,	you	shouldn't	meet	even	if
you	are	in	fundraising	mode.	Deals	don't	happen	that	way.	[5]	But
even	if	you	get	an	email	from	a	partner	you	should	try	to	delay
meeting	till	you're	in	fundraising	mode.	They	may	say	they	just
want	to	meet	and	chat,	but	investors	never	just	want	to	meet	and
chat.	What	if	they	like	you?	What	if	they	start	to	talk	about	giving
you	money?	Will	you	be	able	to	resist	having	that	conversation?
Unless	you're	experienced	enough	at	fundraising	to	have	a	casual
conversation	with	investors	that	stays	casual,	it's	safer	to	tell
them	that	you'd	be	happy	to	later,	when	you're	fundraising,	but
that	right	now	you	need	to	focus	on	the	company.	[6]

Companies	that	are	successful	at	raising	money	in	phase	2
sometimes	tack	on	a	few	investors	after	leaving	fundraising
mode.	This	is	fine;	if	fundraising	went	well,	you'll	be	able	to	do	it
without	spending	time	convincing	them	or	negotiating	about
terms.

Get	introductions	to	investors.

Before	you	can	talk	to	investors,	you	have	to	be	introduced	to
them.	If	you're	presenting	at	a	Demo	Day,	you'll	be	introduced	to
a	whole	bunch	simultaneously.	But	even	if	you	are,	you	should
supplement	these	with	intros	you	collect	yourself.

Do	you	have	to	be	introduced?	In	phase	2,	yes.	Some	investors
will	let	you	email	them	a	business	plan,	but	you	can	tell	from	the
way	their	sites	are	organized	that	they	don't	really	want	startups

#f4n
#f5n
#f6n

to	approach	them	directly.

Intros	vary	greatly	in	effectiveness.	The	best	type	of	intro	is	from
a	well-known	investor	who	has	just	invested	in	you.	So	when	you
get	an	investor	to	commit,	ask	them	to	introduce	you	to	other
investors	they	respect.	[7]	The	next	best	type	of	intro	is	from	a
founder	of	a	company	they've	funded.	You	can	also	get	intros
from	other	people	in	the	startup	community,	like	lawyers	and
reporters.

There	are	now	sites	like	AngelList,	FundersClub,	and	WeFunder
that	can	introduce	you	to	investors.	We	recommend	startups
treat	them	as	auxiliary	sources	of	money.	Raise	money	first	from
leads	you	get	yourself.	Those	will	on	average	be	better	investors.
Plus	you'll	have	an	easier	time	raising	money	on	these	sites	once
you	can	say	you've	already	raised	some	from	well-known
investors.

Hear	no	till	you	hear	yes.

Treat	investors	as	saying	no	till	they	unequivocally	say	yes,	in	the
form	of	a	definite	offer	with	no	contingencies.

I	mentioned	earlier	that	investors	prefer	to	wait	if	they	can.
What's	particularly	dangerous	for	founders	is	the	way	they	wait.
Essentially,	they	lead	you	on.	They	seem	like	they're	about	to
invest	right	up	till	the	moment	they	say	no.	If	they	even	say	no.
Some	of	the	worse	ones	never	actually	do	say	no;	they	just	stop
replying	to	your	emails.	They	hope	that	way	to	get	a	free	option
on	investing.	If	they	decide	later	that	they	want	to	invest	—
usually	because	they've	heard	you're	a	hot	deal	—	they	can
pretend	they	just	got	distracted	and	then	restart	the	conversation
as	if	they'd	been	about	to.	[8]

That's	not	the	worst	thing	investors	will	do.	Some	will	use
language	that	makes	it	sound	as	if	they're	committing,	but	which
doesn't	actually	commit	them.	And	wishful	thinking	founders	are
happy	to	meet	them	half	way.	[9]

Fortunately,	the	next	rule	is	a	tactic	for	neutralizing	this	behavior.
But	to	work	it	depends	on	you	not	being	tricked	by	the	no	that

#f7n
#f8n
#f9n

sounds	like	yes.	It's	so	common	for	founders	to	be
misled/mistaken	about	this	that	we	designed	a	protocol	to	fix	the
problem.	If	you	believe	an	investor	has	committed,	get	them	to
confirm	it.	If	you	and	they	have	different	views	of	reality,	whether
the	source	of	the	discrepancy	is	their	sketchiness	or	your	wishful
thinking,	the	prospect	of	confirming	a	commitment	in	writing	will
flush	it	out.	And	till	they	confirm,	regard	them	as	saying	no.

Do	breadth-first	search	weighted	by	expected	value.

When	you	talk	to	investors	your	m.o.	should	be	breadth-first
search,	weighted	by	expected	value.	You	should	always	talk	to
investors	in	parallel	rather	than	serially.	You	can't	afford	the	time
it	takes	to	talk	to	investors	serially,	plus	if	you	only	talk	to	one
investor	at	a	time,	they	don't	have	the	pressure	of	other	investors
to	make	them	act.	But	you	shouldn't	pay	the	same	attention	to
every	investor,	because	some	are	more	promising	prospects	than
others.	The	optimal	solution	is	to	talk	to	all	potential	investors	in
parallel,	but	give	higher	priority	to	the	more	promising	ones.	[10]

Expected	value	=	how	likely	an	investor	is	to	say	yes,	multiplied
by	how	good	it	would	be	if	they	did.	So	for	example,	an	eminent
investor	who	would	invest	a	lot,	but	will	be	hard	to	convince,
might	have	the	same	expected	value	as	an	obscure	angel	who
won't	invest	much,	but	will	be	easy	to	convince.	Whereas	an
obscure	angel	who	will	only	invest	a	small	amount,	and	yet	needs
to	meet	multiple	times	before	making	up	his	mind,	has	very	low
expected	value.	Meet	such	investors	last,	if	at	all.	[11]

Doing	breadth-first	search	weighted	by	expected	value	will	save
you	from	investors	who	never	explicitly	say	no	but	merely	drift
away,	because	you'll	drift	away	from	them	at	the	same	rate.	It
protects	you	from	investors	who	flake	in	much	the	same	way	that
a	distributed	algorithm	protects	you	from	processors	that	fail.	If
some	investor	isn't	returning	your	emails,	or	wants	to	have	lots	of
meetings	but	isn't	progressing	toward	making	you	an	offer,	you
automatically	focus	less	on	them.	But	you	have	to	be	disciplined
about	assigning	probabilities.	You	can't	let	how	much	you	want
an	investor	influence	your	estimate	of	how	much	they	want	you.

Know	where	you	stand.

http://ycombinator.com/hdp.html
#f10n
#f11n

How	do	you	judge	how	well	you're	doing	with	an	investor,	when
investors	habitually	seem	more	positive	than	they	are?	By	looking
at	their	actions	rather	than	their	words.	Every	investor	has	some
track	they	need	to	move	along	from	the	first	conversation	to
wiring	the	money,	and	you	should	always	know	what	that	track
consists	of,	where	you	are	on	it,	and	how	fast	you're	moving
forward.

Never	leave	a	meeting	with	an	investor	without	asking	what
happens	next.	What	more	do	they	need	in	order	to	decide?	Do
they	need	another	meeting	with	you?	To	talk	about	what?	And
how	soon?	Do	they	need	to	do	something	internally,	like	talk	to
their	partners,	or	investigate	some	issue?	How	long	do	they
expect	it	to	take?	Don't	be	too	pushy,	but	know	where	you	stand.
If	investors	are	vague	or	resist	answering	such	questions,	assume
the	worst;	investors	who	are	seriously	interested	in	you	will
usually	be	happy	to	talk	about	what	has	to	happen	between	now
and	wiring	the	money,	because	they're	already	running	through
that	in	their	heads.	[12]

If	you're	experienced	at	negotiations,	you	already	know	how	to
ask	such	questions.	[13]	If	you're	not,	there's	a	trick	you	can	use
in	this	situation.	Investors	know	you're	inexperienced	at	raising
money.	Inexperience	there	doesn't	make	you	unattractive.	Being
a	noob	at	technology	would,	if	you're	starting	a	technology
startup,	but	not	being	a	noob	at	fundraising.	Larry	and	Sergey
were	noobs	at	fundraising.	So	you	can	just	confess	that	you're
inexperienced	at	this	and	ask	how	their	process	works	and	where
you	are	in	it.	[14]

Get	the	first	commitment.

The	biggest	factor	in	most	investors'	opinions	of	you	is	the
opinion	of	other	investors.	Once	you	start	getting	investors	to
commit,	it	becomes	increasingly	easy	to	get	more	to.	But	the
other	side	of	this	coin	is	that	it's	often	hard	to	get	the	first
commitment.

Getting	the	first	substantial	offer	can	be	half	the	total	difficulty	of
fundraising.	What	counts	as	a	substantial	offer	depends	on	who

#f12n
#f13n
#f14n
herd.html

it's	from	and	how	much	it	is.	Money	from	friends	and	family
doesn't	usually	count,	no	matter	how	much.	But	if	you	get	$50k
from	a	well	known	VC	firm	or	angel	investor,	that	will	usually	be
enough	to	set	things	rolling.	[15]

Close	committed	money.

It's	not	a	deal	till	the	money's	in	the	bank.	I	often	hear
inexperienced	founders	say	things	like	"We've	raised	$800,000,"
only	to	discover	that	zero	of	it	is	in	the	bank	so	far.	Remember
the	twin	fears	that	torment	investors?	The	fear	of	missing	out
that	makes	them	jump	early,	and	the	fear	of	jumping	onto	a	turd
that	results?	This	is	a	market	where	people	are	exceptionally
prone	to	buyer's	remorse.	And	it's	also	one	that	furnishes	them
plenty	of	excuses	to	gratify	it.	The	public	markets	snap	startup
investing	around	like	a	whip.	If	the	Chinese	economy	blows	up
tomorrow,	all	bets	are	off.	But	there	are	lots	of	surprises	for
individual	startups	too,	and	they	tend	to	be	concentrated	around
fundraising.	Tomorrow	a	big	competitor	could	appear,	or	you
could	get	C&Ded,	or	your	cofounder	could	quit.	[16]

Even	a	day's	delay	can	bring	news	that	causes	an	investor	to
change	their	mind.	So	when	someone	commits,	get	the	money.
Knowing	where	you	stand	doesn't	end	when	they	say	they'll
invest.	After	they	say	yes,	know	what	the	timetable	is	for	getting
the	money,	and	then	babysit	that	process	till	it	happens.
Institutional	investors	have	people	in	charge	of	wiring	money,	but
you	may	have	to	hunt	angels	down	in	person	to	collect	a	check.

Inexperienced	investors	are	the	ones	most	likely	to	get	buyer's
remorse.	Established	ones	have	learned	to	treat	saying	yes	as
like	diving	off	a	diving	board,	and	they	also	have	more	brand	to
preserve.	But	I've	heard	of	cases	of	even	top-tier	VC	firms
welching	on	deals.

Avoid	investors	who	don't	"lead."

Since	getting	the	first	offer	is	most	of	the	difficulty	of
fundraising,	that	should	be	part	of	your	calculation	of	expected
value	when	you	start.	You	have	to	estimate	not	just	the
probability	that	an	investor	will	say	yes,	but	the	probability	that

#f15n
#f16n

they'd	be	the	first	to	say	yes,	and	the	latter	is	not	simply	a
constant	fraction	of	the	former.	Some	investors	are	known	for
deciding	quickly,	and	those	are	extra	valuable	early	on.

Conversely,	an	investor	who	will	only	invest	once	other	investors
have	is	worthless	initially.	And	while	most	investors	are
influenced	by	how	interested	other	investors	are	in	you,	there	are
some	who	have	an	explicit	policy	of	only	investing	after	other
investors	have.	You	can	recognize	this	contemptible	subspecies	of
investor	because	they	often	talk	about	"leads."	They	say	that	they
don't	lead,	or	that	they'll	invest	once	you	have	a	lead.	Sometimes
they	even	claim	to	be	willing	to	lead	themselves,	by	which	they
mean	they	won't	invest	till	you	get	$x	from	other	investors.	(It's
great	if	by	"lead"	they	mean	they'll	invest	unilaterally,	and	in
addition	will	help	you	raise	more.	What's	lame	is	when	they	use
the	term	to	mean	they	won't	invest	unless	you	can	raise	more
elsewhere.)	[17]

Where	does	this	term	"lead"	come	from?	Up	till	a	few	years	ago,
startups	raising	money	in	phase	2	would	usually	raise	equity
rounds	in	which	several	investors	invested	at	the	same	time
using	the	same	paperwork.	You'd	negotiate	the	terms	with	one
"lead"	investor,	and	then	all	the	others	would	sign	the	same
documents	and	all	the	money	change	hands	at	the	closing.

Series	A	rounds	still	work	that	way,	but	things	now	work
differently	for	most	fundraising	prior	to	the	series	A.	Now	there
are	rarely	actual	rounds	before	the	A	round,	or	leads	for	them.
Now	startups	simply	raise	money	from	investors	one	at	a	time	till
they	feel	they	have	enough.

Since	there	are	no	longer	leads,	why	do	investors	use	that	term?
Because	it's	a	more	legitimate-sounding	way	of	saying	what	they
really	mean.	All	they	really	mean	is	that	their	interest	in	you	is	a
function	of	other	investors'	interest	in	you.	I.e.	the	spectral
signature	of	all	mediocre	investors.	But	when	phrased	in	terms	of
leads,	it	sounds	like	there	is	something	structural	and	therefore
legitimate	about	their	behavior.

When	an	investor	tells	you	"I	want	to	invest	in	you,	but	I	don't
lead,"	translate	that	in	your	mind	to	"No,	except	yes	if	you	turn

#f17n

out	to	be	a	hot	deal."	And	since	that's	the	default	opinion	of	any
investor	about	any	startup,	they've	essentially	just	told	you
nothing.

When	you	first	start	fundraising,	the	expected	value	of	an
investor	who	won't	"lead"	is	zero,	so	talk	to	such	investors	last	if
at	all.

Have	multiple	plans.

Many	investors	will	ask	how	much	you're	planning	to	raise.	This
question	makes	founders	feel	they	should	be	planning	to	raise	a
specific	amount.	But	in	fact	you	shouldn't.	It's	a	mistake	to	have
fixed	plans	in	an	undertaking	as	unpredictable	as	fundraising.

So	why	do	investors	ask	how	much	you	plan	to	raise?	For	much
the	same	reasons	a	salesperson	in	a	store	will	ask	"How	much
were	you	planning	to	spend?"	if	you	walk	in	looking	for	a	gift	for
a	friend.	You	probably	didn't	have	a	precise	amount	in	mind;	you
just	want	to	find	something	good,	and	if	it's	inexpensive,	so	much
the	better.	The	salesperson	asks	you	this	not	because	you're
supposed	to	have	a	plan	to	spend	a	specific	amount,	but	so	they
can	show	you	only	things	that	cost	the	most	you'll	pay.

Similarly,	when	investors	ask	how	much	you	plan	to	raise,	it's	not
because	you're	supposed	to	have	a	plan.	It's	to	see	whether	you'd
be	a	suitable	recipient	for	the	size	of	investment	they	like	to
make,	and	also	to	judge	your	ambition,	reasonableness,	and	how
far	you	are	along	with	fundraising.

If	you're	a	wizard	at	fundraising,	you	can	say	"We	plan	to	raise	a
$7	million	series	A	round,	and	we'll	be	accepting	termsheets	next
tuesday."	I've	known	a	handful	of	founders	who	could	pull	that	off
without	having	VCs	laugh	in	their	faces.	But	if	you're	in	the
inexperienced	but	earnest	majority,	the	solution	is	analogous	to
the	solution	I	recommend	for	pitching	your	startup:	do	the	right
thing	and	then	just	tell	investors	what	you're	doing.

And	the	right	strategy,	in	fundraising,	is	to	have	multiple	plans
depending	on	how	much	you	can	raise.	Ideally	you	should	be	able
to	tell	investors	something	like:	we	can	make	it	to	profitability

convince.html

without	raising	any	more	money,	but	if	we	raise	a	few	hundred
thousand	we	can	hire	one	or	two	smart	friends,	and	if	we	raise	a
couple	million,	we	can	hire	a	whole	engineering	team,	etc.

Different	plans	match	different	investors.	If	you're	talking	to	a	VC
firm	that	only	does	series	A	rounds	(though	there	are	few	of
those	left),	it	would	be	a	waste	of	time	talking	about	any	but	your
most	expensive	plan.	Whereas	if	you're	talking	to	an	angel	who
invests	$20k	at	a	time	and	you	haven't	raised	any	money	yet,	you
probably	want	to	focus	on	your	least	expensive	plan.

If	you're	so	fortunate	as	to	have	to	think	about	the	upper	limit	on
what	you	should	raise,	a	good	rule	of	thumb	is	to	multiply	the
number	of	people	you	want	to	hire	times	$15k	times	18	months.
In	most	startups,	nearly	all	the	costs	are	a	function	of	the	number
of	people,	and	$15k	per	month	is	the	conventional	total	cost
(including	benefits	and	even	office	space)	per	person.	$15k	per
month	is	high,	so	don't	actually	spend	that	much.	But	it's	ok	to
use	a	high	estimate	when	fundraising	to	add	a	margin	for	error.	If
you	have	additional	expenses,	like	manufacturing,	add	in	those	at
the	end.	Assuming	you	have	none	and	you	think	you	might	hire
20	people,	the	most	you'd	want	to	raise	is	20	x	$15k	x	18	=	$5.4
million.	[18]

Underestimate	how	much	you	want.

Though	you	can	focus	on	different	plans	when	talking	to	different
types	of	investors,	you	should	on	the	whole	err	on	the	side	of
underestimating	the	amount	you	hope	to	raise.

For	example,	if	you'd	like	to	raise	$500k,	it's	better	to	say	initially
that	you're	trying	to	raise	$250k.	Then	when	you	reach	$150k
you're	more	than	half	done.	That	sends	two	useful	signals	to
investors:	that	you're	doing	well,	and	that	they	have	to	decide
quickly	because	you're	running	out	of	room.	Whereas	if	you'd
said	you	were	raising	$500k,	you'd	be	less	than	a	third	done	at
$150k.	If	fundraising	stalled	there	for	an	appreciable	time,	you'd
start	to	read	as	a	failure.

Saying	initially	that	you're	raising	$250k	doesn't	limit	you	to
raising	that	much.	When	you	reach	your	initial	target	and	you

#f18n

still	have	investor	interest,	you	can	just	decide	to	raise	more.
Startups	do	that	all	the	time.	In	fact,	most	startups	that	are	very
successful	at	fundraising	end	up	raising	more	than	they	originally
intended.

I'm	not	saying	you	should	lie,	but	that	you	should	lower	your
expectations	initially.	There	is	almost	no	downside	in	starting
with	a	low	number.	It	not	only	won't	cap	the	amount	you	raise,
but	will	on	the	whole	tend	to	increase	it.

A	good	metaphor	here	is	angle	of	attack.	If	you	try	to	fly	at	too
steep	an	angle	of	attack,	you	just	stall.	If	you	say	right	out	of	the
gate	that	you	want	to	raise	a	$5	million	series	A	round,	unless
you're	in	a	very	strong	position,	you	not	only	won't	get	that	but
won't	get	anything.	Better	to	start	at	a	low	angle	of	attack,	build
up	speed,	and	then	gradually	increase	the	angle	if	you	want.

Be	profitable	if	you	can.

You	will	be	in	a	much	stronger	position	if	your	collection	of	plans
includes	one	for	raising	zero	dollars	—	i.e.	if	you	can	make	it	to
profitability	without	raising	any	additional	money.	Ideally	you
want	to	be	able	to	say	to	investors	"We'll	succeed	no	matter	what,
but	raising	money	will	help	us	do	it	faster."

There	are	many	analogies	between	fundraising	and	dating,	and
this	is	one	of	the	strongest.	No	one	wants	you	if	you	seem
desperate.	And	the	best	way	not	to	seem	desperate	is	not	to	be
desperate.	That's	one	reason	we	urge	startups	during	YC	to	keep
expenses	low	and	to	try	to	make	it	to	ramen	profitability	before
Demo	Day.	Though	it	sounds	slightly	paradoxical,	if	you	want	to
raise	money,	the	best	thing	you	can	do	is	get	yourself	to	the	point
where	you	don't	need	to.

There	are	almost	two	distinct	modes	of	fundraising:	one	in	which
founders	who	need	money	knock	on	doors	seeking	it,	knowing
that	otherwise	the	company	will	die	or	at	the	very	least	people
will	have	to	be	fired,	and	one	in	which	founders	who	don't	need
money	take	some	to	grow	faster	than	they	could	merely	on	their
own	revenues.	To	emphasize	the	distinction	I'm	going	to	name
them:	type	A	fundraising	is	when	you	don't	need	money,	and	type

ramenprofitable.html

B	fundraising	is	when	you	do.

Inexperienced	founders	read	about	famous	startups	doing	what
was	type	A	fundraising,	and	decide	they	should	raise	money	too,
since	that	seems	to	be	how	startups	work.	Except	when	they
raise	money	they	don't	have	a	clear	path	to	profitability	and	are
thus	doing	type	B	fundraising.	And	they	are	then	surprised	how
difficult	and	unpleasant	it	is.

Of	course	not	all	startups	can	make	it	to	ramen	profitability	in	a
few	months.	And	some	that	don't	still	manage	to	have	the	upper
hand	over	investors,	if	they	have	some	other	advantage	like
extraordinary	growth	numbers	or	exceptionally	formidable
founders.	But	as	time	passes	it	gets	increasingly	difficult	to
fundraise	from	a	position	of	strength	without	being	profitable.
[19]

Don't	optimize	for	valuation.

When	you	raise	money,	what	should	your	valuation	be?	The	most
important	thing	to	understand	about	valuation	is	that	it's	not	that
important.

Founders	who	raise	money	at	high	valuations	tend	to	be	unduly
proud	of	it.	Founders	are	often	competitive	people,	and	since
valuation	is	usually	the	only	visible	number	attached	to	a	startup,
they	end	up	competing	to	raise	money	at	the	highest	valuation.
This	is	stupid,	because	fundraising	is	not	the	test	that	matters.
The	real	test	is	revenue.	Fundraising	is	just	a	means	to	that	end.
Being	proud	of	how	well	you	did	at	fundraising	is	like	being
proud	of	your	college	grades.

Not	only	is	fundraising	not	the	test	that	matters,	valuation	is	not
even	the	thing	to	optimize	about	fundraising.	The	number	one
thing	you	want	from	phase	2	fundraising	is	to	get	the	money	you
need,	so	you	can	get	back	to	focusing	on	the	real	test,	the
success	of	your	company.	Number	two	is	good	investors.
Valuation	is	at	best	third.

The	empirical	evidence	shows	just	how	unimportant	it	is.
Dropbox	and	Airbnb	are	the	most	successful	companies	we've

#f19n

funded	so	far,	and	they	raised	money	after	Y	Combinator	at
premoney	valuations	of	$4	million	and	$2.6	million	respectively.
Prices	are	so	much	higher	now	that	if	you	can	raise	money	at	all
you'll	probably	raise	it	at	higher	valuations	than	Dropbox	and
Airbnb.	So	let	that	satisfy	your	competitiveness.	You're	doing
better	than	Dropbox	and	Airbnb!	At	a	test	that	doesn't	matter.

When	you	start	fundraising,	your	initial	valuation	(or	valuation
cap)	will	be	set	by	the	deal	you	make	with	the	first	investor	who
commits.	You	can	increase	the	price	for	later	investors,	if	you	get
a	lot	of	interest,	but	by	default	the	valuation	you	got	from	the
first	investor	becomes	your	asking	price.

So	if	you're	raising	money	from	multiple	investors,	as	most
companies	do	in	phase	2,	you	have	to	be	careful	to	avoid	raising
the	first	from	an	over-eager	investor	at	a	price	you	won't	be	able
to	sustain.	You	can	of	course	lower	your	price	if	you	need	to	(in
which	case	you	should	give	the	same	terms	to	investors	who
invested	earlier	at	a	higher	price),	but	you	may	lose	a	bunch	of
leads	in	the	process	of	realizing	you	need	to	do	this.

What	you	can	do	if	you	have	eager	first	investors	is	raise	money
from	them	on	an	uncapped	convertible	note	with	an	MFN	clause.
This	is	essentially	a	way	of	saying	that	the	valuation	cap	of	the
note	will	be	determined	by	the	next	investors	you	raise	money
from.

It	will	be	easier	to	raise	money	at	a	lower	valuation.	It	shouldn't
be,	but	it	is.	Since	phase	2	prices	vary	at	most	10x	and	the	big
successes	generate	returns	of	at	least	100x,	investors	should	pick
startups	entirely	based	on	their	estimate	of	the	probability	that
the	company	will	be	a	big	success	and	hardly	at	all	on	price.	But
although	it's	a	mistake	for	investors	to	care	about	price,	a
significant	number	do.	A	startup	that	investors	seem	to	like	but
won't	invest	in	at	a	cap	of	$x	will	have	an	easier	time	at	$x/2.	[20]

Yes/no	before	valuation.

Some	investors	want	to	know	what	your	valuation	is	before	they
even	talk	to	you	about	investing.	If	your	valuation	has	already
been	set	by	a	prior	investment	at	a	specific	valuation	or	cap,	you

#f20n

can	tell	them	that	number.	But	if	it	isn't	set	because	you	haven't
closed	anyone	yet,	and	they	try	to	push	you	to	name	a	price,
resist	doing	so.	If	this	would	be	the	first	investor	you've	closed,
then	this	could	be	the	tipping	point	of	fundraising.	That	means
closing	this	investor	is	the	first	priority,	and	you	need	to	get	the
conversation	onto	that	instead	of	being	dragged	sideways	into	a
discussion	of	price.

Fortunately	there	is	a	way	to	avoid	naming	a	price	in	this
situation.	And	it	is	not	just	a	negotiating	trick;	it's	how	you	(both)
should	be	operating.	Tell	them	that	valuation	is	not	the	most
important	thing	to	you	and	that	you	haven't	thought	much	about
it,	that	you	are	looking	for	investors	you	want	to	partner	with	and
who	want	to	partner	with	you,	and	that	you	should	talk	first
about	whether	they	want	to	invest	at	all.	Then	if	they	decide	they
do	want	to	invest,	you	can	figure	out	a	price.	But	first	things	first.

Since	valuation	isn't	that	important	and	getting	fundraising
rolling	is,	we	usually	tell	founders	to	give	the	first	investor	who
commits	as	low	a	price	as	they	need	to.	This	is	a	safe	technique
so	long	as	you	combine	it	with	the	next	one.	[21]

Beware	"valuation	sensitive"	investors.

Occasionally	you'll	encounter	investors	who	describe	themselves
as	"valuation	sensitive."	What	this	means	in	practice	is	that	they
are	compulsive	negotiators	who	will	suck	up	a	lot	of	your	time
trying	to	push	your	price	down.	You	should	therefore	never
approach	such	investors	first.	While	you	shouldn't	chase	high
valuations,	you	also	don't	want	your	valuation	to	be	set	artificially
low	because	the	first	investor	who	committed	happened	to	be	a
compulsive	negotiator.	Some	such	investors	have	value,	but	the
time	to	approach	them	is	near	the	end	of	fundraising,	when
you're	in	a	position	to	say	"this	is	the	price	everyone	else	has
paid;	take	it	or	leave	it"	and	not	mind	if	they	leave	it.	This	way,
you'll	not	only	get	market	price,	but	it	will	also	take	less	time.

Ideally	you	know	which	investors	have	a	reputation	for	being
"valuation	sensitive"	and	can	postpone	dealing	with	them	till	last,
but	occasionally	one	you	didn't	know	about	will	pop	up	early	on.
The	rule	of	doing	breadth	first	search	weighted	by	expected

#f21n

value	already	tells	you	what	to	do	in	this	case:	slow	down	your
interactions	with	them.

There	are	a	handful	of	investors	who	will	try	to	invest	at	a	lower
valuation	even	when	your	price	has	already	been	set.	Lowering
your	price	is	a	backup	plan	you	resort	to	when	you	discover
you've	let	the	price	get	set	too	high	to	close	all	the	money	you
need.	So	you'd	only	want	to	talk	to	this	sort	of	investor	if	you
were	about	to	do	that	anyway.	But	since	investor	meetings	have
to	be	arranged	at	least	a	few	days	in	advance	and	you	can't
predict	when	you'll	need	to	resort	to	lowering	your	price,	this
means	in	practice	that	you	should	approach	this	type	of	investor
last	if	at	all.

If	you're	surprised	by	a	lowball	offer,	treat	it	as	a	backup	offer
and	delay	responding	to	it.	When	someone	makes	an	offer	in
good	faith,	you	have	a	moral	obligation	to	respond	in	a
reasonable	time.	But	lowballing	you	is	a	dick	move	that	should	be
met	with	the	corresponding	countermove.

Accept	offers	greedily.

I'm	a	little	leery	of	using	the	term	"greedily"	when	writing	about
fundraising	lest	non-programmers	misunderstand	me,	but	a
greedy	algorithm	is	simply	one	that	doesn't	try	to	look	into	the
future.	A	greedy	algorithm	takes	the	best	of	the	options	in	front
of	it	right	now.	And	that	is	how	startups	should	approach
fundraising	in	phases	2	and	later.	Don't	try	to	look	into	the	future
because	(a)	the	future	is	unpredictable,	and	indeed	in	this
business	you're	often	being	deliberately	misled	about	it	and	(b)
your	first	priority	in	fundraising	should	be	to	get	it	finished	and
get	back	to	work	anyway.

If	someone	makes	you	an	acceptable	offer,	take	it.	If	you	have
multiple	incompatible	offers,	take	the	best.	Don't	reject	an
acceptable	offer	in	the	hope	of	getting	a	better	one	in	the	future.

These	simple	rules	cover	a	wide	variety	of	cases.	If	you're	raising
money	from	many	investors,	roll	them	up	as	they	say	yes.	As	you
start	to	feel	you've	raised	enough,	the	threshold	for	acceptable
will	start	to	get	higher.

In	practice	offers	exist	for	stretches	of	time,	not	points.	So	when
you	get	an	acceptable	offer	that	would	be	incompatible	with
others	(e.g.	an	offer	to	invest	most	of	the	money	you	need),	you
can	tell	the	other	investors	you're	talking	to	that	you	have	an
offer	good	enough	to	accept,	and	give	them	a	few	days	to	make
their	own.	This	could	lose	you	some	that	might	have	made	an
offer	if	they	had	more	time.	But	by	definition	you	don't	care;	the
initial	offer	was	acceptable.

Some	investors	will	try	to	prevent	others	from	having	time	to
decide	by	giving	you	an	"exploding"	offer,	meaning	one	that's
only	valid	for	a	few	days.	Offers	from	the	very	best	investors
explode	less	frequently	and	less	rapidly	—	Fred	Wilson	never
gives	exploding	offers,	for	example	—	because	they're	confident
you'll	pick	them.	But	lower-tier	investors	sometimes	give	offers
with	very	short	fuses,	because	they	believe	no	one	who	had	other
options	would	choose	them.	A	deadline	of	three	working	days	is
acceptable.	You	shouldn't	need	more	than	that	if	you've	been
talking	to	investors	in	parallel.	But	a	deadline	any	shorter	is	a
sign	you're	dealing	with	a	sketchy	investor.	You	can	usually	call
their	bluff,	and	you	may	need	to.	[22]

It	might	seem	that	instead	of	accepting	offers	greedily,	your	goal
should	be	to	get	the	best	investors	as	partners.	That	is	certainly	a
good	goal,	but	in	phase	2	"get	the	best	investors"	only	rarely
conflicts	with	"accept	offers	greedily,"	because	the	best	investors
don't	usually	take	any	longer	to	decide	than	the	others.	The	only
case	where	the	two	strategies	give	conflicting	advice	is	when	you
have	to	forgo	an	offer	from	an	acceptable	investor	to	see	if	you'll
get	an	offer	from	a	better	one.	If	you	talk	to	investors	in	parallel
and	push	back	on	exploding	offers	with	excessively	short
deadlines,	that	will	almost	never	happen.	But	if	it	does,	"get	the
best	investors"	is	in	the	average	case	bad	advice.	The	best
investors	are	also	the	most	selective,	because	they	get	their	pick
of	all	the	startups.	They	reject	nearly	everyone	they	talk	to,
which	means	in	the	average	case	it's	a	bad	trade	to	exchange	a
definite	offer	from	an	acceptable	investor	for	a	potential	offer
from	a	better	one.

(The	situation	is	different	in	phase	1.	You	can't	apply	to	all	the

#f22n

incubators	in	parallel,	because	some	offset	their	schedules	to
prevent	this.	In	phase	1,	"accept	offers	greedily"	and	"get	the
best	investors"	do	conflict,	so	if	you	want	to	apply	to	multiple
incubators,	you	should	do	it	in	such	a	way	that	the	ones	you	want
most	decide	first.)

Sometimes	when	you're	raising	money	from	multiple	investors,	a
series	A	will	emerge	out	of	those	conversations,	and	these	rules
even	cover	what	to	do	in	that	case.	When	an	investor	starts	to
talk	to	you	about	a	series	A,	keep	taking	smaller	investments	till
they	actually	give	you	a	termsheet.	There's	no	practical	difficulty.
If	the	smaller	investments	are	on	convertible	notes,	they'll	just
convert	into	the	series	A	round.	The	series	A	investor	won't	like
having	all	these	other	random	investors	as	bedfellows,	but	if	it
bothers	them	so	much	they	should	get	on	with	giving	you	a
termsheet.	Till	they	do,	you	don't	know	for	sure	they	will,	and	the
greedy	algorithm	tells	you	what	to	do.	[23]

Don't	sell	more	than	25%	in	phase	2.

If	you	do	well,	you	will	probably	raise	a	series	A	round	eventually.
I	say	probably	because	things	are	changing	with	series	A	rounds.
Startups	may	start	to	skip	them.	But	only	one	company	we've
funded	has	so	far,	so	tentatively	assume	the	path	to	huge	passes
through	an	A	round.	[24]

Which	means	you	should	avoid	doing	things	in	earlier	rounds	that
will	mess	up	raising	an	A	round.	For	example,	if	you've	sold	more
than	about	40%	of	your	company	total,	it	starts	to	get	harder	to
raise	an	A	round,	because	VCs	worry	there	will	not	be	enough
stock	left	to	keep	the	founders	motivated.

Our	rule	of	thumb	is	not	to	sell	more	than	25%	in	phase	2,	on	top
of	whatever	you	sold	in	phase	1,	which	should	be	less	than	15%.
If	you're	raising	money	on	uncapped	notes,	you'll	have	to	guess
what	the	eventual	equity	round	valuation	might	be.	Guess
conservatively.

(Since	the	goal	of	this	rule	is	to	avoid	messing	up	the	series	A,
there's	obviously	an	exception	if	you	end	up	raising	a	series	A	in
phase	2,	as	a	handful	of	startups	do.)

#f23n
#f24n

Have	one	person	handle	fundraising.

If	you	have	multiple	founders,	pick	one	to	handle	fundraising	so
the	other(s)	can	keep	working	on	the	company.	And	since	the
danger	of	fundraising	is	not	the	time	taken	up	by	the	actual
meetings	but	that	it	becomes	the	top	idea	in	your	mind,	the
founder	who	handles	fundraising	should	make	a	conscious	effort
to	insulate	the	other	founder(s)	from	the	details	of	the	process.
[25]

(If	the	founders	mistrust	one	another,	this	could	cause	some
friction.	But	if	the	founders	mistrust	one	another,	you	have	worse
problems	to	worry	about	than	how	to	organize	fundraising.)

The	founder	who	handles	fundraising	should	be	the	CEO,	who
should	in	turn	be	the	most	formidable	of	the	founders.	Even	if	the
CEO	is	a	programmer	and	another	founder	is	a	salesperson?	Yes.
If	you	happen	to	be	that	type	of	founding	team,	you're	effectively
a	single	founder	when	it	comes	to	fundraising.

It's	ok	to	bring	all	the	founders	to	meet	an	investor	who	will
invest	a	lot,	and	who	needs	this	meeting	as	the	final	step	before
deciding.	But	wait	till	that	point.	Introducing	an	investor	to	your
cofounder(s)	should	be	like	introducing	a	girl/boyfriend	to	your
parents	—	something	you	do	only	when	things	reach	a	certain
stage	of	seriousness.

Even	if	there	are	still	one	or	more	founders	focusing	on	the
company	during	fundraising,	growth	will	slow.	But	try	to	get	as
much	growth	as	you	can,	because	fundraising	is	a	segment	of
time,	not	a	point,	and	what	happens	to	the	company	during	that
time	affects	the	outcome.	If	your	numbers	grow	significantly
between	two	investor	meetings,	investors	will	be	hot	to	close,
and	if	your	numbers	are	flat	or	down	they'll	start	to	get	cold	feet.

You'll	need	an	executive	summary	and	(maybe)	a	deck.

Traditionally	phase	2	fundraising	consists	of	presenting	a	slide
deck	in	person	to	investors.	Sequoia	describes	what	such	a	deck
should	contain,	and	since	they're	the	customer	you	can	take	their

#f25n
http://www.sequoiacap.com/ideas

word	for	it.

I	say	"traditionally"	because	I'm	ambivalent	about	decks,	and
(though	perhaps	this	is	wishful	thinking)	they	seem	to	be	on	the
way	out.	A	lot	of	the	most	successful	startups	we	fund	never
make	decks	in	phase	2.	They	just	talk	to	investors	and	explain
what	they	plan	to	do.	Fundraising	usually	takes	off	fast	for	the
startups	that	are	most	successful	at	it,	and	they're	thus	able	to
excuse	themselves	by	saying	that	they	haven't	had	time	to	make
a	deck.

You'll	also	want	an	executive	summary,	which	should	be	no	more
than	a	page	long	and	describe	in	the	most	matter	of	fact
language	what	you	plan	to	do,	why	it's	a	good	idea,	and	what
progress	you've	made	so	far.	The	point	of	the	summary	is	to
remind	the	investor	(who	may	have	met	many	startups	that	day)
what	you	talked	about.

Assume	that	if	you	give	someone	a	copy	of	your	deck	or	executive
summary,	it	will	be	passed	on	to	whoever	you'd	least	like	to	have
it.	But	don't	refuse	on	that	account	to	give	copies	to	investors	you
meet.	You	just	have	to	treat	such	leaks	as	a	cost	of	doing
business.	In	practice	it's	not	that	high	a	cost.	Though	founders
are	rightly	indignant	when	their	plans	get	leaked	to	competitors,
I	can't	think	of	a	startup	whose	outcome	has	been	affected	by	it.

Sometimes	an	investor	will	ask	you	to	send	them	your	deck
and/or	executive	summary	before	they	decide	whether	to	meet
with	you.	I	wouldn't	do	that.	It's	a	sign	they're	not	really
interested.

Stop	fundraising	when	it	stops	working.

When	do	you	stop	fundraising?	Ideally	when	you've	raised
enough.	But	what	if	you	haven't	raised	as	much	as	you'd	like?
When	do	you	give	up?

It's	hard	to	give	general	advice	about	this,	because	there	have
been	cases	of	startups	that	kept	trying	to	raise	money	even	when
it	seemed	hopeless,	and	miraculously	succeeded.	But	what	I
usually	tell	founders	is	to	stop	fundraising	when	you	start	to	get

a	lot	of	air	in	the	straw.	When	you're	drinking	through	a	straw,
you	can	tell	when	you	get	to	the	end	of	the	liquid	because	you
start	to	get	a	lot	of	air	in	the	straw.	When	your	fundraising
options	run	out,	they	usually	run	out	in	the	same	way.	Don't	keep
sucking	on	the	straw	if	you're	just	getting	air.	It's	not	going	to	get
better.

Don't	get	addicted	to	fundraising.

Fundraising	is	a	chore	for	most	founders,	but	some	find	it	more
interesting	than	working	on	their	startup.	The	work	at	an	early
stage	startup	often	consists	of	unglamorous	schleps.	Whereas
fundraising,	when	it's	going	well,	can	be	quite	the	opposite.
Instead	of	sitting	in	your	grubby	apartment	listening	to	users
complain	about	bugs	in	your	software,	you're	being	offered
millions	of	dollars	by	famous	investors	over	lunch	at	a	nice
restaurant.	[26]

The	danger	of	fundraising	is	particularly	acute	for	people	who
are	good	at	it.	It's	always	fun	to	work	on	something	you're	good
at.	If	you're	one	of	these	people,	beware.	Fundraising	is	not	what
will	make	your	company	successful.	Listening	to	users	complain
about	bugs	in	your	software	is	what	will	make	you	successful.
And	the	big	danger	of	getting	addicted	to	fundraising	is	not
merely	that	you'll	spend	too	long	on	it	or	raise	too	much	money.
It's	that	you'll	start	to	think	of	yourself	as	being	already
successful,	and	lose	your	taste	for	the	schleps	you	need	to
undertake	to	actually	be	successful.	Startups	can	be	destroyed	by
this.

When	I	see	a	startup	with	young	founders	that	is	fabulously
successful	at	fundraising,	I	mentally	decrease	my	estimate	of	the
probability	that	they'll	succeed.	The	press	may	be	writing	about
them	as	if	they'd	been	anointed	as	the	next	Google,	but	I'm
thinking	"this	is	going	to	end	badly."

Don't	raise	too	much.

Though	only	a	handful	of	startups	have	to	worry	about	this,	it	is
possible	to	raise	too	much.	The	dangers	of	raising	too	much	are
subtle	but	insidious.	One	is	that	it	will	set	impossibly	high

schlep.html
#f26n

expectations.	If	you	raise	an	excessive	amount	of	money,	it	will	be
at	a	high	valuation,	and	the	danger	of	raising	money	at	too	high	a
valuation	is	that	you	won't	be	able	to	increase	it	sufficiently	the
next	time	you	raise	money.

A	company's	valuation	is	expected	to	rise	each	time	it	raises
money.	If	not	it's	a	sign	of	a	company	in	trouble,	which	makes	you
unattractive	to	investors.	So	if	you	raise	money	in	phase	2	at	a
post-money	valuation	of	$30	million,	the	pre-money	valuation	of
your	next	round,	if	you	want	to	raise	one,	is	going	to	have	to	be
at	least	$50	million.	And	you	have	to	be	doing	really,	really	well
to	raise	money	at	$50	million.

It's	very	dangerous	to	let	the	competitiveness	of	your	current
round	set	the	performance	threshold	you	have	to	meet	to	raise
your	next	one,	because	the	two	are	only	loosely	coupled.

But	the	money	itself	may	be	more	dangerous	than	the	valuation.
The	more	you	raise,	the	more	you	spend,	and	spending	a	lot	of
money	can	be	disastrous	for	an	early	stage	startup.	Spending	a
lot	makes	it	harder	to	become	profitable,	and	perhaps	even
worse,	it	makes	you	more	rigid,	because	the	main	way	to	spend
money	is	people,	and	the	more	people	you	have,	the	harder	it	is
to	change	directions.	So	if	you	do	raise	a	huge	amount	of	money,
don't	spend	it.	(You	will	find	that	advice	almost	impossible	to
follow,	so	hot	will	be	the	money	burning	a	hole	in	your	pocket,
but	I	feel	obliged	at	least	to	try.)

Be	nice.

Startups	raising	money	occasionally	alienate	investors	by
seeming	arrogant.	Sometimes	because	they	are	arrogant,	and
sometimes	because	they're	noobs	clumsily	attempting	to	mimic
the	toughness	they've	observed	in	experienced	founders.

It's	a	mistake	to	behave	arrogantly	to	investors.	While	there	are
certain	situations	in	which	certain	investors	like	certain	kinds	of
arrogance,	investors	vary	greatly	in	this	respect,	and	a	flick	of
the	whip	that	will	bring	one	to	heel	will	make	another	roar	with
indignation.	The	only	safe	strategy	is	never	to	seem	arrogant	at
all.

That	will	require	some	diplomacy	if	you	follow	the	advice	I've
given	here,	because	the	advice	I've	given	is	essentially	how	to
play	hardball	back.	When	you	refuse	to	meet	an	investor	because
you're	not	in	fundraising	mode,	or	slow	down	your	interactions
with	an	investor	who	moves	too	slow,	or	treat	a	contingent	offer
as	the	no	it	actually	is	and	then,	by	accepting	offers	greedily,	end
up	leaving	that	investor	out,	you're	going	to	be	doing	things
investors	don't	like.	So	you	must	cushion	the	blow	with	soft
words.	At	YC	we	tell	startups	they	can	blame	us.	And	now	that
I've	written	this,	everyone	else	can	blame	me	if	they	want.	That
plus	the	inexperience	card	should	work	in	most	situations:	sorry,
we	think	you're	great,	but	PG	said	startups	shouldn't	___,	and
since	we're	new	to	fundraising,	we	feel	like	we	have	to	play	it
safe.

The	danger	of	behaving	arrogantly	is	greatest	when	you're	doing
well.	When	everyone	wants	you,	it's	hard	not	to	let	it	go	to	your
head.	Especially	if	till	recently	no	one	wanted	you.	But	restrain
yourself.	The	startup	world	is	a	small	place,	and	startups	have
lots	of	ups	and	downs.	This	is	a	domain	where	it's	more	true	than
usual	that	pride	goeth	before	a	fall.	[27]

Be	nice	when	investors	reject	you	as	well.	The	best	investors	are
not	wedded	to	their	initial	opinion	of	you.	If	they	reject	you	in
phase	2	and	you	end	up	doing	well,	they'll	often	invest	in	phase
3.	In	fact	investors	who	reject	you	are	some	of	your	warmest
leads	for	future	fundraising.	Any	investor	who	spent	significant
time	deciding	probably	came	close	to	saying	yes.	Often	you	have
some	internal	champion	who	only	needs	a	little	more	evidence	to
convince	the	skeptics.	So	it's	wise	not	merely	to	be	nice	to
investors	who	reject	you,	but	(unless	they	behaved	badly)	to	treat
it	as	the	beginning	of	a	relationship.

The	bar	will	be	higher	next	time.

Assume	the	money	you	raise	in	phase	2	will	be	the	last	you	ever
raise.	You	must	make	it	to	profitability	on	this	money	if	you	can.

Over	the	past	several	years,	the	investment	community	has
evolved	from	a	strategy	of	anointing	a	small	number	of	winners

#f27n

early	and	then	supporting	them	for	years	to	a	strategy	of
spraying	money	at	early	stage	startups	and	then	ruthlessly
culling	them	at	the	next	stage.	This	is	probably	the	optimal
strategy	for	investors.	It's	too	hard	to	pick	winners	early	on.
Better	to	let	the	market	do	it	for	you.	But	it	often	comes	as	a
surprise	to	startups	how	much	harder	it	is	to	raise	money	in
phase	3.

When	your	company	is	only	a	couple	months	old,	all	it	has	to	be
is	a	promising	experiment	that's	worth	funding	to	see	how	it
turns	out.	The	next	time	you	raise	money,	the	experiment	has	to
have	worked.	You	have	to	be	on	a	trajectory	that	leads	to	going
public.	And	while	there	are	some	ideas	where	the	proof	that	the
experiment	worked	might	consist	of	e.g.	query	response	times,
usually	the	proof	is	profitability.	Usually	phase	3	fundraising	has
to	be	type	A	fundraising.

In	practice	there	are	two	ways	startups	hose	themselves	between
phases	2	and	3.	Some	are	just	too	slow	to	become	profitable.
They	raise	enough	money	to	last	for	two	years.	There	doesn't
seem	any	particular	urgency	to	be	profitable.	So	they	don't	make
any	effort	to	make	money	for	a	year.	But	by	that	time,	not	making
money	has	become	habitual.	When	they	finally	decide	to	try,	they
find	they	can't.

The	other	way	companies	hose	themselves	is	by	letting	their
expenses	grow	too	fast.	Which	almost	always	means	hiring	too
many	people.	You	usually	shouldn't	go	out	and	hire	8	people	as
soon	as	you	raise	money	at	phase	2.	Usually	you	want	to	wait	till
you	have	growth	(and	thus	usually	revenues)	to	justify	them.	A	lot
of	VCs	will	encourage	you	to	hire	aggressively.	VCs	generally	tell
you	to	spend	too	much,	partly	because	as	money	people	they	err
on	the	side	of	solving	problems	by	spending	money,	and	partly
because	they	want	you	to	sell	them	more	of	your	company	in
subsequent	rounds.	Don't	listen	to	them.

Don't	make	things	complicated.

I	realize	it	may	seem	odd	to	sum	up	this	huge	treatise	by	saying
that	my	overall	advice	is	not	to	make	fundraising	too
complicated,	but	if	you	go	back	and	look	at	this	list	you'll	see	it's

basically	a	simple	recipe	with	a	lot	of	implications	and	edge
cases.	Avoid	investors	till	you	decide	to	raise	money,	and	then
when	you	do,	talk	to	them	all	in	parallel,	prioritized	by	expected
value,	and	accept	offers	greedily.	That's	fundraising	in	one
sentence.	Don't	introduce	complicated	optimizations,	and	don't
let	investors	introduce	complications	either.

Fundraising	is	not	what	will	make	you	successful.	It's	just	a
means	to	an	end.	Your	primary	goal	should	be	to	get	it	over	with
and	get	back	to	what	will	make	you	successful	—	making	things
and	talking	to	users	—	and	the	path	I've	described	will	for	most
startups	be	the	surest	way	to	that	destination.

Be	good,	take	care	of	yourselves,	and	don't	leave	the	path.

Notes

[1]	The	worst	explosions	happen	when	unpromising-seeming
startups	encounter	mediocre	investors.	Good	investors	don't	lead
startups	on;	their	reputations	are	too	valuable.	And	startups	that
seem	promising	can	usually	get	enough	money	from	good
investors	that	they	don't	have	to	talk	to	mediocre	ones.	It	is	the
unpromising-seeming	startups	that	have	to	resort	to	raising
money	from	mediocre	investors.	And	it's	particularly	damaging
when	these	investors	flake,	because	unpromising-seeming
startups	are	usually	more	desperate	for	money.

(Not	all	unpromising-seeming	startups	do	badly.	Some	are	merely
ugly	ducklings	in	the	sense	that	they	violate	current	startup
fashions.)

[2]	One	YC	founder	told	me:

I	think	in	general	we've	done	ok	at	fundraising,	but	I
managed	to	screw	up	twice	at	the	exact	same	thing
—	trying	to	focus	on	building	the	company	and
fundraising	at	the	same	time.

[3]	There	is	one	subtle	danger	you	have	to	watch	out	for	here,
which	I	warn	about	later:	beware	of	getting	too	high	a	valuation
from	an	eager	investor,	lest	that	set	an	impossibly	high	target
when	raising	additional	money.

[4]	If	they	really	need	a	meeting,	then	they're	not	ready	to	invest,
regardless	of	what	they	say.	They're	still	deciding,	which	means
you're	being	asked	to	come	in	and	convince	them.	Which	is
fundraising.

[5]	Associates	at	VC	firms	regularly	cold	email	startups.	Naive
founders	think	"Wow,	a	VC	is	interested	in	us!"	But	an	associate
is	not	a	VC.	They	have	no	decision-making	power.	And	while	they
may	introduce	startups	they	like	to	partners	at	their	firm,	the
partners	discriminate	against	deals	that	come	to	them	this	way.	I
don't	know	of	a	single	VC	investment	that	began	with	an
associate	cold-emailing	a	startup.	If	you	want	to	approach	a
specific	firm,	get	an	intro	to	a	partner	from	someone	they
respect.

It's	ok	to	talk	to	an	associate	if	you	get	an	intro	to	a	VC	firm	or
they	see	you	at	a	Demo	Day	and	they	begin	by	having	an
associate	vet	you.	That's	not	a	promising	lead	and	should
therefore	get	low	priority,	but	it's	not	as	completely	worthless	as
a	cold	email.

Because	the	title	"associate"	has	gotten	a	bad	reputation,	a	few
VC	firms	have	started	to	give	their	associates	the	title	"partner,"
which	can	make	things	very	confusing.	If	you're	a	YC	startup	you
can	ask	us	who's	who;	otherwise	you	may	have	to	do	some
research	online.	There	may	be	a	special	title	for	actual	partners.
If	someone	speaks	for	the	firm	in	the	press	or	a	blog	on	the	firm's
site,	they're	probably	a	real	partner.	If	they're	on	boards	of
directors	they're	probably	a	real	partner.

There	are	titles	between	"associate"	and	"partner,"	including
"principal"	and	"venture	partner."	The	meanings	of	these	titles
vary	too	much	to	generalize.

[6]	For	similar	reasons,	avoid	casual	conversations	with	potential
acquirers.	They	can	lead	to	distractions	even	more	dangerous

than	fundraising.	Don't	even	take	a	meeting	with	a	potential
acquirer	unless	you	want	to	sell	your	company	right	now.

[7]	Joshua	Reeves	specifically	suggests	asking	each	investor	to
intro	you	to	two	more	investors.

Don't	ask	investors	who	say	no	for	introductions	to	other
investors.	That	will	in	many	cases	be	an	anti-recommendation.

[8]	This	is	not	always	as	deliberate	as	its	sounds.	A	lot	of	the
delays	and	disconnects	between	founders	and	investors	are
induced	by	the	customs	of	the	venture	business,	which	have
evolved	the	way	they	have	because	they	suit	investors'	interests.

[9]	One	YC	founder	who	read	a	draft	of	this	essay	wrote:

This	is	the	most	important	section.	I	think	it	might
bear	stating	even	more	clearly.	"Investors	will
deliberately	affect	more	interest	than	they	have	to
preserve	optionality.	If	an	investor	seems	very
interested	in	you,	they	still	probably	won't	invest.
The	solution	for	this	is	to	assume	the	worst	—	that	an
investor	is	just	feigning	interest	—	until	you	get	a
definite	commitment."

[10]	Though	you	should	probably	pack	investor	meetings	as
closely	as	you	can,	Jeff	Byun	mentions	one	reason	not	to:	if	you
pack	investor	meetings	too	closely,	you'll	have	less	time	for	your
pitch	to	evolve.

Some	founders	deliberately	schedule	a	handful	of	lame	investors
first,	to	get	the	bugs	out	of	their	pitch.

[11]	There	is	not	an	efficient	market	in	this	respect.	Some	of	the
most	useless	investors	are	also	the	highest	maintenance.

[12]	Incidentally,	this	paragraph	is	sales	101.	If	you	want	to	see	it
in	action,	go	talk	to	a	car	dealer.

[13]	I	know	one	very	smooth	founder	who	used	to	end	investor
meetings	with	"So,	can	I	count	you	in?"	delivered	as	if	it	were

"Can	you	pass	the	salt?"	Unless	you're	very	smooth	(if	you're	not
sure...),	do	not	do	this	yourself.	There	is	nothing	more
unconvincing,	for	an	investor,	than	a	nerdy	founder	trying	to
deliver	the	lines	meant	for	a	smooth	one.

Investors	are	fine	with	funding	nerds.	So	if	you're	a	nerd,	just	try
to	be	a	good	nerd,	rather	than	doing	a	bad	imitation	of	a	smooth
salesman.

[14]	Ian	Hogarth	suggests	a	good	way	to	tell	how	serious
potential	investors	are:	the	resources	they	expend	on	you	after
the	first	meeting.	An	investor	who's	seriously	interested	will
already	be	working	to	help	you	even	before	they've	committed.

[15]	In	principle	you	might	have	to	think	about	so-called
"signalling	risk."	If	a	prestigious	VC	makes	a	small	seed
investment	in	you,	what	if	they	don't	want	to	invest	the	next	time
you	raise	money?	Other	investors	might	assume	that	the	VC
knows	you	well,	since	they're	an	existing	investor,	and	if	they
don't	want	to	invest	in	your	next	round,	that	must	mean	you	suck.
The	reason	I	say	"in	principle"	is	that	in	practice	signalling	hasn't
been	much	of	a	problem	so	far.	It	rarely	arises,	and	in	the	few
cases	where	it	does,	the	startup	in	question	usually	is	doing	badly
and	is	doomed	anyway.

If	you	have	the	luxury	of	choosing	among	seed	investors,	you	can
play	it	safe	by	excluding	VC	firms.	But	it	isn't	critical	to.

[16]	Sometimes	a	competitor	will	deliberately	threaten	you	with
a	lawsuit	just	as	you	start	fundraising,	because	they	know	you'll
have	to	disclose	the	threat	to	potential	investors	and	they	hope
this	will	make	it	harder	for	you	to	raise	money.	If	this	happens	it
will	probably	frighten	you	more	than	investors.	Experienced
investors	know	about	this	trick,	and	know	the	actual	lawsuits
rarely	happen.	So	if	you're	attacked	in	this	way,	be	forthright
with	investors.	They'll	be	more	alarmed	if	you	seem	evasive	than
if	you	tell	them	everything.

[17]	A	related	trick	is	to	claim	that	they'll	only	invest	contingently
on	other	investors	doing	so	because	otherwise	you'd	be
"undercapitalized."	This	is	almost	always	bullshit.	They	can't

estimate	your	minimum	capital	needs	that	precisely.

[18]	You	won't	hire	all	those	20	people	at	once,	and	you'll
probably	have	some	revenues	before	18	months	are	out.	But
those	too	are	acceptable	or	at	least	accepted	additions	to	the
margin	for	error.

[19]	Type	A	fundraising	is	so	much	better	that	it	might	even	be
worth	doing	something	different	if	it	gets	you	there	sooner.	One
YC	founder	told	me	that	if	he	were	a	first-time	founder	again	he'd
"leave	ideas	that	are	up-front	capital	intensive	to	founders	with
established	reputations."

[20]	I	don't	know	whether	this	happens	because	they're
innumerate,	or	because	they	believe	they	have	zero	ability	to
predict	startup	outcomes	(in	which	case	this	behavior	at	least
wouldn't	be	irrational).	In	either	case	the	implications	are	similar.

[21]	If	you're	a	YC	startup	and	you	have	an	investor	who	for	some
reason	insists	that	you	decide	the	price,	any	YC	partner	can
estimate	a	market	price	for	you.

[22]	You	should	respond	in	kind	when	investors	behave
upstandingly	too.	When	an	investor	makes	you	a	clean	offer	with
no	deadline,	you	have	a	moral	obligation	to	respond	promptly.

[23]	Tell	the	investors	talking	to	you	about	an	A	round	about	the
smaller	investments	you	raise	as	you	raise	them.	You	owe	them
such	updates	on	your	cap	table,	and	this	is	also	a	good	way	to
pressure	them	to	act.	They	won't	like	you	raising	other	money
and	may	pressure	you	to	stop,	but	they	can't	legitimately	ask	you
to	commit	to	them	till	they	also	commit	to	you.	If	they	want	you
to	stop	raising	money,	the	way	to	do	it	is	to	give	you	a	series	A
termsheet	with	a	no-shop	clause.

You	can	relent	a	little	if	the	potential	series	A	investor	has	a	great
reputation	and	they're	clearly	working	fast	to	get	you	a
termsheet,	particularly	if	a	third	party	like	YC	is	involved	to
ensure	there	are	no	misunderstandings.	But	be	careful.

[24]	The	company	is	Weebly,	which	made	it	to	profitability	on	a

seed	investment	of	$650k.	They	did	try	to	raise	a	series	A	in	the
fall	of	2008	but	(no	doubt	partly	because	it	was	the	fall	of	2008)
the	terms	they	were	offered	were	so	bad	that	they	decided	to
skip	raising	an	A	round.

[25]	Another	advantage	of	having	one	founder	take	fundraising
meetings	is	that	you	never	have	to	negotiate	in	real	time,	which
is	something	inexperienced	founders	should	avoid.	One	YC
founder	told	me:

Investors	are	professional	negotiators	and	can
negotiate	on	the	spot	very	easily.	If	only	one	founder
is	in	the	room,	you	can	say	"I	need	to	circle	back	with
my	co-founder"	before	making	any	commitments.	I
used	to	do	this	all	the	time.

[26]	You'll	be	lucky	if	fundraising	feels	pleasant	enough	to
become	addictive.	More	often	you	have	to	worry	about	the	other
extreme	—	becoming	demoralized	when	investors	reject	you.	As
one	(very	successful)	YC	founder	wrote	after	reading	a	draft	of
this:

It's	hard	to	mentally	deal	with	the	sheer	scale	of
rejection	in	fundraising	and	if	you	are	not	in	the	right
mindset	you	will	fail.	Users	may	love	you	but	these
supposedly	smart	investors	may	not	understand	you
at	all.	At	this	point	for	me,	rejection	still	rankles	but
I've	come	to	accept	that	investors	are	just	not	super
thoughtful	for	the	most	part	and	you	need	to	play	the
game	according	to	certain	somewhat	depressing
rules	(many	of	which	you	are	listing)	in	order	to	win.

[27]	The	actual	sentence	in	the	King	James	Bible	is	"Pride	goeth
before	destruction,	and	an	haughty	spirit	before	a	fall."

Thanks	to	Slava	Akhmechet,	Sam	Altman,	Nate	Blecharczyk,
Adora	Cheung,	Bill	Clerico,	John	Collison,	Patrick	Collison,
Parker	Conrad,	Ron	Conway,	Travis	Deyle,	Jason	Freedman,	Joe
Gebbia,	Mattan	Griffel,	Kevin	Hale,	Jacob	Heller,	Ian	Hogarth,
Justin	Kan,	Professor	Moriarty,	Nikhil	Nirmel,	David	Petersen,
Geoff	Ralston,	Joshua	Reeves,	Yuri	Sagalov,	Emmett	Shear,	Rajat

Suri,	Garry	Tan,	and	Nick	Tomarello	for	reading	drafts	of	this.

	

Before	the	Startup
	Want	to	start	a	startup?	Get	funded	by	Y	Combinator.	

http://ycombinator.com/apply.html

	

Mean	People	Fail
November	2014

It	struck	me	recently	how	few	of	the	most	successful	people	I
know	are	mean.	There	are	exceptions,	but	remarkably	few.

Meanness	isn't	rare.	In	fact,	one	of	the	things	the	internet	has
shown	us	is	how	mean	people	can	be.	A	few	decades	ago,	only
famous	people	and	professional	writers	got	to	publish	their
opinions.	Now	everyone	can,	and	we	can	all	see	the	long	tail	of
meanness	that	had	previously	been	hidden.

And	yet	while	there	are	clearly	a	lot	of	mean	people	out	there,
there	are	next	to	none	among	the	most	successful	people	I	know.
What's	going	on	here?	Are	meanness	and	success	inversely
correlated?

Part	of	what's	going	on,	of	course,	is	selection	bias.	I	only	know
people	who	work	in	certain	fields:	startup	founders,
programmers,	professors.	I'm	willing	to	believe	that	successful
people	in	other	fields	are	mean.	Maybe	successful	hedge	fund
managers	are	mean;	I	don't	know	enough	to	say.	It	seems	quite
likely	that	most	successful	drug	lords	are	mean.	But	there	are	at
least	big	chunks	of	the	world	that	mean	people	don't	rule,	and
that	territory	seems	to	be	growing.

My	wife	and	Y	Combinator	cofounder	Jessica	is	one	of	those	rare
people	who	have	x-ray	vision	for	character.	Being	married	to	her
is	like	standing	next	to	an	airport	baggage	scanner.	She	came	to
the	startup	world	from	investment	banking,	and	she	has	always
been	struck	both	by	how	consistently	successful	startup	founders
turn	out	to	be	good	people,	and	how	consistently	bad	people	fail
as	startup	founders.

Why?	I	think	there	are	several	reasons.	One	is	that	being	mean
makes	you	stupid.	That's	why	I	hate	fights.	You	never	do	your

best	work	in	a	fight,	because	fights	are	not	sufficiently	general.
Winning	is	always	a	function	of	the	situation	and	the	people
involved.	You	don't	win	fights	by	thinking	of	big	ideas	but	by
thinking	of	tricks	that	work	in	one	particular	case.	And	yet
fighting	is	just	as	much	work	as	thinking	about	real	problems.
Which	is	particularly	painful	to	someone	who	cares	how	their
brain	is	used:	your	brain	goes	fast	but	you	get	nowhere,	like	a	car
spinning	its	wheels.

Startups	don't	win	by	attacking.	They	win	by	transcending.	There
are	exceptions	of	course,	but	usually	the	way	to	win	is	to	race
ahead,	not	to	stop	and	fight.

Another	reason	mean	founders	lose	is	that	they	can't	get	the	best
people	to	work	for	them.	They	can	hire	people	who	will	put	up
with	them	because	they	need	a	job.	But	the	best	people	have
other	options.	A	mean	person	can't	convince	the	best	people	to
work	for	him	unless	he	is	super	convincing.	And	while	having	the
best	people	helps	any	organization,	it's	critical	for	startups.

There	is	also	a	complementary	force	at	work:	if	you	want	to	build
great	things,	it	helps	to	be	driven	by	a	spirit	of	benevolence.	The
startup	founders	who	end	up	richest	are	not	the	ones	driven	by
money.	The	ones	driven	by	money	take	the	big	acquisition	offer
that	nearly	every	successful	startup	gets	en	route.	[1]	The	ones
who	keep	going	are	driven	by	something	else.	They	may	not	say
so	explicitly,	but	they're	usually	trying	to	improve	the	world.
Which	means	people	with	a	desire	to	improve	the	world	have	a
natural	advantage.	[2]

The	exciting	thing	is	that	startups	are	not	just	one	random	type
of	work	in	which	meanness	and	success	are	inversely	correlated.
This	kind	of	work	is	the	future.

For	most	of	history	success	meant	control	of	scarce	resources.
One	got	that	by	fighting,	whether	literally	in	the	case	of	pastoral
nomads	driving	hunter-gatherers	into	marginal	lands,	or
metaphorically	in	the	case	of	Gilded	Age	financiers	contending
with	one	another	to	assemble	railroad	monopolies.	For	most	of
history,	success	meant	success	at	zero-sum	games.	And	in	most
of	them	meanness	was	not	a	handicap	but	probably	an

#f1n
#f2n

advantage.

That	is	changing.	Increasingly	the	games	that	matter	are	not
zero-sum.	Increasingly	you	win	not	by	fighting	to	get	control	of	a
scarce	resource,	but	by	having	new	ideas	and	building	new
things.	[3]

There	have	long	been	games	where	you	won	by	having	new
ideas.	In	the	third	century	BC,	Archimedes	won	by	doing	that.	At
least	until	an	invading	Roman	army	killed	him.	Which	illustrates
why	this	change	is	happening:	for	new	ideas	to	matter,	you	need
a	certain	degree	of	civil	order.	And	not	just	not	being	at	war.	You
also	need	to	prevent	the	sort	of	economic	violence	that
nineteenth	century	magnates	practiced	against	one	another	and
communist	countries	practiced	against	their	citizens.	People
need	to	feel	that	what	they	create	can't	be	stolen.	[4]

That	has	always	been	the	case	for	thinkers,	which	is	why	this
trend	began	with	them.	When	you	think	of	successful	people	from
history	who	weren't	ruthless,	you	get	mathematicians	and	writers
and	artists.	The	exciting	thing	is	that	their	m.o.	seems	to	be
spreading.	The	games	played	by	intellectuals	are	leaking	into	the
real	world,	and	this	is	reversing	the	historical	polarity	of	the
relationship	between	meanness	and	success.

So	I'm	really	glad	I	stopped	to	think	about	this.	Jessica	and	I	have
always	worked	hard	to	teach	our	kids	not	to	be	mean.	We	tolerate
noise	and	mess	and	junk	food,	but	not	meanness.	And	now	I	have
both	an	additional	reason	to	crack	down	on	it,	and	an	additional
argument	to	use	when	I	do:	that	being	mean	makes	you	fail.

Notes

[1]	I'm	not	saying	all	founders	who	take	big	acquisition	offers	are
driven	only	by	money,	but	rather	that	those	who	don't	aren't.	Plus

#f3n
#f4n

one	can	have	benevolent	motives	for	being	driven	by	money	—
for	example,	to	take	care	of	one's	family,	or	to	be	free	to	work	on
projects	that	improve	the	world.

[2]	It's	unlikely	that	every	successful	startup	improves	the	world.
But	their	founders,	like	parents,	truly	believe	they	do.	Successful
founders	are	in	love	with	their	companies.	And	while	this	sort	of
love	is	as	blind	as	the	love	people	have	for	one	another,	it	is
genuine.

[3]	Peter	Thiel	would	point	out	that	successful	founders	still	get
rich	from	controlling	monopolies,	just	monopolies	they	create
rather	than	ones	they	capture.	And	while	this	is	largely	true,	it
means	a	big	change	in	the	sort	of	person	who	wins.

[4]	To	be	fair,	the	Romans	didn't	mean	to	kill	Archimedes.	The
Roman	commander	specifically	ordered	that	he	be	spared.	But	he
got	killed	in	the	chaos	anyway.

In	sufficiently	disordered	times,	even	thinking	requires	control	of
scarce	resources,	because	living	at	all	is	a	scarce	resource.

Thanks	to	Sam	Altman,	Ron	Conway,	Daniel	Gackle,	Jessica
Livingston,	Robert	Morris,	Geoff	Ralston,	and	Fred	Wilson	for
reading	drafts	of	this.

http://startupclass.samaltman.com/courses/lec05

	

The	Fatal	Pinch
December	2014

Many	startups	go	through	a	point	a	few	months	before	they	die
where	although	they	have	a	significant	amount	of	money	in	the
bank,	they're	also	losing	a	lot	each	month,	and	revenue	growth	is
either	nonexistent	or	mediocre.	The	company	has,	say,	6	months
of	runway.	Or	to	put	it	more	brutally,	6	months	before	they're	out
of	business.	They	expect	to	avoid	that	by	raising	more	from
investors.	[1]

That	last	sentence	is	the	fatal	one.

There	may	be	nothing	founders	are	so	prone	to	delude
themselves	about	as	how	interested	investors	will	be	in	giving
them	additional	funding.	It's	hard	to	convince	investors	the	first
time	too,	but	founders	expect	that.	What	bites	them	the	second
time	is	a	confluence	of	three	forces:

1.	 The	company	is	spending	more	now	than	it	did	the	first
time	it	raised	money.

2.	 Investors	have	much	higher	standards	for	companies	that
have	already	raised	money.

3.	 The	company	is	now	starting	to	read	as	a	failure.	The	first
time	it	raised	money,	it	was	neither	a	success	nor	a	failure;
it	was	too	early	to	ask.	Now	it's	possible	to	ask	that
question,	and	the	default	answer	is	failure,	because	at	this
point	that	is	the	default	outcome.

I'm	going	to	call	the	situation	I	described	in	the	first	paragraph
"the	fatal	pinch."	I	try	to	resist	coining	phrases,	but	making	up	a
name	for	this	situation	may	snap	founders	into	realizing	when
they're	in	it.

One	of	the	things	that	makes	the	fatal	pinch	so	dangerous	is	that

#f1n

it's	self-reinforcing.	Founders	overestimate	their	chances	of
raising	more	money,	and	so	are	slack	about	reaching	profitability,
which	further	decreases	their	chances	of	raising	money.

Now	that	you	know	about	the	fatal	pinch,	how	do	you	avoid	it?
Y	Combinator	tells	founders	who	raise	money	to	act	as	if	it's	the
last	they'll	ever	get.	Because	the	self-reinforcing	nature	of	this
situation	works	the	other	way	too:	the	less	you	need	further
investment,	the	easier	it	is	to	get.

What	do	you	do	if	you're	already	in	the	fatal	pinch?	The	first	step
is	to	re-evaluate	the	probability	of	raising	more	money.	I	will	now,
by	an	amazing	feat	of	clairvoyance,	do	this	for	you:	the
probability	is	zero.	[2]

Three	options	remain:	you	can	shut	down	the	company,	you	can
increase	how	much	you	make,	and	you	can	decrease	how	much
you	spend.

You	should	shut	down	the	company	if	you're	certain	it	will	fail	no
matter	what	you	do.	Then	at	least	you	can	give	back	the	money
you	have	left,	and	save	yourself	however	many	months	you	would
have	spent	riding	it	down.

Companies	rarely	have	to	fail	though.	What	I'm	really	doing	here
is	giving	you	the	option	of	admitting	you've	already	given	up.

If	you	don't	want	to	shut	down	the	company,	that	leaves
increasing	revenues	and	decreasing	expenses.	In	most	startups,
expenses	=	people,	and	decreasing	expenses	=	firing	people.	[3]
Deciding	to	fire	people	is	usually	hard,	but	there's	one	case	in
which	it	shouldn't	be:	when	there	are	people	you	already	know
you	should	fire	but	you're	in	denial	about	it.	If	so,	now's	the	time.

If	that	makes	you	profitable,	or	will	enable	you	to	make	it	to
profitability	on	the	money	you	have	left,	you've	avoided	the
immediate	danger.

Otherwise	you	have	three	options:	you	either	have	to	fire	good
people,	get	some	or	all	of	the	employees	to	take	less	salary	for	a
while,	or	increase	revenues.

#f2n
#f3n

Getting	people	to	take	less	salary	is	a	weak	solution	that	will	only
work	when	the	problem	isn't	too	bad.	If	your	current	trajectory
won't	quite	get	you	to	profitability	but	you	can	get	over	the
threshold	by	cutting	salaries	a	little,	you	might	be	able	to	make
the	case	to	everyone	for	doing	it.	Otherwise	you're	probably	just
postponing	the	problem,	and	that	will	be	obvious	to	the	people
whose	salaries	you're	proposing	to	cut.	[4]

Which	leaves	two	options,	firing	good	people	and	making	more
money.	While	trying	to	balance	them,	keep	in	mind	the	eventual
goal:	to	be	a	successful	product	company	in	the	sense	of	having	a
single	thing	lots	of	people	use.

You	should	lean	more	toward	firing	people	if	the	source	of	your
trouble	is	overhiring.	If	you	went	out	and	hired	15	people	before
you	even	knew	what	you	were	building,	you've	created	a	broken
company.	You	need	to	figure	out	what	you're	building,	and	it	will
probably	be	easier	to	do	that	with	a	handful	of	people	than	15.
Plus	those	15	people	might	not	even	be	the	ones	you	need	for
whatever	you	end	up	building.	So	the	solution	may	be	to	shrink
and	then	figure	out	what	direction	to	grow	in.	After	all,	you're	not
doing	those	15	people	any	favors	if	you	fly	the	company	into
ground	with	them	aboard.	They'll	all	lose	their	jobs	eventually,
along	with	all	the	time	they	expended	on	this	doomed	company.

Whereas	if	you	only	have	a	handful	of	people,	it	may	be	better	to
focus	on	trying	to	make	more	money.	It	may	seem	facile	to
suggest	a	startup	make	more	money,	as	if	that	could	be	done	for
the	asking.	Usually	a	startup	is	already	trying	as	hard	as	it	can	to
sell	whatever	it	sells.	What	I'm	suggesting	here	is	not	so	much	to
try	harder	to	make	money	but	to	try	to	make	money	in	a	different
way.	For	example,	if	you	have	only	one	person	selling	while	the
rest	are	writing	code,	consider	having	everyone	work	on	selling.
What	good	will	more	code	do	you	when	you're	out	of	business?	If
you	have	to	write	code	to	close	a	certain	deal,	go	ahead;	that
follows	from	everyone	working	on	selling.	But	only	work	on
whatever	will	get	you	the	most	revenue	the	soonest.

Another	way	to	make	money	differently	is	to	sell	different	things,
and	in	particular	to	do	more	consultingish	work.	I	say

#f4n

consultingish	because	there	is	a	long	slippery	slope	from	making
products	to	pure	consulting,	and	you	don't	have	to	go	far	down	it
before	you	start	to	offer	something	really	attractive	to	customers.
Although	your	product	may	not	be	very	appealing	yet,	if	you're	a
startup	your	programmers	will	often	be	way	better	than	the	ones
your	customers	have.	Or	you	may	have	expertise	in	some	new
field	they	don't	understand.	So	if	you	change	your	sales
conversations	just	a	little	from	"do	you	want	to	buy	our	product?"
to	"what	do	you	need	that	you'd	pay	a	lot	for?"	you	may	find	it's
suddenly	a	lot	easier	to	extract	money	from	customers.

Be	ruthlessly	mercenary	when	you	start	doing	this,	though.
You're	trying	to	save	your	company	from	death	here,	so	make
customers	pay	a	lot,	quickly.	And	to	the	extent	you	can,	try	to
avoid	the	worst	pitfalls	of	consulting.	The	ideal	thing	might	be	if
you	built	a	precisely	defined	derivative	version	of	your	product
for	the	customer,	and	it	was	otherwise	a	straight	product	sale.
You	keep	the	IP	and	no	billing	by	the	hour.

In	the	best	case,	this	consultingish	work	may	not	be	just
something	you	do	to	survive,	but	may	turn	out	to	be	the	thing-
that-doesn't-scale	that	defines	your	company.	Don't	expect	it	to
be,	but	as	you	dive	into	individual	users'	needs,	keep	your	eyes
open	for	narrow	openings	that	have	wide	vistas	beyond.

There	is	usually	so	much	demand	for	custom	work	that	unless
you're	really	incompetent	there	has	to	be	some	point	down	the
slope	of	consulting	at	which	you	can	survive.	But	I	didn't	use	the
term	slippery	slope	by	accident;	customers'	insatiable	demand
for	custom	work	will	always	be	pushing	you	toward	the	bottom.
So	while	you'll	probably	survive,	the	problem	now	becomes	to
survive	with	the	least	damage	and	distraction.

The	good	news	is,	plenty	of	successful	startups	have	passed
through	near-death	experiences	and	gone	on	to	flourish.	You	just
have	to	realize	in	time	that	you're	near	death.	And	if	you're	in	the
fatal	pinch,	you	are.

ds.html

Notes

[1]	There	are	a	handful	of	companies	that	can't	reasonably	expect
to	make	money	for	the	first	year	or	two,	because	what	they're
building	takes	so	long.	For	these	companies	substitute	"progress"
for	"revenue	growth."	You're	not	one	of	these	companies	unless
your	initial	investors	agreed	in	advance	that	you	were.	And
frankly	even	these	companies	wish	they	weren't,	because	the
illiquidity	of	"progress"	puts	them	at	the	mercy	of	investors.

[2]	There's	a	variant	of	the	fatal	pinch	where	your	existing
investors	help	you	along	by	promising	to	invest	more.	Or	rather,
where	you	read	them	as	promising	to	invest	more,	while	they
think	they're	just	mentioning	the	possibility.	The	way	to	solve	this
problem,	if	you	have	8	months	of	runway	or	less,	is	to	try	to	get
the	money	right	now.	Then	you'll	either	get	the	money,	in	which
case	(immediate)	problem	solved,	or	at	least	prevent	your
investors	from	helping	you	to	remain	in	denial	about	your
fundraising	prospects.

[3]	Obviously,	if	you	have	significant	expenses	other	than	salaries
that	you	can	eliminate,	do	it	now.

[4]	Unless	of	course	the	source	of	the	problem	is	that	you're
paying	yourselves	high	salaries.	If	by	cutting	the	founders'
salaries	to	the	minimum	you	need,	you	can	make	it	to
profitability,	you	should.	But	it's	a	bad	sign	if	you	needed	to	read
this	to	realize	that.

Thanks	to	Sam	Altman,	Paul	Buchheit,	Jessica	Livingston,	and
Geoff	Ralston	for	reading	drafts	of	this.

	

How	You	Know
December	2014

I've	read	Villehardouin's	chronicle	of	the	Fourth	Crusade	at	least
two	times,	maybe	three.	And	yet	if	I	had	to	write	down	everything
I	remember	from	it,	I	doubt	it	would	amount	to	much	more	than	a
page.	Multiply	this	times	several	hundred,	and	I	get	an	uneasy
feeling	when	I	look	at	my	bookshelves.	What	use	is	it	to	read	all
these	books	if	I	remember	so	little	from	them?

A	few	months	ago,	as	I	was	reading	Constance	Reid's	excellent
biography	of	Hilbert,	I	figured	out	if	not	the	answer	to	this
question,	at	least	something	that	made	me	feel	better	about	it.
She	writes:

Hilbert	had	no	patience	with	mathematical	lectures
which	filled	the	students	with	facts	but	did	not	teach
them	how	to	frame	a	problem	and	solve	it.	He	often
used	to	tell	them	that	"a	perfect	formulation	of	a
problem	is	already	half	its	solution."

That	has	always	seemed	to	me	an	important	point,	and	I	was
even	more	convinced	of	it	after	hearing	it	confirmed	by	Hilbert.

But	how	had	I	come	to	believe	in	this	idea	in	the	first	place?	A
combination	of	my	own	experience	and	other	things	I'd	read.
None	of	which	I	could	at	that	moment	remember!	And	eventually
I'd	forget	that	Hilbert	had	confirmed	it	too.	But	my	increased
belief	in	the	importance	of	this	idea	would	remain	something	I'd
learned	from	this	book,	even	after	I'd	forgotten	I'd	learned	it.

Reading	and	experience	train	your	model	of	the	world.	And	even
if	you	forget	the	experience	or	what	you	read,	its	effect	on	your
model	of	the	world	persists.	Your	mind	is	like	a	compiled
program	you've	lost	the	source	of.	It	works,	but	you	don't	know
why.

The	place	to	look	for	what	I	learned	from	Villehardouin's
chronicle	is	not	what	I	remember	from	it,	but	my	mental	models
of	the	crusades,	Venice,	medieval	culture,	siege	warfare,	and	so
on.	Which	doesn't	mean	I	couldn't	have	read	more	attentively,	but
at	least	the	harvest	of	reading	is	not	so	miserably	small	as	it
might	seem.

This	is	one	of	those	things	that	seem	obvious	in	retrospect.	But	it
was	a	surprise	to	me	and	presumably	would	be	to	anyone	else
who	felt	uneasy	about	(apparently)	forgetting	so	much	they'd
read.

Realizing	it	does	more	than	make	you	feel	a	little	better	about
forgetting,	though.	There	are	specific	implications.

For	example,	reading	and	experience	are	usually	"compiled"	at
the	time	they	happen,	using	the	state	of	your	brain	at	that	time.
The	same	book	would	get	compiled	differently	at	different	points
in	your	life.	Which	means	it	is	very	much	worth	reading
important	books	multiple	times.	I	always	used	to	feel	some
misgivings	about	rereading	books.	I	unconsciously	lumped
reading	together	with	work	like	carpentry,	where	having	to	do
something	again	is	a	sign	you	did	it	wrong	the	first	time.
Whereas	now	the	phrase	"already	read"	seems	almost	ill-formed.

Intriguingly,	this	implication	isn't	limited	to	books.	Technology
will	increasingly	make	it	possible	to	relive	our	experiences.	When
people	do	that	today	it's	usually	to	enjoy	them	again	(e.g.	when
looking	at	pictures	of	a	trip)	or	to	find	the	origin	of	some	bug	in
their	compiled	code	(e.g.	when	Stephen	Fry	succeeded	in
remembering	the	childhood	trauma	that	prevented	him	from
singing).	But	as	technologies	for	recording	and	playing	back	your
life	improve,	it	may	become	common	for	people	to	relive
experiences	without	any	goal	in	mind,	simply	to	learn	from	them
again	as	one	might	when	rereading	a	book.

Eventually	we	may	be	able	not	just	to	play	back	experiences	but
also	to	index	and	even	edit	them.	So	although	not	knowing	how
you	know	things	may	seem	part	of	being	human,	it	may	not	be.

Thanks	to	Sam	Altman,	Jessica	Livingston,	and	Robert	Morris	for
reading	drafts	of	this.

	

How	to	Be	an	Expert	in	a
Changing	World
December	2014

If	the	world	were	static,	we	could	have	monotonically	increasing
confidence	in	our	beliefs.	The	more	(and	more	varied)	experience
a	belief	survived,	the	less	likely	it	would	be	false.	Most	people
implicitly	believe	something	like	this	about	their	opinions.	And
they're	justified	in	doing	so	with	opinions	about	things	that	don't
change	much,	like	human	nature.	But	you	can't	trust	your
opinions	in	the	same	way	about	things	that	change,	which	could
include	practically	everything	else.

When	experts	are	wrong,	it's	often	because	they're	experts	on	an
earlier	version	of	the	world.

Is	it	possible	to	avoid	that?	Can	you	protect	yourself	against
obsolete	beliefs?	To	some	extent,	yes.	I	spent	almost	a	decade
investing	in	early	stage	startups,	and	curiously	enough
protecting	yourself	against	obsolete	beliefs	is	exactly	what	you
have	to	do	to	succeed	as	a	startup	investor.	Most	really	good
startup	ideas	look	like	bad	ideas	at	first,	and	many	of	those	look
bad	specifically	because	some	change	in	the	world	just	switched
them	from	bad	to	good.	I	spent	a	lot	of	time	learning	to	recognize
such	ideas,	and	the	techniques	I	used	may	be	applicable	to	ideas
in	general.

The	first	step	is	to	have	an	explicit	belief	in	change.	People	who
fall	victim	to	a	monotonically	increasing	confidence	in	their
opinions	are	implicitly	concluding	the	world	is	static.	If	you
consciously	remind	yourself	it	isn't,	you	start	to	look	for	change.

Where	should	one	look	for	it?	Beyond	the	moderately	useful
generalization	that	human	nature	doesn't	change	much,	the
unfortunate	fact	is	that	change	is	hard	to	predict.	This	is	largely

a	tautology	but	worth	remembering	all	the	same:	change	that
matters	usually	comes	from	an	unforeseen	quarter.

So	I	don't	even	try	to	predict	it.	When	I	get	asked	in	interviews	to
predict	the	future,	I	always	have	to	struggle	to	come	up	with
something	plausible-sounding	on	the	fly,	like	a	student	who
hasn't	prepared	for	an	exam.	[1]	But	it's	not	out	of	laziness	that	I
haven't	prepared.	It	seems	to	me	that	beliefs	about	the	future	are
so	rarely	correct	that	they	usually	aren't	worth	the	extra	rigidity
they	impose,	and	that	the	best	strategy	is	simply	to	be
aggressively	open-minded.	Instead	of	trying	to	point	yourself	in
the	right	direction,	admit	you	have	no	idea	what	the	right
direction	is,	and	try	instead	to	be	super	sensitive	to	the	winds	of
change.

It's	ok	to	have	working	hypotheses,	even	though	they	may
constrain	you	a	bit,	because	they	also	motivate	you.	It's	exciting
to	chase	things	and	exciting	to	try	to	guess	answers.	But	you
have	to	be	disciplined	about	not	letting	your	hypotheses	harden
into	anything	more.	[2]

I	believe	this	passive	m.o.	works	not	just	for	evaluating	new	ideas
but	also	for	having	them.	The	way	to	come	up	with	new	ideas	is
not	to	try	explicitly	to,	but	to	try	to	solve	problems	and	simply	not
discount	weird	hunches	you	have	in	the	process.

The	winds	of	change	originate	in	the	unconscious	minds	of
domain	experts.	If	you're	sufficiently	expert	in	a	field,	any	weird
idea	or	apparently	irrelevant	question	that	occurs	to	you	is	ipso
facto	worth	exploring.	[3]	Within	Y	Combinator,	when	an	idea	is
described	as	crazy,	it's	a	compliment—in	fact,	on	average
probably	a	higher	compliment	than	when	an	idea	is	described	as
good.

Startup	investors	have	extraordinary	incentives	for	correcting
obsolete	beliefs.	If	they	can	realize	before	other	investors	that
some	apparently	unpromising	startup	isn't,	they	can	make	a	huge
amount	of	money.	But	the	incentives	are	more	than	just	financial.
Investors'	opinions	are	explicitly	tested:	startups	come	to	them
and	they	have	to	say	yes	or	no,	and	then,	fairly	quickly,	they	learn
whether	they	guessed	right.	The	investors	who	say	no	to	a

#f1n
#f2n
#f3n

Google	(and	there	were	several)	will	remember	it	for	the	rest	of
their	lives.

Anyone	who	must	in	some	sense	bet	on	ideas	rather	than	merely
commenting	on	them	has	similar	incentives.	Which	means
anyone	who	wants	such	incentives	can	have	them,	by	turning
their	comments	into	bets:	if	you	write	about	a	topic	in	some	fairly
durable	and	public	form,	you'll	find	you	worry	much	more	about
getting	things	right	than	most	people	would	in	a	casual
conversation.	[4]

Another	trick	I've	found	to	protect	myself	against	obsolete	beliefs
is	to	focus	initially	on	people	rather	than	ideas.	Though	the
nature	of	future	discoveries	is	hard	to	predict,	I've	found	I	can
predict	quite	well	what	sort	of	people	will	make	them.	Good	new
ideas	come	from	earnest,	energetic,	independent-minded	people.

Betting	on	people	over	ideas	saved	me	countless	times	as	an
investor.	We	thought	Airbnb	was	a	bad	idea,	for	example.	But	we
could	tell	the	founders	were	earnest,	energetic,	and	independent-
minded.	(Indeed,	almost	pathologically	so.)	So	we	suspended
disbelief	and	funded	them.

This	too	seems	a	technique	that	should	be	generally	applicable.
Surround	yourself	with	the	sort	of	people	new	ideas	come	from.
If	you	want	to	notice	quickly	when	your	beliefs	become	obsolete,
you	can't	do	better	than	to	be	friends	with	the	people	whose
discoveries	will	make	them	so.

It's	hard	enough	already	not	to	become	the	prisoner	of	your	own
expertise,	but	it	will	only	get	harder,	because	change	is
accelerating.	That's	not	a	recent	trend;	change	has	been
accelerating	since	the	paleolithic	era.	Ideas	beget	ideas.	I	don't
expect	that	to	change.	But	I	could	be	wrong.

Notes

#f4n

[1]	My	usual	trick	is	to	talk	about	aspects	of	the	present	that
most	people	haven't	noticed	yet.

[2]	Especially	if	they	become	well	enough	known	that	people
start	to	identify	them	with	you.	You	have	to	be	extra	skeptical
about	things	you	want	to	believe,	and	once	a	hypothesis	starts	to
be	identified	with	you,	it	will	almost	certainly	start	to	be	in	that
category.

[3]	In	practice	"sufficiently	expert"	doesn't	require	one	to	be
recognized	as	an	expert—which	is	a	trailing	indicator	in	any	case.
In	many	fields	a	year	of	focused	work	plus	caring	a	lot	would	be
enough.

[4]	Though	they	are	public	and	persist	indefinitely,	comments	on
e.g.	forums	and	places	like	Twitter	seem	empirically	to	work	like
casual	conversation.	The	threshold	may	be	whether	what	you
write	has	a	title.

Thanks	to	Sam	Altman,	Patrick	Collison,	and	Robert	Morris	for
reading	drafts	of	this.

	

Let	the	Other	95%	of	Great
Programmers	In
December	2014

American	technology	companies	want	the	government	to	make
immigration	easier	because	they	say	they	can't	find	enough
programmers	in	the	US.	Anti-immigration	people	say	that	instead
of	letting	foreigners	take	these	jobs,	we	should	train	more
Americans	to	be	programmers.	Who's	right?

The	technology	companies	are	right.	What	the	anti-immigration
people	don't	understand	is	that	there	is	a	huge	variation	in	ability
between	competent	programmers	and	exceptional	ones,	and
while	you	can	train	people	to	be	competent,	you	can't	train	them
to	be	exceptional.	Exceptional	programmers	have	an	aptitude	for
and	interest	in	programming	that	is	not	merely	the	product	of
training.	[1]

The	US	has	less	than	5%	of	the	world's	population.	Which	means
if	the	qualities	that	make	someone	a	great	programmer	are
evenly	distributed,	95%	of	great	programmers	are	born	outside
the	US.

The	anti-immigration	people	have	to	invent	some	explanation	to
account	for	all	the	effort	technology	companies	have	expended
trying	to	make	immigration	easier.	So	they	claim	it's	because
they	want	to	drive	down	salaries.	But	if	you	talk	to	startups,	you
find	practically	every	one	over	a	certain	size	has	gone	through
legal	contortions	to	get	programmers	into	the	US,	where	they
then	paid	them	the	same	as	they'd	have	paid	an	American.	Why
would	they	go	to	extra	trouble	to	get	programmers	for	the	same
price?	The	only	explanation	is	that	they're	telling	the	truth:	there
are	just	not	enough	great	programmers	to	go	around.	[2]

I	asked	the	CEO	of	a	startup	with	about	70	programmers	how

genius.html
#f1n
#f2n

many	more	he'd	hire	if	he	could	get	all	the	great	programmers	he
wanted.	He	said	"We'd	hire	30	tomorrow	morning."	And	this	is
one	of	the	hot	startups	that	always	win	recruiting	battles.	It's	the
same	all	over	Silicon	Valley.	Startups	are	that	constrained	for
talent.

It	would	be	great	if	more	Americans	were	trained	as
programmers,	but	no	amount	of	training	can	flip	a	ratio	as
overwhelming	as	95	to	5.	Especially	since	programmers	are
being	trained	in	other	countries	too.	Barring	some	cataclysm,	it
will	always	be	true	that	most	great	programmers	are	born
outside	the	US.	It	will	always	be	true	that	most	people	who	are
great	at	anything	are	born	outside	the	US.	[3]

Exceptional	performance	implies	immigration.	A	country	with
only	a	few	percent	of	the	world's	population	will	be	exceptional	in
some	field	only	if	there	are	a	lot	of	immigrants	working	in	it.

But	this	whole	discussion	has	taken	something	for	granted:	that
if	we	let	more	great	programmers	into	the	US,	they'll	want	to
come.	That's	true	now,	and	we	don't	realize	how	lucky	we	are
that	it	is.	If	we	want	to	keep	this	option	open,	the	best	way	to	do
it	is	to	take	advantage	of	it:	the	more	of	the	world's	great
programmers	are	here,	the	more	the	rest	will	want	to	come	here.

And	if	we	don't,	the	US	could	be	seriously	fucked.	I	realize	that's
strong	language,	but	the	people	dithering	about	this	don't	seem
to	realize	the	power	of	the	forces	at	work	here.	Technology	gives
the	best	programmers	huge	leverage.	The	world	market	in
programmers	seems	to	be	becoming	dramatically	more	liquid.
And	since	good	people	like	good	colleagues,	that	means	the	best
programmers	could	collect	in	just	a	few	hubs.	Maybe	mostly	in
one	hub.

What	if	most	of	the	great	programmers	collected	in	one	hub,	and
it	wasn't	here?	That	scenario	may	seem	unlikely	now,	but	it	won't
be	if	things	change	as	much	in	the	next	50	years	as	they	did	in
the	last	50.

We	have	the	potential	to	ensure	that	the	US	remains	a
technology	superpower	just	by	letting	in	a	few	thousand	great

#f3n

programmers	a	year.	What	a	colossal	mistake	it	would	be	to	let
that	opportunity	slip.	It	could	easily	be	the	defining	mistake	this
generation	of	American	politicians	later	become	famous	for.	And
unlike	other	potential	mistakes	on	that	scale,	it	costs	nothing	to
fix.

So	please,	get	on	with	it.

Notes

[1]	How	much	better	is	a	great	programmer	than	an	ordinary
one?	So	much	better	that	you	can't	even	measure	the	difference
directly.	A	great	programmer	doesn't	merely	do	the	same	work
faster.	A	great	programmer	will	invent	things	an	ordinary
programmer	would	never	even	think	of.	This	doesn't	mean	a
great	programmer	is	infinitely	more	valuable,	because	any
invention	has	a	finite	market	value.	But	it's	easy	to	imagine	cases
where	a	great	programmer	might	invent	things	worth	100x	or
even	1000x	an	average	programmer's	salary.

[2]	There	are	a	handful	of	consulting	firms	that	rent	out	big	pools
of	foreign	programmers	they	bring	in	on	H1-B	visas.	By	all	means
crack	down	on	these.	It	should	be	easy	to	write	legislation	that
distinguishes	them,	because	they	are	so	different	from
technology	companies.	But	it	is	dishonest	of	the	anti-immigration
people	to	claim	that	companies	like	Google	and	Facebook	are
driven	by	the	same	motives.	An	influx	of	inexpensive	but
mediocre	programmers	is	the	last	thing	they'd	want;	it	would
destroy	them.

[3]	Though	this	essay	talks	about	programmers,	the	group	of
people	we	need	to	import	is	broader,	ranging	from	designers	to
programmers	to	electrical	engineers.	The	best	one	could	do	as	a
general	term	might	be	"digital	talent."	It	seemed	better	to	make
the	argument	a	little	too	narrow	than	to	confuse	everyone	with	a

neologism.

Thanks	to	Sam	Altman,	John	Collison,	Patrick	Collison,	Jessica
Livingston,	Geoff	Ralston,	Fred	Wilson,	and	Qasar	Younis	for
reading	drafts	of	this.

	

Don't	Talk	to	Corp	Dev
January	2015

Corporate	Development,	aka	corp	dev,	is	the	group	within
companies	that	buys	other	companies.	If	you're	talking	to
someone	from	corp	dev,	that's	why,	whether	you	realize	it	yet	or
not.

It's	usually	a	mistake	to	talk	to	corp	dev	unless	(a)	you	want	to
sell	your	company	right	now	and	(b)	you're	sufficiently	likely	to
get	an	offer	at	an	acceptable	price.	In	practice	that	means
startups	should	only	talk	to	corp	dev	when	they're	either	doing
really	well	or	really	badly.	If	you're	doing	really	badly,	meaning
the	company	is	about	to	die,	you	may	as	well	talk	to	them,
because	you	have	nothing	to	lose.	And	if	you're	doing	really	well,
you	can	safely	talk	to	them,	because	you	both	know	the	price	will
have	to	be	high,	and	if	they	show	the	slightest	sign	of	wasting
your	time,	you'll	be	confident	enough	to	tell	them	to	get	lost.

The	danger	is	to	companies	in	the	middle.	Particularly	to	young
companies	that	are	growing	fast,	but	haven't	been	doing	it	for
long	enough	to	have	grown	big	yet.	It's	usually	a	mistake	for	a
promising	company	less	than	a	year	old	even	to	talk	to	corp	dev.

But	it's	a	mistake	founders	constantly	make.	When	someone	from
corp	dev	wants	to	meet,	the	founders	tell	themselves	they	should
at	least	find	out	what	they	want.	Besides,	they	don't	want	to
offend	Big	Company	by	refusing	to	meet.

Well,	I'll	tell	you	what	they	want.	They	want	to	talk	about	buying
you.	That's	what	the	title	"corp	dev"	means.	So	before	agreeing
to	meet	with	someone	from	corp	dev,	ask	yourselves,	"Do	we
want	to	sell	the	company	right	now?"	And	if	the	answer	is	no,	tell
them	"Sorry,	but	we're	focusing	on	growing	the	company."	They
won't	be	offended.	And	certainly	the	founders	of	Big	Company
won't	be	offended.	If	anything	they'll	think	more	highly	of	you.

You'll	remind	them	of	themselves.	They	didn't	sell	either;	that's
why	they're	in	a	position	now	to	buy	other	companies.	[1]

Most	founders	who	get	contacted	by	corp	dev	already	know	what
it	means.	And	yet	even	when	they	know	what	corp	dev	does	and
know	they	don't	want	to	sell,	they	take	the	meeting.	Why	do	they
do	it?	The	same	mix	of	denial	and	wishful	thinking	that	underlies
most	mistakes	founders	make.	It's	flattering	to	talk	to	someone
who	wants	to	buy	you.	And	who	knows,	maybe	their	offer	will	be
surprisingly	high.	You	should	at	least	see	what	it	is,	right?

No.	If	they	were	going	to	send	you	an	offer	immediately	by	email,
sure,	you	might	as	well	open	it.	But	that	is	not	how	conversations
with	corp	dev	work.	If	you	get	an	offer	at	all,	it	will	be	at	the	end
of	a	long	and	unbelievably	distracting	process.	And	if	the	offer	is
surprising,	it	will	be	surprisingly	low.

Distractions	are	the	thing	you	can	least	afford	in	a	startup.	And
conversations	with	corp	dev	are	the	worst	sort	of	distraction,
because	as	well	as	consuming	your	attention	they	undermine
your	morale.	One	of	the	tricks	to	surviving	a	grueling	process	is
not	to	stop	and	think	how	tired	you	are.	Instead	you	get	into	a
sort	of	flow.	[2]	Imagine	what	it	would	do	to	you	if	at	mile	20	of	a
marathon,	someone	ran	up	beside	you	and	said	"You	must	feel
really	tired.	Would	you	like	to	stop	and	take	a	rest?"
Conversations	with	corp	dev	are	like	that	but	worse,	because	the
suggestion	of	stopping	gets	combined	in	your	mind	with	the
imaginary	high	price	you	think	they'll	offer.

And	then	you're	really	in	trouble.	If	they	can,	corp	dev	people	like
to	turn	the	tables	on	you.	They	like	to	get	you	to	the	point	where
you're	trying	to	convince	them	to	buy	instead	of	them	trying	to
convince	you	to	sell.	And	surprisingly	often	they	succeed.

This	is	a	very	slippery	slope,	greased	with	some	of	the	most
powerful	forces	that	can	work	on	founders'	minds,	and	attended
by	an	experienced	professional	whose	full	time	job	is	to	push	you
down	it.

Their	tactics	in	pushing	you	down	that	slope	are	usually	fairly
brutal.	Corp	dev	people's	whole	job	is	to	buy	companies,	and	they

#f1n
top.html
#f2n

don't	even	get	to	choose	which.	The	only	way	their	performance
is	measured	is	by	how	cheaply	they	can	buy	you,	and	the	more
ambitious	ones	will	stop	at	nothing	to	achieve	that.	For	example,
they'll	almost	always	start	with	a	lowball	offer,	just	to	see	if	you'll
take	it.	Even	if	you	don't,	a	low	initial	offer	will	demoralize	you
and	make	you	easier	to	manipulate.

And	that	is	the	most	innocent	of	their	tactics.	Just	wait	till	you've
agreed	on	a	price	and	think	you	have	a	done	deal,	and	then	they
come	back	and	say	their	boss	has	vetoed	the	deal	and	won't	do	it
for	more	than	half	the	agreed	upon	price.	Happens	all	the	time.	If
you	think	investors	can	behave	badly,	it's	nothing	compared	to
what	corp	dev	people	can	do.	Even	corp	dev	people	at	companies
that	are	otherwise	benevolent.

I	remember	once	complaining	to	a	friend	at	Google	about	some
nasty	trick	their	corp	dev	people	had	pulled	on	a	YC	startup.

"What	happened	to	Don't	be	Evil?"	I	asked.

"I	don't	think	corp	dev	got	the	memo,"	he	replied.

The	tactics	you	encounter	in	M&A	conversations	can	be	like
nothing	you've	experienced	in	the	otherwise	comparatively
upstanding	world	of	Silicon	Valley.	It's	as	if	a	chunk	of	genetic
material	from	the	old-fashioned	robber	baron	business	world	got
incorporated	into	the	startup	world.	[3]

The	simplest	way	to	protect	yourself	is	to	use	the	trick	that	John
D.	Rockefeller,	whose	grandfather	was	an	alcoholic,	used	to
protect	himself	from	becoming	one.	He	once	told	a	Sunday	school
class

Boys,	do	you	know	why	I	never	became	a	drunkard?
Because	I	never	took	the	first	drink.

Do	you	want	to	sell	your	company	right	now?	Not	eventually,
right	now.	If	not,	just	don't	take	the	first	meeting.	They	won't	be
offended.	And	you	in	turn	will	be	guaranteed	to	be	spared	one	of
the	worst	experiences	that	can	happen	to	a	startup.

mean.html
#f3n

If	you	do	want	to	sell,	there's	another	set	of	techniques	for	doing
that.	But	the	biggest	mistake	founders	make	in	dealing	with	corp
dev	is	not	doing	a	bad	job	of	talking	to	them	when	they're	ready
to,	but	talking	to	them	before	they	are.	So	if	you	remember	only
the	title	of	this	essay,	you	already	know	most	of	what	you	need	to
know	about	M&A	in	the	first	year.

Notes

[1]	I'm	not	saying	you	should	never	sell.	I'm	saying	you	should	be
clear	in	your	own	mind	about	whether	you	want	to	sell	or	not,
and	not	be	led	by	manipulation	or	wishful	thinking	into	trying	to
sell	earlier	than	you	otherwise	would	have.

[2]	In	a	startup,	as	in	most	competitive	sports,	the	task	at	hand
almost	does	this	for	you;	you're	too	busy	to	feel	tired.	But	when
you	lose	that	protection,	e.g.	at	the	final	whistle,	the	fatigue	hits
you	like	a	wave.	To	talk	to	corp	dev	is	to	let	yourself	feel	it	mid-
game.

[3]	To	be	fair,	the	apparent	misdeeds	of	corp	dev	people	are
magnified	by	the	fact	that	they	function	as	the	face	of	a	large
organization	that	often	doesn't	know	its	own	mind.	Acquirers	can
be	surprisingly	indecisive	about	acquisitions,	and	their	flakiness
is	indistinguishable	from	dishonesty	by	the	time	it	filters	down	to
you.

Thanks	to	Marc	Andreessen,	Jessica	Livingston,	Geoff	Ralston,
and	Qasar	Younis	for	reading	drafts	of	this.

https://justinkan.com/the-founders-guide-to-selling-your-company-a1b2025c9481

	

What	Doesn't	Seem	Like
Work?
January	2015

My	father	is	a	mathematician.	For	most	of	my	childhood	he
worked	for	Westinghouse,	modelling	nuclear	reactors.

He	was	one	of	those	lucky	people	who	know	early	on	what	they
want	to	do.	When	you	talk	to	him	about	his	childhood,	there's	a
clear	watershed	at	about	age	12,	when	he	"got	interested	in
maths."

He	grew	up	in	the	small	Welsh	seacoast	town	of	Pwllheli.	As	we
retraced	his	walk	to	school	on	Google	Street	View,	he	said	that	it
had	been	nice	growing	up	in	the	country.

"Didn't	it	get	boring	when	you	got	to	be	about	15?"	I	asked.

"No,"	he	said,	"by	then	I	was	interested	in	maths."

In	another	conversation	he	told	me	that	what	he	really	liked	was
solving	problems.	To	me	the	exercises	at	the	end	of	each	chapter
in	a	math	textbook	represent	work,	or	at	best	a	way	to	reinforce
what	you	learned	in	that	chapter.	To	him	the	problems	were	the
reward.	The	text	of	each	chapter	was	just	some	advice	about
solving	them.	He	said	that	as	soon	as	he	got	a	new	textbook	he'd
immediately	work	out	all	the	problems	—	to	the	slight	annoyance
of	his	teacher,	since	the	class	was	supposed	to	work	through	the
book	gradually.

Few	people	know	so	early	or	so	certainly	what	they	want	to	work
on.	But	talking	to	my	father	reminded	me	of	a	heuristic	the	rest
of	us	can	use.	If	something	that	seems	like	work	to	other	people
doesn't	seem	like	work	to	you,	that's	something	you're	well	suited
for.	For	example,	a	lot	of	programmers	I	know,	including	me,

https://goo.gl/maps/rkzUm

actually	like	debugging.	It's	not	something	people	tend	to
volunteer;	one	likes	it	the	way	one	likes	popping	zits.	But	you
may	have	to	like	debugging	to	like	programming,	considering	the
degree	to	which	programming	consists	of	it.

The	stranger	your	tastes	seem	to	other	people,	the	stronger
evidence	they	probably	are	of	what	you	should	do.	When	I	was	in
college	I	used	to	write	papers	for	my	friends.	It	was	quite
interesting	to	write	a	paper	for	a	class	I	wasn't	taking.	Plus	they
were	always	so	relieved.

It	seemed	curious	that	the	same	task	could	be	painful	to	one
person	and	pleasant	to	another,	but	I	didn't	realize	at	the	time
what	this	imbalance	implied,	because	I	wasn't	looking	for	it.	I
didn't	realize	how	hard	it	can	be	to	decide	what	you	should	work
on,	and	that	you	sometimes	have	to	figure	it	out	from	subtle
clues,	like	a	detective	solving	a	case	in	a	mystery	novel.	So	I	bet
it	would	help	a	lot	of	people	to	ask	themselves	about	this
explicitly.	What	seems	like	work	to	other	people	that	doesn't
seem	like	work	to	you?

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Jessica	Livingston,
Robert	Morris,	and	my	father	for	reading	drafts	of	this.

love.html

	

The	Ronco	Principle
January	2015

No	one,	VC	or	angel,	has	invested	in	more	of	the	top	startups
than	Ron	Conway.	He	knows	what	happened	in	every	deal	in	the
Valley,	half	the	time	because	he	arranged	it.

And	yet	he's	a	super	nice	guy.	In	fact,	nice	is	not	the	word.	Ronco
is	good.	I	know	of	zero	instances	in	which	he	has	behaved	badly.
It's	hard	even	to	imagine.

When	I	first	came	to	Silicon	Valley	I	thought	"How	lucky	that
someone	so	powerful	is	so	benevolent."	But	gradually	I	realized	it
wasn't	luck.	It	was	by	being	benevolent	that	Ronco	became	so
powerful.	All	the	deals	he	gets	to	invest	in	come	to	him	through
referrals.	Google	did.	Facebook	did.	Twitter	was	a	referral	from
Evan	Williams	himself.	And	the	reason	so	many	people	refer
deals	to	him	is	that	he's	proven	himself	to	be	a	good	guy.

Good	does	not	mean	being	a	pushover.	I	would	not	want	to	face
an	angry	Ronco.	But	if	Ron's	angry	at	you,	it's	because	you	did
something	wrong.	Ron	is	so	old	school	he's	Old	Testament.	He
will	smite	you	in	his	just	wrath,	but	there's	no	malice	in	it.

In	almost	every	domain	there	are	advantages	to	seeming	good.	It
makes	people	trust	you.	But	actually	being	good	is	an	expensive
way	to	seem	good.	To	an	amoral	person	it	might	seem	to	be
overkill.

In	some	fields	it	might	be,	but	apparently	not	in	the	startup
world.	Though	plenty	of	investors	are	jerks,	there	is	a	clear	trend
among	them:	the	most	successful	investors	are	also	the	most
upstanding.	[1]

It	was	not	always	this	way.	I	would	not	feel	confident	saying	that
about	investors	twenty	years	ago.

#f1n

What	changed?	The	startup	world	became	more	transparent	and
more	unpredictable.	Both	make	it	harder	to	seem	good	without
actually	being	good.

It's	obvious	why	transparency	has	that	effect.	When	an	investor
maltreats	a	founder	now,	it	gets	out.	Maybe	not	all	the	way	to	the
press,	but	other	founders	hear	about	it,	and	that	investor	starts
to	lose	deals.	[2]

The	effect	of	unpredictability	is	more	subtle.	It	increases	the
work	of	being	inconsistent.	If	you're	going	to	be	two-faced,	you
have	to	know	who	you	should	be	nice	to	and	who	you	can	get
away	with	being	nasty	to.	In	the	startup	world,	things	change	so
rapidly	that	you	can't	tell.	The	random	college	kid	you	talk	to
today	might	in	a	couple	years	be	the	CEO	of	the	hottest	startup
in	the	Valley.	If	you	can't	tell	who	to	be	nice	to,	you	have	to	be
nice	to	everyone.	And	probably	the	only	people	who	can	manage
that	are	the	people	who	are	genuinely	good.

In	a	sufficiently	connected	and	unpredictable	world,	you	can't
seem	good	without	being	good.

As	often	happens,	Ron	discovered	how	to	be	the	investor	of	the
future	by	accident.	He	didn't	foresee	the	future	of	startup
investing,	realize	it	would	pay	to	be	upstanding,	and	force
himself	to	behave	that	way.	It	would	feel	unnatural	to	him	to
behave	any	other	way.	He	was	already	living	in	the	future.

Fortunately	that	future	is	not	limited	to	the	startup	world.	The
startup	world	is	more	transparent	and	unpredictable	than	most,
but	almost	everywhere	the	trend	is	in	that	direction.

#f2n
startupideas.html

Notes

[1]	I'm	not	saying	that	if	you	sort	investors	by	benevolence	you've
also	sorted	them	by	returns,	but	rather	that	if	you	do	a
scatterplot	with	benevolence	on	the	x	axis	and	returns	on	the	y,
you'd	see	a	clear	upward	trend.

[2]	Y	Combinator	in	particular,	because	it	aggregates	data	from
so	many	startups,	has	a	pretty	comprehensive	view	of	investor
behavior.

Thanks	to	Sam	Altman	and	Jessica	Livingston	for	reading	drafts
of	this.

	

What	Microsoft	Is	this	the
Altair	Basic	of?
February	2015

One	of	the	most	valuable	exercises	you	can	try	if	you	want	to
understand	startups	is	to	look	at	the	most	successful	companies
and	explain	why	they	were	not	as	lame	as	they	seemed	when
they	first	launched.	Because	they	practically	all	seemed	lame	at
first.	Not	just	small,	lame.	Not	just	the	first	step	up	a	big
mountain.	More	like	the	first	step	into	a	swamp.

A	Basic	interpreter	for	the	Altair?	How	could	that	ever	grow	into
a	giant	company?	People	sleeping	on	airbeds	in	strangers'
apartments?	A	web	site	for	college	students	to	stalk	one	another?
A	wimpy	little	single-board	computer	for	hobbyists	that	used	a	TV
as	a	monitor?	A	new	search	engine,	when	there	were	already
about	10,	and	they	were	all	trying	to	de-emphasize	search?	These
ideas	didn't	just	seem	small.	They	seemed	wrong.	They	were	the
kind	of	ideas	you	could	not	merely	ignore,	but	ridicule.

Often	the	founders	themselves	didn't	know	why	their	ideas	were
promising.	They	were	attracted	to	these	ideas	by	instinct,
because	they	were	living	in	the	future	and	they	sensed	that
something	was	missing.	But	they	could	not	have	put	into	words
exactly	how	their	ugly	ducklings	were	going	to	grow	into	big,
beautiful	swans.

Most	people's	first	impulse	when	they	hear	about	a	lame-
sounding	new	startup	idea	is	to	make	fun	of	it.	Even	a	lot	of
people	who	should	know	better.

When	I	encounter	a	startup	with	a	lame-sounding	idea,	I	ask
"What	Microsoft	is	this	the	Altair	Basic	of?"	Now	it's	a	puzzle,
and	the	burden	is	on	me	to	solve	it.	Sometimes	I	can't	think	of	an
answer,	especially	when	the	idea	is	a	made-up	one.	But	it's

startupideas.html

remarkable	how	often	there	does	turn	out	to	be	an	answer.	Often
it's	one	the	founders	themselves	hadn't	seen	yet.

Intriguingly,	there	are	sometimes	multiple	answers.	I	talked	to	a
startup	a	few	days	ago	that	could	grow	into	3	distinct	Microsofts.
They'd	probably	vary	in	size	by	orders	of	magnitude.	But	you	can
never	predict	how	big	a	Microsoft	is	going	to	be,	so	in	cases	like
that	I	encourage	founders	to	follow	whichever	path	is	most
immediately	exciting	to	them.	Their	instincts	got	them	this	far.
Why	stop	now?

	

Change	Your	Name
August	2015

If	you	have	a	US	startup	called	X	and	you	don't	have	x.com,	you
should	probably	change	your	name.

The	reason	is	not	just	that	people	can't	find	you.	For	companies
with	mobile	apps,	especially,	having	the	right	domain	name	is	not
as	critical	as	it	used	to	be	for	getting	users.	The	problem	with	not
having	the	.com	of	your	name	is	that	it	signals	weakness.	Unless
you're	so	big	that	your	reputation	precedes	you,	a	marginal
domain	suggests	you're	a	marginal	company.	Whereas	(as	Stripe
shows)	having	x.com	signals	strength	even	if	it	has	no	relation	to
what	you	do.

Even	good	founders	can	be	in	denial	about	this.	Their	denial
derives	from	two	very	powerful	forces:	identity,	and	lack	of
imagination.

X	is	what	we	are,	founders	think.	There's	no	other	name	as	good.
Both	of	which	are	false.

You	can	fix	the	first	by	stepping	back	from	the	problem.	Imagine
you'd	called	your	company	something	else.	If	you	had,	surely
you'd	be	just	as	attached	to	that	name	as	you	are	to	your	current
one.	The	idea	of	switching	to	your	current	name	would	seem
repellent.	[1]

There's	nothing	intrinsically	great	about	your	current	name.
Nearly	all	your	attachment	to	it	comes	from	it	being	attached	to
you.	[2]

The	way	to	neutralize	the	second	source	of	denial,	your	inability
to	think	of	other	potential	names,	is	to	acknowledge	that	you're
bad	at	naming.	Naming	is	a	completely	separate	skill	from	those
you	need	to	be	a	good	founder.	You	can	be	a	great	startup

#f1n
#f1n

founder	but	hopeless	at	thinking	of	names	for	your	company.

Once	you	acknowledge	that,	you	stop	believing	there	is	nothing
else	you	could	be	called.	There	are	lots	of	other	potential	names
that	are	as	good	or	better;	you	just	can't	think	of	them.

How	do	you	find	them?	One	answer	is	the	default	way	to	solve
problems	you're	bad	at:	find	someone	else	who	can	think	of
names.	But	with	company	names	there	is	another	possible
approach.	It	turns	out	almost	any	word	or	word	pair	that	is	not
an	obviously	bad	name	is	a	sufficiently	good	one,	and	the	number
of	such	domains	is	so	large	that	you	can	find	plenty	that	are
cheap	or	even	untaken.	So	make	a	list	and	try	to	buy	some.
That's	what	Stripe	did.	(Their	search	also	turned	up	parse.com,
which	their	friends	at	Parse	took.)

The	reason	I	know	that	naming	companies	is	a	distinct	skill
orthogonal	to	the	others	you	need	in	a	startup	is	that	I	happen	to
have	it.	Back	when	I	was	running	YC	and	did	more	office	hours
with	startups,	I	would	often	help	them	find	new	names.	80%	of
the	time	we	could	find	at	least	one	good	name	in	a	20	minute
office	hour	slot.

Now	when	I	do	office	hours	I	have	to	focus	on	more	important
questions,	like	what	the	company	is	doing.	I	tell	them	when	they
need	to	change	their	name.	But	I	know	the	power	of	the	forces
that	have	them	in	their	grip,	so	I	know	most	won't	listen.	[3]

There	are	of	course	examples	of	startups	that	have	succeeded
without	having	the	.com	of	their	name.	There	are	startups	that
have	succeeded	despite	any	number	of	different	mistakes.	But
this	mistake	is	less	excusable	than	most.	It's	something	that	can
be	fixed	in	a	couple	days	if	you	have	sufficient	discipline	to
acknowledge	the	problem.

100%	of	the	top	20	YC	companies	by	valuation	have	the	.com	of
their	name.	94%	of	the	top	50	do.	But	only	66%	of	companies	in
the	current	batch	have	the	.com	of	their	name.	Which	suggests
there	are	lessons	ahead	for	most	of	the	rest,	one	way	or	another.

http://www.quora.com/How-did-Stripe-come-up-with-its-name?share=1
#f1n

Notes

[1]	Incidentally,	this	thought	experiment	works	for	nationality
and	religion	too.

[2]	The	liking	you	have	for	a	name	that	has	become	part	of	your
identity	manifests	itself	not	directly,	which	would	be	easy	to
discount,	but	as	a	collection	of	specious	beliefs	about	its	intrinsic
qualities.	(This	too	is	true	of	nationality	and	religion	as	well.)

[3]	Sometimes	founders	know	it's	a	problem	that	they	don't	have
the	.com	of	their	name,	but	delusion	strikes	a	step	later	in	the
belief	that	they'll	be	able	to	buy	it	despite	having	no	evidence	it's
for	sale.	Don't	believe	a	domain	is	for	sale	unless	the	owner	has
already	told	you	an	asking	price.

Thanks	to	Sam	Altman,	Jessica	Livingston,	and	Geoff	Ralston	for
reading	drafts	of	this.

identity.html

	

Why	It's	Safe	for	Founders	to
Be	Nice
August	2015

I	recently	got	an	email	from	a	founder	that	helped	me	understand
something	important:	why	it's	safe	for	startup	founders	to	be	nice
people.

I	grew	up	with	a	cartoon	idea	of	a	very	successful	businessman
(in	the	cartoon	it	was	always	a	man):	a	rapacious,	cigar-smoking,
table-thumping	guy	in	his	fifties	who	wins	by	exercising	power,
and	isn't	too	fussy	about	how.	As	I've	written	before,	one	of	the
things	that	has	surprised	me	most	about	startups	is	how	few	of
the	most	successful	founders	are	like	that.	Maybe	successful
people	in	other	industries	are;	I	don't	know;	but	not	startup
founders.	[1]

I	knew	this	empirically,	but	I	never	saw	the	math	of	why	till	I	got
this	founder's	email.	In	it	he	said	he	worried	that	he	was
fundamentally	soft-hearted	and	tended	to	give	away	too	much	for
free.	He	thought	perhaps	he	needed	"a	little	dose	of	sociopath-
ness."

I	told	him	not	to	worry	about	it,	because	so	long	as	he	built
something	good	enough	to	spread	by	word	of	mouth,	he'd	have	a
superlinear	growth	curve.	If	he	was	bad	at	extracting	money
from	people,	at	worst	this	curve	would	be	some	constant	multiple
less	than	1	of	what	it	might	have	been.	But	a	constant	multiple	of
any	curve	is	exactly	the	same	shape.	The	numbers	on	the	Y	axis
are	smaller,	but	the	curve	is	just	as	steep,	and	when	anything
grows	at	the	rate	of	a	successful	startup,	the	Y	axis	will	take	care
of	itself.

Some	examples	will	make	this	clear.	Suppose	your	company	is
making	$1000	a	month	now,	and	you've	made	something	so	great

mean.html
#f1n

that	it's	growing	at	5%	a	week.	Two	years	from	now,	you'll	be
making	about	$160k	a	month.

Now	suppose	you're	so	un-rapacious	that	you	only	extract	half	as
much	from	your	users	as	you	could.	That	means	two	years	later
you'll	be	making	$80k	a	month	instead	of	$160k.	How	far	behind
are	you?	How	long	will	it	take	to	catch	up	with	where	you'd	have
been	if	you	were	extracting	every	penny?	A	mere	15	weeks.	After
two	years,	the	un-rapacious	founder	is	only	3.5	months	behind
the	rapacious	one.	[2]

If	you're	going	to	optimize	a	number,	the	one	to	choose	is	your
growth	rate.	Suppose	as	before	that	you	only	extract	half	as
much	from	users	as	you	could,	but	that	you're	able	to	grow	6%	a
week	instead	of	5%.	Now	how	are	you	doing	compared	to	the
rapacious	founder	after	two	years?	You're	already	ahead—$214k
a	month	versus	$160k—and	pulling	away	fast.	In	another	year
you'll	be	making	$4.4	million	a	month	to	the	rapacious	founder's
$2	million.

Obviously	one	case	where	it	would	help	to	be	rapacious	is	when
growth	depends	on	that.	What	makes	startups	different	is	that
usually	it	doesn't.	Startups	usually	win	by	making	something	so
great	that	people	recommend	it	to	their	friends.	And	being
rapacious	not	only	doesn't	help	you	do	that,	but	probably	hurts.
[3]

The	reason	startup	founders	can	safely	be	nice	is	that	making
great	things	is	compounded,	and	rapacity	isn't.

So	if	you're	a	founder,	here's	a	deal	you	can	make	with	yourself
that	will	both	make	you	happy	and	make	your	company
successful.	Tell	yourself	you	can	be	as	nice	as	you	want,	so	long
as	you	work	hard	on	your	growth	rate	to	compensate.	Most
successful	startups	make	that	tradeoff	unconsciously.	Maybe	if
you	do	it	consciously	you'll	do	it	even	better.

#f2n
growth.html
#f3n

Notes

[1]	Many	think	successful	startup	founders	are	driven	by	money.
In	fact	the	secret	weapon	of	the	most	successful	founders	is	that
they	aren't.	If	they	were,	they'd	have	taken	one	of	the	acquisition
offers	that	every	fast-growing	startup	gets	on	the	way	up.	What
drives	the	most	successful	founders	is	the	same	thing	that	drives
most	people	who	make	things:	the	company	is	their	project.

[2]	In	fact	since	2	≈	1.05	^	15,	the	un-rapacious	founder	is
always	15	weeks	behind	the	rapacious	one.

[3]	The	other	reason	it	might	help	to	be	good	at	squeezing	money
out	of	customers	is	that	startups	usually	lose	money	at	first,	and
making	more	per	customer	makes	it	easier	to	get	to	profitability
before	your	initial	funding	runs	out.	But	while	it	is	very	common
for	startups	to	die	from	running	through	their	initial	funding	and
then	being	unable	to	raise	more,	the	underlying	cause	is	usually
slow	growth	or	excessive	spending	rather	than	insufficient	effort
to	extract	money	from	existing	customers.

Thanks	to	Sam	Altman,	Harj	Taggar,	Jessica	Livingston,	and	Geoff
Ralston	for	reading	drafts	of	this,	and	to	Randall	Bennett	for
being	such	a	nice	guy.

pinch.html

	

Default	Alive	or	Default	Dead?
October	2015

When	I	talk	to	a	startup	that's	been	operating	for	more	than	8	or
9	months,	the	first	thing	I	want	to	know	is	almost	always	the
same.	Assuming	their	expenses	remain	constant	and	their
revenue	growth	is	what	it	has	been	over	the	last	several	months,
do	they	make	it	to	profitability	on	the	money	they	have	left?	Or	to
put	it	more	dramatically,	by	default	do	they	live	or	die?

The	startling	thing	is	how	often	the	founders	themselves	don't
know.	Half	the	founders	I	talk	to	don't	know	whether	they're
default	alive	or	default	dead.

If	you're	among	that	number,	Trevor	Blackwell	has	made	a	handy
calculator	you	can	use	to	find	out.

The	reason	I	want	to	know	first	whether	a	startup	is	default	alive
or	default	dead	is	that	the	rest	of	the	conversation	depends	on
the	answer.	If	the	company	is	default	alive,	we	can	talk	about
ambitious	new	things	they	could	do.	If	it's	default	dead,	we
probably	need	to	talk	about	how	to	save	it.	We	know	the	current
trajectory	ends	badly.	How	can	they	get	off	that	trajectory?

Why	do	so	few	founders	know	whether	they're	default	alive	or
default	dead?	Mainly,	I	think,	because	they're	not	used	to	asking
that.	It's	not	a	question	that	makes	sense	to	ask	early	on,	any
more	than	it	makes	sense	to	ask	a	3	year	old	how	he	plans	to
support	himself.	But	as	the	company	grows	older,	the	question
switches	from	meaningless	to	critical.	That	kind	of	switch	often
takes	people	by	surprise.

I	propose	the	following	solution:	instead	of	starting	to	ask	too
late	whether	you're	default	alive	or	default	dead,	start	asking	too
early.	It's	hard	to	say	precisely	when	the	question	switches
polarity.	But	it's	probably	not	that	dangerous	to	start	worrying

http://growth.tlb.org/#

too	early	that	you're	default	dead,	whereas	it's	very	dangerous	to
start	worrying	too	late.

The	reason	is	a	phenomenon	I	wrote	about	earlier:	the	fatal
pinch.	The	fatal	pinch	is	default	dead	+	slow	growth	+	not
enough	time	to	fix	it.	And	the	way	founders	end	up	in	it	is	by	not
realizing	that's	where	they're	headed.

There	is	another	reason	founders	don't	ask	themselves	whether
they're	default	alive	or	default	dead:	they	assume	it	will	be	easy
to	raise	more	money.	But	that	assumption	is	often	false,	and
worse	still,	the	more	you	depend	on	it,	the	falser	it	becomes.

Maybe	it	will	help	to	separate	facts	from	hopes.	Instead	of
thinking	of	the	future	with	vague	optimism,	explicitly	separate
the	components.	Say	"We're	default	dead,	but	we're	counting	on
investors	to	save	us."	Maybe	as	you	say	that,	it	will	set	off	the
same	alarms	in	your	head	that	it	does	in	mine.	And	if	you	set	off
the	alarms	sufficiently	early,	you	may	be	able	to	avoid	the	fatal
pinch.

It	would	be	safe	to	be	default	dead	if	you	could	count	on
investors	saving	you.	As	a	rule	their	interest	is	a	function	of
growth.	If	you	have	steep	revenue	growth,	say	over	5x	a	year,	you
can	start	to	count	on	investors	being	interested	even	if	you're	not
profitable.	[1]	But	investors	are	so	fickle	that	you	can	never	do
more	than	start	to	count	on	them.	Sometimes	something	about
your	business	will	spook	investors	even	if	your	growth	is	great.
So	no	matter	how	good	your	growth	is,	you	can	never	safely	treat
fundraising	as	more	than	a	plan	A.	You	should	always	have	a	plan
B	as	well:	you	should	know	(as	in	write	down)	precisely	what
you'll	need	to	do	to	survive	if	you	can't	raise	more	money,	and
precisely	when	you'll	have	to	switch	to	plan	B	if	plan	A	isn't
working.

In	any	case,	growing	fast	versus	operating	cheaply	is	far	from	the
sharp	dichotomy	many	founders	assume	it	to	be.	In	practice
there	is	surprisingly	little	connection	between	how	much	a
startup	spends	and	how	fast	it	grows.	When	a	startup	grows	fast,
it's	usually	because	the	product	hits	a	nerve,	in	the	sense	of
hitting	some	big	need	straight	on.	When	a	startup	spends	a	lot,

pinch.html
#f1n

it's	usually	because	the	product	is	expensive	to	develop	or	sell,	or
simply	because	they're	wasteful.

If	you're	paying	attention,	you'll	be	asking	at	this	point	not	just
how	to	avoid	the	fatal	pinch,	but	how	to	avoid	being	default	dead.
That	one	is	easy:	don't	hire	too	fast.	Hiring	too	fast	is	by	far	the
biggest	killer	of	startups	that	raise	money.	[2]

Founders	tell	themselves	they	need	to	hire	in	order	to	grow.	But
most	err	on	the	side	of	overestimating	this	need	rather	than
underestimating	it.	Why?	Partly	because	there's	so	much	work	to
do.	Naive	founders	think	that	if	they	can	just	hire	enough	people,
it	will	all	get	done.	Partly	because	successful	startups	have	lots	of
employees,	so	it	seems	like	that's	what	one	does	in	order	to	be
successful.	In	fact	the	large	staffs	of	successful	startups	are
probably	more	the	effect	of	growth	than	the	cause.	And	partly
because	when	founders	have	slow	growth	they	don't	want	to	face
what	is	usually	the	real	reason:	the	product	is	not	appealing
enough.

Plus	founders	who've	just	raised	money	are	often	encouraged	to
overhire	by	the	VCs	who	funded	them.	Kill-or-cure	strategies	are
optimal	for	VCs	because	they're	protected	by	the	portfolio	effect.
VCs	want	to	blow	you	up,	in	one	sense	of	the	phrase	or	the	other.
But	as	a	founder	your	incentives	are	different.	You	want	above	all
to	survive.	[3]

Here's	a	common	way	startups	die.	They	make	something
moderately	appealing	and	have	decent	initial	growth.	They	raise
their	first	round	fairly	easily,	because	the	founders	seem	smart
and	the	idea	sounds	plausible.	But	because	the	product	is	only
moderately	appealing,	growth	is	ok	but	not	great.	The	founders
convince	themselves	that	hiring	a	bunch	of	people	is	the	way	to
boost	growth.	Their	investors	agree.	But	(because	the	product	is
only	moderately	appealing)	the	growth	never	comes.	Now	they're
rapidly	running	out	of	runway.	They	hope	further	investment	will
save	them.	But	because	they	have	high	expenses	and	slow
growth,	they're	now	unappealing	to	investors.	They're	unable	to
raise	more,	and	the	company	dies.

What	the	company	should	have	done	is	address	the	fundamental

#f2n
#f3n

problem:	that	the	product	is	only	moderately	appealing.	Hiring
people	is	rarely	the	way	to	fix	that.	More	often	than	not	it	makes
it	harder.	At	this	early	stage,	the	product	needs	to	evolve	more
than	to	be	"built	out,"	and	that's	usually	easier	with	fewer	people.
[4]

Asking	whether	you're	default	alive	or	default	dead	may	save	you
from	this.	Maybe	the	alarm	bells	it	sets	off	will	counteract	the
forces	that	push	you	to	overhire.	Instead	you'll	be	compelled	to
seek	growth	in	other	ways.	For	example,	by	doing	things	that
don't	scale,	or	by	redesigning	the	product	in	the	way	only
founders	can.	And	for	many	if	not	most	startups,	these	paths	to
growth	will	be	the	ones	that	actually	work.

Airbnb	waited	4	months	after	raising	money	at	the	end	of
Y	Combinator	before	they	hired	their	first	employee.	In	the
meantime	the	founders	were	terribly	overworked.	But	they	were
overworked	evolving	Airbnb	into	the	astonishingly	successful
organism	it	is	now.

Notes

[1]	Steep	usage	growth	will	also	interest	investors.	Revenue	will
ultimately	be	a	constant	multiple	of	usage,	so	x%	usage	growth
predicts	x%	revenue	growth.	But	in	practice	investors	discount
merely	predicted	revenue,	so	if	you're	measuring	usage	you	need
a	higher	growth	rate	to	impress	investors.

[2]	Startups	that	don't	raise	money	are	saved	from	hiring	too	fast
because	they	can't	afford	to.	But	that	doesn't	mean	you	should
avoid	raising	money	in	order	to	avoid	this	problem,	any	more
than	that	total	abstinence	is	the	only	way	to	avoid	becoming	an
alcoholic.

[3]	I	would	not	be	surprised	if	VCs'	tendency	to	push	founders	to
overhire	is	not	even	in	their	own	interest.	They	don't	know	how
many	of	the	companies	that	get	killed	by	overspending	might

#f4n
ds.html

have	done	well	if	they'd	survived.	My	guess	is	a	significant
number.

[4]	After	reading	a	draft,	Sam	Altman	wrote:

"I	think	you	should	make	the	hiring	point	more	strongly.	I	think
it's	roughly	correct	to	say	that	YC's	most	successful	companies
have	never	been	the	fastest	to	hire,	and	one	of	the	marks	of	a
great	founder	is	being	able	to	resist	this	urge."

Paul	Buchheit	adds:

"A	related	problem	that	I	see	a	lot	is	premature	scaling—
founders	take	a	small	business	that	isn't	really	working	(bad	unit
economics,	typically)	and	then	scale	it	up	because	they	want
impressive	growth	numbers.	This	is	similar	to	over-hiring	in	that
it	makes	the	business	much	harder	to	fix	once	it's	big,	plus	they
are	bleeding	cash	really	fast."

Thanks	to	Sam	Altman,	Paul	Buchheit,	Joe	Gebbia,	Jessica
Livingston,	and	Geoff	Ralston	for	reading	drafts	of	this.

	

Write	Like	You	Talk
October	2015

Here's	a	simple	trick	for	getting	more	people	to	read	what	you
write:	write	in	spoken	language.

Something	comes	over	most	people	when	they	start	writing.	They
write	in	a	different	language	than	they'd	use	if	they	were	talking
to	a	friend.	The	sentence	structure	and	even	the	words	are
different.	No	one	uses	"pen"	as	a	verb	in	spoken	English.	You'd
feel	like	an	idiot	using	"pen"	instead	of	"write"	in	a	conversation
with	a	friend.

The	last	straw	for	me	was	a	sentence	I	read	a	couple	days	ago:

The	mercurial	Spaniard	himself	declared:	"After
Altamira,	all	is	decadence."

It's	from	Neil	Oliver's	A	History	of	Ancient	Britain.	I	feel	bad
making	an	example	of	this	book,	because	it's	no	worse	than	lots
of	others.	But	just	imagine	calling	Picasso	"the	mercurial
Spaniard"	when	talking	to	a	friend.	Even	one	sentence	of	this
would	raise	eyebrows	in	conversation.	And	yet	people	write
whole	books	of	it.

Ok,	so	written	and	spoken	language	are	different.	Does	that
make	written	language	worse?

If	you	want	people	to	read	and	understand	what	you	write,	yes.
Written	language	is	more	complex,	which	makes	it	more	work	to
read.	It's	also	more	formal	and	distant,	which	gives	the	reader's
attention	permission	to	drift.	But	perhaps	worst	of	all,	the
complex	sentences	and	fancy	words	give	you,	the	writer,	the	false
impression	that	you're	saying	more	than	you	actually	are.

You	don't	need	complex	sentences	to	express	complex	ideas.
When	specialists	in	some	abstruse	topic	talk	to	one	another

about	ideas	in	their	field,	they	don't	use	sentences	any	more
complex	than	they	do	when	talking	about	what	to	have	for	lunch.
They	use	different	words,	certainly.	But	even	those	they	use	no
more	than	necessary.	And	in	my	experience,	the	harder	the
subject,	the	more	informally	experts	speak.	Partly,	I	think,
because	they	have	less	to	prove,	and	partly	because	the	harder
the	ideas	you're	talking	about,	the	less	you	can	afford	to	let
language	get	in	the	way.

Informal	language	is	the	athletic	clothing	of	ideas.

I'm	not	saying	spoken	language	always	works	best.	Poetry	is	as
much	music	as	text,	so	you	can	say	things	you	wouldn't	say	in
conversation.	And	there	are	a	handful	of	writers	who	can	get
away	with	using	fancy	language	in	prose.	And	then	of	course
there	are	cases	where	writers	don't	want	to	make	it	easy	to
understand	what	they're	saying—in	corporate	announcements	of
bad	news,	for	example,	or	at	the	more	bogus	end	of	the
humanities.	But	for	nearly	everyone	else,	spoken	language	is
better.

It	seems	to	be	hard	for	most	people	to	write	in	spoken	language.
So	perhaps	the	best	solution	is	to	write	your	first	draft	the	way
you	usually	would,	then	afterward	look	at	each	sentence	and	ask
"Is	this	the	way	I'd	say	this	if	I	were	talking	to	a	friend?"	If	it
isn't,	imagine	what	you	would	say,	and	use	that	instead.	After	a
while	this	filter	will	start	to	operate	as	you	write.	When	you	write
something	you	wouldn't	say,	you'll	hear	the	clank	as	it	hits	the
page.

Before	I	publish	a	new	essay,	I	read	it	out	loud	and	fix	everything
that	doesn't	sound	like	conversation.	I	even	fix	bits	that	are
phonetically	awkward;	I	don't	know	if	that's	necessary,	but	it
doesn't	cost	much.

This	trick	may	not	always	be	enough.	I've	seen	writing	so	far
removed	from	spoken	language	that	it	couldn't	be	fixed	sentence
by	sentence.	For	cases	like	that	there's	a	more	drastic	solution.
After	writing	the	first	draft,	try	explaining	to	a	friend	what	you
just	wrote.	Then	replace	the	draft	with	what	you	said	to	your
friend.

https://scholar.google.com/scholar?hl=en&as_sdt=1,5&q=transgression+narrative+postmodern+gender

People	often	tell	me	how	much	my	essays	sound	like	me	talking.
The	fact	that	this	seems	worthy	of	comment	shows	how	rarely
people	manage	to	write	in	spoken	language.	Otherwise
everyone's	writing	would	sound	like	them	talking.

If	you	simply	manage	to	write	in	spoken	language,	you'll	be
ahead	of	95%	of	writers.	And	it's	so	easy	to	do:	just	don't	let	a
sentence	through	unless	it's	the	way	you'd	say	it	to	a	friend.

Thanks	to	Patrick	Collison	and	Jessica	Livingston	for	reading
drafts	of	this.

	

A	Way	to	Detect	Bias
October	2015

This	will	come	as	a	surprise	to	a	lot	of	people,	but	in	some	cases
it's	possible	to	detect	bias	in	a	selection	process	without	knowing
anything	about	the	applicant	pool.	Which	is	exciting	because
among	other	things	it	means	third	parties	can	use	this	technique
to	detect	bias	whether	those	doing	the	selecting	want	them	to	or
not.

You	can	use	this	technique	whenever	(a)	you	have	at	least	a
random	sample	of	the	applicants	that	were	selected,	(b)	their
subsequent	performance	is	measured,	and	(c)	the	groups	of
applicants	you're	comparing	have	roughly	equal	distribution	of
ability.

How	does	it	work?	Think	about	what	it	means	to	be	biased.	What
it	means	for	a	selection	process	to	be	biased	against	applicants	of
type	x	is	that	it's	harder	for	them	to	make	it	through.	Which
means	applicants	of	type	x	have	to	be	better	to	get	selected	than
applicants	not	of	type	x.	[1]	Which	means	applicants	of	type	x
who	do	make	it	through	the	selection	process	will	outperform
other	successful	applicants.	And	if	the	performance	of	all	the
successful	applicants	is	measured,	you'll	know	if	they	do.

Of	course,	the	test	you	use	to	measure	performance	must	be	a
valid	one.	And	in	particular	it	must	not	be	invalidated	by	the	bias
you're	trying	to	measure.	But	there	are	some	domains	where
performance	can	be	measured,	and	in	those	detecting	bias	is
straightforward.	Want	to	know	if	the	selection	process	was
biased	against	some	type	of	applicant?	Check	whether	they
outperform	the	others.	This	is	not	just	a	heuristic	for	detecting
bias.	It's	what	bias	means.

For	example,	many	suspect	that	venture	capital	firms	are	biased
against	female	founders.	This	would	be	easy	to	detect:	among

#f1n

their	portfolio	companies,	do	startups	with	female	founders
outperform	those	without?	A	couple	months	ago,	one	VC	firm
(almost	certainly	unintentionally)	published	a	study	showing	bias
of	this	type.	First	Round	Capital	found	that	among	its	portfolio
companies,	startups	with	female	founders	outperformed	those
without	by	63%.	[2]

The	reason	I	began	by	saying	that	this	technique	would	come	as
a	surprise	to	many	people	is	that	we	so	rarely	see	analyses	of	this
type.	I'm	sure	it	will	come	as	a	surprise	to	First	Round	that	they
performed	one.	I	doubt	anyone	there	realized	that	by	limiting
their	sample	to	their	own	portfolio,	they	were	producing	a	study
not	of	startup	trends	but	of	their	own	biases	when	selecting
companies.

I	predict	we'll	see	this	technique	used	more	in	the	future.	The
information	needed	to	conduct	such	studies	is	increasingly
available.	Data	about	who	applies	for	things	is	usually	closely
guarded	by	the	organizations	selecting	them,	but	nowadays	data
about	who	gets	selected	is	often	publicly	available	to	anyone	who
takes	the	trouble	to	aggregate	it.

Notes

[1]	This	technique	wouldn't	work	if	the	selection	process	looked
for	different	things	from	different	types	of	applicants—for
example,	if	an	employer	hired	men	based	on	their	ability	but
women	based	on	their	appearance.

[2]	As	Paul	Buchheit	points	out,	First	Round	excluded	their	most
successful	investment,	Uber,	from	the	study.	And	while	it	makes
sense	to	exclude	outliers	from	some	types	of	studies,	studies	of
returns	from	startup	investing,	which	is	all	about	hitting	outliers,
are	not	one	of	them.

http://10years.firstround.com/#one
#f2n

Thanks	to	Sam	Altman,	Jessica	Livingston,	and	Geoff	Ralston	for
reading	drafts	of	this.

	

Jessica	Livingston
November	2015

A	few	months	ago	an	article	about	Y	Combinator	said	that	early
on	it	had	been	a	"one-man	show."	It's	sadly	common	to	read	that
sort	of	thing.	But	the	problem	with	that	description	is	not	just
that	it's	unfair.	It's	also	misleading.	Much	of	what's	most	novel
about	YC	is	due	to	Jessica	Livingston.	If	you	don't	understand	her,
you	don't	understand	YC.	So	let	me	tell	you	a	little	about	Jessica.

YC	had	4	founders.	Jessica	and	I	decided	one	night	to	start	it,	and
the	next	day	we	recruited	my	friends	Robert	Morris	and	Trevor
Blackwell.	Jessica	and	I	ran	YC	day	to	day,	and	Robert	and	Trevor
read	applications	and	did	interviews	with	us.

Jessica	and	I	were	already	dating	when	we	started	YC.	At	first	we
tried	to	act	"professional"	about	this,	meaning	we	tried	to
conceal	it.	In	retrospect	that	seems	ridiculous,	and	we	soon
dropped	the	pretense.	And	the	fact	that	Jessica	and	I	were	a
couple	is	a	big	part	of	what	made	YC	what	it	was.	YC	felt	like	a
family.	The	founders	early	on	were	mostly	young.	We	all	had
dinner	together	once	a	week,	cooked	for	the	first	couple	years	by
me.	Our	first	building	had	been	a	private	home.	The	overall
atmosphere	was	shockingly	different	from	a	VC's	office	on	Sand
Hill	Road,	in	a	way	that	was	entirely	for	the	better.	There	was	an
authenticity	that	everyone	who	walked	in	could	sense.	And	that
didn't	just	mean	that	people	trusted	us.	It	was	the	perfect	quality
to	instill	in	startups.	Authenticity	is	one	of	the	most	important
things	YC	looks	for	in	founders,	not	just	because	fakers	and
opportunists	are	annoying,	but	because	authenticity	is	one	of	the
main	things	that	separates	the	most	successful	startups	from	the
rest.

Early	YC	was	a	family,	and	Jessica	was	its	mom.	And	the	culture
she	defined	was	one	of	YC's	most	important	innovations.	Culture
is	important	in	any	organization,	but	at	YC	culture	wasn't	just

how	we	behaved	when	we	built	the	product.	At	YC,	the	culture
was	the	product.

Jessica	was	also	the	mom	in	another	sense:	she	had	the	last
word.	Everything	we	did	as	an	organization	went	through	her
first	—	who	to	fund,	what	to	say	to	the	public,	how	to	deal	with
other	companies,	who	to	hire,	everything.

Before	we	had	kids,	YC	was	more	or	less	our	life.	There	was	no
real	distinction	between	working	hours	and	not.	We	talked	about
YC	all	the	time.	And	while	there	might	be	some	businesses	that	it
would	be	tedious	to	let	infect	your	private	life,	we	liked	it.	We'd
started	YC	because	it	was	something	we	were	interested	in.	And
some	of	the	problems	we	were	trying	to	solve	were	endlessly
difficult.	How	do	you	recognize	good	founders?	You	could	talk
about	that	for	years,	and	we	did;	we	still	do.

I'm	better	at	some	things	than	Jessica,	and	she's	better	at	some
things	than	me.	One	of	the	things	she's	best	at	is	judging	people.
She's	one	of	those	rare	individuals	with	x-ray	vision	for	character.
She	can	see	through	any	kind	of	faker	almost	immediately.	Her
nickname	within	YC	was	the	Social	Radar,	and	this	special	power
of	hers	was	critical	in	making	YC	what	it	is.	The	earlier	you	pick
startups,	the	more	you're	picking	the	founders.	Later	stage
investors	get	to	try	products	and	look	at	growth	numbers.	At	the
stage	where	YC	invests,	there	is	often	neither	a	product	nor	any
numbers.

Others	thought	YC	had	some	special	insight	about	the	future	of
technology.	Mostly	we	had	the	same	sort	of	insight	Socrates
claimed:	we	at	least	knew	we	knew	nothing.	What	made	YC
successful	was	being	able	to	pick	good	founders.	We	thought
Airbnb	was	a	bad	idea.	We	funded	it	because	we	liked	the
founders.

During	interviews,	Robert	and	Trevor	and	I	would	pepper	the
applicants	with	technical	questions.	Jessica	would	mostly	watch.
A	lot	of	the	applicants	probably	read	her	as	some	kind	of
secretary,	especially	early	on,	because	she	was	the	one	who'd	go
out	and	get	each	new	group	and	she	didn't	ask	many	questions.
She	was	ok	with	that.	It	was	easier	for	her	to	watch	people	if	they

didn't	notice	her.	But	after	the	interview,	the	three	of	us	would
turn	to	Jessica	and	ask	"What	does	the	Social	Radar	say?"	[1]

Having	the	Social	Radar	at	interviews	wasn't	just	how	we	picked
founders	who'd	be	successful.	It	was	also	how	we	picked
founders	who	were	good	people.	At	first	we	did	this	because	we
couldn't	help	it.	Imagine	what	it	would	feel	like	to	have	x-ray
vision	for	character.	Being	around	bad	people	would	be
intolerable.	So	we'd	refuse	to	fund	founders	whose	characters	we
had	doubts	about	even	if	we	thought	they'd	be	successful.

Though	we	initially	did	this	out	of	self-indulgence,	it	turned	out	to
be	very	valuable	to	YC.	We	didn't	realize	it	in	the	beginning,	but
the	people	we	were	picking	would	become	the	YC	alumni
network.	And	once	we	picked	them,	unless	they	did	something
really	egregious,	they	were	going	to	be	part	of	it	for	life.	Some
now	think	YC's	alumni	network	is	its	most	valuable	feature.	I
personally	think	YC's	advice	is	pretty	good	too,	but	the	alumni
network	is	certainly	among	the	most	valuable	features.	The	level
of	trust	and	helpfulness	is	remarkable	for	a	group	of	such	size.
And	Jessica	is	the	main	reason	why.

(As	we	later	learned,	it	probably	cost	us	little	to	reject	people
whose	characters	we	had	doubts	about,	because	how	good
founders	are	and	how	well	they	do	are	not	orthogonal.	If	bad
founders	succeed	at	all,	they	tend	to	sell	early.	The	most
successful	founders	are	almost	all	good.)

If	Jessica	was	so	important	to	YC,	why	don't	more	people	realize
it?	Partly	because	I'm	a	writer,	and	writers	always	get
disproportionate	attention.	YC's	brand	was	initially	my	brand,
and	our	applicants	were	people	who'd	read	my	essays.	But	there
is	another	reason:	Jessica	hates	attention.	Talking	to	reporters
makes	her	nervous.	The	thought	of	giving	a	talk	paralyzes	her.
She	was	even	uncomfortable	at	our	wedding,	because	the	bride
is	always	the	center	of	attention.	[2]

It's	not	just	because	she's	shy	that	she	hates	attention,	but
because	it	throws	off	the	Social	Radar.	She	can't	be	herself.	You
can't	watch	people	when	everyone	is	watching	you.

#f1n
mean.html
#f2n

Another	reason	attention	worries	her	is	that	she	hates	bragging.
In	anything	she	does	that's	publicly	visible,	her	biggest	fear
(after	the	obvious	fear	that	it	will	be	bad)	is	that	it	will	seem
ostentatious.	She	says	being	too	modest	is	a	common	problem	for
women.	But	in	her	case	it	goes	beyond	that.	She	has	a	horror	of
ostentation	so	visceral	it's	almost	a	phobia.

She	also	hates	fighting.	She	can't	do	it;	she	just	shuts	down.	And
unfortunately	there	is	a	good	deal	of	fighting	in	being	the	public
face	of	an	organization.

So	although	Jessica	more	than	anyone	made	YC	unique,	the	very
qualities	that	enabled	her	to	do	it	mean	she	tends	to	get	written
out	of	YC's	history.	Everyone	buys	this	story	that	PG	started	YC
and	his	wife	just	kind	of	helped.	Even	YC's	haters	buy	it.	A	couple
years	ago	when	people	were	attacking	us	for	not	funding	more
female	founders	(than	exist),	they	all	treated	YC	as	identical	with
PG.	It	would	have	spoiled	the	narrative	to	acknowledge	Jessica's
central	role	at	YC.

Jessica	was	boiling	mad	that	people	were	accusing	her	company
of	sexism.	I've	never	seen	her	angrier	about	anything.	But	she
did	not	contradict	them.	Not	publicly.	In	private	there	was	a
great	deal	of	profanity.	And	she	wrote	three	separate	essays
about	the	question	of	female	founders.	But	she	could	never	bring
herself	to	publish	any	of	them.	She'd	seen	the	level	of	vitriol	in
this	debate,	and	she	shrank	from	engaging.	[3]

It	wasn't	just	because	she	disliked	fighting.	She's	so	sensitive	to
character	that	it	repels	her	even	to	fight	with	dishonest	people.
The	idea	of	mixing	it	up	with	linkbait	journalists	or	Twitter	trolls
would	seem	to	her	not	merely	frightening,	but	disgusting.

But	Jessica	knew	her	example	as	a	successful	female	founder
would	encourage	more	women	to	start	companies,	so	last	year
she	did	something	YC	had	never	done	before	and	hired	a	PR	firm
to	get	her	some	interviews.	At	one	of	the	first	she	did,	the
reporter	brushed	aside	her	insights	about	startups	and	turned	it
into	a	sensationalistic	story	about	how	some	guy	had	tried	to	chat
her	up	as	she	was	waiting	outside	the	bar	where	they	had
arranged	to	meet.	Jessica	was	mortified,	partly	because	the	guy

#f3n

had	done	nothing	wrong,	but	more	because	the	story	treated	her
as	a	victim	significant	only	for	being	a	woman,	rather	than	one	of
the	most	knowledgeable	investors	in	the	Valley.

After	that	she	told	the	PR	firm	to	stop.

You're	not	going	to	be	hearing	in	the	press	about	what	Jessica
has	achieved.	So	let	me	tell	you	what	Jessica	has	achieved.
Y	Combinator	is	fundamentally	a	nexus	of	people,	like	a
university.	It	doesn't	make	a	product.	What	defines	it	is	the
people.	Jessica	more	than	anyone	curated	and	nurtured	that
collection	of	people.	In	that	sense	she	literally	made	YC.

Jessica	knows	more	about	the	qualities	of	startup	founders	than
anyone	else	ever	has.	Her	immense	data	set	and	x-ray	vision	are
the	perfect	storm	in	that	respect.	The	qualities	of	the	founders
are	the	best	predictor	of	how	a	startup	will	do.	And	startups	are
in	turn	the	most	important	source	of	growth	in	mature
economies.

The	person	who	knows	the	most	about	the	most	important	factor
in	the	growth	of	mature	economies	—	that	is	who	Jessica
Livingston	is.	Doesn't	that	sound	like	someone	who	should	be
better	known?

Notes

[1]	Harj	Taggar	reminded	me	that	while	Jessica	didn't	ask	many
questions,	they	tended	to	be	important	ones:

"She	was	always	good	at	sniffing	out	any	red	flags	about	the
team	or	their	determination	and	disarmingly	asking	the	right
question,	which	usually	revealed	more	than	the	founders
realized."

[2]	Or	more	precisely,	while	she	likes	getting	attention	in	the
sense	of	getting	credit	for	what	she	has	done,	she	doesn't	like
getting	attention	in	the	sense	of	being	watched	in	real	time.
Unfortunately,	not	just	for	her	but	for	a	lot	of	people,	how	much
you	get	of	the	former	depends	a	lot	on	how	much	you	get	of	the
latter.

Incidentally,	if	you	saw	Jessica	at	a	public	event,	you	would	never
guess	she	hates	attention,	because	(a)	she	is	very	polite	and	(b)
when	she's	nervous,	she	expresses	it	by	smiling	more.

[3]	The	existence	of	people	like	Jessica	is	not	just	something	the
mainstream	media	needs	to	learn	to	acknowledge,	but	something
feminists	need	to	learn	to	acknowledge	as	well.	There	are
successful	women	who	don't	like	to	fight.	Which	means	if	the
public	conversation	about	women	consists	of	fighting,	their
voices	will	be	silenced.

There's	a	sort	of	Gresham's	Law	of	conversations.	If	a
conversation	reaches	a	certain	level	of	incivility,	the	more
thoughtful	people	start	to	leave.	No	one	understands	female
founders	better	than	Jessica.	But	it's	unlikely	anyone	will	ever
hear	her	speak	candidly	about	the	topic.	She	ventured	a	toe	in
that	water	a	while	ago,	and	the	reaction	was	so	violent	that	she
decided	"never	again."

Thanks	to	Sam	Altman,	Paul	Buchheit,	Patrick	Collison,	Daniel
Gackle,	Carolynn	Levy,	Jon	Levy,	Kirsty	Nathoo,	Robert	Morris,
Geoff	Ralston,	and	Harj	Taggar	for	reading	drafts	of	this.	And
yes,	Jessica	Livingston,	who	made	me	cut	surprisingly	little.

	

The	Refragmentation
January	2016

One	advantage	of	being	old	is	that	you	can	see	change	happen	in
your	lifetime.	A	lot	of	the	change	I've	seen	is	fragmentation.	US
politics	is	much	more	polarized	than	it	used	to	be.	Culturally	we
have	ever	less	common	ground.	The	creative	class	flocks	to	a
handful	of	happy	cities,	abandoning	the	rest.	And	increasing
economic	inequality	means	the	spread	between	rich	and	poor	is
growing	too.	I'd	like	to	propose	a	hypothesis:	that	all	these	trends
are	instances	of	the	same	phenomenon.	And	moreover,	that	the
cause	is	not	some	force	that's	pulling	us	apart,	but	rather	the
erosion	of	forces	that	had	been	pushing	us	together.

Worse	still,	for	those	who	worry	about	these	trends,	the	forces
that	were	pushing	us	together	were	an	anomaly,	a	one-time
combination	of	circumstances	that's	unlikely	to	be	repeated	—
and	indeed,	that	we	would	not	want	to	repeat.

The	two	forces	were	war	(above	all	World	War	II),	and	the	rise	of
large	corporations.

The	effects	of	World	War	II	were	both	economic	and	social.
Economically,	it	decreased	variation	in	income.	Like	all	modern
armed	forces,	America's	were	socialist	economically.	From	each
according	to	his	ability,	to	each	according	to	his	need.	More	or
less.	Higher	ranking	members	of	the	military	got	more	(as	higher
ranking	members	of	socialist	societies	always	do),	but	what	they
got	was	fixed	according	to	their	rank.	And	the	flattening	effect
wasn't	limited	to	those	under	arms,	because	the	US	economy	was
conscripted	too.	Between	1942	and	1945	all	wages	were	set	by
the	National	War	Labor	Board.	Like	the	military,	they	defaulted	to
flatness.	And	this	national	standardization	of	wages	was	so
pervasive	that	its	effects	could	still	be	seen	years	after	the	war
ended.	[1]

#f1n

Business	owners	weren't	supposed	to	be	making	money	either.
FDR	said	"not	a	single	war	millionaire"	would	be	permitted.	To
ensure	that,	any	increase	in	a	company's	profits	over	prewar
levels	was	taxed	at	85%.	And	when	what	was	left	after	corporate
taxes	reached	individuals,	it	was	taxed	again	at	a	marginal	rate
of	93%.	[2]

Socially	too	the	war	tended	to	decrease	variation.	Over	16	million
men	and	women	from	all	sorts	of	different	backgrounds	were
brought	together	in	a	way	of	life	that	was	literally	uniform.
Service	rates	for	men	born	in	the	early	1920s	approached	80%.
And	working	toward	a	common	goal,	often	under	stress,	brought
them	still	closer	together.

Though	strictly	speaking	World	War	II	lasted	less	than	4	years	for
the	US,	its	effects	lasted	longer.	Wars	make	central	governments
more	powerful,	and	World	War	II	was	an	extreme	case	of	this.	In
the	US,	as	in	all	the	other	Allied	countries,	the	federal
government	was	slow	to	give	up	the	new	powers	it	had	acquired.
Indeed,	in	some	respects	the	war	didn't	end	in	1945;	the	enemy
just	switched	to	the	Soviet	Union.	In	tax	rates,	federal	power,
defense	spending,	conscription,	and	nationalism,	the	decades
after	the	war	looked	more	like	wartime	than	prewar	peacetime.
[3]	And	the	social	effects	lasted	too.	The	kid	pulled	into	the	army
from	behind	a	mule	team	in	West	Virginia	didn't	simply	go	back
to	the	farm	afterward.	Something	else	was	waiting	for	him,
something	that	looked	a	lot	like	the	army.

If	total	war	was	the	big	political	story	of	the	20th	century,	the	big
economic	story	was	the	rise	of	a	new	kind	of	company.	And	this
too	tended	to	produce	both	social	and	economic	cohesion.	[4]

The	20th	century	was	the	century	of	the	big,	national
corporation.	General	Electric,	General	Foods,	General	Motors.
Developments	in	finance,	communications,	transportation,	and
manufacturing	enabled	a	new	type	of	company	whose	goal	was
above	all	scale.	Version	1	of	this	world	was	low-res:	a	Duplo
world	of	a	few	giant	companies	dominating	each	big	market.	[5]

The	late	19th	and	early	20th	centuries	had	been	a	time	of
consolidation,	led	especially	by	J.	P.	Morgan.	Thousands	of

#f2n
#f3n
#f4n
#f5n

companies	run	by	their	founders	were	merged	into	a	couple
hundred	giant	ones	run	by	professional	managers.	Economies	of
scale	ruled	the	day.	It	seemed	to	people	at	the	time	that	this	was
the	final	state	of	things.	John	D.	Rockefeller	said	in	1880

The	day	of	combination	is	here	to	stay.	Individualism
has	gone,	never	to	return.

He	turned	out	to	be	mistaken,	but	he	seemed	right	for	the	next
hundred	years.

The	consolidation	that	began	in	the	late	19th	century	continued
for	most	of	the	20th.	By	the	end	of	World	War	II,	as	Michael	Lind
writes,	"the	major	sectors	of	the	economy	were	either	organized
as	government-backed	cartels	or	dominated	by	a	few	oligopolistic
corporations."

For	consumers	this	new	world	meant	the	same	choices
everywhere,	but	only	a	few	of	them.	When	I	grew	up	there	were
only	2	or	3	of	most	things,	and	since	they	were	all	aiming	at	the
middle	of	the	market	there	wasn't	much	to	differentiate	them.

One	of	the	most	important	instances	of	this	phenomenon	was	in
TV.	Here	there	were	3	choices:	NBC,	CBS,	and	ABC.	Plus	public
TV	for	eggheads	and	communists.	The	programs	that	the	3
networks	offered	were	indistinguishable.	In	fact,	here	there	was
a	triple	pressure	toward	the	center.	If	one	show	did	try
something	daring,	local	affiliates	in	conservative	markets	would
make	them	stop.	Plus	since	TVs	were	expensive,	whole	families
watched	the	same	shows	together,	so	they	had	to	be	suitable	for
everyone.

And	not	only	did	everyone	get	the	same	thing,	they	got	it	at	the
same	time.	It's	difficult	to	imagine	now,	but	every	night	tens	of
millions	of	families	would	sit	down	together	in	front	of	their	TV
set	watching	the	same	show,	at	the	same	time,	as	their	next	door
neighbors.	What	happens	now	with	the	Super	Bowl	used	to
happen	every	night.	We	were	literally	in	sync.	[6]

In	a	way	mid-century	TV	culture	was	good.	The	view	it	gave	of
the	world	was	like	you'd	find	in	a	children's	book,	and	it	probably

#f6n

had	something	of	the	effect	that	(parents	hope)	children's	books
have	in	making	people	behave	better.	But,	like	children's	books,
TV	was	also	misleading.	Dangerously	misleading,	for	adults.	In
his	autobiography,	Robert	MacNeil	talks	of	seeing	gruesome
images	that	had	just	come	in	from	Vietnam	and	thinking,	we
can't	show	these	to	families	while	they're	having	dinner.

I	know	how	pervasive	the	common	culture	was,	because	I	tried	to
opt	out	of	it,	and	it	was	practically	impossible	to	find	alternatives.
When	I	was	13	I	realized,	more	from	internal	evidence	than	any
outside	source,	that	the	ideas	we	were	being	fed	on	TV	were
crap,	and	I	stopped	watching	it.	[7]	But	it	wasn't	just	TV.	It
seemed	like	everything	around	me	was	crap.	The	politicians	all
saying	the	same	things,	the	consumer	brands	making	almost
identical	products	with	different	labels	stuck	on	to	indicate	how
prestigious	they	were	meant	to	be,	the	balloon-frame	houses	with
fake	"colonial"	skins,	the	cars	with	several	feet	of	gratuitous
metal	on	each	end	that	started	to	fall	apart	after	a	couple	years,
the	"red	delicious"	apples	that	were	red	but	only	nominally
apples.	And	in	retrospect,	it	was	crap.	[8]

But	when	I	went	looking	for	alternatives	to	fill	this	void,	I	found
practically	nothing.	There	was	no	Internet	then.	The	only	place	to
look	was	in	the	chain	bookstore	in	our	local	shopping	mall.	[9]
There	I	found	a	copy	of	The	Atlantic.	I	wish	I	could	say	it	became
a	gateway	into	a	wider	world,	but	in	fact	I	found	it	boring	and
incomprehensible.	Like	a	kid	tasting	whisky	for	the	first	time	and
pretending	to	like	it,	I	preserved	that	magazine	as	carefully	as	if
it	had	been	a	book.	I'm	sure	I	still	have	it	somewhere.	But	though
it	was	evidence	that	there	was,	somewhere,	a	world	that	wasn't
red	delicious,	I	didn't	find	it	till	college.

It	wasn't	just	as	consumers	that	the	big	companies	made	us
similar.	They	did	as	employers	too.	Within	companies	there	were
powerful	forces	pushing	people	toward	a	single	model	of	how	to
look	and	act.	IBM	was	particularly	notorious	for	this,	but	they
were	only	a	little	more	extreme	than	other	big	companies.	And
the	models	of	how	to	look	and	act	varied	little	between
companies.	Meaning	everyone	within	this	world	was	expected	to
seem	more	or	less	the	same.	And	not	just	those	in	the	corporate
world,	but	also	everyone	who	aspired	to	it	—	which	in	the	middle

#f7n
#f8n
#f9n

of	the	20th	century	meant	most	people	who	weren't	already	in	it.
For	most	of	the	20th	century,	working-class	people	tried	hard	to
look	middle	class.	You	can	see	it	in	old	photos.	Few	adults	aspired
to	look	dangerous	in	1950.

But	the	rise	of	national	corporations	didn't	just	compress	us
culturally.	It	compressed	us	economically	too,	and	on	both	ends.

Along	with	giant	national	corporations,	we	got	giant	national
labor	unions.	And	in	the	mid	20th	century	the	corporations	cut
deals	with	the	unions	where	they	paid	over	market	price	for
labor.	Partly	because	the	unions	were	monopolies.	[10]	Partly
because,	as	components	of	oligopolies	themselves,	the
corporations	knew	they	could	safely	pass	the	cost	on	to	their
customers,	because	their	competitors	would	have	to	as	well.	And
partly	because	in	mid-century	most	of	the	giant	companies	were
still	focused	on	finding	new	ways	to	milk	economies	of	scale.	Just
as	startups	rightly	pay	AWS	a	premium	over	the	cost	of	running
their	own	servers	so	they	can	focus	on	growth,	many	of	the	big
national	corporations	were	willing	to	pay	a	premium	for	labor.
[11]

As	well	as	pushing	incomes	up	from	the	bottom,	by	overpaying
unions,	the	big	companies	of	the	20th	century	also	pushed
incomes	down	at	the	top,	by	underpaying	their	top	management.
Economist	J.	K.	Galbraith	wrote	in	1967	that	"There	are	few
corporations	in	which	it	would	be	suggested	that	executive
salaries	are	at	a	maximum."	[12]

To	some	extent	this	was	an	illusion.	Much	of	the	de	facto	pay	of
executives	never	showed	up	on	their	income	tax	returns,	because
it	took	the	form	of	perks.	The	higher	the	rate	of	income	tax,	the
more	pressure	there	was	to	pay	employees	upstream	of	it.	(In	the
UK,	where	taxes	were	even	higher	than	in	the	US,	companies
would	even	pay	their	kids'	private	school	tuitions.)	One	of	the
most	valuable	things	the	big	companies	of	the	mid	20th	century
gave	their	employees	was	job	security,	and	this	too	didn't	show
up	in	tax	returns	or	income	statistics.	So	the	nature	of
employment	in	these	organizations	tended	to	yield	falsely	low
numbers	about	economic	inequality.	But	even	accounting	for
that,	the	big	companies	paid	their	best	people	less	than	market

#f10n
#f11n
#f12n

price.	There	was	no	market;	the	expectation	was	that	you'd	work
for	the	same	company	for	decades	if	not	your	whole	career.	[13]

Your	work	was	so	illiquid	there	was	little	chance	of	getting
market	price.	But	that	same	illiquidity	also	encouraged	you	not	to
seek	it.	If	the	company	promised	to	employ	you	till	you	retired
and	give	you	a	pension	afterward,	you	didn't	want	to	extract	as
much	from	it	this	year	as	you	could.	You	needed	to	take	care	of
the	company	so	it	could	take	care	of	you.	Especially	when	you'd
been	working	with	the	same	group	of	people	for	decades.	If	you
tried	to	squeeze	the	company	for	more	money,	you	were
squeezing	the	organization	that	was	going	to	take	care	of	them.
Plus	if	you	didn't	put	the	company	first	you	wouldn't	be
promoted,	and	if	you	couldn't	switch	ladders,	promotion	on	this
one	was	the	only	way	up.	[14]

To	someone	who'd	spent	several	formative	years	in	the	armed
forces,	this	situation	didn't	seem	as	strange	as	it	does	to	us	now.
From	their	point	of	view,	as	big	company	executives,	they	were
high-ranking	officers.	They	got	paid	a	lot	more	than	privates.
They	got	to	have	expense	account	lunches	at	the	best	restaurants
and	fly	around	on	the	company's	Gulfstreams.	It	probably	didn't
occur	to	most	of	them	to	ask	if	they	were	being	paid	market
price.

The	ultimate	way	to	get	market	price	is	to	work	for	yourself,	by
starting	your	own	company.	That	seems	obvious	to	any	ambitious
person	now.	But	in	the	mid	20th	century	it	was	an	alien	concept.
Not	because	starting	one's	own	company	seemed	too	ambitious,
but	because	it	didn't	seem	ambitious	enough.	Even	as	late	as	the
1970s,	when	I	grew	up,	the	ambitious	plan	was	to	get	lots	of
education	at	prestigious	institutions,	and	then	join	some	other
prestigious	institution	and	work	one's	way	up	the	hierarchy.	Your
prestige	was	the	prestige	of	the	institution	you	belonged	to.
People	did	start	their	own	businesses	of	course,	but	educated
people	rarely	did,	because	in	those	days	there	was	practically
zero	concept	of	starting	what	we	now	call	a	startup:	a	business
that	starts	small	and	grows	big.	That	was	much	harder	to	do	in
the	mid	20th	century.	Starting	one's	own	business	meant	starting
a	business	that	would	start	small	and	stay	small.	Which	in	those
days	of	big	companies	often	meant	scurrying	around	trying	to

#f13n
#f14n
growth.html

avoid	being	trampled	by	elephants.	It	was	more	prestigious	to	be
one	of	the	executive	class	riding	the	elephant.

By	the	1970s,	no	one	stopped	to	wonder	where	the	big
prestigious	companies	had	come	from	in	the	first	place.	It
seemed	like	they'd	always	been	there,	like	the	chemical
elements.	And	indeed,	there	was	a	double	wall	between
ambitious	kids	in	the	20th	century	and	the	origins	of	the	big
companies.	Many	of	the	big	companies	were	roll-ups	that	didn't
have	clear	founders.	And	when	they	did,	the	founders	didn't	seem
like	us.	Nearly	all	of	them	had	been	uneducated,	in	the	sense	of
not	having	been	to	college.	They	were	what	Shakespeare	called
rude	mechanicals.	College	trained	one	to	be	a	member	of	the
professional	classes.	Its	graduates	didn't	expect	to	do	the	sort	of
grubby	menial	work	that	Andrew	Carnegie	or	Henry	Ford	started
out	doing.	[15]

And	in	the	20th	century	there	were	more	and	more	college
graduates.	They	increased	from	about	2%	of	the	population	in
1900	to	about	25%	in	2000.	In	the	middle	of	the	century	our	two
big	forces	intersect,	in	the	form	of	the	GI	Bill,	which	sent	2.2
million	World	War	II	veterans	to	college.	Few	thought	of	it	in
these	terms,	but	the	result	of	making	college	the	canonical	path
for	the	ambitious	was	a	world	in	which	it	was	socially	acceptable
to	work	for	Henry	Ford,	but	not	to	be	Henry	Ford.	[16]

I	remember	this	world	well.	I	came	of	age	just	as	it	was	starting
to	break	up.	In	my	childhood	it	was	still	dominant.	Not	quite	so
dominant	as	it	had	been.	We	could	see	from	old	TV	shows	and
yearbooks	and	the	way	adults	acted	that	people	in	the	1950s	and
60s	had	been	even	more	conformist	than	us.	The	mid-century
model	was	already	starting	to	get	old.	But	that	was	not	how	we
saw	it	at	the	time.	We	would	at	most	have	said	that	one	could	be
a	bit	more	daring	in	1975	than	1965.	And	indeed,	things	hadn't
changed	much	yet.

But	change	was	coming	soon.	And	when	the	Duplo	economy
started	to	disintegrate,	it	disintegrated	in	several	different	ways
at	once.	Vertically	integrated	companies	literally	dis-integrated
because	it	was	more	efficient	to.	Incumbents	faced	new
competitors	as	(a)	markets	went	global	and	(b)	technical

#f15n
#f16n

innovation	started	to	trump	economies	of	scale,	turning	size	from
an	asset	into	a	liability.	Smaller	companies	were	increasingly	able
to	survive	as	formerly	narrow	channels	to	consumers	broadened.
Markets	themselves	started	to	change	faster,	as	whole	new
categories	of	products	appeared.	And	last	but	not	least,	the
federal	government,	which	had	previously	smiled	upon	J.	P.
Morgan's	world	as	the	natural	state	of	things,	began	to	realize	it
wasn't	the	last	word	after	all.

What	J.	P.	Morgan	was	to	the	horizontal	axis,	Henry	Ford	was	to
the	vertical.	He	wanted	to	do	everything	himself.	The	giant	plant
he	built	at	River	Rouge	between	1917	and	1928	literally	took	in
iron	ore	at	one	end	and	sent	cars	out	the	other.	100,000	people
worked	there.	At	the	time	it	seemed	the	future.	But	that	is	not
how	car	companies	operate	today.	Now	much	of	the	design	and
manufacturing	happens	in	a	long	supply	chain,	whose	products
the	car	companies	ultimately	assemble	and	sell.	The	reason	car
companies	operate	this	way	is	that	it	works	better.	Each	company
in	the	supply	chain	focuses	on	what	they	know	best.	And	they
each	have	to	do	it	well	or	they	can	be	swapped	out	for	another
supplier.

Why	didn't	Henry	Ford	realize	that	networks	of	cooperating
companies	work	better	than	a	single	big	company?	One	reason	is
that	supplier	networks	take	a	while	to	evolve.	In	1917,	doing
everything	himself	seemed	to	Ford	the	only	way	to	get	the	scale
he	needed.	And	the	second	reason	is	that	if	you	want	to	solve	a
problem	using	a	network	of	cooperating	companies,	you	have	to
be	able	to	coordinate	their	efforts,	and	you	can	do	that	much
better	with	computers.	Computers	reduce	the	transaction	costs
that	Coase	argued	are	the	raison	d'etre	of	corporations.	That	is	a
fundamental	change.

In	the	early	20th	century,	big	companies	were	synonymous	with
efficiency.	In	the	late	20th	century	they	were	synonymous	with
inefficiency.	To	some	extent	this	was	because	the	companies
themselves	had	become	sclerotic.	But	it	was	also	because	our
standards	were	higher.

It	wasn't	just	within	existing	industries	that	change	occurred.
The	industries	themselves	changed.	It	became	possible	to	make

lots	of	new	things,	and	sometimes	the	existing	companies	weren't
the	ones	who	did	it	best.

Microcomputers	are	a	classic	example.	The	market	was
pioneered	by	upstarts	like	Apple.	When	it	got	big	enough,	IBM
decided	it	was	worth	paying	attention	to.	At	the	time	IBM
completely	dominated	the	computer	industry.	They	assumed	that
all	they	had	to	do,	now	that	this	market	was	ripe,	was	to	reach
out	and	pick	it.	Most	people	at	the	time	would	have	agreed	with
them.	But	what	happened	next	illustrated	how	much	more
complicated	the	world	had	become.	IBM	did	launch	a
microcomputer.	Though	quite	successful,	it	did	not	crush	Apple.
But	even	more	importantly,	IBM	itself	ended	up	being	supplanted
by	a	supplier	coming	in	from	the	side	—	from	software,	which
didn't	even	seem	to	be	the	same	business.	IBM's	big	mistake	was
to	accept	a	non-exclusive	license	for	DOS.	It	must	have	seemed	a
safe	move	at	the	time.	No	other	computer	manufacturer	had	ever
been	able	to	outsell	them.	What	difference	did	it	make	if	other
manufacturers	could	offer	DOS	too?	The	result	of	that
miscalculation	was	an	explosion	of	inexpensive	PC	clones.
Microsoft	now	owned	the	PC	standard,	and	the	customer.	And	the
microcomputer	business	ended	up	being	Apple	vs	Microsoft.

Basically,	Apple	bumped	IBM	and	then	Microsoft	stole	its	wallet.
That	sort	of	thing	did	not	happen	to	big	companies	in	mid-
century.	But	it	was	going	to	happen	increasingly	often	in	the
future.

Change	happened	mostly	by	itself	in	the	computer	business.	In
other	industries,	legal	obstacles	had	to	be	removed	first.	Many	of
the	mid-century	oligopolies	had	been	anointed	by	the	federal
government	with	policies	(and	in	wartime,	large	orders)	that	kept
out	competitors.	This	didn't	seem	as	dubious	to	government
officials	at	the	time	as	it	sounds	to	us.	They	felt	a	two-party
system	ensured	sufficient	competition	in	politics.	It	ought	to	work
for	business	too.

Gradually	the	government	realized	that	anti-competitive	policies
were	doing	more	harm	than	good,	and	during	the	Carter
administration	it	started	to	remove	them.	The	word	used	for	this
process	was	misleadingly	narrow:	deregulation.	What	was	really

happening	was	de-oligopolization.	It	happened	to	one	industry
after	another.	Two	of	the	most	visible	to	consumers	were	air
travel	and	long-distance	phone	service,	which	both	became
dramatically	cheaper	after	deregulation.

Deregulation	also	contributed	to	the	wave	of	hostile	takeovers	in
the	1980s.	In	the	old	days	the	only	limit	on	the	inefficiency	of
companies,	short	of	actual	bankruptcy,	was	the	inefficiency	of
their	competitors.	Now	companies	had	to	face	absolute	rather
than	relative	standards.	Any	public	company	that	didn't	generate
sufficient	returns	on	its	assets	risked	having	its	management
replaced	with	one	that	would.	Often	the	new	managers	did	this
by	breaking	companies	up	into	components	that	were	more
valuable	separately.	[17]

Version	1	of	the	national	economy	consisted	of	a	few	big	blocks
whose	relationships	were	negotiated	in	back	rooms	by	a	handful
of	executives,	politicians,	regulators,	and	labor	leaders.	Version	2
was	higher	resolution:	there	were	more	companies,	of	more
different	sizes,	making	more	different	things,	and	their
relationships	changed	faster.	In	this	world	there	were	still	plenty
of	back	room	negotiations,	but	more	was	left	to	market	forces.
Which	further	accelerated	the	fragmentation.

It's	a	little	misleading	to	talk	of	versions	when	describing	a
gradual	process,	but	not	as	misleading	as	it	might	seem.	There
was	a	lot	of	change	in	a	few	decades,	and	what	we	ended	up	with
was	qualitatively	different.	The	companies	in	the	S&P	500	in
1958	had	been	there	an	average	of	61	years.	By	2012	that
number	was	18	years.	[18]

The	breakup	of	the	Duplo	economy	happened	simultaneously
with	the	spread	of	computing	power.	To	what	extent	were
computers	a	precondition?	It	would	take	a	book	to	answer	that.
Obviously	the	spread	of	computing	power	was	a	precondition	for
the	rise	of	startups.	I	suspect	it	was	for	most	of	what	happened	in
finance	too.	But	was	it	a	precondition	for	globalization	or	the
LBO	wave?	I	don't	know,	but	I	wouldn't	discount	the	possibility.	It
may	be	that	the	refragmentation	was	driven	by	computers	in	the
way	the	industrial	revolution	was	driven	by	steam	engines.
Whether	or	not	computers	were	a	precondition,	they	have

#f17n
#f18n

certainly	accelerated	it.

The	new	fluidity	of	companies	changed	people's	relationships
with	their	employers.	Why	climb	a	corporate	ladder	that	might	be
yanked	out	from	under	you?	Ambitious	people	started	to	think	of
a	career	less	as	climbing	a	single	ladder	than	as	a	series	of	jobs
that	might	be	at	different	companies.	More	movement	(or	even
potential	movement)	between	companies	introduced	more
competition	in	salaries.	Plus	as	companies	became	smaller	it
became	easier	to	estimate	how	much	an	employee	contributed	to
the	company's	revenue.	Both	changes	drove	salaries	toward
market	price.	And	since	people	vary	dramatically	in	productivity,
paying	market	price	meant	salaries	started	to	diverge.

By	no	coincidence	it	was	in	the	early	1980s	that	the	term
"yuppie"	was	coined.	That	word	is	not	much	used	now,	because
the	phenomenon	it	describes	is	so	taken	for	granted,	but	at	the
time	it	was	a	label	for	something	novel.	Yuppies	were	young
professionals	who	made	lots	of	money.	To	someone	in	their
twenties	today,	this	wouldn't	seem	worth	naming.	Why	wouldn't
young	professionals	make	lots	of	money?	But	until	the	1980s,
being	underpaid	early	in	your	career	was	part	of	what	it	meant	to
be	a	professional.	Young	professionals	were	paying	their	dues,
working	their	way	up	the	ladder.	The	rewards	would	come	later.
What	was	novel	about	yuppies	was	that	they	wanted	market	price
for	the	work	they	were	doing	now.

The	first	yuppies	did	not	work	for	startups.	That	was	still	in	the
future.	Nor	did	they	work	for	big	companies.	They	were
professionals	working	in	fields	like	law,	finance,	and	consulting.
But	their	example	rapidly	inspired	their	peers.	Once	they	saw
that	new	BMW	325i,	they	wanted	one	too.

Underpaying	people	at	the	beginning	of	their	career	only	works	if
everyone	does	it.	Once	some	employer	breaks	ranks,	everyone
else	has	to,	or	they	can't	get	good	people.	And	once	started	this
process	spreads	through	the	whole	economy,	because	at	the
beginnings	of	people's	careers	they	can	easily	switch	not	merely
employers	but	industries.

But	not	all	young	professionals	benefitted.	You	had	to	produce	to

get	paid	a	lot.	It	was	no	coincidence	that	the	first	yuppies	worked
in	fields	where	it	was	easy	to	measure	that.

More	generally,	an	idea	was	returning	whose	name	sounds	old-
fashioned	precisely	because	it	was	so	rare	for	so	long:	that	you
could	make	your	fortune.	As	in	the	past	there	were	multiple	ways
to	do	it.	Some	made	their	fortunes	by	creating	wealth,	and	others
by	playing	zero-sum	games.	But	once	it	became	possible	to	make
one's	fortune,	the	ambitious	had	to	decide	whether	or	not	to.	A
physicist	who	chose	physics	over	Wall	Street	in	1990	was	making
a	sacrifice	that	a	physicist	in	1960	didn't	have	to	think	about.

The	idea	even	flowed	back	into	big	companies.	CEOs	of	big
companies	make	more	now	than	they	used	to,	and	I	think	much
of	the	reason	is	prestige.	In	1960,	corporate	CEOs	had	immense
prestige.	They	were	the	winners	of	the	only	economic	game	in
town.	But	if	they	made	as	little	now	as	they	did	then,	in	real
dollar	terms,	they'd	seem	like	small	fry	compared	to	professional
athletes	and	whiz	kids	making	millions	from	startups	and	hedge
funds.	They	don't	like	that	idea,	so	now	they	try	to	get	as	much	as
they	can,	which	is	more	than	they	had	been	getting.	[19]

Meanwhile	a	similar	fragmentation	was	happening	at	the	other
end	of	the	economic	scale.	As	big	companies'	oligopolies	became
less	secure,	they	were	less	able	to	pass	costs	on	to	customers	and
thus	less	willing	to	overpay	for	labor.	And	as	the	Duplo	world	of	a
few	big	blocks	fragmented	into	many	companies	of	different	sizes
—	some	of	them	overseas	—	it	became	harder	for	unions	to
enforce	their	monopolies.	As	a	result	workers'	wages	also	tended
toward	market	price.	Which	(inevitably,	if	unions	had	been	doing
their	job)	tended	to	be	lower.	Perhaps	dramatically	so,	if
automation	had	decreased	the	need	for	some	kind	of	work.

And	just	as	the	mid-century	model	induced	social	as	well	as
economic	cohesion,	its	breakup	brought	social	as	well	as
economic	fragmentation.	People	started	to	dress	and	act
differently.	Those	who	would	later	be	called	the	"creative	class"
became	more	mobile.	People	who	didn't	care	much	for	religion
felt	less	pressure	to	go	to	church	for	appearances'	sake,	while
those	who	liked	it	a	lot	opted	for	increasingly	colorful	forms.
Some	switched	from	meat	loaf	to	tofu,	and	others	to	Hot	Pockets.

#f19n

Some	switched	from	driving	Ford	sedans	to	driving	small
imported	cars,	and	others	to	driving	SUVs.	Kids	who	went	to
private	schools	or	wished	they	did	started	to	dress	"preppy,"	and
kids	who	wanted	to	seem	rebellious	made	a	conscious	effort	to
look	disreputable.	In	a	hundred	ways	people	spread	apart.	[20]

Almost	four	decades	later,	fragmentation	is	still	increasing.	Has	it
been	net	good	or	bad?	I	don't	know;	the	question	may	be
unanswerable.	Not	entirely	bad	though.	We	take	for	granted	the
forms	of	fragmentation	we	like,	and	worry	only	about	the	ones
we	don't.	But	as	someone	who	caught	the	tail	end	of	mid-century
conformism,	I	can	tell	you	it	was	no	utopia.	[21]

My	goal	here	is	not	to	say	whether	fragmentation	has	been	good
or	bad,	just	to	explain	why	it's	happening.	With	the	centripetal
forces	of	total	war	and	20th	century	oligopoly	mostly	gone,	what
will	happen	next?	And	more	specifically,	is	it	possible	to	reverse
some	of	the	fragmentation	we've	seen?

If	it	is,	it	will	have	to	happen	piecemeal.	You	can't	reproduce	mid-
century	cohesion	the	way	it	was	originally	produced.	It	would	be
insane	to	go	to	war	just	to	induce	more	national	unity.	And	once
you	understand	the	degree	to	which	the	economic	history	of	the
20th	century	was	a	low-res	version	1,	it's	clear	you	can't
reproduce	that	either.

20th	century	cohesion	was	something	that	happened	at	least	in	a
sense	naturally.	The	war	was	due	mostly	to	external	forces,	and
the	Duplo	economy	was	an	evolutionary	phase.	If	you	want
cohesion	now,	you'd	have	to	induce	it	deliberately.	And	it's	not
obvious	how.	I	suspect	the	best	we'll	be	able	to	do	is	address	the
symptoms	of	fragmentation.	But	that	may	be	enough.

The	form	of	fragmentation	people	worry	most	about	lately	is
economic	inequality,	and	if	you	want	to	eliminate	that	you're	up
against	a	truly	formidable	headwind	that	has	been	in	operation
since	the	stone	age.	Technology.

Technology	is	a	lever.	It	magnifies	work.	And	the	lever	not	only
grows	increasingly	long,	but	the	rate	at	which	it	grows	is	itself
increasing.

#f20n
https://books.google.com/ngrams/graph?content=well-adjusted&year_start=1800&year_end=2000&corpus=15&smoothing=3
#f21n
ineq.html

Which	in	turn	means	the	variation	in	the	amount	of	wealth	people
can	create	has	not	only	been	increasing,	but	accelerating.	The
unusual	conditions	that	prevailed	in	the	mid	20th	century
masked	this	underlying	trend.	The	ambitious	had	little	choice	but
to	join	large	organizations	that	made	them	march	in	step	with
lots	of	other	people	—	literally	in	the	case	of	the	armed	forces,
figuratively	in	the	case	of	big	corporations.	Even	if	the	big
corporations	had	wanted	to	pay	people	proportionate	to	their
value,	they	couldn't	have	figured	out	how.	But	that	constraint	has
gone	now.	Ever	since	it	started	to	erode	in	the	1970s,	we've	seen
the	underlying	forces	at	work	again.	[22]

Not	everyone	who	gets	rich	now	does	it	by	creating	wealth,
certainly.	But	a	significant	number	do,	and	the	Baumol	Effect
means	all	their	peers	get	dragged	along	too.	[23]	And	as	long	as
it's	possible	to	get	rich	by	creating	wealth,	the	default	tendency
will	be	for	economic	inequality	to	increase.	Even	if	you	eliminate
all	the	other	ways	to	get	rich.	You	can	mitigate	this	with
subsidies	at	the	bottom	and	taxes	at	the	top,	but	unless	taxes	are
high	enough	to	discourage	people	from	creating	wealth,	you're
always	going	to	be	fighting	a	losing	battle	against	increasing
variation	in	productivity.	[24]

That	form	of	fragmentation,	like	the	others,	is	here	to	stay.	Or
rather,	back	to	stay.	Nothing	is	forever,	but	the	tendency	toward
fragmentation	should	be	more	forever	than	most	things,	precisely
because	it's	not	due	to	any	particular	cause.	It's	simply	a
reversion	to	the	mean.	When	Rockefeller	said	individualism	was
gone,	he	was	right	for	a	hundred	years.	It's	back	now,	and	that's
likely	to	be	true	for	longer.

I	worry	that	if	we	don't	acknowledge	this,	we're	headed	for
trouble.	If	we	think	20th	century	cohesion	disappeared	because
of	few	policy	tweaks,	we'll	be	deluded	into	thinking	we	can	get	it
back	(minus	the	bad	parts,	somehow)	with	a	few	countertweaks.
And	then	we'll	waste	our	time	trying	to	eliminate	fragmentation,
when	we'd	be	better	off	thinking	about	how	to	mitigate	its
consequences.

#f22n
#f23n
#f24n

Notes

[1]	Lester	Thurow,	writing	in	1975,	said	the	wage	differentials
prevailing	at	the	end	of	World	War	II	had	become	so	embedded
that	they	"were	regarded	as	'just'	even	after	the	egalitarian
pressures	of	World	War	II	had	disappeared.	Basically,	the	same
differentials	exist	to	this	day,	thirty	years	later."	But	Goldin	and
Margo	think	market	forces	in	the	postwar	period	also	helped
preserve	the	wartime	compression	of	wages	—	specifically
increased	demand	for	unskilled	workers,	and	oversupply	of
educated	ones.

(Oddly	enough,	the	American	custom	of	having	employers	pay	for
health	insurance	derives	from	efforts	by	businesses	to
circumvent	NWLB	wage	controls	in	order	to	attract	workers.)

[2]	As	always,	tax	rates	don't	tell	the	whole	story.	There	were	lots
of	exemptions,	especially	for	individuals.	And	in	World	War	II	the
tax	codes	were	so	new	that	the	government	had	little	acquired
immunity	to	tax	avoidance.	If	the	rich	paid	high	taxes	during	the
war	it	was	more	because	they	wanted	to	than	because	they	had
to.

After	the	war,	federal	tax	receipts	as	a	percentage	of	GDP	were
about	the	same	as	they	are	now.	In	fact,	for	the	entire	period
since	the	war,	tax	receipts	have	stayed	close	to	18%	of	GDP,
despite	dramatic	changes	in	tax	rates.	The	lowest	point	occurred
when	marginal	income	tax	rates	were	highest:	14.1%	in	1950.
Looking	at	the	data,	it's	hard	to	avoid	the	conclusion	that	tax
rates	have	had	little	effect	on	what	people	actually	paid.

[3]	Though	in	fact	the	decade	preceding	the	war	had	been	a	time
of	unprecedented	federal	power,	in	response	to	the	Depression.
Which	is	not	entirely	a	coincidence,	because	the	Depression	was
one	of	the	causes	of	the	war.	In	many	ways	the	New	Deal	was	a
sort	of	dress	rehearsal	for	the	measures	the	federal	government

took	during	wartime.	The	wartime	versions	were	much	more
drastic	and	more	pervasive	though.	As	Anthony	Badger	wrote,
"for	many	Americans	the	decisive	change	in	their	experiences
came	not	with	the	New	Deal	but	with	World	War	II."

[4]	I	don't	know	enough	about	the	origins	of	the	world	wars	to
say,	but	it's	not	inconceivable	they	were	connected	to	the	rise	of
big	corporations.	If	that	were	the	case,	20th	century	cohesion
would	have	a	single	cause.

[5]	More	precisely,	there	was	a	bimodal	economy	consisting,	in
Galbraith's	words,	of	"the	world	of	the	technically	dynamic,
massively	capitalized	and	highly	organized	corporations	on	the
one	hand	and	the	hundreds	of	thousands	of	small	and	traditional
proprietors	on	the	other."	Money,	prestige,	and	power	were
concentrated	in	the	former,	and	there	was	near	zero	crossover.

[6]	I	wonder	how	much	of	the	decline	in	families	eating	together
was	due	to	the	decline	in	families	watching	TV	together
afterward.

[7]	I	know	when	this	happened	because	it	was	the	season	Dallas
premiered.	Everyone	else	was	talking	about	what	was	happening
on	Dallas,	and	I	had	no	idea	what	they	meant.

[8]	I	didn't	realize	it	till	I	started	doing	research	for	this	essay,
but	the	meretriciousness	of	the	products	I	grew	up	with	is	a	well-
known	byproduct	of	oligopoly.	When	companies	can't	compete	on
price,	they	compete	on	tailfins.

[9]	Monroeville	Mall	was	at	the	time	of	its	completion	in	1969	the
largest	in	the	country.	In	the	late	1970s	the	movie	Dawn	of	the
Dead	was	shot	there.	Apparently	the	mall	was	not	just	the
location	of	the	movie,	but	its	inspiration;	the	crowds	of	shoppers
drifting	through	this	huge	mall	reminded	George	Romero	of
zombies.	My	first	job	was	scooping	ice	cream	in	the	Baskin-
Robbins.

[10]	Labor	unions	were	exempted	from	antitrust	laws	by	the
Clayton	Antitrust	Act	in	1914	on	the	grounds	that	a	person's
work	is	not	"a	commodity	or	article	of	commerce."	I	wonder	if

that	means	service	companies	are	also	exempt.

[11]	The	relationships	between	unions	and	unionized	companies
can	even	be	symbiotic,	because	unions	will	exert	political
pressure	to	protect	their	hosts.	According	to	Michael	Lind,	when
politicians	tried	to	attack	the	A&P	supermarket	chain	because	it
was	putting	local	grocery	stores	out	of	business,	"A&P
successfully	defended	itself	by	allowing	the	unionization	of	its
workforce	in	1938,	thereby	gaining	organized	labor	as	a
constituency."	I've	seen	this	phenomenon	myself:	hotel	unions	are
responsible	for	more	of	the	political	pressure	against	Airbnb	than
hotel	companies.

[12]	Galbraith	was	clearly	puzzled	that	corporate	executives
would	work	so	hard	to	make	money	for	other	people	(the
shareholders)	instead	of	themselves.	He	devoted	much	of	The
New	Industrial	State	to	trying	to	figure	this	out.

His	theory	was	that	professionalism	had	replaced	money	as	a
motive,	and	that	modern	corporate	executives	were,	like	(good)
scientists,	motivated	less	by	financial	rewards	than	by	the	desire
to	do	good	work	and	thereby	earn	the	respect	of	their	peers.
There	is	something	in	this,	though	I	think	lack	of	movement
between	companies	combined	with	self-interest	explains	much	of
observed	behavior.

[13]	Galbraith	(p.	94)	says	a	1952	study	of	the	800	highest	paid
executives	at	300	big	corporations	found	that	three	quarters	of
them	had	been	with	their	company	for	more	than	20	years.

[14]	It	seems	likely	that	in	the	first	third	of	the	20th	century
executive	salaries	were	low	partly	because	companies	then	were
more	dependent	on	banks,	who	would	have	disapproved	if
executives	got	too	much.	This	was	certainly	true	in	the
beginning.	The	first	big	company	CEOs	were	J.	P.	Morgan's	hired
hands.

Companies	didn't	start	to	finance	themselves	with	retained
earnings	till	the	1920s.	Till	then	they	had	to	pay	out	their
earnings	in	dividends,	and	so	depended	on	banks	for	capital	for
expansion.	Bankers	continued	to	sit	on	corporate	boards	till	the

Glass-Steagall	act	in	1933.

By	mid-century	big	companies	funded	3/4	of	their	growth	from
earnings.	But	the	early	years	of	bank	dependence,	reinforced	by
the	financial	controls	of	World	War	II,	must	have	had	a	big	effect
on	social	conventions	about	executive	salaries.	So	it	may	be	that
the	lack	of	movement	between	companies	was	as	much	the	effect
of	low	salaries	as	the	cause.

Incidentally,	the	switch	in	the	1920s	to	financing	growth	with
retained	earnings	was	one	cause	of	the	1929	crash.	The	banks
now	had	to	find	someone	else	to	lend	to,	so	they	made	more
margin	loans.

[15]	Even	now	it's	hard	to	get	them	to.	One	of	the	things	I	find
hardest	to	get	into	the	heads	of	would-be	startup	founders	is	how
important	it	is	to	do	certain	kinds	of	menial	work	early	in	the	life
of	a	company.	Doing	things	that	don't	scale	is	to	how	Henry	Ford
got	started	as	a	high-fiber	diet	is	to	the	traditional	peasant's	diet:
they	had	no	choice	but	to	do	the	right	thing,	while	we	have	to
make	a	conscious	effort.

[16]	Founders	weren't	celebrated	in	the	press	when	I	was	a	kid.
"Our	founder"	meant	a	photograph	of	a	severe-looking	man	with
a	walrus	mustache	and	a	wing	collar	who	had	died	decades	ago.
The	thing	to	be	when	I	was	a	kid	was	an	executive.	If	you	weren't
around	then	it's	hard	to	grasp	the	cachet	that	term	had.	The
fancy	version	of	everything	was	called	the	"executive"	model.

[17]	The	wave	of	hostile	takeovers	in	the	1980s	was	enabled	by	a
combination	of	circumstances:	court	decisions	striking	down
state	anti-takeover	laws,	starting	with	the	Supreme	Court's	1982
decision	in	Edgar	v.	MITE	Corp.;	the	Reagan	administration's
comparatively	sympathetic	attitude	toward	takeovers;	the
Depository	Institutions	Act	of	1982,	which	allowed	banks	and
savings	and	loans	to	buy	corporate	bonds;	a	new	SEC	rule	issued
in	1982	(rule	415)	that	made	it	possible	to	bring	corporate	bonds
to	market	faster;	the	creation	of	the	junk	bond	business	by
Michael	Milken;	a	vogue	for	conglomerates	in	the	preceding
period	that	caused	many	companies	to	be	combined	that	never
should	have	been;	a	decade	of	inflation	that	left	many	public

ds.html

companies	trading	below	the	value	of	their	assets;	and	not	least,
the	increasing	complacency	of	managements.

[18]	Foster,	Richard.	"Creative	Destruction	Whips	through
Corporate	America."	Innosight,	February	2012.

[19]	CEOs	of	big	companies	may	be	overpaid.	I	don't	know
enough	about	big	companies	to	say.	But	it	is	certainly	not
impossible	for	a	CEO	to	make	200x	as	much	difference	to	a
company's	revenues	as	the	average	employee.	Look	at	what
Steve	Jobs	did	for	Apple	when	he	came	back	as	CEO.	It	would
have	been	a	good	deal	for	the	board	to	give	him	95%	of	the
company.	Apple's	market	cap	the	day	Steve	came	back	in	July
1997	was	1.73	billion.	5%	of	Apple	now	(January	2016)	would	be
worth	about	30	billion.	And	it	would	not	be	if	Steve	hadn't	come
back;	Apple	probably	wouldn't	even	exist	anymore.

Merely	including	Steve	in	the	sample	might	be	enough	to	answer
the	question	of	whether	public	company	CEOs	in	the	aggregate
are	overpaid.	And	that	is	not	as	facile	a	trick	as	it	might	seem,
because	the	broader	your	holdings,	the	more	the	aggregate	is
what	you	care	about.

[20]	The	late	1960s	were	famous	for	social	upheaval.	But	that
was	more	rebellion	(which	can	happen	in	any	era	if	people	are
provoked	sufficiently)	than	fragmentation.	You're	not	seeing
fragmentation	unless	you	see	people	breaking	off	to	both	left	and
right.

[21]	Globally	the	trend	has	been	in	the	other	direction.	While	the
US	is	becoming	more	fragmented,	the	world	as	a	whole	is
becoming	less	fragmented,	and	mostly	in	good	ways.

[22]	There	were	a	handful	of	ways	to	make	a	fortune	in	the	mid
20th	century.	The	main	one	was	drilling	for	oil,	which	was	open
to	newcomers	because	it	was	not	something	big	companies	could
dominate	through	economies	of	scale.	How	did	individuals
accumulate	large	fortunes	in	an	era	of	such	high	taxes?	Giant	tax
loopholes	defended	by	two	of	the	most	powerful	men	in
Congress,	Sam	Rayburn	and	Lyndon	Johnson.

But	becoming	a	Texas	oilman	was	not	in	1950	something	one
could	aspire	to	the	way	starting	a	startup	or	going	to	work	on
Wall	Street	were	in	2000,	because	(a)	there	was	a	strong	local
component	and	(b)	success	depended	so	much	on	luck.

[23]	The	Baumol	Effect	induced	by	startups	is	very	visible	in
Silicon	Valley.	Google	will	pay	people	millions	of	dollars	a	year	to
keep	them	from	leaving	to	start	or	join	startups.

[24]	I'm	not	claiming	variation	in	productivity	is	the	only	cause	of
economic	inequality	in	the	US.	But	it's	a	significant	cause,	and	it
will	become	as	big	a	cause	as	it	needs	to,	in	the	sense	that	if	you
ban	other	ways	to	get	rich,	people	who	want	to	get	rich	will	use
this	route	instead.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Paul	Buchheit,	Patrick
Collison,	Ron	Conway,	Chris	Dixon,	Benedict	Evans,	Richard
Florida,	Ben	Horowitz,	Jessica	Livingston,	Robert	Morris,	Tim
O'Reilly,	Geoff	Ralston,	Max	Roser,	Alexia	Tsotsis,	and	Qasar
Younis	for	reading	drafts	of	this.	Max	also	told	me	about	several
valuable	sources.

Bibliography

Allen,	Frederick	Lewis.	The	Big	Change.	Harper,	1952.

Averitt,	Robert.	The	Dual	Economy.	Norton,	1968.

Badger,	Anthony.	The	New	Deal.	Hill	and	Wang,	1989.

Bainbridge,	John.	The	Super-Americans.	Doubleday,	1961.

Beatty,	Jack.	Collossus.	Broadway,	2001.

Brinkley,	Douglas.	Wheels	for	the	World.	Viking,	2003.

Brownleee,	W.	Elliot.	Federal	Taxation	in	America.	Cambridge,

1996.

Chandler,	Alfred.	The	Visible	Hand.	Harvard,	1977.

Chernow,	Ron.	The	House	of	Morgan.	Simon	&	Schuster,	1990.

Chernow,	Ron.	Titan:	The	Life	of	John	D.	Rockefeller.	Random
House,	1998.

Galbraith,	John.	The	New	Industrial	State.	Houghton	Mifflin,
1967.

Goldin,	Claudia	and	Robert	A.	Margo.	"The	Great	Compression:
The	Wage	Structure	in	the	United	States	at	Mid-Century."	NBER
Working	Paper	3817,	1991.

Gordon,	John.	An	Empire	of	Wealth.	HarperCollins,	2004.

Klein,	Maury.	The	Genesis	of	Industrial	America,	1870-1920.
Cambridge,	2007.

Lind,	Michael.	Land	of	Promise.	HarperCollins,	2012.

Mickelthwaite,	John,	and	Adrian	Wooldridge.	The	Company.
Modern	Library,	2003.

Nasaw,	David.	Andrew	Carnegie.	Penguin,	2006.

Sobel,	Robert.	The	Age	of	Giant	Corporations.	Praeger,	1993.

Thurow,	Lester.	Generating	Inequality:	Mechanisms	of
Distribution.	Basic	Books,	1975.

Witte,	John.	The	Politics	and	Development	of	the	Federal	Income
Tax.	Wisconsin,	1985.

Related:

	

Economic	Inequality
January	2016

Since	the	1970s,	economic	inequality	in	the	US	has	increased
dramatically.	And	in	particular,	the	rich	have	gotten	a	lot	richer.
Nearly	everyone	who	writes	about	the	topic	says	that	economic
inequality	should	be	decreased.

I'm	interested	in	this	question	because	I	was	one	of	the	founders
of	a	company	called	Y	Combinator	that	helps	people	start
startups.	Almost	by	definition,	if	a	startup	succeeds,	its	founders
become	rich.	Which	means	by	helping	startup	founders	I've	been
helping	to	increase	economic	inequality.	If	economic	inequality
should	be	decreased,	I	shouldn't	be	helping	founders.	No	one
should	be.

But	that	doesn't	sound	right.	What's	going	on	here?	What's	going
on	is	that	while	economic	inequality	is	a	single	measure	(or	more
precisely,	two:	variation	in	income,	and	variation	in	wealth),	it
has	multiple	causes.	Many	of	these	causes	are	bad,	like	tax
loopholes	and	drug	addiction.	But	some	are	good,	like	Larry	Page
and	Sergey	Brin	starting	the	company	you	use	to	find	things
online.

If	you	want	to	understand	economic	inequality	—	and	more
importantly,	if	you	actually	want	to	fix	the	bad	aspects	of	it	—	you
have	to	tease	apart	the	components.	And	yet	the	trend	in	nearly
everything	written	about	the	subject	is	to	do	the	opposite:	to
squash	together	all	the	aspects	of	economic	inequality	as	if	it
were	a	single	phenomenon.

Sometimes	this	is	done	for	ideological	reasons.	Sometimes	it's
because	the	writer	only	has	very	high-level	data	and	so	draws
conclusions	from	that,	like	the	proverbial	drunk	who	looks	for	his
keys	under	the	lamppost,	instead	of	where	he	dropped	them,
because	the	light	is	better	there.	Sometimes	it's	because	the

writer	doesn't	understand	critical	aspects	of	inequality,	like	the
role	of	technology	in	wealth	creation.	Much	of	the	time,	perhaps
most	of	the	time,	writing	about	economic	inequality	combines	all
three.

The	most	common	mistake	people	make	about	economic
inequality	is	to	treat	it	as	a	single	phenomenon.	The	most	naive
version	of	which	is	the	one	based	on	the	pie	fallacy:	that	the	rich
get	rich	by	taking	money	from	the	poor.

Usually	this	is	an	assumption	people	start	from	rather	than	a
conclusion	they	arrive	at	by	examining	the	evidence.	Sometimes
the	pie	fallacy	is	stated	explicitly:

...those	at	the	top	are	grabbing	an	increasing	fraction
of	the	nation's	income	—	so	much	of	a	larger	share
that	what's	left	over	for	the	rest	is	diminished....	[1]

Other	times	it's	more	unconscious.	But	the	unconscious	form	is
very	widespread.	I	think	because	we	grow	up	in	a	world	where
the	pie	fallacy	is	actually	true.	To	kids,	wealth	is	a	fixed	pie	that's
shared	out,	and	if	one	person	gets	more,	it's	at	the	expense	of
another.	It	takes	a	conscious	effort	to	remind	oneself	that	the	real
world	doesn't	work	that	way.

In	the	real	world	you	can	create	wealth	as	well	as	taking	it	from
others.	A	woodworker	creates	wealth.	He	makes	a	chair,	and	you
willingly	give	him	money	in	return	for	it.	A	high-frequency	trader
does	not.	He	makes	a	dollar	only	when	someone	on	the	other	end
of	a	trade	loses	a	dollar.

If	the	rich	people	in	a	society	got	that	way	by	taking	wealth	from
the	poor,	then	you	have	the	degenerate	case	of	economic
inequality,	where	the	cause	of	poverty	is	the	same	as	the	cause	of
wealth.	But	instances	of	inequality	don't	have	to	be	instances	of
the	degenerate	case.	If	one	woodworker	makes	5	chairs	and
another	makes	none,	the	second	woodworker	will	have	less

#f1n

money,	but	not	because	anyone	took	anything	from	him.

Even	people	sophisticated	enough	to	know	about	the	pie	fallacy
are	led	toward	it	by	the	custom	of	describing	economic	inequality
as	a	ratio	of	one	quantile's	income	or	wealth	to	another's.	It's	so
easy	to	slip	from	talking	about	income	shifting	from	one	quantile
to	another,	as	a	figure	of	speech,	into	believing	that	is	literally
what's	happening.

Except	in	the	degenerate	case,	economic	inequality	can't	be
described	by	a	ratio	or	even	a	curve.	In	the	general	case	it
consists	of	multiple	ways	people	become	poor,	and	multiple	ways
people	become	rich.	Which	means	to	understand	economic
inequality	in	a	country,	you	have	to	go	find	individual	people	who
are	poor	or	rich	and	figure	out	why.	[2]

If	you	want	to	understand	change	in	economic	inequality,	you
should	ask	what	those	people	would	have	done	when	it	was
different.	This	is	one	way	I	know	the	rich	aren't	all	getting	richer
simply	from	some	new	system	for	transferring	wealth	to	them
from	everyone	else.	When	you	use	the	would-have	method	with
startup	founders,	you	find	what	most	would	have	done	back	in
1960,	when	economic	inequality	was	lower,	was	to	join	big
companies	or	become	professors.	Before	Mark	Zuckerberg
started	Facebook,	his	default	expectation	was	that	he'd	end	up
working	at	Microsoft.	The	reason	he	and	most	other	startup
founders	are	richer	than	they	would	have	been	in	the	mid	20th
century	is	not	because	of	some	right	turn	the	country	took	during
the	Reagan	administration,	but	because	progress	in	technology
has	made	it	much	easier	to	start	a	new	company	that	grows	fast.

Traditional	economists	seem	strangely	averse	to	studying
individual	humans.	It	seems	to	be	a	rule	with	them	that
everything	has	to	start	with	statistics.	So	they	give	you	very
precise	numbers	about	variation	in	wealth	and	income,	then
follow	it	with	the	most	naive	speculation	about	the	underlying
causes.

But	while	there	are	a	lot	of	people	who	get	rich	through	rent-
seeking	of	various	forms,	and	a	lot	who	get	rich	by	playing	zero-
sum	games,	there	are	also	a	significant	number	who	get	rich	by

#f2n
re.html
growth.html

creating	wealth.	And	creating	wealth,	as	a	source	of	economic
inequality,	is	different	from	taking	it	—	not	just	morally,	but	also
practically,	in	the	sense	that	it	is	harder	to	eradicate.	One	reason
is	that	variation	in	productivity	is	accelerating.	The	rate	at	which
individuals	can	create	wealth	depends	on	the	technology
available	to	them,	and	that	grows	exponentially.	The	other	reason
creating	wealth	is	such	a	tenacious	source	of	inequality	is	that	it
can	expand	to	accommodate	a	lot	of	people.

I'm	all	for	shutting	down	the	crooked	ways	to	get	rich.	But	that
won't	eliminate	great	variations	in	wealth,	because	as	long	as
you	leave	open	the	option	of	getting	rich	by	creating	wealth,
people	who	want	to	get	rich	will	do	that	instead.

Most	people	who	get	rich	tend	to	be	fairly	driven.	Whatever	their
other	flaws,	laziness	is	usually	not	one	of	them.	Suppose	new
policies	make	it	hard	to	make	a	fortune	in	finance.	Does	it	seem
plausible	that	the	people	who	currently	go	into	finance	to	make
their	fortunes	will	continue	to	do	so,	but	be	content	to	work	for
ordinary	salaries?	The	reason	they	go	into	finance	is	not	because
they	love	finance	but	because	they	want	to	get	rich.	If	the	only
way	left	to	get	rich	is	to	start	startups,	they'll	start	startups.
They'll	do	well	at	it	too,	because	determination	is	the	main	factor
in	the	success	of	a	startup.	[3]	And	while	it	would	probably	be	a
good	thing	for	the	world	if	people	who	wanted	to	get	rich
switched	from	playing	zero-sum	games	to	creating	wealth,	that
would	not	only	not	eliminate	great	variations	in	wealth,	but	might
even	exacerbate	them.	In	a	zero-sum	game	there	is	at	least	a
limit	to	the	upside.	Plus	a	lot	of	the	new	startups	would	create
new	technology	that	further	accelerated	variation	in	productivity.

Variation	in	productivity	is	far	from	the	only	source	of	economic
inequality,	but	it	is	the	irreducible	core	of	it,	in	the	sense	that
you'll	have	that	left	when	you	eliminate	all	other	sources.	And	if
you	do,	that	core	will	be	big,	because	it	will	have	expanded	to
include	the	efforts	of	all	the	refugees.	Plus	it	will	have	a	large
Baumol	penumbra	around	it:	anyone	who	could	get	rich	by
creating	wealth	on	their	own	account	will	have	to	be	paid	enough

#f3n

to	prevent	them	from	doing	it.

You	can't	prevent	great	variations	in	wealth	without	preventing
people	from	getting	rich,	and	you	can't	do	that	without
preventing	them	from	starting	startups.

So	let's	be	clear	about	that.	Eliminating	great	variations	in
wealth	would	mean	eliminating	startups.	And	that	doesn't	seem	a
wise	move.	Especially	since	it	would	only	mean	you	eliminated
startups	in	your	own	country.	Ambitious	people	already	move
halfway	around	the	world	to	further	their	careers,	and	startups
can	operate	from	anywhere	nowadays.	So	if	you	made	it
impossible	to	get	rich	by	creating	wealth	in	your	country,	people
who	wanted	to	do	that	would	just	leave	and	do	it	somewhere
else.	Which	would	certainly	get	you	a	lower	Gini	coefficient,
along	with	a	lesson	in	being	careful	what	you	ask	for.	[4]

I	think	rising	economic	inequality	is	the	inevitable	fate	of
countries	that	don't	choose	something	worse.	We	had	a	40	year
stretch	in	the	middle	of	the	20th	century	that	convinced	some
people	otherwise.	But	as	I	explained	in	The	Refragmentation,
that	was	an	anomaly	—	a	unique	combination	of	circumstances
that	compressed	American	society	not	just	economically	but
culturally	too.	[5]

And	while	some	of	the	growth	in	economic	inequality	we've	seen
since	then	has	been	due	to	bad	behavior	of	various	kinds,	there
has	simultaneously	been	a	huge	increase	in	individuals'	ability	to
create	wealth.	Startups	are	almost	entirely	a	product	of	this
period.	And	even	within	the	startup	world,	there	has	been	a
qualitative	change	in	the	last	10	years.	Technology	has	decreased
the	cost	of	starting	a	startup	so	much	that	founders	now	have	the
upper	hand	over	investors.	Founders	get	less	diluted,	and	it	is
now	common	for	them	to	retain	board	control	as	well.	Both
further	increase	economic	inequality,	the	former	because
founders	own	more	stock,	and	the	latter	because,	as	investors
have	learned,	founders	tend	to	be	better	at	running	their
companies	than	investors.

While	the	surface	manifestations	change,	the	underlying	forces
are	very,	very	old.	The	acceleration	of	productivity	we	see	in

#f4n
re.html
#f5n
control.html

Silicon	Valley	has	been	happening	for	thousands	of	years.	If	you
look	at	the	history	of	stone	tools,	technology	was	already
accelerating	in	the	Mesolithic.	The	acceleration	would	have	been
too	slow	to	perceive	in	one	lifetime.	Such	is	the	nature	of	the
leftmost	part	of	an	exponential	curve.	But	it	was	the	same	curve.

You	do	not	want	to	design	your	society	in	a	way	that's
incompatible	with	this	curve.	The	evolution	of	technology	is	one
of	the	most	powerful	forces	in	history.

Louis	Brandeis	said	"We	may	have	democracy,	or	we	may	have
wealth	concentrated	in	the	hands	of	a	few,	but	we	can't	have
both."	That	sounds	plausible.	But	if	I	have	to	choose	between
ignoring	him	and	ignoring	an	exponential	curve	that	has	been
operating	for	thousands	of	years,	I'll	bet	on	the	curve.	Ignoring
any	trend	that	has	been	operating	for	thousands	of	years	is
dangerous.	But	exponential	growth,	especially,	tends	to	bite	you.

If	accelerating	variation	in	productivity	is	always	going	to
produce	some	baseline	growth	in	economic	inequality,	it	would
be	a	good	idea	to	spend	some	time	thinking	about	that	future.
Can	you	have	a	healthy	society	with	great	variation	in	wealth?
What	would	it	look	like?

Notice	how	novel	it	feels	to	think	about	that.	The	public
conversation	so	far	has	been	exclusively	about	the	need	to
decrease	economic	inequality.	We've	barely	given	a	thought	to
how	to	live	with	it.

I'm	hopeful	we'll	be	able	to.	Brandeis	was	a	product	of	the	Gilded
Age,	and	things	have	changed	since	then.	It's	harder	to	hide
wrongdoing	now.	And	to	get	rich	now	you	don't	have	to	buy
politicians	the	way	railroad	or	oil	magnates	did.	[6]	The	great
concentrations	of	wealth	I	see	around	me	in	Silicon	Valley	don't
seem	to	be	destroying	democracy.

There	are	lots	of	things	wrong	with	the	US	that	have	economic
inequality	as	a	symptom.	We	should	fix	those	things.	In	the

#f6n

process	we	may	decrease	economic	inequality.	But	we	can't	start
from	the	symptom	and	hope	to	fix	the	underlying	causes.	[7]

The	most	obvious	is	poverty.	I'm	sure	most	of	those	who	want	to
decrease	economic	inequality	want	to	do	it	mainly	to	help	the
poor,	not	to	hurt	the	rich.	[8]	Indeed,	a	good	number	are	merely
being	sloppy	by	speaking	of	decreasing	economic	inequality
when	what	they	mean	is	decreasing	poverty.	But	this	is	a
situation	where	it	would	be	good	to	be	precise	about	what	we
want.	Poverty	and	economic	inequality	are	not	identical.	When
the	city	is	turning	off	your	water	because	you	can't	pay	the	bill,	it
doesn't	make	any	difference	what	Larry	Page's	net	worth	is
compared	to	yours.	He	might	only	be	a	few	times	richer	than	you,
and	it	would	still	be	just	as	much	of	a	problem	that	your	water
was	getting	turned	off.

Closely	related	to	poverty	is	lack	of	social	mobility.	I've	seen	this
myself:	you	don't	have	to	grow	up	rich	or	even	upper	middle
class	to	get	rich	as	a	startup	founder,	but	few	successful	founders
grew	up	desperately	poor.	But	again,	the	problem	here	is	not
simply	economic	inequality.	There	is	an	enormous	difference	in
wealth	between	the	household	Larry	Page	grew	up	in	and	that	of
a	successful	startup	founder,	but	that	didn't	prevent	him	from
joining	their	ranks.	It's	not	economic	inequality	per	se	that's
blocking	social	mobility,	but	some	specific	combination	of	things
that	go	wrong	when	kids	grow	up	sufficiently	poor.

One	of	the	most	important	principles	in	Silicon	Valley	is	that	"you
make	what	you	measure."	It	means	that	if	you	pick	some	number
to	focus	on,	it	will	tend	to	improve,	but	that	you	have	to	choose
the	right	number,	because	only	the	one	you	choose	will	improve;
another	that	seems	conceptually	adjacent	might	not.	For
example,	if	you're	a	university	president	and	you	decide	to	focus
on	graduation	rates,	then	you'll	improve	graduation	rates.	But
only	graduation	rates,	not	how	much	students	learn.	Students
could	learn	less,	if	to	improve	graduation	rates	you	made	classes
easier.

Economic	inequality	is	sufficiently	far	from	identical	with	the
various	problems	that	have	it	as	a	symptom	that	we'll	probably
only	hit	whichever	of	the	two	we	aim	at.	If	we	aim	at	economic

#f7n
#f8n
http://www.theatlantic.com/business/archive/2014/07/what-happens-when-detroit-shuts-off-the-water-of-100000-people/374548/

inequality,	we	won't	fix	these	problems.	So	I	say	let's	aim	at	the
problems.

For	example,	let's	attack	poverty,	and	if	necessary	damage	wealth
in	the	process.	That's	much	more	likely	to	work	than	attacking
wealth	in	the	hope	that	you	will	thereby	fix	poverty.	[9]	And	if
there	are	people	getting	rich	by	tricking	consumers	or	lobbying
the	government	for	anti-competitive	regulations	or	tax	loopholes,
then	let's	stop	them.	Not	because	it's	causing	economic
inequality,	but	because	it's	stealing.	[10]

If	all	you	have	is	statistics,	it	seems	like	that's	what	you	need	to
fix.	But	behind	a	broad	statistical	measure	like	economic
inequality	there	are	some	things	that	are	good	and	some	that	are
bad,	some	that	are	historical	trends	with	immense	momentum
and	others	that	are	random	accidents.	If	we	want	to	fix	the	world
behind	the	statistics,	we	have	to	understand	it,	and	focus	our
efforts	where	they'll	do	the	most	good.

Notes

[1]	Stiglitz,	Joseph.	The	Price	of	Inequality.	Norton,	2012.	p.	32.

[2]	Particularly	since	economic	inequality	is	a	matter	of	outliers,
and	outliers	are	disproportionately	likely	to	have	gotten	where
they	are	by	ways	that	have	little	do	with	the	sort	of	things
economists	usually	think	about,	like	wages	and	productivity,	but
rather	by,	say,	ending	up	on	the	wrong	side	of	the	"War	on
Drugs."

[3]	Determination	is	the	most	important	factor	in	deciding
between	success	and	failure,	which	in	startups	tend	to	be	sharply
differentiated.	But	it	takes	more	than	determination	to	create	one

#f9n
#f10n

of	the	hugely	successful	startups.	Though	most	founders	start	out
excited	about	the	idea	of	getting	rich,	purely	mercenary	founders
will	usually	take	one	of	the	big	acquisition	offers	most	successful
startups	get	on	the	way	up.	The	founders	who	go	on	to	the	next
stage	tend	to	be	driven	by	a	sense	of	mission.	They	have	the
same	attachment	to	their	companies	that	an	artist	or	writer	has
to	their	work.	But	it	is	very	hard	to	predict	at	the	outset	which
founders	will	do	that.	It's	not	simply	a	function	of	their	initial
attitude.	Starting	a	company	changes	people.

[4]	After	reading	a	draft	of	this	essay,	Richard	Florida	told	me
how	he	had	once	talked	to	a	group	of	Europeans	"who	said	they
wanted	to	make	Europe	more	entrepreneurial	and	more	like
Silicon	Valley.	I	said	by	definition	this	will	give	you	more
inequality.	They	thought	I	was	insane	—	they	could	not	process
it."

[5]	Economic	inequality	has	been	decreasing	globally.	But	this	is
mainly	due	to	the	erosion	of	the	kleptocracies	that	formerly
dominated	all	the	poorer	countries.	Once	the	playing	field	is
leveler	politically,	we'll	see	economic	inequality	start	to	rise
again.	The	US	is	the	bellwether.	The	situation	we	face	here,	the
rest	of	the	world	will	sooner	or	later.

[6]	Some	people	still	get	rich	by	buying	politicians.	My	point	is
that	it's	no	longer	a	precondition.

[7]	As	well	as	problems	that	have	economic	inequality	as	a
symptom,	there	are	those	that	have	it	as	a	cause.	But	in	most	if
not	all,	economic	inequality	is	not	the	primary	cause.	There	is
usually	some	injustice	that	is	allowing	economic	inequality	to
turn	into	other	forms	of	inequality,	and	that	injustice	is	what	we
need	to	fix.	For	example,	the	police	in	the	US	treat	the	poor
worse	than	the	rich.	But	the	solution	is	not	to	make	people	richer.
It's	to	make	the	police	treat	people	more	equitably.	Otherwise
they'll	continue	to	maltreat	people	who	are	weak	in	other	ways.

[8]	Some	who	read	this	essay	will	say	that	I'm	clueless	or	even
being	deliberately	misleading	by	focusing	so	much	on	the	richer
end	of	economic	inequality	—	that	economic	inequality	is	really
about	poverty.	But	that	is	exactly	the	point	I'm	making,	though

sloppier	language	than	I'd	use	to	make	it.	The	real	problem	is
poverty,	not	economic	inequality.	And	if	you	conflate	them	you're
aiming	at	the	wrong	target.

Others	will	say	I'm	clueless	or	being	misleading	by	focusing	on
people	who	get	rich	by	creating	wealth	—	that	startups	aren't	the
problem,	but	corrupt	practices	in	finance,	healthcare,	and	so	on.
Once	again,	that	is	exactly	my	point.	The	problem	is	not
economic	inequality,	but	those	specific	abuses.

It's	a	strange	task	to	write	an	essay	about	why	something	isn't
the	problem,	but	that's	the	situation	you	find	yourself	in	when	so
many	people	mistakenly	think	it	is.

[9]	Particularly	since	many	causes	of	poverty	are	only	partially
driven	by	people	trying	to	make	money	from	them.	For	example,
America's	abnormally	high	incarceration	rate	is	a	major	cause	of
poverty.	But	although	for-profit	prison	companies	and	prison
guard	unions	both	spend	a	lot	lobbying	for	harsh	sentencing
laws,	they	are	not	the	original	source	of	them.

[10]	Incidentally,	tax	loopholes	are	definitely	not	a	product	of
some	power	shift	due	to	recent	increases	in	economic	inequality.
The	golden	age	of	economic	equality	in	the	mid	20th	century	was
also	the	golden	age	of	tax	avoidance.	Indeed,	it	was	so
widespread	and	so	effective	that	I'm	skeptical	whether	economic
inequality	was	really	so	low	then	as	we	think.	In	a	period	when
people	are	trying	to	hide	wealth	from	the	government,	it	will	tend
to	be	hidden	from	statistics	too.	One	sign	of	the	potential
magnitude	of	the	problem	is	the	discrepancy	between
government	receipts	as	a	percentage	of	GDP,	which	have
remained	more	or	less	constant	during	the	entire	period	from	the
end	of	World	War	II	to	the	present,	and	tax	rates,	which	have
varied	dramatically.

Thanks	to	Sam	Altman,	Tiffani	Ashley	Bell,	Patrick	Collison,	Ron
Conway,	Richard	Florida,	Ben	Horowitz,	Jessica	Livingston,
Robert	Morris,	Tim	O'Reilly,	Max	Roser,	and	Alexia	Tsotsis	for
reading	drafts	of	this.

Note:	This	is	a	new	version	from	which	I	removed	a	pair	of

https://www.washingtonpost.com/posteverything/wp/2015/04/28/how-for-profit-prisons-have-become-the-biggest-lobby-no-one-is-talking-about/
http://mic.com/articles/41531/union-of-the-snake-how-california-s-prison-guards-subvert-democracy

metaphors	that	made	a	lot	of	people	mad,	essentially	by
macroexpanding	them.	If	anyone	wants	to	see	the	old	version,	I
put	it	here.

Related:

ineqold.html

	

Life	is	Short
January	2016

Life	is	short,	as	everyone	knows.	When	I	was	a	kid	I	used	to
wonder	about	this.	Is	life	actually	short,	or	are	we	really
complaining	about	its	finiteness?	Would	we	be	just	as	likely	to
feel	life	was	short	if	we	lived	10	times	as	long?

Since	there	didn't	seem	any	way	to	answer	this	question,	I
stopped	wondering	about	it.	Then	I	had	kids.	That	gave	me	a	way
to	answer	the	question,	and	the	answer	is	that	life	actually	is
short.

Having	kids	showed	me	how	to	convert	a	continuous	quantity,
time,	into	discrete	quantities.	You	only	get	52	weekends	with
your	2	year	old.	If	Christmas-as-magic	lasts	from	say	ages	3	to
10,	you	only	get	to	watch	your	child	experience	it	8	times.	And
while	it's	impossible	to	say	what	is	a	lot	or	a	little	of	a	continuous
quantity	like	time,	8	is	not	a	lot	of	something.	If	you	had	a
handful	of	8	peanuts,	or	a	shelf	of	8	books	to	choose	from,	the
quantity	would	definitely	seem	limited,	no	matter	what	your
lifespan	was.

Ok,	so	life	actually	is	short.	Does	it	make	any	difference	to	know
that?

It	has	for	me.	It	means	arguments	of	the	form	"Life	is	too	short
for	x"	have	great	force.	It's	not	just	a	figure	of	speech	to	say	that
life	is	too	short	for	something.	It's	not	just	a	synonym	for
annoying.	If	you	find	yourself	thinking	that	life	is	too	short	for
something,	you	should	try	to	eliminate	it	if	you	can.

When	I	ask	myself	what	I've	found	life	is	too	short	for,	the	word
that	pops	into	my	head	is	"bullshit."	I	realize	that	answer	is
somewhat	tautological.	It's	almost	the	definition	of	bullshit	that
it's	the	stuff	that	life	is	too	short	for.	And	yet	bullshit	does	have	a

distinctive	character.	There's	something	fake	about	it.	It's	the
junk	food	of	experience.	[1]

If	you	ask	yourself	what	you	spend	your	time	on	that's	bullshit,
you	probably	already	know	the	answer.	Unnecessary	meetings,
pointless	disputes,	bureaucracy,	posturing,	dealing	with	other
people's	mistakes,	traffic	jams,	addictive	but	unrewarding
pastimes.

There	are	two	ways	this	kind	of	thing	gets	into	your	life:	it's
either	forced	on	you,	or	it	tricks	you.	To	some	extent	you	have	to
put	up	with	the	bullshit	forced	on	you	by	circumstances.	You
need	to	make	money,	and	making	money	consists	mostly	of
errands.	Indeed,	the	law	of	supply	and	demand	ensures	that:	the
more	rewarding	some	kind	of	work	is,	the	cheaper	people	will	do
it.	It	may	be	that	less	bullshit	is	forced	on	you	than	you	think,
though.	There	has	always	been	a	stream	of	people	who	opt	out	of
the	default	grind	and	go	live	somewhere	where	opportunities	are
fewer	in	the	conventional	sense,	but	life	feels	more	authentic.
This	could	become	more	common.

You	can	do	it	on	a	smaller	scale	without	moving.	The	amount	of
time	you	have	to	spend	on	bullshit	varies	between	employers.
Most	large	organizations	(and	many	small	ones)	are	steeped	in	it.
But	if	you	consciously	prioritize	bullshit	avoidance	over	other
factors	like	money	and	prestige,	you	can	probably	find	employers
that	will	waste	less	of	your	time.

If	you're	a	freelancer	or	a	small	company,	you	can	do	this	at	the
level	of	individual	customers.	If	you	fire	or	avoid	toxic	customers,
you	can	decrease	the	amount	of	bullshit	in	your	life	by	more	than
you	decrease	your	income.

But	while	some	amount	of	bullshit	is	inevitably	forced	on	you,	the
bullshit	that	sneaks	into	your	life	by	tricking	you	is	no	one's	fault
but	your	own.	And	yet	the	bullshit	you	choose	may	be	harder	to
eliminate	than	the	bullshit	that's	forced	on	you.	Things	that	lure
you	into	wasting	your	time	have	to	be	really	good	at	tricking	you.
An	example	that	will	be	familiar	to	a	lot	of	people	is	arguing
online.	When	someone	contradicts	you,	they're	in	a	sense
attacking	you.	Sometimes	pretty	overtly.	Your	instinct	when

#f1n

attacked	is	to	defend	yourself.	But	like	a	lot	of	instincts,	this	one
wasn't	designed	for	the	world	we	now	live	in.	Counterintuitive	as
it	feels,	it's	better	most	of	the	time	not	to	defend	yourself.
Otherwise	these	people	are	literally	taking	your	life.	[2]

Arguing	online	is	only	incidentally	addictive.	There	are	more
dangerous	things	than	that.	As	I've	written	before,	one	byproduct
of	technical	progress	is	that	things	we	like	tend	to	become	more
addictive.	Which	means	we	will	increasingly	have	to	make	a
conscious	effort	to	avoid	addictions	�	to	stand	outside	ourselves
and	ask	"is	this	how	I	want	to	be	spending	my	time?"

As	well	as	avoiding	bullshit,	one	should	actively	seek	out	things
that	matter.	But	different	things	matter	to	different	people,	and
most	have	to	learn	what	matters	to	them.	A	few	are	lucky	and
realize	early	on	that	they	love	math	or	taking	care	of	animals	or
writing,	and	then	figure	out	a	way	to	spend	a	lot	of	time	doing	it.
But	most	people	start	out	with	a	life	that's	a	mix	of	things	that
matter	and	things	that	don't,	and	only	gradually	learn	to
distinguish	between	them.

For	the	young	especially,	much	of	this	confusion	is	induced	by	the
artificial	situations	they	find	themselves	in.	In	middle	school	and
high	school,	what	the	other	kids	think	of	you	seems	the	most
important	thing	in	the	world.	But	when	you	ask	adults	what	they
got	wrong	at	that	age,	nearly	all	say	they	cared	too	much	what
other	kids	thought	of	them.

One	heuristic	for	distinguishing	stuff	that	matters	is	to	ask
yourself	whether	you'll	care	about	it	in	the	future.	Fake	stuff	that
matters	usually	has	a	sharp	peak	of	seeming	to	matter.	That's
how	it	tricks	you.	The	area	under	the	curve	is	small,	but	its	shape
jabs	into	your	consciousness	like	a	pin.

The	things	that	matter	aren't	necessarily	the	ones	people	would
call	"important."	Having	coffee	with	a	friend	matters.	You	won't
feel	later	like	that	was	a	waste	of	time.

One	great	thing	about	having	small	children	is	that	they	make
you	spend	time	on	things	that	matter:	them.	They	grab	your
sleeve	as	you're	staring	at	your	phone	and	say	"will	you	play	with

#f2n
addiction.html

me?"	And	odds	are	that	is	in	fact	the	bullshit-minimizing	option.

If	life	is	short,	we	should	expect	its	shortness	to	take	us	by
surprise.	And	that	is	just	what	tends	to	happen.	You	take	things
for	granted,	and	then	they're	gone.	You	think	you	can	always
write	that	book,	or	climb	that	mountain,	or	whatever,	and	then
you	realize	the	window	has	closed.	The	saddest	windows	close
when	other	people	die.	Their	lives	are	short	too.	After	my	mother
died,	I	wished	I'd	spent	more	time	with	her.	I	lived	as	if	she'd
always	be	there.	And	in	her	typical	quiet	way	she	encouraged
that	illusion.	But	an	illusion	it	was.	I	think	a	lot	of	people	make
the	same	mistake	I	did.

The	usual	way	to	avoid	being	taken	by	surprise	by	something	is
to	be	consciously	aware	of	it.	Back	when	life	was	more
precarious,	people	used	to	be	aware	of	death	to	a	degree	that
would	now	seem	a	bit	morbid.	I'm	not	sure	why,	but	it	doesn't
seem	the	right	answer	to	be	constantly	reminding	oneself	of	the
grim	reaper	hovering	at	everyone's	shoulder.	Perhaps	a	better
solution	is	to	look	at	the	problem	from	the	other	end.	Cultivate	a
habit	of	impatience	about	the	things	you	most	want	to	do.	Don't
wait	before	climbing	that	mountain	or	writing	that	book	or
visiting	your	mother.	You	don't	need	to	be	constantly	reminding
yourself	why	you	shouldn't	wait.	Just	don't	wait.

I	can	think	of	two	more	things	one	does	when	one	doesn't	have
much	of	something:	try	to	get	more	of	it,	and	savor	what	one	has.
Both	make	sense	here.

How	you	live	affects	how	long	you	live.	Most	people	could	do
better.	Me	among	them.

But	you	can	probably	get	even	more	effect	by	paying	closer
attention	to	the	time	you	have.	It's	easy	to	let	the	days	rush	by.
The	"flow"	that	imaginative	people	love	so	much	has	a	darker
cousin	that	prevents	you	from	pausing	to	savor	life	amid	the	daily
slurry	of	errands	and	alarms.	One	of	the	most	striking	things	I've
read	was	not	in	a	book,	but	the	title	of	one:	James	Salter's
Burning	the	Days.

It	is	possible	to	slow	time	somewhat.	I've	gotten	better	at	it.	Kids

help.	When	you	have	small	children,	there	are	a	lot	of	moments
so	perfect	that	you	can't	help	noticing.

It	does	help	too	to	feel	that	you've	squeezed	everything	out	of
some	experience.	The	reason	I'm	sad	about	my	mother	is	not	just
that	I	miss	her	but	that	I	think	of	all	the	things	we	could	have
done	that	we	didn't.	My	oldest	son	will	be	7	soon.	And	while	I
miss	the	3	year	old	version	of	him,	I	at	least	don't	have	any
regrets	over	what	might	have	been.	We	had	the	best	time	a
daddy	and	a	3	year	old	ever	had.

Relentlessly	prune	bullshit,	don't	wait	to	do	things	that	matter,
and	savor	the	time	you	have.	That's	what	you	do	when	life	is
short.

Notes

[1]	At	first	I	didn't	like	it	that	the	word	that	came	to	mind	was
one	that	had	other	meanings.	But	then	I	realized	the	other
meanings	are	fairly	closely	related.	Bullshit	in	the	sense	of	things
you	waste	your	time	on	is	a	lot	like	intellectual	bullshit.

[2]	I	chose	this	example	deliberately	as	a	note	to	self.	I	get
attacked	a	lot	online.	People	tell	the	craziest	lies	about	me.	And	I
have	so	far	done	a	pretty	mediocre	job	of	suppressing	the	natural
human	inclination	to	say	"Hey,	that's	not	true!"

Thanks	to	Jessica	Livingston	and	Geoff	Ralston	for	reading	drafts
of	this.

	

How	to	Make	Pittsburgh	a
Startup	Hub
April	2016

(This	is	a	talk	I	gave	at	an	event	called	Opt412	in	Pittsburgh.
Much	of	it	will	apply	to	other	towns.	But	not	all,	because	as	I	say
in	the	talk,	Pittsburgh	has	some	important	advantages	over	most
would-be	startup	hubs.)

What	would	it	take	to	make	Pittsburgh	into	a	startup	hub,	like
Silicon	Valley?	I	understand	Pittsburgh	pretty	well,	because	I
grew	up	here,	in	Monroeville.	And	I	understand	Silicon	Valley
pretty	well	because	that's	where	I	live	now.	Could	you	get	that
kind	of	startup	ecosystem	going	here?

When	I	agreed	to	speak	here,	I	didn't	think	I'd	be	able	to	give	a
very	optimistic	talk.	I	thought	I'd	be	talking	about	what
Pittsburgh	could	do	to	become	a	startup	hub,	very	much	in	the
subjunctive.	Instead	I'm	going	to	talk	about	what	Pittsburgh	can
do.

What	changed	my	mind	was	an	article	I	read	in,	of	all	places,	the
New	York	Times	food	section.	The	title	was	"Pittsburgh's	Youth-
Driven	Food	Boom."	To	most	people	that	might	not	even	sound
interesting,	let	alone	something	related	to	startups.	But	it	was
electrifying	to	me	to	read	that	title.	I	don't	think	I	could	pick	a
more	promising	one	if	I	tried.	And	when	I	read	the	article	I	got
even	more	excited.	It	said	"people	ages	25	to	29	now	make	up	7.6
percent	of	all	residents,	up	from	7	percent	about	a	decade	ago."
Wow,	I	thought,	Pittsburgh	could	be	the	next	Portland.	It	could
become	the	cool	place	all	the	people	in	their	twenties	want	to	go
live.

When	I	got	here	a	couple	days	ago,	I	could	feel	the	difference.	I
lived	here	from	1968	to	1984.	I	didn't	realize	it	at	the	time,	but

http://www.nytimes.com/2016/03/16/dining/pittsburgh-restaurants.html

during	that	whole	period	the	city	was	in	free	fall.	On	top	of	the
flight	to	the	suburbs	that	happened	everywhere,	the	steel	and
nuclear	businesses	were	both	dying.	Boy	are	things	different
now.	It's	not	just	that	downtown	seems	a	lot	more	prosperous.
There	is	an	energy	here	that	was	not	here	when	I	was	a	kid.

When	I	was	a	kid,	this	was	a	place	young	people	left.	Now	it's	a
place	that	attracts	them.

What	does	that	have	to	do	with	startups?	Startups	are	made	of
people,	and	the	average	age	of	the	people	in	a	typical	startup	is
right	in	that	25	to	29	bracket.

I've	seen	how	powerful	it	is	for	a	city	to	have	those	people.	Five
years	ago	they	shifted	the	center	of	gravity	of	Silicon	Valley	from
the	peninsula	to	San	Francisco.	Google	and	Facebook	are	on	the
peninsula,	but	the	next	generation	of	big	winners	are	all	in	SF.
The	reason	the	center	of	gravity	shifted	was	the	talent	war,	for
programmers	especially.	Most	25	to	29	year	olds	want	to	live	in
the	city,	not	down	in	the	boring	suburbs.	So	whether	they	like	it
or	not,	founders	know	they	have	to	be	in	the	city.	I	know	multiple
founders	who	would	have	preferred	to	live	down	in	the	Valley
proper,	but	who	made	themselves	move	to	SF	because	they	knew
otherwise	they'd	lose	the	talent	war.

So	being	a	magnet	for	people	in	their	twenties	is	a	very
promising	thing	to	be.	It's	hard	to	imagine	a	place	becoming	a
startup	hub	without	also	being	that.	When	I	read	that	statistic
about	the	increasing	percentage	of	25	to	29	year	olds,	I	had
exactly	the	same	feeling	of	excitement	I	get	when	I	see	a
startup's	graphs	start	to	creep	upward	off	the	x	axis.

Nationally	the	percentage	of	25	to	29	year	olds	is	6.8%.	That
means	you're	.8%	ahead.	The	population	is	306,000,	so	we're
talking	about	a	surplus	of	about	2500	people.	That's	the
population	of	a	small	town,	and	that's	just	the	surplus.	So	you
have	a	toehold.	Now	you	just	have	to	expand	it.

And	though	"youth-driven	food	boom"	may	sound	frivolous,	it	is
anything	but.	Restaurants	and	cafes	are	a	big	part	of	the
personality	of	a	city.	Imagine	walking	down	a	street	in	Paris.

What	are	you	walking	past?	Little	restaurants	and	cafes.	Imagine
driving	through	some	depressing	random	exurb.	What	are	you
driving	past?	Starbucks	and	McDonalds	and	Pizza	Hut.	As
Gertrude	Stein	said,	there	is	no	there	there.	You	could	be
anywhere.

These	independent	restaurants	and	cafes	are	not	just	feeding
people.	They're	making	there	be	a	there	here.

So	here	is	my	first	concrete	recommendation	for	turning
Pittsburgh	into	the	next	Silicon	Valley:	do	everything	you	can	to
encourage	this	youth-driven	food	boom.	What	could	the	city	do?
Treat	the	people	starting	these	little	restaurants	and	cafes	as
your	users,	and	go	ask	them	what	they	want.	I	can	guess	at	least
one	thing	they	might	want:	a	fast	permit	process.	San	Francisco
has	left	you	a	huge	amount	of	room	to	beat	them	in	that
department.

I	know	restaurants	aren't	the	prime	mover	though.	The	prime
mover,	as	the	Times	article	said,	is	cheap	housing.	That's	a	big
advantage.	But	that	phrase	"cheap	housing"	is	a	bit	misleading.
There	are	plenty	of	places	that	are	cheaper.	What's	special	about
Pittsburgh	is	not	that	it's	cheap,	but	that	it's	a	cheap	place	you'd
actually	want	to	live.

Part	of	that	is	the	buildings	themselves.	I	realized	a	long	time
ago,	back	when	I	was	a	poor	twenty-something	myself,	that	the
best	deals	were	places	that	had	once	been	rich,	and	then	became
poor.	If	a	place	has	always	been	rich,	it's	nice	but	too	expensive.
If	a	place	has	always	been	poor,	it's	cheap	but	grim.	But	if	a	place
was	once	rich	and	then	got	poor,	you	can	find	palaces	for	cheap.
And	that's	what's	bringing	people	here.	When	Pittsburgh	was
rich,	a	hundred	years	ago,	the	people	who	lived	here	built	big
solid	buildings.	Not	always	in	the	best	taste,	but	definitely	solid.
So	here	is	another	piece	of	advice	for	becoming	a	startup	hub:
don't	destroy	the	buildings	that	are	bringing	people	here.	When
cities	are	on	the	way	back	up,	like	Pittsburgh	is	now,	developers
race	to	tear	down	the	old	buildings.	Don't	let	that	happen.	Focus
on	historic	preservation.	Big	real	estate	development	projects	are
not	what's	bringing	the	twenty-somethings	here.	They're	the
opposite	of	the	new	restaurants	and	cafes;	they	subtract

personality	from	the	city.

The	empirical	evidence	suggests	you	cannot	be	too	strict	about
historic	preservation.	The	tougher	cities	are	about	it,	the	better
they	seem	to	do.

But	the	appeal	of	Pittsburgh	is	not	just	the	buildings	themselves.
It's	the	neighborhoods	they're	in.	Like	San	Francisco	and	New
York,	Pittsburgh	is	fortunate	in	being	a	pre-car	city.	It's	not	too
spread	out.	Because	those	25	to	29	year	olds	do	not	like	driving.
They	prefer	walking,	or	bicycling,	or	taking	public	transport.	If
you've	been	to	San	Francisco	recently	you	can't	help	noticing	the
huge	number	of	bicyclists.	And	this	is	not	just	a	fad	that	the
twenty-somethings	have	adopted.	In	this	respect	they	have
discovered	a	better	way	to	live.	The	beards	will	go,	but	not	the
bikes.	Cities	where	you	can	get	around	without	driving	are	just
better	period.	So	I	would	suggest	you	do	everything	you	can	to
capitalize	on	this.	As	with	historic	preservation,	it	seems
impossible	to	go	too	far.

Why	not	make	Pittsburgh	the	most	bicycle	and	pedestrian
friendly	city	in	the	country?	See	if	you	can	go	so	far	that	you
make	San	Francisco	seem	backward	by	comparison.	If	you	do,	it's
very	unlikely	you'll	regret	it.	The	city	will	seem	like	a	paradise	to
the	young	people	you	want	to	attract.	If	they	do	leave	to	get	jobs
elsewhere,	it	will	be	with	regret	at	leaving	behind	such	a	place.
And	what's	the	downside?	Can	you	imagine	a	headline	"City
ruined	by	becoming	too	bicycle-friendly?"	It	just	doesn't	happen.

So	suppose	cool	old	neighborhoods	and	cool	little	restaurants
make	this	the	next	Portland.	Will	that	be	enough?	It	will	put	you
in	a	way	better	position	than	Portland	itself,	because	Pittsburgh
has	something	Portland	lacks:	a	first-rate	research	university.
CMU	plus	little	cafes	means	you	have	more	than	hipsters
drinking	lattes.	It	means	you	have	hipsters	drinking	lattes	while
talking	about	distributed	systems.	Now	you're	getting	really	close
to	San	Francisco.

In	fact	you're	better	off	than	San	Francisco	in	one	way,	because
CMU	is	downtown,	but	Stanford	and	Berkeley	are	out	in	the
suburbs.

What	can	CMU	do	to	help	Pittsburgh	become	a	startup	hub?	Be
an	even	better	research	university.	CMU	is	one	of	the	best
universities	in	the	world,	but	imagine	what	things	would	be	like	if
it	were	the	very	best,	and	everyone	knew	it.	There	are	a	lot	of
ambitious	people	who	must	go	to	the	best	place,	wherever	it	is.	If
CMU	were	it,	they	would	all	come	here.	There	would	be	kids	in
Kazakhstan	dreaming	of	one	day	living	in	Pittsburgh.

Being	that	kind	of	talent	magnet	is	the	most	important
contribution	universities	can	make	toward	making	their	city	a
startup	hub.	In	fact	it	is	practically	the	only	contribution	they	can
make.

But	wait,	shouldn't	universities	be	setting	up	programs	with
words	like	"innovation"	and	"entrepreneurship"	in	their	names?
No,	they	should	not.	These	kind	of	things	almost	always	turn	out
to	be	disappointments.	They're	pursuing	the	wrong	targets.	The
way	to	get	innovation	is	not	to	aim	for	innovation	but	to	aim	for
something	more	specific,	like	better	batteries	or	better	3D
printing.	And	the	way	to	learn	about	entrepreneurship	is	to	do	it,
which	you	can't	in	school.

I	know	it	may	disappoint	some	administrators	to	hear	that	the
best	thing	a	university	can	do	to	encourage	startups	is	to	be	a
great	university.	It's	like	telling	people	who	want	to	lose	weight
that	the	way	to	do	it	is	to	eat	less.

But	if	you	want	to	know	where	startups	come	from,	look	at	the
empirical	evidence.	Look	at	the	histories	of	the	most	successful
startups,	and	you'll	find	they	grow	organically	out	of	a	couple	of
founders	building	something	that	starts	as	an	interesting	side
project.	Universities	are	great	at	bringing	together	founders,	but
beyond	that	the	best	thing	they	can	do	is	get	out	of	the	way.	For
example,	by	not	claiming	ownership	of	"intellectual	property"
that	students	and	faculty	develop,	and	by	having	liberal	rules
about	deferred	admission	and	leaves	of	absence.

In	fact,	one	of	the	most	effective	things	a	university	could	do	to
encourage	startups	is	an	elaborate	form	of	getting	out	of	the	way
invented	by	Harvard.	Harvard	used	to	have	exams	for	the	fall

before.html

semester	after	Christmas.	At	the	beginning	of	January	they	had
something	called	"Reading	Period"	when	you	were	supposed	to
be	studying	for	exams.	And	Microsoft	and	Facebook	have
something	in	common	that	few	people	realize:	they	were	both
started	during	Reading	Period.	It's	the	perfect	situation	for
producing	the	sort	of	side	projects	that	turn	into	startups.	The
students	are	all	on	campus,	but	they	don't	have	to	do	anything
because	they're	supposed	to	be	studying	for	exams.

Harvard	may	have	closed	this	window,	because	a	few	years	ago
they	moved	exams	before	Christmas	and	shortened	reading
period	from	11	days	to	7.	But	if	a	university	really	wanted	to	help
its	students	start	startups,	the	empirical	evidence,	weighted	by
market	cap,	suggests	the	best	thing	they	can	do	is	literally
nothing.

The	culture	of	Pittsburgh	is	another	of	its	strengths.	It	seems	like
a	city	has	to	be	socially	liberal	to	be	a	startup	hub,	and	it's	pretty
clear	why.	A	city	has	to	tolerate	strangeness	to	be	a	home	for
startups,	because	startups	are	so	strange.	And	you	can't	choose
to	allow	just	the	forms	of	strangeness	that	will	turn	into	big
startups,	because	they're	all	intermingled.	You	have	to	tolerate
all	strangeness.

That	immediately	rules	out	big	chunks	of	the	US.	I'm	optimistic	it
doesn't	rule	out	Pittsburgh.	One	of	the	things	I	remember	from
growing	up	here,	though	I	didn't	realize	at	the	time	that	there
was	anything	unusual	about	it,	is	how	well	people	got	along.	I'm
still	not	sure	why.	Maybe	one	reason	was	that	everyone	felt	like
an	immigrant.	When	I	was	a	kid	in	Monroeville,	people	didn't	call
themselves	American.	They	called	themselves	Italian	or	Serbian
or	Ukranian.	Just	imagine	what	it	must	have	been	like	here	a
hundred	years	ago,	when	people	were	pouring	in	from	twenty
different	countries.	Tolerance	was	the	only	option.

What	I	remember	about	the	culture	of	Pittsburgh	is	that	it	was
both	tolerant	and	pragmatic.	That's	how	I'd	describe	the	culture
of	Silicon	Valley	too.	And	it's	not	a	coincidence,	because
Pittsburgh	was	the	Silicon	Valley	of	its	time.	This	was	a	city
where	people	built	new	things.	And	while	the	things	people	build
have	changed,	the	spirit	you	need	to	do	that	kind	of	work	is	the

http://www.nytimes.com/2016/04/06/us/gay-rights-mississippi-north-carolina.html

same.

So	although	an	influx	of	latte-swilling	hipsters	may	be	annoying
in	some	ways,	I	would	go	out	of	my	way	to	encourage	them.	And
more	generally	to	tolerate	strangeness,	even	unto	the	degree
wacko	Californians	do.	For	Pittsburgh	that	is	a	conservative
choice:	it's	a	return	to	the	city's	roots.

Unfortunately	I	saved	the	toughest	part	for	last.	There	is	one
more	thing	you	need	to	be	a	startup	hub,	and	Pittsburgh	hasn't
got	it:	investors.	Silicon	Valley	has	a	big	investor	community
because	it's	had	50	years	to	grow	one.	New	York	has	a	big
investor	community	because	it's	full	of	people	who	like	money	a
lot	and	are	quick	to	notice	new	ways	to	get	it.	But	Pittsburgh	has
neither	of	these.	And	the	cheap	housing	that	draws	other	people
here	has	no	effect	on	investors.

If	an	investor	community	grows	up	here,	it	will	happen	the	same
way	it	did	in	Silicon	Valley:	slowly	and	organically.	So	I	would	not
bet	on	having	a	big	investor	community	in	the	short	term.	But
fortunately	there	are	three	trends	that	make	that	less	necessary
than	it	used	to	be.	One	is	that	startups	are	increasingly	cheap	to
start,	so	you	just	don't	need	as	much	outside	money	as	you	used
to.	The	second	is	that	thanks	to	things	like	Kickstarter,	a	startup
can	get	to	revenue	faster.	You	can	put	something	on	Kickstarter
from	anywhere.	The	third	is	programs	like	Y	Combinator.	A
startup	from	anywhere	in	the	world	can	go	to	YC	for	3	months,
pick	up	funding,	and	then	return	home	if	they	want.

My	advice	is	to	make	Pittsburgh	a	great	place	for	startups,	and
gradually	more	of	them	will	stick.	Some	of	those	will	succeed;
some	of	their	founders	will	become	investors;	and	still	more
startups	will	stick.

This	is	not	a	fast	path	to	becoming	a	startup	hub.	But	it	is	at	least
a	path,	which	is	something	few	other	cities	have.	And	it's	not	as	if
you	have	to	make	painful	sacrifices	in	the	meantime.	Think	about
what	I've	suggested	you	should	do.	Encourage	local	restaurants,
save	old	buildings,	take	advantage	of	density,	make	CMU	the
best,	promote	tolerance.	These	are	the	things	that	make
Pittsburgh	good	to	live	in	now.	All	I'm	saying	is	that	you	should

do	even	more	of	them.

And	that's	an	encouraging	thought.	If	Pittsburgh's	path	to
becoming	a	startup	hub	is	to	be	even	more	itself,	then	it	has	a
good	chance	of	succeeding.	In	fact	it	probably	has	the	best
chance	of	any	city	its	size.	It	will	take	some	effort,	and	a	lot	of
time,	but	if	any	city	can	do	it,	Pittsburgh	can.

Thanks	to	Charlie	Cheever	and	Jessica	Livingston	for	reading
drafts	of	this,	and	to	Meg	Cheever	for	organizing	Opt412	and
inviting	me	to	speak.

	

The	Risk	of	Discovery
January	2017

Because	biographies	of	famous	scientists	tend	to	edit	out	their
mistakes,	we	underestimate	the	degree	of	risk	they	were	willing
to	take.	And	because	anything	a	famous	scientist	did	that	wasn't
a	mistake	has	probably	now	become	the	conventional	wisdom,
those	choices	don't	seem	risky	either.

Biographies	of	Newton,	for	example,	understandably	focus	more
on	physics	than	alchemy	or	theology.	The	impression	we	get	is
that	his	unerring	judgment	led	him	straight	to	truths	no	one	else
had	noticed.	How	to	explain	all	the	time	he	spent	on	alchemy	and
theology?	Well,	smart	people	are	often	kind	of	crazy.

But	maybe	there	is	a	simpler	explanation.	Maybe	the	smartness
and	the	craziness	were	not	as	separate	as	we	think.	Physics
seems	to	us	a	promising	thing	to	work	on,	and	alchemy	and
theology	obvious	wastes	of	time.	But	that's	because	we	know	how
things	turned	out.	In	Newton's	day	the	three	problems	seemed
roughly	equally	promising.	No	one	knew	yet	what	the	payoff
would	be	for	inventing	what	we	now	call	physics;	if	they	had,
more	people	would	have	been	working	on	it.	And	alchemy	and
theology	were	still	then	in	the	category	Marc	Andreessen	would
describe	as	"huge,	if	true."

Newton	made	three	bets.	One	of	them	worked.	But	they	were	all
risky.

	

Charisma	/	Power
January	2017

People	who	are	powerful	but	uncharismatic	will	tend	to	be
disliked.	Their	power	makes	them	a	target	for	criticism	that	they
don't	have	the	charisma	to	disarm.	That	was	Hillary	Clinton's
problem.	It	also	tends	to	be	a	problem	for	any	CEO	who	is	more
of	a	builder	than	a	schmoozer.	And	yet	the	builder-type	CEO	is
(like	Hillary)	probably	the	best	person	for	the	job.

I	don't	think	there	is	any	solution	to	this	problem.	It's	human
nature.	The	best	we	can	do	is	to	recognize	that	it's	happening,
and	to	understand	that	being	a	magnet	for	criticism	is	sometimes
a	sign	not	that	someone	is	the	wrong	person	for	a	job,	but	that
they're	the	right	one.

	

General	and	Surprising
September	2017

The	most	valuable	insights	are	both	general	and	surprising.
F	=	ma	for	example.	But	general	and	surprising	is	a	hard
combination	to	achieve.	That	territory	tends	to	be	picked	clean,
precisely	because	those	insights	are	so	valuable.

Ordinarily,	the	best	that	people	can	do	is	one	without	the	other:
either	surprising	without	being	general	(e.g.	gossip),	or	general
without	being	surprising	(e.g.	platitudes).

Where	things	get	interesting	is	the	moderately	valuable	insights.
You	get	those	from	small	additions	of	whichever	quality	was
missing.	The	more	common	case	is	a	small	addition	of	generality:
a	piece	of	gossip	that's	more	than	just	gossip,	because	it	teaches
something	interesting	about	the	world.	But	another	less	common
approach	is	to	focus	on	the	most	general	ideas	and	see	if	you	can
find	something	new	to	say	about	them.	Because	these	start	out	so
general,	you	only	need	a	small	delta	of	novelty	to	produce	a
useful	insight.

A	small	delta	of	novelty	is	all	you'll	be	able	to	get	most	of	the
time.	Which	means	if	you	take	this	route,	your	ideas	will	seem	a
lot	like	ones	that	already	exist.	Sometimes	you'll	find	you've
merely	rediscovered	an	idea	that	did	already	exist.	But	don't	be
discouraged.	Remember	the	huge	multiplier	that	kicks	in	when
you	do	manage	to	think	of	something	even	a	little	new.

Corollary:	the	more	general	the	ideas	you're	talking	about,	the
less	you	should	worry	about	repeating	yourself.	If	you	write
enough,	it's	inevitable	you	will.	Your	brain	is	much	the	same	from
year	to	year	and	so	are	the	stimuli	that	hit	it.	I	feel	slightly	bad
when	I	find	I've	said	something	close	to	what	I've	said	before,	as
if	I	were	plagiarizing	myself.	But	rationally	one	shouldn't.	You
won't	say	something	exactly	the	same	way	the	second	time,	and

that	variation	increases	the	chance	you'll	get	that	tiny	but	critical
delta	of	novelty.

And	of	course,	ideas	beget	ideas.	(That	sounds	familiar.)	An	idea
with	a	small	amount	of	novelty	could	lead	to	one	with	more.	But
only	if	you	keep	going.	So	it's	doubly	important	not	to	let	yourself
be	discouraged	by	people	who	say	there's	not	much	new	about
something	you've	discovered.	"Not	much	new"	is	a	real
achievement	when	you're	talking	about	the	most	general	ideas.	

It's	not	true	that	there's	nothing	new	under	the	sun.	There	are
some	domains	where	there's	almost	nothing	new.	But	there's	a
big	difference	between	nothing	and	almost	nothing,	when	it's
multiplied	by	the	area	under	the	sun.

Thanks	to	Sam	Altman,	Patrick	Collison,	and	Jessica	Livingston
for	reading	drafts	of	this.

ecw.html

	

The	Bus	Ticket	Theory	of
Genius
November	2019

Everyone	knows	that	to	do	great	work	you	need	both	natural
ability	and	determination.	But	there's	a	third	ingredient	that's
not	as	well	understood:	an	obsessive	interest	in	a	particular
topic.

To	explain	this	point	I	need	to	burn	my	reputation	with	some
group	of	people,	and	I'm	going	to	choose	bus	ticket	collectors.
There	are	people	who	collect	old	bus	tickets.	Like	many
collectors,	they	have	an	obsessive	interest	in	the	minutiae	of
what	they	collect.	They	can	keep	track	of	distinctions	between
different	types	of	bus	tickets	that	would	be	hard	for	the	rest	of	us
to	remember.	Because	we	don't	care	enough.	What's	the	point	of
spending	so	much	time	thinking	about	old	bus	tickets?

Which	leads	us	to	the	second	feature	of	this	kind	of	obsession:
there	is	no	point.	A	bus	ticket	collector's	love	is	disinterested.
They're	not	doing	it	to	impress	us	or	to	make	themselves	rich,
but	for	its	own	sake.

When	you	look	at	the	lives	of	people	who've	done	great	work,	you
see	a	consistent	pattern.	They	often	begin	with	a	bus	ticket
collector's	obsessive	interest	in	something	that	would	have
seemed	pointless	to	most	of	their	contemporaries.	One	of	the
most	striking	features	of	Darwin's	book	about	his	voyage	on	the
Beagle	is	the	sheer	depth	of	his	interest	in	natural	history.	His
curiosity	seems	infinite.	Ditto	for	Ramanujan,	sitting	by	the	hour
working	out	on	his	slate	what	happens	to	series.

It's	a	mistake	to	think	they	were	"laying	the	groundwork"	for	the
discoveries	they	made	later.	There's	too	much	intention	in	that
metaphor.	Like	bus	ticket	collectors,	they	were	doing	it	because

they	liked	it.

But	there	is	a	difference	between	Ramanujan	and	a	bus	ticket
collector.	Series	matter,	and	bus	tickets	don't.

If	I	had	to	put	the	recipe	for	genius	into	one	sentence,	that	might
be	it:	to	have	a	disinterested	obsession	with	something	that
matters.

Aren't	I	forgetting	about	the	other	two	ingredients?	Less	than
you	might	think.	An	obsessive	interest	in	a	topic	is	both	a	proxy
for	ability	and	a	substitute	for	determination.	Unless	you	have
sufficient	mathematical	aptitude,	you	won't	find	series
interesting.	And	when	you're	obsessively	interested	in	something,
you	don't	need	as	much	determination:	you	don't	need	to	push
yourself	as	hard	when	curiosity	is	pulling	you.

An	obsessive	interest	will	even	bring	you	luck,	to	the	extent
anything	can.	Chance,	as	Pasteur	said,	favors	the	prepared	mind,
and	if	there's	one	thing	an	obsessed	mind	is,	it's	prepared.

The	disinterestedness	of	this	kind	of	obsession	is	its	most
important	feature.	Not	just	because	it's	a	filter	for	earnestness,
but	because	it	helps	you	discover	new	ideas.

The	paths	that	lead	to	new	ideas	tend	to	look	unpromising.	If
they	looked	promising,	other	people	would	already	have	explored
them.	How	do	the	people	who	do	great	work	discover	these	paths
that	others	overlook?	The	popular	story	is	that	they	simply	have
better	vision:	because	they're	so	talented,	they	see	paths	that
others	miss.	But	if	you	look	at	the	way	great	discoveries	are
made,	that's	not	what	happens.	Darwin	didn't	pay	closer
attention	to	individual	species	than	other	people	because	he	saw
that	this	would	lead	to	great	discoveries,	and	they	didn't.	He	was
just	really,	really	interested	in	such	things.

Darwin	couldn't	turn	it	off.	Neither	could	Ramanujan.	They	didn't
discover	the	hidden	paths	that	they	did	because	they	seemed
promising,	but	because	they	couldn't	help	it.	That's	what	allowed
them	to	follow	paths	that	someone	who	was	merely	ambitious
would	have	ignored.

What	rational	person	would	decide	that	the	way	to	write	great
novels	was	to	begin	by	spending	several	years	creating	an
imaginary	elvish	language,	like	Tolkien,	or	visiting	every
household	in	southwestern	Britain,	like	Trollope?	No	one,
including	Tolkien	and	Trollope.

The	bus	ticket	theory	is	similar	to	Carlyle's	famous	definition	of
genius	as	an	infinite	capacity	for	taking	pains.	But	there	are	two
differences.	The	bus	ticket	theory	makes	it	clear	that	the	source
of	this	infinite	capacity	for	taking	pains	is	not	infinite	diligence,
as	Carlyle	seems	to	have	meant,	but	the	sort	of	infinite	interest
that	collectors	have.	It	also	adds	an	important	qualification:	an
infinite	capacity	for	taking	pains	about	something	that	matters.

So	what	matters?	You	can	never	be	sure.	It's	precisely	because
no	one	can	tell	in	advance	which	paths	are	promising	that	you
can	discover	new	ideas	by	working	on	what	you're	interested	in.

But	there	are	some	heuristics	you	can	use	to	guess	whether	an
obsession	might	be	one	that	matters.	For	example,	it's	more
promising	if	you're	creating	something,	rather	than	just
consuming	something	someone	else	creates.	It's	more	promising
if	something	you're	interested	in	is	difficult,	especially	if	it's	more
difficult	for	other	people	than	it	is	for	you.	And	the	obsessions	of
talented	people	are	more	likely	to	be	promising.	When	talented
people	become	interested	in	random	things,	they're	not	truly
random.

But	you	can	never	be	sure.	In	fact,	here's	an	interesting	idea
that's	also	rather	alarming	if	it's	true:	it	may	be	that	to	do	great
work,	you	also	have	to	waste	a	lot	of	time.

In	many	different	areas,	reward	is	proportionate	to	risk.	If	that
rule	holds	here,	then	the	way	to	find	paths	that	lead	to	truly
great	work	is	to	be	willing	to	expend	a	lot	of	effort	on	things	that
turn	out	to	be	every	bit	as	unpromising	as	they	seem.

I'm	not	sure	if	this	is	true.	On	one	hand,	it	seems	surprisingly
difficult	to	waste	your	time	so	long	as	you're	working	hard	on
something	interesting.	So	much	of	what	you	do	ends	up	being

work.html

useful.	But	on	the	other	hand,	the	rule	about	the	relationship
between	risk	and	reward	is	so	powerful	that	it	seems	to	hold
wherever	risk	occurs.	Newton's	case,	at	least,	suggests	that	the
risk/reward	rule	holds	here.	He's	famous	for	one	particular
obsession	of	his	that	turned	out	to	be	unprecedentedly	fruitful:
using	math	to	describe	the	world.	But	he	had	two	other
obsessions,	alchemy	and	theology,	that	seem	to	have	been
complete	wastes	of	time.	He	ended	up	net	ahead.	His	bet	on	what
we	now	call	physics	paid	off	so	well	that	it	more	than
compensated	for	the	other	two.	But	were	the	other	two
necessary,	in	the	sense	that	he	had	to	take	big	risks	to	make	such
big	discoveries?	I	don't	know.

Here's	an	even	more	alarming	idea:	might	one	make	all	bad	bets?
It	probably	happens	quite	often.	But	we	don't	know	how	often,
because	these	people	don't	become	famous.

It's	not	merely	that	the	returns	from	following	a	path	are	hard	to
predict.	They	change	dramatically	over	time.	1830	was	a	really
good	time	to	be	obsessively	interested	in	natural	history.	If
Darwin	had	been	born	in	1709	instead	of	1809,	we	might	never
have	heard	of	him.

What	can	one	do	in	the	face	of	such	uncertainty?	One	solution	is
to	hedge	your	bets,	which	in	this	case	means	to	follow	the
obviously	promising	paths	instead	of	your	own	private
obsessions.	But	as	with	any	hedge,	you're	decreasing	reward
when	you	decrease	risk.	If	you	forgo	working	on	what	you	like	in
order	to	follow	some	more	conventionally	ambitious	path,	you
might	miss	something	wonderful	that	you'd	otherwise	have
discovered.	That	too	must	happen	all	the	time,	perhaps	even
more	often	than	the	genius	whose	bets	all	fail.

The	other	solution	is	to	let	yourself	be	interested	in	lots	of
different	things.	You	don't	decrease	your	upside	if	you	switch
between	equally	genuine	interests	based	on	which	seems	to	be
working	so	far.	But	there	is	a	danger	here	too:	if	you	work	on	too
many	different	projects,	you	might	not	get	deeply	enough	into
any	of	them.

One	interesting	thing	about	the	bus	ticket	theory	is	that	it	may

disc.html

help	explain	why	different	types	of	people	excel	at	different	kinds
of	work.	Interest	is	much	more	unevenly	distributed	than	ability.
If	natural	ability	is	all	you	need	to	do	great	work,	and	natural
ability	is	evenly	distributed,	you	have	to	invent	elaborate	theories
to	explain	the	skewed	distributions	we	see	among	those	who
actually	do	great	work	in	various	fields.	But	it	may	be	that	much
of	the	skew	has	a	simpler	explanation:	different	people	are
interested	in	different	things.

The	bus	ticket	theory	also	explains	why	people	are	less	likely	to
do	great	work	after	they	have	children.	Here	interest	has	to
compete	not	just	with	external	obstacles,	but	with	another
interest,	and	one	that	for	most	people	is	extremely	powerful.	It's
harder	to	find	time	for	work	after	you	have	kids,	but	that's	the
easy	part.	The	real	change	is	that	you	don't	want	to.

But	the	most	exciting	implication	of	the	bus	ticket	theory	is	that
it	suggests	ways	to	encourage	great	work.	If	the	recipe	for
genius	is	simply	natural	ability	plus	hard	work,	all	we	can	do	is
hope	we	have	a	lot	of	ability,	and	work	as	hard	as	we	can.	But	if
interest	is	a	critical	ingredient	in	genius,	we	may	be	able,	by
cultivating	interest,	to	cultivate	genius.

For	example,	for	the	very	ambitious,	the	bus	ticket	theory
suggests	that	the	way	to	do	great	work	is	to	relax	a	little.	Instead
of	gritting	your	teeth	and	diligently	pursuing	what	all	your	peers
agree	is	the	most	promising	line	of	research,	maybe	you	should
try	doing	something	just	for	fun.	And	if	you're	stuck,	that	may	be
the	vector	along	which	to	break	out.

I've	always	liked	Hamming's	famous	double-barrelled	question:
what	are	the	most	important	problems	in	your	field,	and	why
aren't	you	working	on	one	of	them?	It's	a	great	way	to	shake
yourself	up.	But	it	may	be	overfitting	a	bit.	It	might	be	at	least	as
useful	to	ask	yourself:	if	you	could	take	a	year	off	to	work	on
something	that	probably	wouldn't	be	important	but	would	be
really	interesting,	what	would	it	be?

The	bus	ticket	theory	also	suggests	a	way	to	avoid	slowing	down
as	you	get	older.	Perhaps	the	reason	people	have	fewer	new	ideas
as	they	get	older	is	not	simply	that	they're	losing	their	edge.	It

hamming.html

may	also	be	because	once	you	become	established,	you	can	no
longer	mess	about	with	irresponsible	side	projects	the	way	you
could	when	you	were	young	and	no	one	cared	what	you	did.

The	solution	to	that	is	obvious:	remain	irresponsible.	It	will	be
hard,	though,	because	the	apparently	random	projects	you	take
up	to	stave	off	decline	will	read	to	outsiders	as	evidence	of	it.
And	you	yourself	won't	know	for	sure	that	they're	wrong.	But	it
will	at	least	be	more	fun	to	work	on	what	you	want.

It	may	even	be	that	we	can	cultivate	a	habit	of	intellectual	bus
ticket	collecting	in	kids.	The	usual	plan	in	education	is	to	start
with	a	broad,	shallow	focus,	then	gradually	become	more
specialized.	But	I've	done	the	opposite	with	my	kids.	I	know	I	can
count	on	their	school	to	handle	the	broad,	shallow	part,	so	I	take
them	deep.

When	they	get	interested	in	something,	however	random,	I
encourage	them	to	go	preposterously,	bus	ticket	collectorly,	deep.
I	don't	do	this	because	of	the	bus	ticket	theory.	I	do	it	because	I
want	them	to	feel	the	joy	of	learning,	and	they're	never	going	to
feel	that	about	something	I'm	making	them	learn.	It	has	to	be
something	they're	interested	in.	I'm	just	following	the	path	of
least	resistance;	depth	is	a	byproduct.	But	if	in	trying	to	show
them	the	joy	of	learning	I	also	end	up	training	them	to	go	deep,
so	much	the	better.

Will	it	have	any	effect?	I	have	no	idea.	But	that	uncertainty	may
be	the	most	interesting	point	of	all.	There	is	so	much	more	to
learn	about	how	to	do	great	work.	As	old	as	human	civilization
feels,	it's	really	still	very	young	if	we	haven't	nailed	something	so
basic.	It's	exciting	to	think	there	are	still	discoveries	to	make
about	discovery.	If	that's	the	sort	of	thing	you're	interested	in.

Notes

[1]	There	are	other	types	of	collecting	that	illustrate	this	point
better	than	bus	tickets,	but	they're	also	more	popular.	It	seemed
just	as	well	to	use	an	inferior	example	rather	than	offend	more
people	by	telling	them	their	hobby	doesn't	matter.

[2]	I	worried	a	little	about	using	the	word	"disinterested,"	since
some	people	mistakenly	believe	it	means	not	interested.	But
anyone	who	expects	to	be	a	genius	will	have	to	know	the
meaning	of	such	a	basic	word,	so	I	figure	they	may	as	well	start
now.

[3]	Think	how	often	genius	must	have	been	nipped	in	the	bud	by
people	being	told,	or	telling	themselves,	to	stop	messing	about
and	be	responsible.	Ramanujan's	mother	was	a	huge	enabler.
Imagine	if	she	hadn't	been.	Imagine	if	his	parents	had	made	him
go	out	and	get	a	job	instead	of	sitting	around	at	home	doing
math.

On	the	other	hand,	anyone	quoting	the	preceding	paragraph	to
justify	not	getting	a	job	is	probably	mistaken.

[4]	1709	Darwin	is	to	time	what	the	Milanese	Leonardo	is	to
space.

[5]	"An	infinite	capacity	for	taking	pains"	is	a	paraphrase	of	what
Carlyle	wrote.	What	he	wrote,	in	his	History	of	Frederick	the
Great,	was	"...	it	is	the	fruit	of	'genius'	(which	means
transcendent	capacity	of	taking	trouble,	first	of	all)...."	Since	the
paraphrase	seems	the	name	of	the	idea	at	this	point,	I	kept	it.

Carlyle's	History	was	published	in	1858.	In	1785	H�rault	de
S�chelles	quoted	Buffon	as	saying	"Le	g�nie	n'est	qu'une	plus
grande	aptitude	�	la	patience."	(Genius	is	only	a	greater
aptitude	for	patience.)

[6]	Trollope	was	establishing	the	system	of	postal	routes.	He

cities.html

himself	sensed	the	obsessiveness	with	which	he	pursued	this
goal.

It	is	amusing	to	watch	how	a	passion	will	grow	upon
a	man.	During	those	two	years	it	was	the	ambition	of
my	life	to	cover	the	country	with	rural	letter-carriers.

Even	Newton	occasionally	sensed	the	degree	of	his
obsessiveness.	After	computing	pi	to	15	digits,	he	wrote	in	a
letter	to	a	friend:

I	am	ashamed	to	tell	you	to	how	many	figures	I
carried	these	computations,	having	no	other	business
at	the	time.

Incidentally,	Ramanujan	was	also	a	compulsive	calculator.	As
Kanigel	writes	in	his	excellent	biography:

One	Ramanujan	scholar,	B.	M.	Wilson,	later	told	how
Ramanujan's	research	into	number	theory	was	often
"preceded	by	a	table	of	numerical	results,	carried
usually	to	a	length	from	which	most	of	us	would
shrink."

[7]	Working	to	understand	the	natural	world	counts	as	creating
rather	than	consuming.

Newton	tripped	over	this	distinction	when	he	chose	to	work	on
theology.	His	beliefs	did	not	allow	him	to	see	it,	but	chasing	down
paradoxes	in	nature	is	fruitful	in	a	way	that	chasing	down
paradoxes	in	sacred	texts	is	not.

[8]	How	much	of	people's	propensity	to	become	interested	in	a
topic	is	inborn?	My	experience	so	far	suggests	the	answer	is:
most	of	it.	Different	kids	get	interested	in	different	things,	and
it's	hard	to	make	a	child	interested	in	something	they	wouldn't
otherwise	be.	Not	in	a	way	that	sticks.	The	most	you	can	do	on
behalf	of	a	topic	is	to	make	sure	it	gets	a	fair	showing	�	to	make
it	clear	to	them,	for	example,	that	there's	more	to	math	than	the
dull	drills	they	do	in	school.	After	that	it's	up	to	the	child.

Thanks	to	Marc	Andreessen,	Trevor	Blackwell,	Patrick	Collison,
Kevin	Lacker,	Jessica	Livingston,	Jackie	McDonough,	Robert
Morris,	Lisa	Randall,	Zak	Stone,	and	my	7	year	old	for	reading
drafts	of	this.

https://twitter.com/paulg/status/1196537802621669376

	

Novelty	and	Heresy
November	2019

If	you	discover	something	new,	there's	a	significant	chance	you'll
be	accused	of	some	form	of	heresy.

To	discover	new	things,	you	have	to	work	on	ideas	that	are	good
but	non-obvious;	if	an	idea	is	obviously	good,	other	people	are
probably	already	working	on	it.	One	common	way	for	a	good	idea
to	be	non-obvious	is	for	it	to	be	hidden	in	the	shadow	of	some
mistaken	assumption	that	people	are	very	attached	to.	But
anything	you	discover	from	working	on	such	an	idea	will	tend	to
contradict	the	mistaken	assumption	that	was	concealing	it.	And
you	will	thus	get	a	lot	of	heat	from	people	attached	to	the
mistaken	assumption.	Galileo	and	Darwin	are	famous	examples
of	this	phenomenon,	but	it's	probably	always	an	ingredient	in	the
resistance	to	new	ideas.

So	it's	particularly	dangerous	for	an	organization	or	society	to
have	a	culture	of	pouncing	on	heresy.	When	you	suppress
heresies,	you	don't	just	prevent	people	from	contradicting	the
mistaken	assumption	you're	trying	to	protect.	You	also	suppress
any	idea	that	implies	indirectly	that	it's	false.	

Every	cherished	mistaken	assumption	has	a	dead	zone	of
unexplored	ideas	around	it.	And	the	more	preposterous	the
assumption,	the	bigger	the	dead	zone	it	creates.

There	is	a	positive	side	to	this	phenomenon	though.	If	you're
looking	for	new	ideas,	one	way	to	find	them	is	by	looking	for
heresies.	When	you	look	at	the	question	this	way,	the
depressingly	large	dead	zones	around	mistaken	assumptions
become	excitingly	large	mines	of	new	ideas.

say.html

	

The	Lesson	to	Unlearn
December	2019

The	most	damaging	thing	you	learned	in	school	wasn't	something
you	learned	in	any	specific	class.	It	was	learning	to	get	good
grades.

When	I	was	in	college,	a	particularly	earnest	philosophy	grad
student	once	told	me	that	he	never	cared	what	grade	he	got	in	a
class,	only	what	he	learned	in	it.	This	stuck	in	my	mind	because	it
was	the	only	time	I	ever	heard	anyone	say	such	a	thing.

For	me,	as	for	most	students,	the	measurement	of	what	I	was
learning	completely	dominated	actual	learning	in	college.	I	was
fairly	earnest;	I	was	genuinely	interested	in	most	of	the	classes	I
took,	and	I	worked	hard.	And	yet	I	worked	by	far	the	hardest
when	I	was	studying	for	a	test.

In	theory,	tests	are	merely	what	their	name	implies:	tests	of	what
you've	learned	in	the	class.	In	theory	you	shouldn't	have	to
prepare	for	a	test	in	a	class	any	more	than	you	have	to	prepare
for	a	blood	test.	In	theory	you	learn	from	taking	the	class,	from
going	to	the	lectures	and	doing	the	reading	and/or	assignments,
and	the	test	that	comes	afterward	merely	measures	how	well	you
learned.

In	practice,	as	almost	everyone	reading	this	will	know,	things	are
so	different	that	hearing	this	explanation	of	how	classes	and	tests
are	meant	to	work	is	like	hearing	the	etymology	of	a	word	whose
meaning	has	changed	completely.	In	practice,	the	phrase
"studying	for	a	test"	was	almost	redundant,	because	that	was
when	one	really	studied.	The	difference	between	diligent	and
slack	students	was	that	the	former	studied	hard	for	tests	and	the
latter	didn't.	No	one	was	pulling	all-nighters	two	weeks	into	the
semester.

Even	though	I	was	a	diligent	student,	almost	all	the	work	I	did	in
school	was	aimed	at	getting	a	good	grade	on	something.

To	many	people,	it	would	seem	strange	that	the	preceding
sentence	has	a	"though"	in	it.	Aren't	I	merely	stating	a	tautology?
Isn't	that	what	a	diligent	student	is,	a	straight-A	student?	That's
how	deeply	the	conflation	of	learning	with	grades	has	infused	our
culture.

Is	it	so	bad	if	learning	is	conflated	with	grades?	Yes,	it	is	bad.
And	it	wasn't	till	decades	after	college,	when	I	was	running
Y	Combinator,	that	I	realized	how	bad	it	is.

I	knew	of	course	when	I	was	a	student	that	studying	for	a	test	is
far	from	identical	with	actual	learning.	At	the	very	least,	you
don't	retain	knowledge	you	cram	into	your	head	the	night	before
an	exam.	But	the	problem	is	worse	than	that.	The	real	problem	is
that	most	tests	don't	come	close	to	measuring	what	they're
supposed	to.

If	tests	truly	were	tests	of	learning,	things	wouldn't	be	so	bad.
Getting	good	grades	and	learning	would	converge,	just	a	little
late.	The	problem	is	that	nearly	all	tests	given	to	students	are
terribly	hackable.	Most	people	who've	gotten	good	grades	know
this,	and	know	it	so	well	they've	ceased	even	to	question	it.	You'll
see	when	you	realize	how	naive	it	sounds	to	act	otherwise.

Suppose	you're	taking	a	class	on	medieval	history	and	the	final
exam	is	coming	up.	The	final	exam	is	supposed	to	be	a	test	of
your	knowledge	of	medieval	history,	right?	So	if	you	have	a
couple	days	between	now	and	the	exam,	surely	the	best	way	to
spend	the	time,	if	you	want	to	do	well	on	the	exam,	is	to	read	the
best	books	you	can	find	about	medieval	history.	Then	you'll	know
a	lot	about	it,	and	do	well	on	the	exam.

No,	no,	no,	experienced	students	are	saying	to	themselves.	If	you
merely	read	good	books	on	medieval	history,	most	of	the	stuff	you
learned	wouldn't	be	on	the	test.	It's	not	good	books	you	want	to
read,	but	the	lecture	notes	and	assigned	reading	in	this	class.
And	even	most	of	that	you	can	ignore,	because	you	only	have	to
worry	about	the	sort	of	thing	that	could	turn	up	as	a	test

question.	You're	looking	for	sharply-defined	chunks	of
information.	If	one	of	the	assigned	readings	has	an	interesting
digression	on	some	subtle	point,	you	can	safely	ignore	that,
because	it's	not	the	sort	of	thing	that	could	be	turned	into	a	test
question.	But	if	the	professor	tells	you	that	there	were	three
underlying	causes	of	the	Schism	of	1378,	or	three	main
consequences	of	the	Black	Death,	you'd	better	know	them.	And
whether	they	were	in	fact	the	causes	or	consequences	is	beside
the	point.	For	the	purposes	of	this	class	they	are.

At	a	university	there	are	often	copies	of	old	exams	floating
around,	and	these	narrow	still	further	what	you	have	to	learn.	As
well	as	learning	what	kind	of	questions	this	professor	asks,	you'll
often	get	actual	exam	questions.	Many	professors	re-use	them.
After	teaching	a	class	for	10	years,	it	would	be	hard	not	to,	at
least	inadvertently.

In	some	classes,	your	professor	will	have	had	some	sort	of
political	axe	to	grind,	and	if	so	you'll	have	to	grind	it	too.	The
need	for	this	varies.	In	classes	in	math	or	the	hard	sciences	or
engineering	it's	rarely	necessary,	but	at	the	other	end	of	the
spectrum	there	are	classes	where	you	couldn't	get	a	good	grade
without	it.

Getting	a	good	grade	in	a	class	on	x	is	so	different	from	learning
a	lot	about	x	that	you	have	to	choose	one	or	the	other,	and	you
can't	blame	students	if	they	choose	grades.	Everyone	judges
them	by	their	grades	�	graduate	programs,	employers,
scholarships,	even	their	own	parents.

I	liked	learning,	and	I	really	enjoyed	some	of	the	papers	and
programs	I	wrote	in	college.	But	did	I	ever,	after	turning	in	a
paper	in	some	class,	sit	down	and	write	another	just	for	fun?	Of
course	not.	I	had	things	due	in	other	classes.	If	it	ever	came	to	a
choice	of	learning	or	grades,	I	chose	grades.	I	hadn't	come	to
college	to	do	badly.

Anyone	who	cares	about	getting	good	grades	has	to	play	this
game,	or	they'll	be	surpassed	by	those	who	do.	And	at	elite
universities,	that	means	nearly	everyone,	since	someone	who
didn't	care	about	getting	good	grades	probably	wouldn't	be	there

in	the	first	place.	The	result	is	that	students	compete	to	maximize
the	difference	between	learning	and	getting	good	grades.

Why	are	tests	so	bad?	More	precisely,	why	are	they	so	hackable?
Any	experienced	programmer	could	answer	that.	How	hackable
is	software	whose	author	hasn't	paid	any	attention	to	preventing
it	from	being	hacked?	Usually	it's	as	porous	as	a	colander.

Hackable	is	the	default	for	any	test	imposed	by	an	authority.	The
reason	the	tests	you're	given	are	so	consistently	bad	�	so
consistently	far	from	measuring	what	they're	supposed	to
measure	�	is	simply	that	the	people	creating	them	haven't	made
much	effort	to	prevent	them	from	being	hacked.

But	you	can't	blame	teachers	if	their	tests	are	hackable.	Their	job
is	to	teach,	not	to	create	unhackable	tests.	The	real	problem	is
grades,	or	more	precisely,	that	grades	have	been	overloaded.	If
grades	were	merely	a	way	for	teachers	to	tell	students	what	they
were	doing	right	and	wrong,	like	a	coach	giving	advice	to	an
athlete,	students	wouldn't	be	tempted	to	hack	tests.	But
unfortunately	after	a	certain	age	grades	become	more	than
advice.	After	a	certain	age,	whenever	you're	being	taught,	you're
usually	also	being	judged.

I've	used	college	tests	as	an	example,	but	those	are	actually	the
least	hackable.	All	the	tests	most	students	take	their	whole	lives
are	at	least	as	bad,	including,	most	spectacularly	of	all,	the	test
that	gets	them	into	college.	If	getting	into	college	were	merely	a
matter	of	having	the	quality	of	one's	mind	measured	by
admissions	officers	the	way	scientists	measure	the	mass	of	an
object,	we	could	tell	teenage	kids	"learn	a	lot"	and	leave	it	at
that.	You	can	tell	how	bad	college	admissions	are,	as	a	test,	from
how	unlike	high	school	that	sounds.	In	practice,	the	freakishly
specific	nature	of	the	stuff	ambitious	kids	have	to	do	in	high
school	is	directly	proportionate	to	the	hackability	of	college
admissions.	The	classes	you	don't	care	about	that	are	mostly
memorization,	the	random	"extracurricular	activities"	you	have	to
participate	in	to	show	you're	"well-rounded,"	the	standardized
tests	as	artificial	as	chess,	the	"essay"	you	have	to	write	that's
presumably	meant	to	hit	some	very	specific	target,	but	you're	not
told	what.

As	well	as	being	bad	in	what	it	does	to	kids,	this	test	is	also	bad
in	the	sense	of	being	very	hackable.	So	hackable	that	whole
industries	have	grown	up	to	hack	it.	This	is	the	explicit	purpose
of	test-prep	companies	and	admissions	counsellors,	but	it's	also	a
significant	part	of	the	function	of	private	schools.

Why	is	this	particular	test	so	hackable?	I	think	because	of	what
it's	measuring.	Although	the	popular	story	is	that	the	way	to	get
into	a	good	college	is	to	be	really	smart,	admissions	officers	at
elite	colleges	neither	are,	nor	claim	to	be,	looking	only	for	that.
What	are	they	looking	for?	They're	looking	for	people	who	are
not	simply	smart,	but	admirable	in	some	more	general	sense.	And
how	is	this	more	general	admirableness	measured?	The
admissions	officers	feel	it.	In	other	words,	they	accept	who	they
like.

So	what	college	admissions	is	a	test	of	is	whether	you	suit	the
taste	of	some	group	of	people.	Well,	of	course	a	test	like	that	is
going	to	be	hackable.	And	because	it's	both	very	hackable	and
there's	(thought	to	be)	a	lot	at	stake,	it's	hacked	like	nothing	else.
That's	why	it	distorts	your	life	so	much	for	so	long.

It's	no	wonder	high	school	students	often	feel	alienated.	The
shape	of	their	lives	is	completely	artificial.

But	wasting	your	time	is	not	the	worst	thing	the	educational
system	does	to	you.	The	worst	thing	it	does	is	to	train	you	that
the	way	to	win	is	by	hacking	bad	tests.	This	is	a	much	subtler
problem	that	I	didn't	recognize	until	I	saw	it	happening	to	other
people.

When	I	started	advising	startup	founders	at	Y	Combinator,
especially	young	ones,	I	was	puzzled	by	the	way	they	always
seemed	to	make	things	overcomplicated.	How,	they	would	ask,	do
you	raise	money?	What's	the	trick	for	making	venture	capitalists
want	to	invest	in	you?	The	best	way	to	make	VCs	want	to	invest
in	you,	I	would	explain,	is	to	actually	be	a	good	investment.	Even
if	you	could	trick	VCs	into	investing	in	a	bad	startup,	you'd	be
tricking	yourselves	too.	You're	investing	time	in	the	same
company	you're	asking	them	to	invest	money	in.	If	it's	not	a	good

investment,	why	are	you	even	doing	it?

Oh,	they'd	say,	and	then	after	a	pause	to	digest	this	revelation,
they'd	ask:	What	makes	a	startup	a	good	investment?

So	I	would	explain	that	what	makes	a	startup	promising,	not	just
in	the	eyes	of	investors	but	in	fact,	is	growth.	Ideally	in	revenue,
but	failing	that	in	usage.	What	they	needed	to	do	was	get	lots	of
users.

How	does	one	get	lots	of	users?	They	had	all	kinds	of	ideas	about
that.	They	needed	to	do	a	big	launch	that	would	get	them
"exposure."	They	needed	influential	people	to	talk	about	them.
They	even	knew	they	needed	to	launch	on	a	tuesday,	because
that's	when	one	gets	the	most	attention.

No,	I	would	explain,	that	is	not	how	to	get	lots	of	users.	The	way
you	get	lots	of	users	is	to	make	the	product	really	great.	Then
people	will	not	only	use	it	but	recommend	it	to	their	friends,	so
your	growth	will	be	exponential	once	you	get	it	started.

At	this	point	I've	told	the	founders	something	you'd	think	would
be	completely	obvious:	that	they	should	make	a	good	company	by
making	a	good	product.	And	yet	their	reaction	would	be
something	like	the	reaction	many	physicists	must	have	had	when
they	first	heard	about	the	theory	of	relativity:	a	mixture	of
astonishment	at	its	apparent	genius,	combined	with	a	suspicion
that	anything	so	weird	couldn't	possibly	be	right.	Ok,	they	would
say,	dutifully.	And	could	you	introduce	us	to	such-and-such
influential	person?	And	remember,	we	want	to	launch	on
Tuesday.

It	would	sometimes	take	founders	years	to	grasp	these	simple
lessons.	And	not	because	they	were	lazy	or	stupid.	They	just
seemed	blind	to	what	was	right	in	front	of	them.

Why,	I	would	ask	myself,	do	they	always	make	things	so
complicated?	And	then	one	day	I	realized	this	was	not	a
rhetorical	question.

Why	did	founders	tie	themselves	in	knots	doing	the	wrong	things

growth.html
ds.html

when	the	answer	was	right	in	front	of	them?	Because	that	was
what	they'd	been	trained	to	do.	Their	education	had	taught	them
that	the	way	to	win	was	to	hack	the	test.	And	without	even	telling
them	they	were	being	trained	to	do	this.	The	younger	ones,	the
recent	graduates,	had	never	faced	a	non-artificial	test.	They
thought	this	was	just	how	the	world	worked:	that	the	first	thing
you	did,	when	facing	any	kind	of	challenge,	was	to	figure	out
what	the	trick	was	for	hacking	the	test.	That's	why	the
conversation	would	always	start	with	how	to	raise	money,
because	that	read	as	the	test.	It	came	at	the	end	of	YC.	It	had
numbers	attached	to	it,	and	higher	numbers	seemed	to	be	better.
It	must	be	the	test.

There	are	certainly	big	chunks	of	the	world	where	the	way	to	win
is	to	hack	the	test.	This	phenomenon	isn't	limited	to	schools.	And
some	people,	either	due	to	ideology	or	ignorance,	claim	that	this
is	true	of	startups	too.	But	it	isn't.	In	fact,	one	of	the	most
striking	things	about	startups	is	the	degree	to	which	you	win	by
simply	doing	good	work.	There	are	edge	cases,	as	there	are	in
anything,	but	in	general	you	win	by	getting	users,	and	what	users
care	about	is	whether	the	product	does	what	they	want.

Why	did	it	take	me	so	long	to	understand	why	founders	made
startups	overcomplicated?	Because	I	hadn't	realized	explicitly
that	schools	train	us	to	win	by	hacking	bad	tests.	And	not	just
them,	but	me!	I'd	been	trained	to	hack	bad	tests	too,	and	hadn't
realized	it	till	decades	later.

I	had	lived	as	if	I	realized	it,	but	without	knowing	why.	For
example,	I	had	avoided	working	for	big	companies.	But	if	you'd
asked	why,	I'd	have	said	it	was	because	they	were	bogus,	or
bureaucratic.	Or	just	yuck.	I	never	understood	how	much	of	my
dislike	of	big	companies	was	due	to	the	fact	that	you	win	by
hacking	bad	tests.

Similarly,	the	fact	that	the	tests	were	unhackable	was	a	lot	of
what	attracted	me	to	startups.	But	again,	I	hadn't	realized	that
explicitly.

I	had	in	effect	achieved	by	successive	approximations	something
that	may	have	a	closed-form	solution.	I	had	gradually	undone	my

training	in	hacking	bad	tests	without	knowing	I	was	doing	it.
Could	someone	coming	out	of	school	banish	this	demon	just	by
knowing	its	name,	and	saying	begone?	It	seems	worth	trying.

Merely	talking	explicitly	about	this	phenomenon	is	likely	to	make
things	better,	because	much	of	its	power	comes	from	the	fact	that
we	take	it	for	granted.	After	you've	noticed	it,	it	seems	the
elephant	in	the	room,	but	it's	a	pretty	well	camouflaged	elephant.
The	phenomenon	is	so	old,	and	so	pervasive.	And	it's	simply	the
result	of	neglect.	No	one	meant	things	to	be	this	way.	This	is	just
what	happens	when	you	combine	learning	with	grades,
competition,	and	the	naive	assumption	of	unhackability.

It	was	mind-blowing	to	realize	that	two	of	the	things	I'd	puzzled
about	the	most	�	the	bogusness	of	high	school,	and	the	difficulty
of	getting	founders	to	see	the	obvious	�	both	had	the	same
cause.	It's	rare	for	such	a	big	block	to	slide	into	place	so	late.

Usually	when	that	happens	it	has	implications	in	a	lot	of	different
areas,	and	this	case	seems	no	exception.	For	example,	it	suggests
both	that	education	could	be	done	better,	and	how	you	might	fix
it.	But	it	also	suggests	a	potential	answer	to	the	question	all	big
companies	seem	to	have:	how	can	we	be	more	like	a	startup?	I'm
not	going	to	chase	down	all	the	implications	now.	What	I	want	to
focus	on	here	is	what	it	means	for	individuals.

To	start	with,	it	means	that	most	ambitious	kids	graduating	from
college	have	something	they	may	want	to	unlearn.	But	it	also
changes	how	you	look	at	the	world.	Instead	of	looking	at	all	the
different	kinds	of	work	people	do	and	thinking	of	them	vaguely	as
more	or	less	appealing,	you	can	now	ask	a	very	specific	question
that	will	sort	them	in	an	interesting	way:	to	what	extent	do	you
win	at	this	kind	of	work	by	hacking	bad	tests?

It	would	help	if	there	was	a	way	to	recognize	bad	tests	quickly.	Is
there	a	pattern	here?	It	turns	out	there	is.

Tests	can	be	divided	into	two	kinds:	those	that	are	imposed	by
authorities,	and	those	that	aren't.	Tests	that	aren't	imposed	by
authorities	are	inherently	unhackable,	in	the	sense	that	no	one	is
claiming	they're	tests	of	anything	more	than	they	actually	test.	A

football	match,	for	example,	is	simply	a	test	of	who	wins,	not
which	team	is	better.	You	can	tell	that	from	the	fact	that
commentators	sometimes	say	afterward	that	the	better	team
won.	Whereas	tests	imposed	by	authorities	are	usually	proxies
for	something	else.	A	test	in	a	class	is	supposed	to	measure	not
just	how	well	you	did	on	that	particular	test,	but	how	much	you
learned	in	the	class.	While	tests	that	aren't	imposed	by
authorities	are	inherently	unhackable,	those	imposed	by
authorities	have	to	be	made	unhackable.	Usually	they	aren't.	So
as	a	first	approximation,	bad	tests	are	roughly	equivalent	to	tests
imposed	by	authorities.

You	might	actually	like	to	win	by	hacking	bad	tests.	Presumably
some	people	do.	But	I	bet	most	people	who	find	themselves	doing
this	kind	of	work	don't	like	it.	They	just	take	it	for	granted	that
this	is	how	the	world	works,	unless	you	want	to	drop	out	and	be
some	kind	of	hippie	artisan.

I	suspect	many	people	implicitly	assume	that	working	in	a	field
with	bad	tests	is	the	price	of	making	lots	of	money.	But	that,	I	can
tell	you,	is	false.	It	used	to	be	true.	In	the	mid-twentieth	century,
when	the	economy	was	composed	of	oligopolies,	the	only	way	to
the	top	was	by	playing	their	game.	But	it's	not	true	now.	There
are	now	ways	to	get	rich	by	doing	good	work,	and	that's	part	of
the	reason	people	are	so	much	more	excited	about	getting	rich
than	they	used	to	be.	When	I	was	a	kid,	you	could	either	become
an	engineer	and	make	cool	things,	or	make	lots	of	money	by
becoming	an	"executive."	Now	you	can	make	lots	of	money	by
making	cool	things.

Hacking	bad	tests	is	becoming	less	important	as	the	link	between
work	and	authority	erodes.	The	erosion	of	that	link	is	one	of	the
most	important	trends	happening	now,	and	we	see	its	effects	in
almost	every	kind	of	work	people	do.	Startups	are	one	of	the
most	visible	examples,	but	we	see	much	the	same	thing	in
writing.	Writers	no	longer	have	to	submit	to	publishers	and
editors	to	reach	readers;	now	they	can	go	direct.

The	more	I	think	about	this	question,	the	more	optimistic	I	get.
This	seems	one	of	those	situations	where	we	don't	realize	how
much	something	was	holding	us	back	until	it's	eliminated.	And	I

re.html

can	foresee	the	whole	bogus	edifice	crumbling.	Imagine	what
happens	as	more	and	more	people	start	to	ask	themselves	if	they
want	to	win	by	hacking	bad	tests,	and	decide	that	they	don't.	The
kinds	of	work	where	you	win	by	hacking	bad	tests	will	be	starved
of	talent,	and	the	kinds	where	you	win	by	doing	good	work	will
see	an	influx	of	the	most	ambitious	people.	And	as	hacking	bad
tests	shrinks	in	importance,	education	will	evolve	to	stop	training
us	to	do	it.	Imagine	what	the	world	could	look	like	if	that
happened.

This	is	not	just	a	lesson	for	individuals	to	unlearn,	but	one	for
society	to	unlearn,	and	we'll	be	amazed	at	the	energy	that's
liberated	when	we	do.

Notes

[1]	If	using	tests	only	to	measure	learning	sounds	impossibly
utopian,	that	is	already	the	way	things	work	at	Lambda	School.
Lambda	School	doesn't	have	grades.	You	either	graduate	or	you
don't.	The	only	purpose	of	tests	is	to	decide	at	each	stage	of	the
curriculum	whether	you	can	continue	to	the	next.	So	in	effect	the
whole	school	is	pass/fail.

[2]	If	the	final	exam	consisted	of	a	long	conversation	with	the
professor,	you	could	prepare	for	it	by	reading	good	books	on
medieval	history.	A	lot	of	the	hackability	of	tests	in	schools	is	due
to	the	fact	that	the	same	test	has	to	be	given	to	large	numbers	of
students.

[3]	Learning	is	the	naive	algorithm	for	getting	good	grades.

[4]	Hacking	has	multiple	senses.	There's	a	narrow	sense	in	which
it	means	to	compromise	something.	That's	the	sense	in	which	one
hacks	a	bad	test.	But	there's	another,	more	general	sense,
meaning	to	find	a	surprising	solution	to	a	problem,	often	by
thinking	differently	about	it.	Hacking	in	this	sense	is	a	wonderful
thing.	And	indeed,	some	of	the	hacks	people	use	on	bad	tests	are
impressively	ingenious;	the	problem	is	not	so	much	the	hacking
as	that,	because	the	tests	are	hackable,	they	don't	test	what
they're	meant	to.

[5]	The	people	who	pick	startups	at	Y	Combinator	are	similar	to
admissions	officers,	except	that	instead	of	being	arbitrary,	their
acceptance	criteria	are	trained	by	a	very	tight	feedback	loop.	If
you	accept	a	bad	startup	or	reject	a	good	one,	you	will	usually
know	it	within	a	year	or	two	at	the	latest,	and	often	within	a
month.

[6]	I'm	sure	admissions	officers	are	tired	of	reading	applications
from	kids	who	seem	to	have	no	personality	beyond	being	willing
to	seem	however	they're	supposed	to	seem	to	get	accepted.	What
they	don't	realize	is	that	they	are,	in	a	sense,	looking	in	a	mirror.
The	lack	of	authenticity	in	the	applicants	is	a	reflection	of	the
arbitrariness	of	the	application	process.	A	dictator	might	just	as
well	complain	about	the	lack	of	authenticity	in	the	people	around
him.

[7]	By	good	work,	I	don't	mean	morally	good,	but	good	in	the
sense	in	which	a	good	craftsman	does	good	work.

[8]	There	are	borderline	cases	where	it's	hard	to	say	which
category	a	test	falls	in.	For	example,	is	raising	venture	capital
like	college	admissions,	or	is	it	like	selling	to	a	customer?

[9]	Note	that	a	good	test	is	merely	one	that's	unhackable.	Good
here	doesn't	mean	morally	good,	but	good	in	the	sense	of
working	well.	The	difference	between	fields	with	bad	tests	and
good	ones	is	not	that	the	former	are	bad	and	the	latter	are	good,
but	that	the	former	are	bogus	and	the	latter	aren't.	But	those	two
measures	are	not	unrelated.	As	Tara	Ploughman	said,	the	path
from	good	to	evil	goes	through	bogus.

gba.html

[10]	People	who	think	the	recent	increase	in	economic	inequality
is	due	to	changes	in	tax	policy	seem	very	naive	to	anyone	with
experience	in	startups.	Different	people	are	getting	rich	now
than	used	to,	and	they're	getting	much	richer	than	mere	tax
savings	could	make	them.

[11]	Note	to	tiger	parents:	you	may	think	you're	training	your
kids	to	win,	but	if	you're	training	them	to	win	by	hacking	bad
tests,	you	are,	as	parents	so	often	do,	training	them	to	fight	the
last	war.

Thanks	to	Austen	Allred,	Trevor	Blackwell,	Patrick	Collison,
Jessica	Livingston,	Robert	Morris,	and	Harj	Taggar	for	reading
drafts	of	this.

ineq.html

	

Having	Kids
December	2019

Before	I	had	kids,	I	was	afraid	of	having	kids.	Up	to	that	point	I
felt	about	kids	the	way	the	young	Augustine	felt	about	living
virtuously.	I'd	have	been	sad	to	think	I'd	never	have	children.	But
did	I	want	them	now?	No.

If	I	had	kids,	I'd	become	a	parent,	and	parents,	as	I'd	known
since	I	was	a	kid,	were	uncool.	They	were	dull	and	responsible
and	had	no	fun.	And	while	it's	not	surprising	that	kids	would
believe	that,	to	be	honest	I	hadn't	seen	much	as	an	adult	to
change	my	mind.	Whenever	I'd	noticed	parents	with	kids,	the
kids	seemed	to	be	terrors,	and	the	parents	pathetic	harried
creatures,	even	when	they	prevailed.

When	people	had	babies,	I	congratulated	them	enthusiastically,
because	that	seemed	to	be	what	one	did.	But	I	didn't	feel	it	at	all.
"Better	you	than	me,"	I	was	thinking.

Now	when	people	have	babies	I	congratulate	them
enthusiastically	and	I	mean	it.	Especially	the	first	one.	I	feel	like
they	just	got	the	best	gift	in	the	world.

What	changed,	of	course,	is	that	I	had	kids.	Something	I	dreaded
turned	out	to	be	wonderful.

Partly,	and	I	won't	deny	it,	this	is	because	of	serious	chemical
changes	that	happened	almost	instantly	when	our	first	child	was
born.	It	was	like	someone	flipped	a	switch.	I	suddenly	felt
protective	not	just	toward	our	child,	but	toward	all	children.	As	I
was	driving	my	wife	and	new	son	home	from	the	hospital,	I
approached	a	crosswalk	full	of	pedestrians,	and	I	found	myself
thinking	"I	have	to	be	really	careful	of	all	these	people.	Every	one
of	them	is	someone's	child!"

So	to	some	extent	you	can't	trust	me	when	I	say	having	kids	is
great.	To	some	extent	I'm	like	a	religious	cultist	telling	you	that
you'll	be	happy	if	you	join	the	cult	too	�	but	only	because	joining
the	cult	will	alter	your	mind	in	a	way	that	will	make	you	happy	to
be	a	cult	member.

But	not	entirely.	There	were	some	things	about	having	kids	that	I
clearly	got	wrong	before	I	had	them.

For	example,	there	was	a	huge	amount	of	selection	bias	in	my
observations	of	parents	and	children.	Some	parents	may	have
noticed	that	I	wrote	"Whenever	I'd	noticed	parents	with	kids."	Of
course	the	times	I	noticed	kids	were	when	things	were	going
wrong.	I	only	noticed	them	when	they	made	noise.	And	where
was	I	when	I	noticed	them?	Ordinarily	I	never	went	to	places
with	kids,	so	the	only	times	I	encountered	them	were	in	shared
bottlenecks	like	airplanes.	Which	is	not	exactly	a	representative
sample.	Flying	with	a	toddler	is	something	very	few	parents
enjoy.

What	I	didn't	notice,	because	they	tend	to	be	much	quieter,	were
all	the	great	moments	parents	had	with	kids.	People	don't	talk
about	these	much	�	the	magic	is	hard	to	put	into	words,	and	all
other	parents	know	about	them	anyway	�	but	one	of	the	great
things	about	having	kids	is	that	there	are	so	many	times	when
you	feel	there	is	nowhere	else	you'd	rather	be,	and	nothing	else
you'd	rather	be	doing.	You	don't	have	to	be	doing	anything
special.	You	could	just	be	going	somewhere	together,	or	putting
them	to	bed,	or	pushing	them	on	the	swings	at	the	park.	But	you
wouldn't	trade	these	moments	for	anything.	One	doesn't	tend	to
associate	kids	with	peace,	but	that's	what	you	feel.	You	don't
need	to	look	any	further	than	where	you	are	right	now.

Before	I	had	kids,	I	had	moments	of	this	kind	of	peace,	but	they
were	rarer.	With	kids	it	can	happen	several	times	a	day.

My	other	source	of	data	about	kids	was	my	own	childhood,	and
that	was	similarly	misleading.	I	was	pretty	bad,	and	was	always
in	trouble	for	something	or	other.	So	it	seemed	to	me	that
parenthood	was	essentially	law	enforcement.	I	didn't	realize
there	were	good	times	too.

I	remember	my	mother	telling	me	once	when	I	was	about	30	that
she'd	really	enjoyed	having	me	and	my	sister.	My	god,	I	thought,
this	woman	is	a	saint.	She	not	only	endured	all	the	pain	we
subjected	her	to,	but	actually	enjoyed	it?	Now	I	realize	she	was
simply	telling	the	truth.

She	said	that	one	reason	she	liked	having	us	was	that	we'd	been
interesting	to	talk	to.	That	took	me	by	surprise	when	I	had	kids.
You	don't	just	love	them.	They	become	your	friends	too.	They're
really	interesting.	And	while	I	admit	small	children	are
disastrously	fond	of	repetition	(anything	worth	doing	once	is
worth	doing	fifty	times)	it's	often	genuinely	fun	to	play	with
them.	That	surprised	me	too.	Playing	with	a	2	year	old	was	fun
when	I	was	2	and	definitely	not	fun	when	I	was	6.	Why	would	it
become	fun	again	later?	But	it	does.

There	are	of	course	times	that	are	pure	drudgery.	Or	worse	still,
terror.	Having	kids	is	one	of	those	intense	types	of	experience
that	are	hard	to	imagine	unless	you've	had	them.	But	it	is	not,	as
I	implicitly	believed	before	having	kids,	simply	your	DNA	heading
for	the	lifeboats.

Some	of	my	worries	about	having	kids	were	right,	though.	They
definitely	make	you	less	productive.	I	know	having	kids	makes
some	people	get	their	act	together,	but	if	your	act	was	already
together,	you're	going	to	have	less	time	to	do	it	in.	In	particular,
you're	going	to	have	to	work	to	a	schedule.	Kids	have	schedules.
I'm	not	sure	if	it's	because	that's	how	kids	are,	or	because	it's	the
only	way	to	integrate	their	lives	with	adults',	but	once	you	have
kids,	you	tend	to	have	to	work	on	their	schedule.

You	will	have	chunks	of	time	to	work.	But	you	can't	let	work	spill
promiscuously	through	your	whole	life,	like	I	used	to	before	I	had
kids.	You're	going	to	have	to	work	at	the	same	time	every	day,
whether	inspiration	is	flowing	or	not,	and	there	are	going	to	be
times	when	you	have	to	stop,	even	if	it	is.

I've	been	able	to	adapt	to	working	this	way.	Work,	like	love,	finds
a	way.	If	there	are	only	certain	times	it	can	happen,	it	happens	at
those	times.	So	while	I	don't	get	as	much	done	as	before	I	had

kids,	I	get	enough	done.

I	hate	to	say	this,	because	being	ambitious	has	always	been	a
part	of	my	identity,	but	having	kids	may	make	one	less	ambitious.
It	hurts	to	see	that	sentence	written	down.	I	squirm	to	avoid	it.
But	if	there	weren't	something	real	there,	why	would	I	squirm?
The	fact	is,	once	you	have	kids,	you're	probably	going	to	care
more	about	them	than	you	do	about	yourself.	And	attention	is	a
zero-sum	game.	Only	one	idea	at	a	time	can	be	the	top	idea	in
your	mind.	Once	you	have	kids,	it	will	often	be	your	kids,	and
that	means	it	will	less	often	be	some	project	you're	working	on.

I	have	some	hacks	for	sailing	close	to	this	wind.	For	example,
when	I	write	essays,	I	think	about	what	I'd	want	my	kids	to	know.
That	drives	me	to	get	things	right.	And	when	I	was	writing	Bel,	I
told	my	kids	that	once	I	finished	it	I'd	take	them	to	Africa.	When
you	say	that	sort	of	thing	to	a	little	kid,	they	treat	it	as	a	promise.
Which	meant	I	had	to	finish	or	I'd	be	taking	away	their	trip	to
Africa.	Maybe	if	I'm	really	lucky	such	tricks	could	put	me	net
ahead.	But	the	wind	is	there,	no	question.

On	the	other	hand,	what	kind	of	wimpy	ambition	do	you	have	if	it
won't	survive	having	kids?	Do	you	have	so	little	to	spare?

And	while	having	kids	may	be	warping	my	present	judgement,	it
hasn't	overwritten	my	memory.	I	remember	perfectly	well	what
life	was	like	before.	Well	enough	to	miss	some	things	a	lot,	like
the	ability	to	take	off	for	some	other	country	at	a	moment's
notice.	That	was	so	great.	Why	did	I	never	do	that?

See	what	I	did	there?	The	fact	is,	most	of	the	freedom	I	had
before	kids,	I	never	used.	I	paid	for	it	in	loneliness,	but	I	never
used	it.

I	had	plenty	of	happy	times	before	I	had	kids.	But	if	I	count	up
happy	moments,	not	just	potential	happiness	but	actual	happy
moments,	there	are	more	after	kids	than	before.	Now	I
practically	have	it	on	tap,	almost	any	bedtime.

People's	experiences	as	parents	vary	a	lot,	and	I	know	I've	been
lucky.	But	I	think	the	worries	I	had	before	having	kids	must	be

top.html
bel.html

pretty	common,	and	judging	by	other	parents'	faces	when	they
see	their	kids,	so	must	the	happiness	that	kids	bring.

Note

[1]	Adults	are	sophisticated	enough	to	see	2	year	olds	for	the
fascinatingly	complex	characters	they	are,	whereas	to	most	6
year	olds,	2	year	olds	are	just	defective	6	year	olds.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Robert
Morris	for	reading	drafts	of	this.

	

Fashionable	Problems
December	2019

I've	seen	the	same	pattern	in	many	different	fields:	even	though
lots	of	people	have	worked	hard	in	the	field,	only	a	small	fraction
of	the	space	of	possibilities	has	been	explored,	because	they've
all	worked	on	similar	things.

Even	the	smartest,	most	imaginative	people	are	surprisingly
conservative	when	deciding	what	to	work	on.	People	who	would
never	dream	of	being	fashionable	in	any	other	way	get	sucked
into	working	on	fashionable	problems.

If	you	want	to	try	working	on	unfashionable	problems,	one	of	the
best	places	to	look	is	in	fields	that	people	think	have	already
been	fully	explored:	essays,	Lisp,	venture	funding	�	you	may
notice	a	pattern	here.	If	you	can	find	a	new	approach	into	a	big
but	apparently	played	out	field,	the	value	of	whatever	you
discover	will	be	multiplied	by	its	enormous	surface	area.

The	best	protection	against	getting	drawn	into	working	on	the
same	things	as	everyone	else	may	be	to	genuinely	love	what
you're	doing.	Then	you'll	continue	to	work	on	it	even	if	you	make
the	same	mistake	as	other	people	and	think	that	it's	too	marginal
to	matter.

sun.html
genius.html

	

The	Two	Kinds	of	Moderate
December	2019

There	are	two	distinct	ways	to	be	politically	moderate:	on
purpose	and	by	accident.	Intentional	moderates	are	trimmers,
deliberately	choosing	a	position	mid-way	between	the	extremes
of	right	and	left.	Accidental	moderates	end	up	in	the	middle,	on
average,	because	they	make	up	their	own	minds	about	each
question,	and	the	far	right	and	far	left	are	roughly	equally	wrong.

You	can	distinguish	intentional	from	accidental	moderates	by	the
distribution	of	their	opinions.	If	the	far	left	opinion	on	some
matter	is	0	and	the	far	right	opinion	100,	an	intentional
moderate's	opinion	on	every	question	will	be	near	50.	Whereas
an	accidental	moderate's	opinions	will	be	scattered	over	a	broad
range,	but	will,	like	those	of	the	intentional	moderate,	average	to
about	50.

Intentional	moderates	are	similar	to	those	on	the	far	left	and	the
far	right	in	that	their	opinions	are,	in	a	sense,	not	their	own.	The
defining	quality	of	an	ideologue,	whether	on	the	left	or	the	right,
is	to	acquire	one's	opinions	in	bulk.	You	don't	get	to	pick	and
choose.	Your	opinions	about	taxation	can	be	predicted	from	your
opinions	about	sex.	And	although	intentional	moderates	might
seem	to	be	the	opposite	of	ideologues,	their	beliefs	(though	in
their	case	the	word	"positions"	might	be	more	accurate)	are	also
acquired	in	bulk.	If	the	median	opinion	shifts	to	the	right	or	left,
the	intentional	moderate	must	shift	with	it.	Otherwise	they	stop
being	moderate.

Accidental	moderates,	on	the	other	hand,	not	only	choose	their
own	answers,	but	choose	their	own	questions.	They	may	not	care
at	all	about	questions	that	the	left	and	right	both	think	are
terribly	important.	So	you	can	only	even	measure	the	politics	of
an	accidental	moderate	from	the	intersection	of	the	questions
they	care	about	and	those	the	left	and	right	care	about,	and	this

can	sometimes	be	vanishingly	small.

It	is	not	merely	a	manipulative	rhetorical	trick	to	say	"if	you're
not	with	us,	you're	against	us,"	but	often	simply	false.

Moderates	are	sometimes	derided	as	cowards,	particularly	by	the
extreme	left.	But	while	it	may	be	accurate	to	call	intentional
moderates	cowards,	openly	being	an	accidental	moderate
requires	the	most	courage	of	all,	because	you	get	attacked	from
both	right	and	left,	and	you	don't	have	the	comfort	of	being	an
orthodox	member	of	a	large	group	to	sustain	you.

Nearly	all	the	most	impressive	people	I	know	are	accidental
moderates.	If	I	knew	a	lot	of	professional	athletes,	or	people	in
the	entertainment	business,	that	might	be	different.	Being	on	the
far	left	or	far	right	doesn't	affect	how	fast	you	run	or	how	well
you	sing.	But	someone	who	works	with	ideas	has	to	be
independent-minded	to	do	it	well.

Or	more	precisely,	you	have	to	be	independent-minded	about	the
ideas	you	work	with.	You	could	be	mindlessly	doctrinaire	in	your
politics	and	still	be	a	good	mathematician.	In	the	20th	century,	a
lot	of	very	smart	people	were	Marxists	�	just	no	one	who	was
smart	about	the	subjects	Marxism	involves.	But	if	the	ideas	you
use	in	your	work	intersect	with	the	politics	of	your	time,	you	have
two	choices:	be	an	accidental	moderate,	or	be	mediocre.

Notes

[1]	It's	possible	in	theory	for	one	side	to	be	entirely	right	and	the
other	to	be	entirely	wrong.	Indeed,	ideologues	must	always

believe	this	is	the	case.	But	historically	it	rarely	has	been.

[2]	For	some	reason	the	far	right	tend	to	ignore	moderates	rather
than	despise	them	as	backsliders.	I'm	not	sure	why.	Perhaps	it
means	that	the	far	right	is	less	ideological	than	the	far	left.	Or
perhaps	that	they	are	more	confident,	or	more	resigned,	or
simply	more	disorganized.	I	just	don't	know.

[3]	Having	heretical	opinions	doesn't	mean	you	have	to	express
them	openly.	It	may	be	easier	to	have	them	if	you	don't.

Thanks	to	Austen	Allred,	Trevor	Blackwell,	Patrick	Collison,
Jessica	Livingston,	Amjad	Masad,	Ryan	Petersen,	and	Harj
Taggar	for	reading	drafts	of	this.

say.html

	

Haters
January	2020

(I	originally	intended	this	for	startup	founders,	who	are	often
surprised	by	the	attention	they	get	as	their	companies	grow,	but
it	applies	equally	to	anyone	who	becomes	famous.)

If	you	become	sufficiently	famous,	you'll	acquire	some	fans	who
like	you	too	much.	These	people	are	sometimes	called	"fanboys,"
and	though	I	dislike	that	term,	I'm	going	to	have	to	use	it	here.
We	need	some	word	for	them,	because	this	is	a	distinct
phenomenon	from	someone	simply	liking	your	work.

A	fanboy	is	obsessive	and	uncritical.	Liking	you	becomes	part	of
their	identity,	and	they	create	an	image	of	you	in	their	own	head
that	is	much	better	than	reality.	Everything	you	do	is	good,
because	you	do	it.	If	you	do	something	bad,	they	find	a	way	to	see
it	as	good.	And	their	love	for	you	is	not,	usually,	a	quiet,	private
one.	They	want	everyone	to	know	how	great	you	are.

Well,	you	may	be	thinking,	I	could	do	without	this	kind	of
obsessive	fan,	but	I	know	there	are	all	kinds	of	people	in	the
world,	and	if	this	is	the	worst	consequence	of	fame,	that's	not	so
bad.

Unfortunately	this	is	not	the	worst	consequence	of	fame.	As	well
as	fanboys,	you'll	have	haters.

A	hater	is	obsessive	and	uncritical.	Disliking	you	becomes	part	of
their	identity,	and	they	create	an	image	of	you	in	their	own	head
that	is	much	worse	than	reality.	Everything	you	do	is	bad,
because	you	do	it.	If	you	do	something	good,	they	find	a	way	to
see	it	as	bad.	And	their	dislike	for	you	is	not,	usually,	a	quiet,
private	one.	They	want	everyone	to	know	how	awful	you	are.

If	you're	thinking	of	checking,	I'll	save	you	the	trouble.	The

second	and	fifth	paragraphs	are	identical	except	for	"good"	being
switched	to	"bad"	and	so	on.

I	spent	years	puzzling	about	haters.	What	are	they,	and	where	do
they	come	from?	Then	one	day	it	dawned	on	me.	Haters	are	just
fanboys	with	the	sign	switched.

Note	that	by	haters,	I	don't	simply	mean	trolls.	I'm	not	talking
about	people	who	say	bad	things	about	you	and	then	move	on.
I'm	talking	about	the	much	smaller	group	of	people	for	whom	this
becomes	a	kind	of	obsession	and	who	do	it	repeatedly	over	a	long
period.

Like	fans,	haters	seem	to	be	an	automatic	consequence	of	fame.
Anyone	sufficiently	famous	will	have	them.	And	like	fans,	haters
are	energized	by	the	fame	of	whoever	they	hate.	They	hear	a
song	by	some	pop	singer.	They	don't	like	it	much.	If	the	singer
were	an	obscure	one,	they'd	just	forget	about	it.	But	instead	they
keep	hearing	her	name,	and	this	seems	to	drive	some	people
crazy.	Everyone's	always	going	on	about	this	singer,	but	she's	no
good!	She's	a	fraud!

That	word	"fraud"	is	an	important	one.	It's	the	spectral	signature
of	a	hater	to	regard	the	object	of	their	hatred	as	a	fraud.	They
can't	deny	their	fame.	Indeed,	their	fame	is	if	anything
exaggerated	in	the	hater's	mind.	They	notice	every	mention	of
the	singer's	name,	because	every	mention	makes	them	angrier.	In
their	own	minds	they	exaggerate	both	the	singer's	fame	and	her
lack	of	talent,	and	the	only	way	to	reconcile	those	two	ideas	is	to
conclude	that	she	has	tricked	everyone.

What	sort	of	people	become	haters?	Can	anyone	become	one?	I'm
not	sure	about	this,	but	I've	noticed	some	patterns.	Haters	are
generally	losers	in	a	very	specific	sense:	although	they	are
occasionally	talented,	they	have	never	achieved	much.	And
indeed,	anyone	successful	enough	to	have	achieved	significant
fame	would	be	unlikely	to	regard	another	famous	person	as	a
fraud	on	that	account,	because	anyone	famous	knows	how
random	fame	is.

But	haters	are	not	always	complete	losers.	They	are	not	always

https://twitter.com/search?q=Musk%20fraud&src=typed_query&f=live

the	proverbial	guy	living	in	his	mom's	basement.	Many	are,	but
some	have	some	amount	of	talent.	In	fact	I	suspect	that	a	sense
of	frustrated	talent	is	what	drives	some	people	to	become	haters.
They're	not	just	saying	"It's	unfair	that	so-and-so	is	famous,"	but
"It's	unfair	that	so-and-so	is	famous,	and	not	me."

Could	a	hater	be	cured	if	they	achieved	something	impressive?
My	guess	is	that's	a	moot	point,	because	they	never	will.	I've
been	able	to	observe	for	long	enough	that	I'm	fairly	confident	the
pattern	works	both	ways:	not	only	do	people	who	do	great	work
never	become	haters,	haters	never	do	great	work.	Although	I
dislike	the	word	"fanboy,"	it's	evocative	of	something	important
about	both	haters	and	fanboys.	It	implies	that	the	fanboy	is	so
slavishly	predictable	in	his	admiration	that	he's	diminished	as	a
result,	that	he's	less	than	a	man.

Haters	seem	even	more	diminished.	I	can	imagine	being	a	fanboy.
I	can	think	of	people	whose	work	I	admire	so	much	that	I	could
abase	myself	before	them	out	of	sheer	gratitude.	If	P.	G.
Wodehouse	were	still	alive,	I	could	see	myself	being	a	Wodehouse
fanboy.	But	I	could	not	imagine	being	a	hater.

Knowing	that	haters	are	just	fanboys	with	the	sign	bit	flipped
makes	it	much	easier	to	deal	with	them.	We	don't	need	a
separate	theory	of	haters.	We	can	just	use	existing	techniques	for
dealing	with	obsessive	fans.

The	most	important	of	which	is	simply	not	to	think	much	about
them.	If	you're	like	most	people	who	become	famous	enough	to
acquire	haters,	your	initial	reaction	will	be	one	of	mystification.
Why	does	this	guy	seem	to	have	it	in	for	me?	Where	does	his
obsessive	energy	come	from,	and	what	makes	him	so	appallingly
nasty?	What	did	I	do	to	set	him	off?	Is	it	something	I	can	fix?

The	mistake	here	is	to	think	of	the	hater	as	someone	you	have	a
dispute	with.	When	you	have	a	dispute	with	someone,	it's	usually
a	good	idea	to	try	to	understand	why	they're	upset	and	then	fix
things	if	you	can.	Disputes	are	distracting.	But	it's	a	false	analogy
to	think	of	a	hater	as	someone	you	have	a	dispute	with.	It's	an
understandable	mistake,	if	you've	never	encountered	haters
before.	But	when	you	realize	that	you're	dealing	with	a	hater,	and

mean.html

what	a	hater	is,	it's	clear	that	it's	a	waste	of	time	even	to	think
about	them.	If	you	have	obsessive	fans,	do	you	spend	any	time
wondering	what	makes	them	love	you	so	much?	No,	you	just
think	"some	people	are	kind	of	crazy,"	and	that's	the	end	of	it.

Since	haters	are	equivalent	to	fanboys,	that's	the	way	to	deal
with	them	too.	There	may	have	been	something	that	set	them	off.
But	it's	not	something	that	would	have	set	off	a	normal	person,	so
there's	no	reason	to	spend	any	time	thinking	about	it.	It's	not
you,	it's	them.

Notes

[1]	There	are	of	course	some	people	who	are	genuine	frauds.
How	can	you	distinguish	between	x	calling	y	a	fraud	because	x	is
a	hater,	and	because	y	is	a	fraud?	Look	at	neutral	opinion.	Actual
frauds	are	usually	pretty	conspicuous.	Thoughtful	people	are
rarely	taken	in	by	them.	So	if	there	are	some	thoughtful	people
who	like	y,	you	can	usually	assume	y	is	not	a	fraud.

[2]	I	would	make	an	exception	for	teenagers,	who	sometimes	act
in	such	extreme	ways	that	they	are	literally	not	themselves.	I	can
imagine	a	teenage	kid	being	a	hater	and	then	growing	out	of	it.
But	not	anyone	over	25.

[3]	I	have	a	much	worse	memory	for	misdeeds	than	my	wife
Jessica,	who	is	a	connoisseur	of	character,	but	I	don't	wish	it
were	better.	Most	disputes	are	a	waste	of	time	even	if	you're	in
the	right,	and	it's	easy	to	bury	the	hatchet	with	someone	if	you
can't	remember	why	you	were	mad	at	them.

[4]	A	competent	hater	will	not	merely	attack	you	individually	but
will	try	to	get	mobs	after	you.	In	some	cases	you	may	want	to

refute	whatever	bogus	claim	they	made	in	order	to	do	so.	But	err
on	the	side	of	not,	because	ultimately	it	probably	won't	matter.

Thanks	to	Austen	Allred,	Trevor	Blackwell,	Patrick	Collison,
Christine	Ford,	Daniel	Gackle,	Jessica	Livingston,	Robert	Morris,
Elon	Musk,	Harj	Taggar,	and	Peter	Thiel	for	reading	drafts	of
this.

	

Being	a	Noob
January	2020

When	I	was	young,	I	thought	old	people	had	everything	figured
out.	Now	that	I'm	old,	I	know	this	isn't	true.

I	constantly	feel	like	a	noob.	It	seems	like	I'm	always	talking	to
some	startup	working	in	a	new	field	I	know	nothing	about,	or
reading	a	book	about	a	topic	I	don't	understand	well	enough,	or
visiting	some	new	country	where	I	don't	know	how	things	work.

It's	not	pleasant	to	feel	like	a	noob.	And	the	word	"noob"	is
certainly	not	a	compliment.	And	yet	today	I	realized	something
encouraging	about	being	a	noob:	the	more	of	a	noob	you	are
locally,	the	less	of	a	noob	you	are	globally.

For	example,	if	you	stay	in	your	home	country,	you'll	feel	less	of	a
noob	than	if	you	move	to	Farawavia,	where	everything	works
differently.	And	yet	you'll	know	more	if	you	move.	So	the	feeling
of	being	a	noob	is	inversely	correlated	with	actual	ignorance.

But	if	the	feeling	of	being	a	noob	is	good	for	us,	why	do	we
dislike	it?	What	evolutionary	purpose	could	such	an	aversion
serve?

I	think	the	answer	is	that	there	are	two	sources	of	feeling	like	a
noob:	being	stupid,	and	doing	something	novel.	Our	dislike	of
feeling	like	a	noob	is	our	brain	telling	us	"Come	on,	come	on,
figure	this	out."	Which	was	the	right	thing	to	be	thinking	for	most
of	human	history.	The	life	of	hunter-gatherers	was	complex,	but	it
didn't	change	as	much	as	life	does	now.	They	didn't	suddenly
have	to	figure	out	what	to	do	about	cryptocurrency.	So	it	made
sense	to	be	biased	toward	competence	at	existing	problems	over
the	discovery	of	new	ones.	It	made	sense	for	humans	to	dislike
the	feeling	of	being	a	noob,	just	as,	in	a	world	where	food	was
scarce,	it	made	sense	for	them	to	dislike	the	feeling	of	being

hungry.

Now	that	too	much	food	is	more	of	a	problem	than	too	little,	our
dislike	of	feeling	hungry	leads	us	astray.	And	I	think	our	dislike	of
feeling	like	a	noob	does	too.

Though	it	feels	unpleasant,	and	people	will	sometimes	ridicule
you	for	it,	the	more	you	feel	like	a	noob,	the	better.

	

How	to	Write	Usefully
February	2020

What	should	an	essay	be?	Many	people	would	say	persuasive.
That's	what	a	lot	of	us	were	taught	essays	should	be.	But	I	think
we	can	aim	for	something	more	ambitious:	that	an	essay	should
be	useful.

To	start	with,	that	means	it	should	be	correct.	But	it's	not	enough
merely	to	be	correct.	It's	easy	to	make	a	statement	correct	by
making	it	vague.	That's	a	common	flaw	in	academic	writing,	for
example.	If	you	know	nothing	at	all	about	an	issue,	you	can't	go
wrong	by	saying	that	the	issue	is	a	complex	one,	that	there	are
many	factors	to	be	considered,	that	it's	a	mistake	to	take	too
simplistic	a	view	of	it,	and	so	on.

Though	no	doubt	correct,	such	statements	tell	the	reader
nothing.	Useful	writing	makes	claims	that	are	as	strong	as	they
can	be	made	without	becoming	false.

For	example,	it's	more	useful	to	say	that	Pike's	Peak	is	near	the
middle	of	Colorado	than	merely	somewhere	in	Colorado.	But	if	I
say	it's	in	the	exact	middle	of	Colorado,	I've	now	gone	too	far,
because	it's	a	bit	east	of	the	middle.

Precision	and	correctness	are	like	opposing	forces.	It's	easy	to
satisfy	one	if	you	ignore	the	other.	The	converse	of	vaporous
academic	writing	is	the	bold,	but	false,	rhetoric	of	demagogues.
Useful	writing	is	bold,	but	true.

It's	also	two	other	things:	it	tells	people	something	important,
and	that	at	least	some	of	them	didn't	already	know.

Telling	people	something	they	didn't	know	doesn't	always	mean
surprising	them.	Sometimes	it	means	telling	them	something
they	knew	unconsciously	but	had	never	put	into	words.	In	fact

those	may	be	the	more	valuable	insights,	because	they	tend	to	be
more	fundamental.

Let's	put	them	all	together.	Useful	writing	tells	people	something
true	and	important	that	they	didn't	already	know,	and	tells	them
as	unequivocally	as	possible.

Notice	these	are	all	a	matter	of	degree.	For	example,	you	can't
expect	an	idea	to	be	novel	to	everyone.	Any	insight	that	you	have
will	probably	have	already	been	had	by	at	least	one	of	the	world's
7	billion	people.	But	it's	sufficient	if	an	idea	is	novel	to	a	lot	of
readers.

Ditto	for	correctness,	importance,	and	strength.	In	effect	the	four
components	are	like	numbers	you	can	multiply	together	to	get	a
score	for	usefulness.	Which	I	realize	is	almost	awkwardly
reductive,	but	nonetheless	true.

How	can	you	ensure	that	the	things	you	say	are	true	and	novel
and	important?	Believe	it	or	not,	there	is	a	trick	for	doing	this.	I
learned	it	from	my	friend	Robert	Morris,	who	has	a	horror	of
saying	anything	dumb.	His	trick	is	not	to	say	anything	unless	he's
sure	it's	worth	hearing.	This	makes	it	hard	to	get	opinions	out	of
him,	but	when	you	do,	they're	usually	right.

Translated	into	essay	writing,	what	this	means	is	that	if	you	write
a	bad	sentence,	you	don't	publish	it.	You	delete	it	and	try	again.
Often	you	abandon	whole	branches	of	four	or	five	paragraphs.
Sometimes	a	whole	essay.

You	can't	ensure	that	every	idea	you	have	is	good,	but	you	can
ensure	that	every	one	you	publish	is,	by	simply	not	publishing	the
ones	that	aren't.

In	the	sciences,	this	is	called	publication	bias,	and	is	considered
bad.	When	some	hypothesis	you're	exploring	gets	inconclusive
results,	you're	supposed	to	tell	people	about	that	too.	But	with

essay	writing,	publication	bias	is	the	way	to	go.

My	strategy	is	loose,	then	tight.	I	write	the	first	draft	of	an	essay
fast,	trying	out	all	kinds	of	ideas.	Then	I	spend	days	rewriting	it
very	carefully.

I've	never	tried	to	count	how	many	times	I	proofread	essays,	but
I'm	sure	there	are	sentences	I've	read	100	times	before
publishing	them.	When	I	proofread	an	essay,	there	are	usually
passages	that	stick	out	in	an	annoying	way,	sometimes	because
they're	clumsily	written,	and	sometimes	because	I'm	not	sure
they're	true.	The	annoyance	starts	out	unconscious,	but	after	the
tenth	reading	or	so	I'm	saying	"Ugh,	that	part"	each	time	I	hit	it.
They	become	like	briars	that	catch	your	sleeve	as	you	walk	past.
Usually	I	won't	publish	an	essay	till	they're	all	gone	�	till	I	can
read	through	the	whole	thing	without	the	feeling	of	anything
catching.

I'll	sometimes	let	through	a	sentence	that	seems	clumsy,	if	I	can't
think	of	a	way	to	rephrase	it,	but	I	will	never	knowingly	let
through	one	that	doesn't	seem	correct.	You	never	have	to.	If	a
sentence	doesn't	seem	right,	all	you	have	to	do	is	ask	why	it
doesn't,	and	you've	usually	got	the	replacement	right	there	in
your	head.

This	is	where	essayists	have	an	advantage	over	journalists.	You
don't	have	a	deadline.	You	can	work	for	as	long	on	an	essay	as
you	need	to	get	it	right.	You	don't	have	to	publish	the	essay	at	all,
if	you	can't	get	it	right.	Mistakes	seem	to	lose	courage	in	the	face
of	an	enemy	with	unlimited	resources.	Or	that's	what	it	feels	like.
What's	really	going	on	is	that	you	have	different	expectations	for
yourself.	You're	like	a	parent	saying	to	a	child	"we	can	sit	here	all
night	till	you	eat	your	vegetables."	Except	you're	the	child	too.

I'm	not	saying	no	mistake	gets	through.	For	example,	I	added
condition	(c)	in	"A	Way	to	Detect	Bias"	after	readers	pointed	out
that	I'd	omitted	it.	But	in	practice	you	can	catch	nearly	all	of
them.

There's	a	trick	for	getting	importance	too.	It's	like	the	trick	I
suggest	to	young	founders	for	getting	startup	ideas:	to	make

bias.html

something	you	yourself	want.	You	can	use	yourself	as	a	proxy	for
the	reader.	The	reader	is	not	completely	unlike	you,	so	if	you
write	about	topics	that	seem	important	to	you,	they'll	probably
seem	important	to	a	significant	number	of	readers	as	well.

Importance	has	two	factors.	It's	the	number	of	people	something
matters	to,	times	how	much	it	matters	to	them.	Which	means	of
course	that	it's	not	a	rectangle,	but	a	sort	of	ragged	comb,	like	a
Riemann	sum.

The	way	to	get	novelty	is	to	write	about	topics	you've	thought
about	a	lot.	Then	you	can	use	yourself	as	a	proxy	for	the	reader
in	this	department	too.	Anything	you	notice	that	surprises	you,
who've	thought	about	the	topic	a	lot,	will	probably	also	surprise	a
significant	number	of	readers.	And	here,	as	with	correctness	and
importance,	you	can	use	the	Morris	technique	to	ensure	that	you
will.	If	you	don't	learn	anything	from	writing	an	essay,	don't
publish	it.

You	need	humility	to	measure	novelty,	because	acknowledging
the	novelty	of	an	idea	means	acknowledging	your	previous
ignorance	of	it.	Confidence	and	humility	are	often	seen	as
opposites,	but	in	this	case,	as	in	many	others,	confidence	helps
you	to	be	humble.	If	you	know	you're	an	expert	on	some	topic,
you	can	freely	admit	when	you	learn	something	you	didn't	know,
because	you	can	be	confident	that	most	other	people	wouldn't
know	it	either.

The	fourth	component	of	useful	writing,	strength,	comes	from
two	things:	thinking	well,	and	the	skillful	use	of	qualification.
These	two	counterbalance	each	other,	like	the	accelerator	and
clutch	in	a	car	with	a	manual	transmission.	As	you	try	to	refine
the	expression	of	an	idea,	you	adjust	the	qualification
accordingly.	Something	you're	sure	of,	you	can	state	baldly	with
no	qualification	at	all,	as	I	did	the	four	components	of	useful
writing.	Whereas	points	that	seem	dubious	have	to	be	held	at
arm's	length	with	perhapses.

As	you	refine	an	idea,	you're	pushing	in	the	direction	of	less
qualification.	But	you	can	rarely	get	it	down	to	zero.	Sometimes
you	don't	even	want	to,	if	it's	a	side	point	and	a	fully	refined

version	would	be	too	long.

Some	say	that	qualifications	weaken	writing.	For	example,	that
you	should	never	begin	a	sentence	in	an	essay	with	"I	think,"
because	if	you're	saying	it,	then	of	course	you	think	it.	And	it's
true	that	"I	think	x"	is	a	weaker	statement	than	simply	"x."	Which
is	exactly	why	you	need	"I	think."	You	need	it	to	express	your
degree	of	certainty.

But	qualifications	are	not	scalars.	They're	not	just	experimental
error.	There	must	be	50	things	they	can	express:	how	broadly
something	applies,	how	you	know	it,	how	happy	you	are	it's	so,
even	how	it	could	be	falsified.	I'm	not	going	to	try	to	explore	the
structure	of	qualification	here.	It's	probably	more	complex	than
the	whole	topic	of	writing	usefully.	Instead	I'll	just	give	you	a
practical	tip:	Don't	underestimate	qualification.	It's	an	important
skill	in	its	own	right,	not	just	a	sort	of	tax	you	have	to	pay	in
order	to	avoid	saying	things	that	are	false.	So	learn	and	use	its
full	range.	It	may	not	be	fully	half	of	having	good	ideas,	but	it's
part	of	having	them.

There's	one	other	quality	I	aim	for	in	essays:	to	say	things	as
simply	as	possible.	But	I	don't	think	this	is	a	component	of
usefulness.	It's	more	a	matter	of	consideration	for	the	reader.
And	it's	a	practical	aid	in	getting	things	right;	a	mistake	is	more
obvious	when	expressed	in	simple	language.	But	I'll	admit	that
the	main	reason	I	write	simply	is	not	for	the	reader's	sake	or
because	it	helps	get	things	right,	but	because	it	bothers	me	to
use	more	or	fancier	words	than	I	need	to.	It	seems	inelegant,	like
a	program	that's	too	long.

I	realize	florid	writing	works	for	some	people.	But	unless	you're
sure	you're	one	of	them,	the	best	advice	is	to	write	as	simply	as
you	can.

I	believe	the	formula	I've	given	you,	importance	+	novelty	+
correctness	+	strength,	is	the	recipe	for	a	good	essay.	But	I
should	warn	you	that	it's	also	a	recipe	for	making	people	mad.

The	root	of	the	problem	is	novelty.	When	you	tell	people
something	they	didn't	know,	they	don't	always	thank	you	for	it.
Sometimes	the	reason	people	don't	know	something	is	because
they	don't	want	to	know	it.	Usually	because	it	contradicts	some
cherished	belief.	And	indeed,	if	you're	looking	for	novel	ideas,
popular	but	mistaken	beliefs	are	a	good	place	to	find	them.	Every
popular	mistaken	belief	creates	a	dead	zone	of	ideas	around	it
that	are	relatively	unexplored	because	they	contradict	it.

The	strength	component	just	makes	things	worse.	If	there's
anything	that	annoys	people	more	than	having	their	cherished
assumptions	contradicted,	it's	having	them	flatly	contradicted.

Plus	if	you've	used	the	Morris	technique,	your	writing	will	seem
quite	confident.	Perhaps	offensively	confident,	to	people	who
disagree	with	you.	The	reason	you'll	seem	confident	is	that	you
are	confident:	you've	cheated,	by	only	publishing	the	things
you're	sure	of.	It	will	seem	to	people	who	try	to	disagree	with	you
that	you	never	admit	you're	wrong.	In	fact	you	constantly	admit
you're	wrong.	You	just	do	it	before	publishing	instead	of	after.

And	if	your	writing	is	as	simple	as	possible,	that	just	makes
things	worse.	Brevity	is	the	diction	of	command.	If	you	watch
someone	delivering	unwelcome	news	from	a	position	of
inferiority,	you'll	notice	they	tend	to	use	lots	of	words,	to	soften
the	blow.	Whereas	to	be	short	with	someone	is	more	or	less	to	be
rude	to	them.

It	can	sometimes	work	to	deliberately	phrase	statements	more
weakly	than	you	mean.	To	put	"perhaps"	in	front	of	something
you're	actually	quite	sure	of.	But	you'll	notice	that	when	writers
do	this,	they	usually	do	it	with	a	wink.

I	don't	like	to	do	this	too	much.	It's	cheesy	to	adopt	an	ironic	tone
for	a	whole	essay.	I	think	we	just	have	to	face	the	fact	that
elegance	and	curtness	are	two	names	for	the	same	thing.

You	might	think	that	if	you	work	sufficiently	hard	to	ensure	that
an	essay	is	correct,	it	will	be	invulnerable	to	attack.	That's	sort	of
true.	It	will	be	invulnerable	to	valid	attacks.	But	in	practice	that's

nov.html

little	consolation.

In	fact,	the	strength	component	of	useful	writing	will	make	you
particularly	vulnerable	to	misrepresentation.	If	you've	stated	an
idea	as	strongly	as	you	could	without	making	it	false,	all	anyone
has	to	do	is	to	exaggerate	slightly	what	you	said,	and	now	it	is
false.

Much	of	the	time	they're	not	even	doing	it	deliberately.	One	of
the	most	surprising	things	you'll	discover,	if	you	start	writing
essays,	is	that	people	who	disagree	with	you	rarely	disagree	with
what	you've	actually	written.	Instead	they	make	up	something
you	said	and	disagree	with	that.

For	what	it's	worth,	the	countermove	is	to	ask	someone	who	does
this	to	quote	a	specific	sentence	or	passage	you	wrote	that	they
believe	is	false,	and	explain	why.	I	say	"for	what	it's	worth"
because	they	never	do.	So	although	it	might	seem	that	this	could
get	a	broken	discussion	back	on	track,	the	truth	is	that	it	was
never	on	track	in	the	first	place.

Should	you	explicitly	forestall	likely	misinterpretations?	Yes,	if
they're	misinterpretations	a	reasonably	smart	and	well-
intentioned	person	might	make.	In	fact	it's	sometimes	better	to
say	something	slightly	misleading	and	then	add	the	correction
than	to	try	to	get	an	idea	right	in	one	shot.	That	can	be	more
efficient,	and	can	also	model	the	way	such	an	idea	would	be
discovered.

But	I	don't	think	you	should	explicitly	forestall	intentional
misinterpretations	in	the	body	of	an	essay.	An	essay	is	a	place	to
meet	honest	readers.	You	don't	want	to	spoil	your	house	by
putting	bars	on	the	windows	to	protect	against	dishonest	ones.
The	place	to	protect	against	intentional	misinterpretations	is	in
end-notes.	But	don't	think	you	can	predict	them	all.	People	are	as
ingenious	at	misrepresenting	you	when	you	say	something	they
don't	want	to	hear	as	they	are	at	coming	up	with	rationalizations
for	things	they	want	to	do	but	know	they	shouldn't.	I	suspect	it's
the	same	skill.

As	with	most	other	things,	the	way	to	get	better	at	writing	essays
is	to	practice.	But	how	do	you	start?	Now	that	we've	examined
the	structure	of	useful	writing,	we	can	rephrase	that	question
more	precisely.	Which	constraint	do	you	relax	initially?	The
answer	is,	the	first	component	of	importance:	the	number	of
people	who	care	about	what	you	write.

If	you	narrow	the	topic	sufficiently,	you	can	probably	find
something	you're	an	expert	on.	Write	about	that	to	start	with.	If
you	only	have	ten	readers	who	care,	that's	fine.	You're	helping
them,	and	you're	writing.	Later	you	can	expand	the	breadth	of
topics	you	write	about.

The	other	constraint	you	can	relax	is	a	little	surprising:
publication.	Writing	essays	doesn't	have	to	mean	publishing
them.	That	may	seem	strange	now	that	the	trend	is	to	publish
every	random	thought,	but	it	worked	for	me.	I	wrote	what
amounted	to	essays	in	notebooks	for	about	15	years.	I	never
published	any	of	them	and	never	expected	to.	I	wrote	them	as	a
way	of	figuring	things	out.	But	when	the	web	came	along	I'd	had
a	lot	of	practice.

Incidentally,	Steve	Wozniak	did	the	same	thing.	In	high	school	he
designed	computers	on	paper	for	fun.	He	couldn't	build	them
because	he	couldn't	afford	the	components.	But	when	Intel
launched	4K	DRAMs	in	1975,	he	was	ready.

How	many	essays	are	there	left	to	write	though?	The	answer	to
that	question	is	probably	the	most	exciting	thing	I've	learned
about	essay	writing.	Nearly	all	of	them	are	left	to	write.

Although	the	essay	is	an	old	form,	it	hasn't	been	assiduously
cultivated.	In	the	print	era,	publication	was	expensive,	and	there
wasn't	enough	demand	for	essays	to	publish	that	many.	You	could
publish	essays	if	you	were	already	well	known	for	writing
something	else,	like	novels.	Or	you	could	write	book	reviews	that

http://www.foundersatwork.com/steve-wozniak.html
essay.html

you	took	over	to	express	your	own	ideas.	But	there	was	not	really
a	direct	path	to	becoming	an	essayist.	Which	meant	few	essays
got	written,	and	those	that	did	tended	to	be	about	a	narrow
range	of	subjects.

Now,	thanks	to	the	internet,	there's	a	path.	Anyone	can	publish
essays	online.	You	start	in	obscurity,	perhaps,	but	at	least	you	can
start.	You	don't	need	anyone's	permission.

It	sometimes	happens	that	an	area	of	knowledge	sits	quietly	for
years,	till	some	change	makes	it	explode.	Cryptography	did	this
to	number	theory.	The	internet	is	doing	it	to	the	essay.

The	exciting	thing	is	not	that	there's	a	lot	left	to	write,	but	that
there's	a	lot	left	to	discover.	There's	a	certain	kind	of	idea	that's
best	discovered	by	writing	essays.	If	most	essays	are	still
unwritten,	most	such	ideas	are	still	undiscovered.

Notes

[1]	Put	railings	on	the	balconies,	but	don't	put	bars	on	the
windows.

[2]	Even	now	I	sometimes	write	essays	that	are	not	meant	for
publication.	I	wrote	several	to	figure	out	what	Y	Combinator
should	do,	and	they	were	really	helpful.

Thanks	to	Trevor	Blackwell,	Daniel	Gackle,	Jessica	Livingston,
and	Robert	Morris	for	reading	drafts	of	this.

	

Coronavirus	and	Credibility
April	2020

I	recently	saw	a	video	of	TV	journalists	and	politicians	confidently
saying	that	the	coronavirus	would	be	no	worse	than	the	flu.	What
struck	me	about	it	was	not	just	how	mistaken	they	seemed,	but
how	daring.	How	could	they	feel	safe	saying	such	things?

The	answer,	I	realized,	is	that	they	didn't	think	they	could	get
caught.	They	didn't	realize	there	was	any	danger	in	making	false
predictions.	These	people	constantly	make	false	predictions,	and
get	away	with	it,	because	the	things	they	make	predictions	about
either	have	mushy	enough	outcomes	that	they	can	bluster	their
way	out	of	trouble,	or	happen	so	far	in	the	future	that	few
remember	what	they	said.

An	epidemic	is	different.	It	falsifies	your	predictions	rapidly	and
unequivocally.

But	epidemics	are	rare	enough	that	these	people	clearly	didn't
realize	this	was	even	a	possibility.	Instead	they	just	continued	to
use	their	ordinary	m.o.,	which,	as	the	epidemic	has	made	clear,	is
to	talk	confidently	about	things	they	don't	understand.

An	event	like	this	is	thus	a	uniquely	powerful	way	of	taking
people's	measure.	As	Warren	Buffett	said,	"It's	only	when	the	tide
goes	out	that	you	learn	who's	been	swimming	naked."	And	the
tide	has	just	gone	out	like	never	before.

Now	that	we've	seen	the	results,	let's	remember	what	we	saw,
because	this	is	the	most	accurate	test	of	credibility	we're	ever
likely	to	have.	I	hope.

https://www.youtube.com/watch?v=NAh4uS4f78o

	

Orthodox	Privilege
July	2020

"Few	people	are	capable	of	expressing	with	equanimity
opinions	which	differ	from	the	prejudices	of	their	social
environment.	Most	people	are	even	incapable	of	forming	such
opinions."

�	Einstein

There	has	been	a	lot	of	talk	about	privilege	lately.	Although	the
concept	is	overused,	there	is	something	to	it,	and	in	particular	to
the	idea	that	privilege	makes	you	blind	�	that	you	can't	see
things	that	are	visible	to	someone	whose	life	is	very	different
from	yours.

But	one	of	the	most	pervasive	examples	of	this	kind	of	blindness
is	one	that	I	haven't	seen	mentioned	explicitly.	I'm	going	to	call	it
orthodox	privilege:	The	more	conventional-minded	someone	is,
the	more	it	seems	to	them	that	it's	safe	for	everyone	to	express
their	opinions.

It's	safe	for	them	to	express	their	opinions,	because	the	source	of
their	opinions	is	whatever	it's	currently	acceptable	to	believe.	So
it	seems	to	them	that	it	must	be	safe	for	everyone.	They	literally
can't	imagine	a	true	statement	that	would	get	you	in	trouble.

And	yet	at	every	point	in	history,	there	were	true	things	that
would	get	you	in	trouble	to	say.	Is	ours	the	first	where	this	isn't
so?	What	an	amazing	coincidence	that	would	be.

Surely	it	should	at	least	be	the	default	assumption	that	our	time
is	not	unique,	and	that	there	are	true	things	you	can't	say	now,
just	as	there	have	always	been.	You	would	think.	But	even	in	the
face	of	such	overwhelming	historical	evidence,	most	people	will

say.html

go	with	their	gut	on	this	one.

In	the	most	extreme	cases,	people	suffering	from	orthodox
privilege	will	not	only	deny	that	there's	anything	true	that	you
can't	say,	but	will	accuse	you	of	heresy	merely	for	saying	there	is.
Though	if	there's	more	than	one	heresy	current	in	your	time,
these	accusations	will	be	weirdly	non-deterministic:	you	must
either	be	an	xist	or	a	yist.

Frustrating	as	it	is	to	deal	with	these	people,	it's	important	to
realize	that	they're	in	earnest.	They're	not	pretending	they	think
it's	impossible	for	an	idea	to	be	both	unorthodox	and	true.	The
world	really	looks	that	way	to	them.

Indeed,	this	is	a	uniquely	tenacious	form	of	privilege.	People	can
overcome	the	blindness	induced	by	most	forms	of	privilege	by
learning	more	about	whatever	they're	not.	But	they	can't
overcome	orthodox	privilege	just	by	learning	more.	They'd	have
to	become	more	independent-minded.	If	that	happens	at	all,	it
doesn't	happen	on	the	time	scale	of	one	conversation.

It	may	be	possible	to	convince	some	people	that	orthodox
privilege	must	exist	even	though	they	can't	sense	it,	just	as	one
can	with,	say,	dark	matter.	There	may	be	some	who	could	be
convinced,	for	example,	that	it's	very	unlikely	that	this	is	the	first
point	in	history	at	which	there's	nothing	true	you	can't	say,	even
if	they	can't	imagine	specific	examples.

But	in	general	I	don't	think	it	will	work	to	say	"check	your
privilege"	about	this	type	of	privilege,	because	those	in	its
demographic	don't	realize	they're	in	it.	It	doesn't	seem	to
conventional-minded	people	that	they're	conventional-minded.	It
just	seems	to	them	that	they're	right.	Indeed,	they	tend	to	be
particularly	sure	of	it.

Perhaps	the	solution	is	to	appeal	to	politeness.	If	someone	says
they	can	hear	a	high-pitched	noise	that	you	can't,	it's	only	polite
to	take	them	at	their	word,	instead	of	demanding	evidence	that's
impossible	to	produce,	or	simply	denying	that	they	hear
anything.	Imagine	how	rude	that	would	seem.	Similarly,	if
someone	says	they	can	think	of	things	that	are	true	but	that

cannot	be	said,	it's	only	polite	to	take	them	at	their	word,	even	if
you	can't	think	of	any	yourself.	

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Patrick	Collison,
Antonio	Garcia-Martinez,	Jessica	Livingston,	Robert	Morris,
Michael	Nielsen,	Geoff	Ralston,	Max	Roser,	and	Harj	Taggar	for
reading	drafts	of	this.

	

The	Four	Quadrants	of
Conformism
July	2020

One	of	the	most	revealing	ways	to	classify	people	is	by	the
degree	and	aggressiveness	of	their	conformism.	Imagine	a
Cartesian	coordinate	system	whose	horizontal	axis	runs	from
conventional-minded	on	the	left	to	independent-minded	on	the
right,	and	whose	vertical	axis	runs	from	passive	at	the	bottom	to
aggressive	at	the	top.	The	resulting	four	quadrants	define	four
types	of	people.	Starting	in	the	upper	left	and	going	counter-
clockwise:	aggressively	conventional-minded,	passively
conventional-minded,	passively	independent-minded,	and
aggressively	independent-minded.

I	think	that	you'll	find	all	four	types	in	most	societies,	and	that
which	quadrant	people	fall	into	depends	more	on	their	own
personality	than	the	beliefs	prevalent	in	their	society.	[1]

Young	children	offer	some	of	the	best	evidence	for	both	points.
Anyone	who's	been	to	primary	school	has	seen	the	four	types,
and	the	fact	that	school	rules	are	so	arbitrary	is	strong	evidence
that	which	quadrant	people	fall	into	depends	more	on	them	than
the	rules.

The	kids	in	the	upper	left	quadrant,	the	aggressively
conventional-minded	ones,	are	the	tattletales.	They	believe	not
only	that	rules	must	be	obeyed,	but	that	those	who	disobey	them
must	be	punished.

The	kids	in	the	lower	left	quadrant,	the	passively	conventional-
minded,	are	the	sheep.	They're	careful	to	obey	the	rules,	but
when	other	kids	break	them,	their	impulse	is	to	worry	that	those
kids	will	be	punished,	not	to	ensure	that	they	will.

#f1n

The	kids	in	the	lower	right	quadrant,	the	passively	independent-
minded,	are	the	dreamy	ones.	They	don't	care	much	about	rules
and	probably	aren't	100%	sure	what	the	rules	even	are.

And	the	kids	in	the	upper	right	quadrant,	the	aggressively
independent-minded,	are	the	naughty	ones.	When	they	see	a
rule,	their	first	impulse	is	to	question	it.	Merely	being	told	what
to	do	makes	them	inclined	to	do	the	opposite.

When	measuring	conformism,	of	course,	you	have	to	say	with
respect	to	what,	and	this	changes	as	kids	get	older.	For	younger
kids	it's	the	rules	set	by	adults.	But	as	kids	get	older,	the	source
of	rules	becomes	their	peers.	So	a	pack	of	teenagers	who	all	flout
school	rules	in	the	same	way	are	not	independent-minded;	rather
the	opposite.

In	adulthood	we	can	recognize	the	four	types	by	their	distinctive
calls,	much	as	you	could	recognize	four	species	of	birds.	The	call
of	the	aggressively	conventional-minded	is	"Crush	<outgroup>!"
(It's	rather	alarming	to	see	an	exclamation	point	after	a	variable,
but	that's	the	whole	problem	with	the	aggressively	conventional-
minded.)	The	call	of	the	passively	conventional-minded	is	"What
will	the	neighbors	think?"	The	call	of	the	passively	independent-
minded	is	"To	each	his	own."	And	the	call	of	the	aggressively
independent-minded	is	"Eppur	si	muove."

The	four	types	are	not	equally	common.	There	are	more	passive
people	than	aggressive	ones,	and	far	more	conventional-minded
people	than	independent-minded	ones.	So	the	passively
conventional-minded	are	the	largest	group,	and	the	aggressively
independent-minded	the	smallest.

Since	one's	quadrant	depends	more	on	one's	personality	than	the
nature	of	the	rules,	most	people	would	occupy	the	same	quadrant
even	if	they'd	grown	up	in	a	quite	different	society.

Princeton	professor	Robert	George	recently	wrote:

I	sometimes	ask	students	what	their	position	on
slavery	would	have	been	had	they	been	white	and
living	in	the	South	before	abolition.	Guess	what?

They	all	would	have	been	abolitionists!	They	all
would	have	bravely	spoken	out	against	slavery,	and
worked	tirelessly	against	it.

He's	too	polite	to	say	so,	but	of	course	they	wouldn't.	And	indeed,
our	default	assumption	should	not	merely	be	that	his	students
would,	on	average,	have	behaved	the	same	way	people	did	at	the
time,	but	that	the	ones	who	are	aggressively	conventional-
minded	today	would	have	been	aggressively	conventional-minded
then	too.	In	other	words,	that	they'd	not	only	not	have	fought
against	slavery,	but	that	they'd	have	been	among	its	staunchest
defenders.

I'm	biased,	I	admit,	but	it	seems	to	me	that	aggressively
conventional-minded	people	are	responsible	for	a
disproportionate	amount	of	the	trouble	in	the	world,	and	that	a
lot	of	the	customs	we've	evolved	since	the	Enlightenment	have
been	designed	to	protect	the	rest	of	us	from	them.	In	particular,
the	retirement	of	the	concept	of	heresy	and	its	replacement	by
the	principle	of	freely	debating	all	sorts	of	different	ideas,	even
ones	that	are	currently	considered	unacceptable,	without	any
punishment	for	those	who	try	them	out	to	see	if	they	work.	[2]

Why	do	the	independent-minded	need	to	be	protected,	though?
Because	they	have	all	the	new	ideas.	To	be	a	successful	scientist,
for	example,	it's	not	enough	just	to	be	right.	You	have	to	be	right
when	everyone	else	is	wrong.	Conventional-minded	people	can't
do	that.	For	similar	reasons,	all	successful	startup	CEOs	are	not
merely	independent-minded,	but	aggressively	so.	So	it's	no
coincidence	that	societies	prosper	only	to	the	extent	that	they
have	customs	for	keeping	the	conventional-minded	at	bay.	[3]

In	the	last	few	years,	many	of	us	have	noticed	that	the	customs
protecting	free	inquiry	have	been	weakened.	Some	say	we're
overreacting	�	that	they	haven't	been	weakened	very	much,	or
that	they've	been	weakened	in	the	service	of	a	greater	good.	The
latter	I'll	dispose	of	immediately.	When	the	conventional-minded
get	the	upper	hand,	they	always	say	it's	in	the	service	of	a
greater	good.	It	just	happens	to	be	a	different,	incompatible
greater	good	each	time.

#f2n
#f3n

As	for	the	former	worry,	that	the	independent-minded	are	being
oversensitive,	and	that	free	inquiry	hasn't	been	shut	down	that
much,	you	can't	judge	that	unless	you	are	yourself	independent-
minded.	You	can't	know	how	much	of	the	space	of	ideas	is	being
lopped	off	unless	you	have	them,	and	only	the	independent-
minded	have	the	ones	at	the	edges.	Precisely	because	of	this,
they	tend	to	be	very	sensitive	to	changes	in	how	freely	one	can
explore	ideas.	They're	the	canaries	in	this	coalmine.

The	conventional-minded	say,	as	they	always	do,	that	they	don't
want	to	shut	down	the	discussion	of	all	ideas,	just	the	bad	ones.

You'd	think	it	would	be	obvious	just	from	that	sentence	what	a
dangerous	game	they're	playing.	But	I'll	spell	it	out.	There	are
two	reasons	why	we	need	to	be	able	to	discuss	even	"bad"	ideas.

The	first	is	that	any	process	for	deciding	which	ideas	to	ban	is
bound	to	make	mistakes.	All	the	more	so	because	no	one
intelligent	wants	to	undertake	that	kind	of	work,	so	it	ends	up
being	done	by	the	stupid.	And	when	a	process	makes	a	lot	of
mistakes,	you	need	to	leave	a	margin	for	error.	Which	in	this	case
means	you	need	to	ban	fewer	ideas	than	you'd	like	to.	But	that's
hard	for	the	aggressively	conventional-minded	to	do,	partly
because	they	enjoy	seeing	people	punished,	as	they	have	since
they	were	children,	and	partly	because	they	compete	with	one
another.	Enforcers	of	orthodoxy	can't	allow	a	borderline	idea	to
exist,	because	that	gives	other	enforcers	an	opportunity	to	one-
up	them	in	the	moral	purity	department,	and	perhaps	even	to
turn	enforcer	upon	them.	So	instead	of	getting	the	margin	for
error	we	need,	we	get	the	opposite:	a	race	to	the	bottom	in	which
any	idea	that	seems	at	all	bannable	ends	up	being	banned.	[4]

The	second	reason	it's	dangerous	to	ban	the	discussion	of	ideas	is
that	ideas	are	more	closely	related	than	they	look.	Which	means
if	you	restrict	the	discussion	of	some	topics,	it	doesn't	only	affect
those	topics.	The	restrictions	propagate	back	into	any	topic	that
yields	implications	in	the	forbidden	ones.	And	that	is	not	an	edge
case.	The	best	ideas	do	exactly	that:	they	have	consequences	in
fields	far	removed	from	their	origins.	Having	ideas	in	a	world
where	some	ideas	are	banned	is	like	playing	soccer	on	a	pitch
that	has	a	minefield	in	one	corner.	You	don't	just	play	the	same

#f4n

game	you	would	have,	but	on	a	different	shaped	pitch.	You	play	a
much	more	subdued	game	even	on	the	ground	that's	safe.

In	the	past,	the	way	the	independent-minded	protected
themselves	was	to	congregate	in	a	handful	of	places	�	first	in
courts,	and	later	in	universities	�	where	they	could	to	some
extent	make	their	own	rules.	Places	where	people	work	with
ideas	tend	to	have	customs	protecting	free	inquiry,	for	the	same
reason	wafer	fabs	have	powerful	air	filters,	or	recording	studios
good	sound	insulation.	For	the	last	couple	centuries	at	least,
when	the	aggressively	conventional-minded	were	on	the	rampage
for	whatever	reason,	universities	were	the	safest	places	to	be.

That	may	not	work	this	time	though,	due	to	the	unfortunate	fact
that	the	latest	wave	of	intolerance	began	in	universities.	It	began
in	the	mid	1980s,	and	by	2000	seemed	to	have	died	down,	but	it
has	recently	flared	up	again	with	the	arrival	of	social	media.	This
seems,	unfortunately,	to	have	been	an	own	goal	by	Silicon	Valley.
Though	the	people	who	run	Silicon	Valley	are	almost	all
independent-minded,	they've	handed	the	aggressively
conventional-minded	a	tool	such	as	they	could	only	have	dreamed
of.

On	the	other	hand,	perhaps	the	decline	in	the	spirit	of	free
inquiry	within	universities	is	as	much	the	symptom	of	the
departure	of	the	independent-minded	as	the	cause.	People	who
would	have	become	professors	50	years	ago	have	other	options
now.	Now	they	can	become	quants	or	start	startups.	You	have	to
be	independent-minded	to	succeed	at	either	of	those.	If	these
people	had	been	professors,	they'd	have	put	up	a	stiffer
resistance	on	behalf	of	academic	freedom.	So	perhaps	the	picture
of	the	independent-minded	fleeing	declining	universities	is	too
gloomy.	Perhaps	the	universities	are	declining	because	so	many
have	already	left.	[5]

Though	I've	spent	a	lot	of	time	thinking	about	this	situation,	I
can't	predict	how	it	plays	out.	Could	some	universities	reverse
the	current	trend	and	remain	places	where	the	independent-
minded	want	to	congregate?	Or	will	the	independent-minded
gradually	abandon	them?	I	worry	a	lot	about	what	we	might	lose
if	that	happened.

#f5n

But	I'm	hopeful	long	term.	The	independent-minded	are	good	at
protecting	themselves.	If	existing	institutions	are	compromised,
they'll	create	new	ones.	That	may	require	some	imagination.	But
imagination	is,	after	all,	their	specialty.

Notes

[1]	I	realize	of	course	that	if	people's	personalities	vary	in	any
two	ways,	you	can	use	them	as	axes	and	call	the	resulting	four
quadrants	personality	types.	So	what	I'm	really	claiming	is	that
the	axes	are	orthogonal	and	that	there's	significant	variation	in
both.

[2]	The	aggressively	conventional-minded	aren't	responsible	for
all	the	trouble	in	the	world.	Another	big	source	of	trouble	is	the
sort	of	charismatic	leader	who	gains	power	by	appealing	to	them.
They	become	much	more	dangerous	when	such	leaders	emerge.

[3]	I	never	worried	about	writing	things	that	offended	the
conventional-minded	when	I	was	running	Y	Combinator.	If	YC
were	a	cookie	company,	I'd	have	faced	a	difficult	moral	choice.
Conventional-minded	people	eat	cookies	too.	But	they	don't	start
successful	startups.	So	if	I	deterred	them	from	applying	to	YC,
the	only	effect	was	to	save	us	work	reading	applications.

[4]	There	has	been	progress	in	one	area:	the	punishments	for
talking	about	banned	ideas	are	less	severe	than	in	the	past.
There's	little	danger	of	being	killed,	at	least	in	richer	countries.

The	aggressively	conventional-minded	are	mostly	satisfied	with
getting	people	fired.

[5]	Many	professors	are	independent-minded	�	especially	in
math,	the	hard	sciences,	and	engineering,	where	you	have	to	be
to	succeed.	But	students	are	more	representative	of	the	general
population,	and	thus	mostly	conventional-minded.	So	when
professors	and	students	are	in	conflict,	it's	not	just	a	conflict
between	generations	but	also	between	different	types	of	people.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Nicholas	Christakis,
Patrick	Collison,	Sam	Gichuru,	Jessica	Livingston,	Patrick
McKenzie,	Geoff	Ralston,	and	Harj	Taggar	for	reading	drafts	of
this.

	

Modeling	a	Wealth	Tax
August	2020

Some	politicians	are	proposing	to	introduce	wealth	taxes	in
addition	to	income	and	capital	gains	taxes.	Let's	try	modeling	the
effects	of	various	levels	of	wealth	tax	to	see	what	they	would
mean	in	practice	for	a	startup	founder.

Suppose	you	start	a	successful	startup	in	your	twenties,	and	then
live	for	another	60	years.	How	much	of	your	stock	will	a	wealth
tax	consume?

If	the	wealth	tax	applies	to	all	your	assets,	it's	easy	to	calculate
its	effect.	A	wealth	tax	of	1%	means	you	get	to	keep	99%	of	your
stock	each	year.	After	60	years	the	proportion	of	stock	you'll	have
left	will	be	.99^60,	or	.547.	So	a	straight	1%	wealth	tax	means
the	government	will	over	the	course	of	your	life	take	45%	of	your
stock.

(Losing	shares	does	not,	obviously,	mean	becoming	net	poorer
unless	the	value	per	share	is	increasing	by	less	than	the	wealth
tax	rate.)

Here's	how	much	stock	the	government	would	take	over	60	years
at	various	levels	of	wealth	tax:

wealth	tax government	takes

0.1% 6%

0.5% 26%

1.0% 45%

2.0% 70%

3.0% 84%

4.0% 91%

5.0% 95%

A	wealth	tax	will	usually	have	a	threshold	at	which	it	starts.	How
much	difference	would	a	high	threshold	make?	To	model	that,	we
need	to	make	some	assumptions	about	the	initial	value	of	your
stock	and	the	growth	rate.

Suppose	your	stock	is	initially	worth	$2	million,	and	the
company's	trajectory	is	as	follows:	the	value	of	your	stock	grows
3x	for	2	years,	then	2x	for	2	years,	then	50%	for	2	years,	after
which	you	just	get	a	typical	public	company	growth	rate,	which
we'll	call	8%.	[1]	Suppose	the	wealth	tax	threshold	is	$50	million.
How	much	stock	does	the	government	take	now?

wealth	tax government	takes

0.1% 5%

0.5% 23%

1.0% 41%

2.0% 65%

3.0% 79%

4.0% 88%

5.0% 93%

#f1n

	

Early	Work
October	2020

One	of	the	biggest	things	holding	people	back	from	doing	great
work	is	the	fear	of	making	something	lame.	And	this	fear	is	not
an	irrational	one.	Many	great	projects	go	through	a	stage	early
on	where	they	don't	seem	very	impressive,	even	to	their	creators.
You	have	to	push	through	this	stage	to	reach	the	great	work	that
lies	beyond.	But	many	people	don't.	Most	people	don't	even	reach
the	stage	of	making	something	they're	embarrassed	by,	let	alone
continue	past	it.	They're	too	frightened	even	to	start.

Imagine	if	we	could	turn	off	the	fear	of	making	something	lame.
Imagine	how	much	more	we'd	do.

Is	there	any	hope	of	turning	it	off?	I	think	so.	I	think	the	habits	at
work	here	are	not	very	deeply	rooted.

Making	new	things	is	itself	a	new	thing	for	us	as	a	species.	It	has
always	happened,	but	till	the	last	few	centuries	it	happened	so
slowly	as	to	be	invisible	to	individual	humans.	And	since	we
didn't	need	customs	for	dealing	with	new	ideas,	we	didn't
develop	any.

We	just	don't	have	enough	experience	with	early	versions	of
ambitious	projects	to	know	how	to	respond	to	them.	We	judge
them	as	we	would	judge	more	finished	work,	or	less	ambitious
projects.	We	don't	realize	they're	a	special	case.

Or	at	least,	most	of	us	don't.	One	reason	I'm	confident	we	can	do
better	is	that	it's	already	starting	to	happen.	There	are	already	a
few	places	that	are	living	in	the	future	in	this	respect.	Silicon
Valley	is	one	of	them:	an	unknown	person	working	on	a	strange-
sounding	idea	won't	automatically	be	dismissed	the	way	they
would	back	home.	In	Silicon	Valley,	people	have	learned	how
dangerous	that	is.

The	right	way	to	deal	with	new	ideas	is	to	treat	them	as	a
challenge	to	your	imagination	�	not	just	to	have	lower
standards,	but	to	switch	polarity	entirely,	from	listing	the	reasons
an	idea	won't	work	to	trying	to	think	of	ways	it	could.	That's	what
I	do	when	I	meet	people	with	new	ideas.	I've	become	quite	good
at	it,	but	I've	had	a	lot	of	practice.	Being	a	partner	at	Y
Combinator	means	being	practically	immersed	in	strange-
sounding	ideas	proposed	by	unknown	people.	Every	six	months
you	get	thousands	of	new	ones	thrown	at	you	and	have	to	sort
through	them,	knowing	that	in	a	world	with	a	power-law
distribution	of	outcomes,	it	will	be	painfully	obvious	if	you	miss
the	needle	in	this	haystack.	Optimism	becomes	urgent.

But	I'm	hopeful	that,	with	time,	this	kind	of	optimism	can	become
widespread	enough	that	it	becomes	a	social	custom,	not	just	a
trick	used	by	a	few	specialists.	It	is	after	all	an	extremely
lucrative	trick,	and	those	tend	to	spread	quickly.

Of	course,	inexperience	is	not	the	only	reason	people	are	too
harsh	on	early	versions	of	ambitious	projects.	They	also	do	it	to
seem	clever.	And	in	a	field	where	the	new	ideas	are	risky,	like
startups,	those	who	dismiss	them	are	in	fact	more	likely	to	be
right.	Just	not	when	their	predictions	are	weighted	by	outcome.

But	there	is	another	more	sinister	reason	people	dismiss	new
ideas.	If	you	try	something	ambitious,	many	of	those	around	you
will	hope,	consciously	or	unconsciously,	that	you'll	fail.	They
worry	that	if	you	try	something	ambitious	and	succeed,	it	will	put
you	above	them.	In	some	countries	this	is	not	just	an	individual
failing	but	part	of	the	national	culture.

I	wouldn't	claim	that	people	in	Silicon	Valley	overcome	these
impulses	because	they're	morally	better.	[1]	The	reason	many
hope	you'll	succeed	is	that	they	hope	to	rise	with	you.	For
investors	this	incentive	is	particularly	explicit.	They	want	you	to
succeed	because	they	hope	you'll	make	them	rich	in	the	process.
But	many	other	people	you	meet	can	hope	to	benefit	in	some	way
from	your	success.	At	the	very	least	they'll	be	able	to	say,	when
you're	famous,	that	they've	known	you	since	way	back.

altair.html
swan.html
#f1n

But	even	if	Silicon	Valley's	encouraging	attitude	is	rooted	in	self-
interest,	it	has	over	time	actually	grown	into	a	sort	of
benevolence.	Encouraging	startups	has	been	practiced	for	so
long	that	it	has	become	a	custom.	Now	it	just	seems	that	that's
what	one	does	with	startups.

Maybe	Silicon	Valley	is	too	optimistic.	Maybe	it's	too	easily	fooled
by	impostors.	Many	less	optimistic	journalists	want	to	believe
that.	But	the	lists	of	impostors	they	cite	are	suspiciously	short,
and	plagued	with	asterisks.	[2]	If	you	use	revenue	as	the	test,
Silicon	Valley's	optimism	seems	better	tuned	than	the	rest	of	the
world's.	And	because	it	works,	it	will	spread.

There's	a	lot	more	to	new	ideas	than	new	startup	ideas,	of
course.	The	fear	of	making	something	lame	holds	people	back	in
every	field.	But	Silicon	Valley	shows	how	quickly	customs	can
evolve	to	support	new	ideas.	And	that	in	turn	proves	that
dismissing	new	ideas	is	not	so	deeply	rooted	in	human	nature
that	it	can't	be	unlearnt.

Unfortunately,	if	you	want	to	do	new	things,	you'll	face	a	force
more	powerful	than	other	people's	skepticism:	your	own
skepticism.	You	too	will	judge	your	early	work	too	harshly.	How
do	you	avoid	that?

This	is	a	difficult	problem,	because	you	don't	want	to	completely
eliminate	your	horror	of	making	something	lame.	That's	what
steers	you	toward	doing	good	work.	You	just	want	to	turn	it	off
temporarily,	the	way	a	painkiller	temporarily	turns	off	pain.

People	have	already	discovered	several	techniques	that	work.
Hardy	mentions	two	in	A	Mathematician's	Apology:

Good	work	is	not	done	by	"humble"	men.	It	is	one	of
the	first	duties	of	a	professor,	for	example,	in	any
subject,	to	exaggerate	a	little	both	the	importance	of
his	subject	and	his	importance	in	it.

#f2n

If	you	overestimate	the	importance	of	what	you're	working	on,
that	will	compensate	for	your	mistakenly	harsh	judgment	of	your
initial	results.	If	you	look	at	something	that's	20%	of	the	way	to	a
goal	worth	100	and	conclude	that	it's	10%	of	the	way	to	a	goal
worth	200,	your	estimate	of	its	expected	value	is	correct	even
though	both	components	are	wrong.

It	also	helps,	as	Hardy	suggests,	to	be	slightly	overconfident.	I've
noticed	in	many	fields	that	the	most	successful	people	are
slightly	overconfident.	On	the	face	of	it	this	seems	implausible.
Surely	it	would	be	optimal	to	have	exactly	the	right	estimate	of
one's	abilities.	How	could	it	be	an	advantage	to	be	mistaken?
Because	this	error	compensates	for	other	sources	of	error	in	the
opposite	direction:	being	slightly	overconfident	armors	you
against	both	other	people's	skepticism	and	your	own.

Ignorance	has	a	similar	effect.	It's	safe	to	make	the	mistake	of
judging	early	work	as	finished	work	if	you're	a	sufficiently	lax
judge	of	finished	work.	I	doubt	it's	possible	to	cultivate	this	kind
of	ignorance,	but	empirically	it's	a	real	advantage,	especially	for
the	young.

Another	way	to	get	through	the	lame	phase	of	ambitious	projects
is	to	surround	yourself	with	the	right	people	�	to	create	an	eddy
in	the	social	headwind.	But	it's	not	enough	to	collect	people	who
are	always	encouraging.	You'd	learn	to	discount	that.	You	need
colleagues	who	can	actually	tell	an	ugly	duckling	from	a	baby
swan.	The	people	best	able	to	do	this	are	those	working	on
similar	projects	of	their	own,	which	is	why	university
departments	and	research	labs	work	so	well.	You	don't	need
institutions	to	collect	colleagues.	They	naturally	coalesce,	given
the	chance.	But	it's	very	much	worth	accelerating	this	process	by
seeking	out	other	people	trying	to	do	new	things.

Teachers	are	in	effect	a	special	case	of	colleagues.	It's	a	teacher's
job	both	to	see	the	promise	of	early	work	and	to	encourage	you
to	continue.	But	teachers	who	are	good	at	this	are	unfortunately
quite	rare,	so	if	you	have	the	opportunity	to	learn	from	one,	take
it.	[3]

For	some	it	might	work	to	rely	on	sheer	discipline:	to	tell	yourself

#f3n

that	you	just	have	to	press	on	through	the	initial	crap	phase	and
not	get	discouraged.	But	like	a	lot	of	"just	tell	yourself"	advice,
this	is	harder	than	it	sounds.	And	it	gets	still	harder	as	you	get
older,	because	your	standards	rise.	The	old	do	have	one
compensating	advantage	though:	they've	been	through	this
before.

It	can	help	if	you	focus	less	on	where	you	are	and	more	on	the
rate	of	change.	You	won't	worry	so	much	about	doing	bad	work	if
you	can	see	it	improving.	Obviously	the	faster	it	improves,	the
easier	this	is.	So	when	you	start	something	new,	it's	good	if	you
can	spend	a	lot	of	time	on	it.	That's	another	advantage	of	being
young:	you	tend	to	have	bigger	blocks	of	time.

Another	common	trick	is	to	start	by	considering	new	work	to	be
of	a	different,	less	exacting	type.	To	start	a	painting	saying	that
it's	just	a	sketch,	or	a	new	piece	of	software	saying	that	it's	just	a
quick	hack.	Then	you	judge	your	initial	results	by	a	lower
standard.	Once	the	project	is	rolling	you	can	sneakily	convert	it
to	something	more.	[4]

This	will	be	easier	if	you	use	a	medium	that	lets	you	work	fast
and	doesn't	require	too	much	commitment	up	front.	It's	easier	to
convince	yourself	that	something	is	just	a	sketch	when	you're
drawing	in	a	notebook	than	when	you're	carving	stone.	Plus	you
get	initial	results	faster.	[5]	[6]

It	will	be	easier	to	try	out	a	risky	project	if	you	think	of	it	as	a
way	to	learn	and	not	just	as	a	way	to	make	something.	Then	even
if	the	project	truly	is	a	failure,	you'll	still	have	gained	by	it.	If	the
problem	is	sharply	enough	defined,	failure	itself	is	knowledge:	if
the	theorem	you're	trying	to	prove	turns	out	to	be	false,	or	you
use	a	structural	member	of	a	certain	size	and	it	fails	under
stress,	you've	learned	something,	even	if	it	isn't	what	you	wanted
to	learn.	[7]

One	motivation	that	works	particularly	well	for	me	is	curiosity.	I
like	to	try	new	things	just	to	see	how	they'll	turn	out.	We	started
Y	Combinator	in	this	spirit,	and	it	was	one	of	main	things	that
kept	me	going	while	I	was	working	on	Bel.	Having	worked	for	so
long	with	various	dialects	of	Lisp,	I	was	very	curious	to	see	what

#f4n
#f5n
#f6n
#f7n
bel.html

its	inherent	shape	was:	what	you'd	end	up	with	if	you	followed
the	axiomatic	approach	all	the	way.

But	it's	a	bit	strange	that	you	have	to	play	mind	games	with
yourself	to	avoid	being	discouraged	by	lame-looking	early	efforts.
The	thing	you're	trying	to	trick	yourself	into	believing	is	in	fact
the	truth.	A	lame-looking	early	version	of	an	ambitious	project
truly	is	more	valuable	than	it	seems.	So	the	ultimate	solution	may
be	to	teach	yourself	that.

One	way	to	do	it	is	to	study	the	histories	of	people	who've	done
great	work.	What	were	they	thinking	early	on?	What	was	the	very
first	thing	they	did?	It	can	sometimes	be	hard	to	get	an	accurate
answer	to	this	question,	because	people	are	often	embarrassed
by	their	earliest	work	and	make	little	effort	to	publish	it.	(They
too	misjudge	it.)	But	when	you	can	get	an	accurate	picture	of	the
first	steps	someone	made	on	the	path	to	some	great	work,	they're
often	pretty	feeble.	[8]

Perhaps	if	you	study	enough	such	cases,	you	can	teach	yourself
to	be	a	better	judge	of	early	work.	Then	you'll	be	immune	both	to
other	people's	skepticism	and	your	own	fear	of	making
something	lame.	You'll	see	early	work	for	what	it	is.

Curiously	enough,	the	solution	to	the	problem	of	judging	early
work	too	harshly	is	to	realize	that	our	attitudes	toward	it	are
themselves	early	work.	Holding	everything	to	the	same	standard
is	a	crude	version	1.	We're	already	evolving	better	customs,	and
we	can	already	see	signs	of	how	big	the	payoff	will	be.

Notes

[1]	This	assumption	may	be	too	conservative.	There	is	some

#f8n

evidence	that	historically	the	Bay	Area	has	attracted	a	different
sort	of	person	than,	say,	New	York	City.

[2]	One	of	their	great	favorites	is	Theranos.	But	the	most
conspicuous	feature	of	Theranos's	cap	table	is	the	absence	of
Silicon	Valley	firms.	Journalists	were	fooled	by	Theranos,	but
Silicon	Valley	investors	weren't.

[3]	I	made	two	mistakes	about	teachers	when	I	was	younger.	I
cared	more	about	professors'	research	than	their	reputations	as
teachers,	and	I	was	also	wrong	about	what	it	meant	to	be	a	good
teacher.	I	thought	it	simply	meant	to	be	good	at	explaining
things.

[4]	Patrick	Collison	points	out	that	you	can	go	past	treating
something	as	a	hack	in	the	sense	of	a	prototype	and	onward	to
the	sense	of	the	word	that	means	something	closer	to	a	practical
joke:

I	think	there	may	be	something	related	to	being	a
hack	that	can	be	powerful	�	the	idea	of	making	the
tenuousness	and	implausibility	a	feature.	"Yes,	it's	a
bit	ridiculous,	right?	I'm	just	trying	to	see	how	far
such	a	naive	approach	can	get."	YC	seemed	to	me	to
have	this	characteristic.

[5]	Much	of	the	advantage	of	switching	from	physical	to	digital
media	is	not	the	software	per	se	but	that	it	lets	you	start
something	new	with	little	upfront	commitment.

[6]	John	Carmack	adds:

The	value	of	a	medium	without	a	vast	gulf	between
the	early	work	and	the	final	work	is	exemplified	in
game	mods.	The	original	Quake	game	was	a	golden
age	for	mods,	because	everything	was	very	flexible,
but	so	crude	due	to	technical	limitations,	that	quick
hacks	to	try	out	a	gameplay	idea	weren't	all	that	far
from	the	official	game.	Many	careers	were	born	from
that,	but	as	the	commercial	game	quality	improved
over	the	years,	it	became	almost	a	full	time	job	to

cities.html

make	a	successful	mod	that	would	be	appreciated	by
the	community.	This	was	dramatically	reversed	with
Minecraft	and	later	Roblox,	where	the	entire	esthetic
of	the	experience	was	so	explicitly	crude	that
innovative	gameplay	concepts	became	the	overriding
value.	These	"crude"	game	mods	by	single	authors
are	now	often	bigger	deals	than	massive	professional
teams'	work.

[7]	Lisa	Randall	suggests	that	we

treat	new	things	as	experiments.	That	way	there's	no
such	thing	as	failing,	since	you	learn	something	no
matter	what.	You	treat	it	like	an	experiment	in	the
sense	that	if	it	really	rules	something	out,	you	give
up	and	move	on,	but	if	there's	some	way	to	vary	it	to
make	it	work	better,	go	ahead	and	do	that

[8]	Michael	Nielsen	points	out	that	the	internet	has	made	this
easier,	because	you	can	see	programmers'	first	commits,
musicians'	first	videos,	and	so	on.

Thanks	to	Trevor	Blackwell,	John	Carmack,	Patrick	Collison,
Jessica	Livingston,	Michael	Nielsen,	and	Lisa	Randall	for	reading
drafts	of	this.

	

How	to	Think	for	Yourself
November	2020

There	are	some	kinds	of	work	that	you	can't	do	well	without
thinking	differently	from	your	peers.	To	be	a	successful	scientist,
for	example,	it's	not	enough	just	to	be	correct.	Your	ideas	have	to
be	both	correct	and	novel.	You	can't	publish	papers	saying	things
other	people	already	know.	You	need	to	say	things	no	one	else
has	realized	yet.

The	same	is	true	for	investors.	It's	not	enough	for	a	public	market
investor	to	predict	correctly	how	a	company	will	do.	If	a	lot	of
other	people	make	the	same	prediction,	the	stock	price	will
already	reflect	it,	and	there's	no	room	to	make	money.	The	only
valuable	insights	are	the	ones	most	other	investors	don't	share.

You	see	this	pattern	with	startup	founders	too.	You	don't	want	to
start	a	startup	to	do	something	that	everyone	agrees	is	a	good
idea,	or	there	will	already	be	other	companies	doing	it.	You	have
to	do	something	that	sounds	to	most	other	people	like	a	bad	idea,
but	that	you	know	isn't	�	like	writing	software	for	a	tiny
computer	used	by	a	few	thousand	hobbyists,	or	starting	a	site	to
let	people	rent	airbeds	on	strangers'	floors.

Ditto	for	essayists.	An	essay	that	told	people	things	they	already
knew	would	be	boring.	You	have	to	tell	them	something	new.

But	this	pattern	isn't	universal.	In	fact,	it	doesn't	hold	for	most
kinds	of	work.	In	most	kinds	of	work	�	to	be	an	administrator,
for	example	�	all	you	need	is	the	first	half.	All	you	need	is	to	be
right.	It's	not	essential	that	everyone	else	be	wrong.

There's	room	for	a	little	novelty	in	most	kinds	of	work,	but	in
practice	there's	a	fairly	sharp	distinction	between	the	kinds	of
work	where	it's	essential	to	be	independent-minded,	and	the
kinds	where	it's	not.

useful.html

I	wish	someone	had	told	me	about	this	distinction	when	I	was	a
kid,	because	it's	one	of	the	most	important	things	to	think	about
when	you're	deciding	what	kind	of	work	you	want	to	do.	Do	you
want	to	do	the	kind	of	work	where	you	can	only	win	by	thinking
differently	from	everyone	else?	I	suspect	most	people's
unconscious	mind	will	answer	that	question	before	their
conscious	mind	has	a	chance	to.	I	know	mine	does.

Independent-mindedness	seems	to	be	more	a	matter	of	nature
than	nurture.	Which	means	if	you	pick	the	wrong	type	of	work,
you're	going	to	be	unhappy.	If	you're	naturally	independent-
minded,	you're	going	to	find	it	frustrating	to	be	a	middle
manager.	And	if	you're	naturally	conventional-minded,	you're
going	to	be	sailing	into	a	headwind	if	you	try	to	do	original
research.

One	difficulty	here,	though,	is	that	people	are	often	mistaken
about	where	they	fall	on	the	spectrum	from	conventional-	to
independent-minded.	Conventional-minded	people	don't	like	to
think	of	themselves	as	conventional-minded.	And	in	any	case,	it
genuinely	feels	to	them	as	if	they	make	up	their	own	minds	about
everything.	It's	just	a	coincidence	that	their	beliefs	are	identical
to	their	peers'.	And	the	independent-minded,	meanwhile,	are
often	unaware	how	different	their	ideas	are	from	conventional
ones,	at	least	till	they	state	them	publicly.	[1]

By	the	time	they	reach	adulthood,	most	people	know	roughly	how
smart	they	are	(in	the	narrow	sense	of	ability	to	solve	pre-set
problems),	because	they're	constantly	being	tested	and	ranked
according	to	it.	But	schools	generally	ignore	independent-
mindedness,	except	to	the	extent	they	try	to	suppress	it.	So	we
don't	get	anything	like	the	same	kind	of	feedback	about	how
independent-minded	we	are.

There	may	even	be	a	phenomenon	like	Dunning-Kruger	at	work,
where	the	most	conventional-minded	people	are	confident	that
they're	independent-minded,	while	the	genuinely	independent-
minded	worry	they	might	not	be	independent-minded	enough.

#f1n

Can	you	make	yourself	more	independent-minded?	I	think	so.
This	quality	may	be	largely	inborn,	but	there	seem	to	be	ways	to
magnify	it,	or	at	least	not	to	suppress	it.

One	of	the	most	effective	techniques	is	one	practiced
unintentionally	by	most	nerds:	simply	to	be	less	aware	what
conventional	beliefs	are.	It's	hard	to	be	a	conformist	if	you	don't
know	what	you're	supposed	to	conform	to.	Though	again,	it	may
be	that	such	people	already	are	independent-minded.	A
conventional-minded	person	would	probably	feel	anxious	not
knowing	what	other	people	thought,	and	make	more	effort	to	find
out.

It	matters	a	lot	who	you	surround	yourself	with.	If	you're
surrounded	by	conventional-minded	people,	it	will	constrain
which	ideas	you	can	express,	and	that	in	turn	will	constrain
which	ideas	you	have.	But	if	you	surround	yourself	with
independent-minded	people,	you'll	have	the	opposite	experience:
hearing	other	people	say	surprising	things	will	encourage	you	to,
and	to	think	of	more.

Because	the	independent-minded	find	it	uncomfortable	to	be
surrounded	by	conventional-minded	people,	they	tend	to	self-
segregate	once	they	have	a	chance	to.	The	problem	with	high
school	is	that	they	haven't	yet	had	a	chance	to.	Plus	high	school
tends	to	be	an	inward-looking	little	world	whose	inhabitants	lack
confidence,	both	of	which	magnify	the	forces	of	conformism.	So
high	school	is	often	a	bad	time	for	the	independent-minded.	But
there	is	some	advantage	even	here:	it	teaches	you	what	to	avoid.
If	you	later	find	yourself	in	a	situation	that	makes	you	think	"this
is	like	high	school,"	you	know	you	should	get	out.	[2]

Another	place	where	the	independent-	and	conventional-minded
are	thrown	together	is	in	successful	startups.	The	founders	and
early	employees	are	almost	always	independent-minded;
otherwise	the	startup	wouldn't	be	successful.	But	conventional-
minded	people	greatly	outnumber	independent-minded	ones,	so
as	the	company	grows,	the	original	spirit	of	independent-

nerds.html
#f2n

mindedness	is	inevitably	diluted.	This	causes	all	kinds	of
problems	besides	the	obvious	one	that	the	company	starts	to
suck.	One	of	the	strangest	is	that	the	founders	find	themselves
able	to	speak	more	freely	with	founders	of	other	companies	than
with	their	own	employees.	[3]

Fortunately	you	don't	have	to	spend	all	your	time	with
independent-minded	people.	It's	enough	to	have	one	or	two	you
can	talk	to	regularly.	And	once	you	find	them,	they're	usually	as
eager	to	talk	as	you	are;	they	need	you	too.	Although	universities
no	longer	have	the	kind	of	monopoly	they	used	to	have	on
education,	good	universities	are	still	an	excellent	way	to	meet
independent-minded	people.	Most	students	will	still	be
conventional-minded,	but	you'll	at	least	find	clumps	of
independent-minded	ones,	rather	than	the	near	zero	you	may
have	found	in	high	school.

It	also	works	to	go	in	the	other	direction:	as	well	as	cultivating	a
small	collection	of	independent-minded	friends,	to	try	to	meet	as
many	different	types	of	people	as	you	can.	It	will	decrease	the
influence	of	your	immediate	peers	if	you	have	several	other
groups	of	peers.	Plus	if	you're	part	of	several	different	worlds,
you	can	often	import	ideas	from	one	to	another.

But	by	different	types	of	people,	I	don't	mean	demographically
different.	For	this	technique	to	work,	they	have	to	think
differently.	So	while	it's	an	excellent	idea	to	go	and	visit	other
countries,	you	can	probably	find	people	who	think	differently
right	around	the	corner.	When	I	meet	someone	who	knows	a	lot
about	something	unusual	(which	includes	practically	everyone,	if
you	dig	deep	enough),	I	try	to	learn	what	they	know	that	other
people	don't.	There	are	almost	always	surprises	here.	It's	a	good
way	to	make	conversation	when	you	meet	strangers,	but	I	don't
do	it	to	make	conversation.	I	really	want	to	know.

You	can	expand	the	source	of	influences	in	time	as	well	as	space,
by	reading	history.	When	I	read	history	I	do	it	not	just	to	learn
what	happened,	but	to	try	to	get	inside	the	heads	of	people	who
lived	in	the	past.	How	did	things	look	to	them?	This	is	hard	to	do,
but	worth	the	effort	for	the	same	reason	it's	worth	travelling	far
to	triangulate	a	point.

#f3n

You	can	also	take	more	explicit	measures	to	prevent	yourself
from	automatically	adopting	conventional	opinions.	The	most
general	is	to	cultivate	an	attitude	of	skepticism.	When	you	hear
someone	say	something,	stop	and	ask	yourself	"Is	that	true?"
Don't	say	it	out	loud.	I'm	not	suggesting	that	you	impose	on
everyone	who	talks	to	you	the	burden	of	proving	what	they	say,
but	rather	that	you	take	upon	yourself	the	burden	of	evaluating
what	they	say.

Treat	it	as	a	puzzle.	You	know	that	some	accepted	ideas	will	later
turn	out	to	be	wrong.	See	if	you	can	guess	which.	The	end	goal	is
not	to	find	flaws	in	the	things	you're	told,	but	to	find	the	new
ideas	that	had	been	concealed	by	the	broken	ones.	So	this	game
should	be	an	exciting	quest	for	novelty,	not	a	boring	protocol	for
intellectual	hygiene.	And	you'll	be	surprised,	when	you	start
asking	"Is	this	true?",	how	often	the	answer	is	not	an	immediate
yes.	If	you	have	any	imagination,	you're	more	likely	to	have	too
many	leads	to	follow	than	too	few.

More	generally	your	goal	should	be	not	to	let	anything	into	your
head	unexamined,	and	things	don't	always	enter	your	head	in	the
form	of	statements.	Some	of	the	most	powerful	influences	are
implicit.	How	do	you	even	notice	these?	By	standing	back	and
watching	how	other	people	get	their	ideas.

When	you	stand	back	at	a	sufficient	distance,	you	can	see	ideas
spreading	through	groups	of	people	like	waves.	The	most	obvious
are	in	fashion:	you	notice	a	few	people	wearing	a	certain	kind	of
shirt,	and	then	more	and	more,	until	half	the	people	around	you
are	wearing	the	same	shirt.	You	may	not	care	much	what	you
wear,	but	there	are	intellectual	fashions	too,	and	you	definitely
don't	want	to	participate	in	those.	Not	just	because	you	want
sovereignty	over	your	own	thoughts,	but	because	unfashionable
ideas	are	disproportionately	likely	to	lead	somewhere	interesting.
The	best	place	to	find	undiscovered	ideas	is	where	no	one	else	is
looking.	[4]

nov.html
#f4n

To	go	beyond	this	general	advice,	we	need	to	look	at	the	internal
structure	of	independent-mindedness	�	at	the	individual	muscles
we	need	to	exercise,	as	it	were.	It	seems	to	me	that	it	has	three
components:	fastidiousness	about	truth,	resistance	to	being	told
what	to	think,	and	curiosity.

Fastidiousness	about	truth	means	more	than	just	not	believing
things	that	are	false.	It	means	being	careful	about	degree	of
belief.	For	most	people,	degree	of	belief	rushes	unexamined
toward	the	extremes:	the	unlikely	becomes	impossible,	and	the
probable	becomes	certain.	[5]	To	the	independent-minded,	this
seems	unpardonably	sloppy.	They're	willing	to	have	anything	in
their	heads,	from	highly	speculative	hypotheses	to	(apparent)
tautologies,	but	on	subjects	they	care	about,	everything	has	to	be
labelled	with	a	carefully	considered	degree	of	belief.	[6]

The	independent-minded	thus	have	a	horror	of	ideologies,	which
require	one	to	accept	a	whole	collection	of	beliefs	at	once,	and	to
treat	them	as	articles	of	faith.	To	an	independent-minded	person
that	would	seem	revolting,	just	as	it	would	seem	to	someone
fastidious	about	food	to	take	a	bite	of	a	submarine	sandwich
filled	with	a	large	variety	of	ingredients	of	indeterminate	age	and
provenance.

Without	this	fastidiousness	about	truth,	you	can't	be	truly
independent-minded.	It's	not	enough	just	to	have	resistance	to
being	told	what	to	think.	Those	kind	of	people	reject	conventional
ideas	only	to	replace	them	with	the	most	random	conspiracy
theories.	And	since	these	conspiracy	theories	have	often	been
manufactured	to	capture	them,	they	end	up	being	less
independent-minded	than	ordinary	people,	because	they're
subject	to	a	much	more	exacting	master	than	mere	convention.
[7]

Can	you	increase	your	fastidiousness	about	truth?	I	would	think
so.	In	my	experience,	merely	thinking	about	something	you're
fastidious	about	causes	that	fastidiousness	to	grow.	If	so,	this	is
one	of	those	rare	virtues	we	can	have	more	of	merely	by	wanting
it.	And	if	it's	like	other	forms	of	fastidiousness,	it	should	also	be
possible	to	encourage	in	children.	I	certainly	got	a	strong	dose	of
it	from	my	father.	[8]

#f5n
#f6n
#f7n
#f8n

The	second	component	of	independent-mindedness,	resistance	to
being	told	what	to	think,	is	the	most	visible	of	the	three.	But	even
this	is	often	misunderstood.	The	big	mistake	people	make	about
it	is	to	think	of	it	as	a	merely	negative	quality.	The	language	we
use	reinforces	that	idea.	You're	unconventional.	You	don't	care
what	other	people	think.	But	it's	not	just	a	kind	of	immunity.	In
the	most	independent-minded	people,	the	desire	not	to	be	told
what	to	think	is	a	positive	force.	It's	not	mere	skepticism,	but	an
active	delight	in	ideas	that	subvert	the	conventional	wisdom,	the
more	counterintuitive	the	better.

Some	of	the	most	novel	ideas	seemed	at	the	time	almost	like
practical	jokes.	Think	how	often	your	reaction	to	a	novel	idea	is
to	laugh.	I	don't	think	it's	because	novel	ideas	are	funny	per	se,
but	because	novelty	and	humor	share	a	certain	kind	of
surprisingness.	But	while	not	identical,	the	two	are	close	enough
that	there	is	a	definite	correlation	between	having	a	sense	of
humor	and	being	independent-minded	�	just	as	there	is	between
being	humorless	and	being	conventional-minded.	[9]

I	don't	think	we	can	significantly	increase	our	resistance	to	being
told	what	to	think.	It	seems	the	most	innate	of	the	three
components	of	independent-mindedness;	people	who	have	this
quality	as	adults	usually	showed	all	too	visible	signs	of	it	as
children.	But	if	we	can't	increase	our	resistance	to	being	told
what	to	think,	we	can	at	least	shore	it	up,	by	surrounding
ourselves	with	other	independent-minded	people.

The	third	component	of	independent-mindedness,	curiosity,	may
be	the	most	interesting.	To	the	extent	that	we	can	give	a	brief
answer	to	the	question	of	where	novel	ideas	come	from,	it's
curiosity.	That's	what	people	are	usually	feeling	before	having
them.

In	my	experience,	independent-mindedness	and	curiosity	predict
one	another	perfectly.	Everyone	I	know	who's	independent-
minded	is	deeply	curious,	and	everyone	I	know	who's
conventional-minded	isn't.	Except,	curiously,	children.	All	small
children	are	curious.	Perhaps	the	reason	is	that	even	the
conventional-minded	have	to	be	curious	in	the	beginning,	in

gba.html
#f9n

order	to	learn	what	the	conventions	are.	Whereas	the
independent-minded	are	the	gluttons	of	curiosity,	who	keep
eating	even	after	they're	full.	[10]

The	three	components	of	independent-mindedness	work	in
concert:	fastidiousness	about	truth	and	resistance	to	being	told
what	to	think	leave	space	in	your	brain,	and	curiosity	finds	new
ideas	to	fill	it.

Interestingly,	the	three	components	can	substitute	for	one
another	in	much	the	same	way	muscles	can.	If	you're	sufficiently
fastidious	about	truth,	you	don't	need	to	be	as	resistant	to	being
told	what	to	think,	because	fastidiousness	alone	will	create
sufficient	gaps	in	your	knowledge.	And	either	one	can
compensate	for	curiosity,	because	if	you	create	enough	space	in
your	brain,	your	discomfort	at	the	resulting	vacuum	will	add
force	to	your	curiosity.	Or	curiosity	can	compensate	for	them:	if
you're	sufficiently	curious,	you	don't	need	to	clear	space	in	your
brain,	because	the	new	ideas	you	discover	will	push	out	the
conventional	ones	you	acquired	by	default.

Because	the	components	of	independent-mindedness	are	so
interchangeable,	you	can	have	them	to	varying	degrees	and	still
get	the	same	result.	So	there	is	not	just	a	single	model	of
independent-mindedness.	Some	independent-minded	people	are
openly	subversive,	and	others	are	quietly	curious.	They	all	know
the	secret	handshake	though.

Is	there	a	way	to	cultivate	curiosity?	To	start	with,	you	want	to
avoid	situations	that	suppress	it.	How	much	does	the	work	you're
currently	doing	engage	your	curiosity?	If	the	answer	is	"not
much,"	maybe	you	should	change	something.

The	most	important	active	step	you	can	take	to	cultivate	your
curiosity	is	probably	to	seek	out	the	topics	that	engage	it.	Few
adults	are	equally	curious	about	everything,	and	it	doesn't	seem
as	if	you	can	choose	which	topics	interest	you.	So	it's	up	to	you	to
find	them.	Or	invent	them,	if	necessary.

Another	way	to	increase	your	curiosity	is	to	indulge	it,	by
investigating	things	you're	interested	in.	Curiosity	is	unlike	most

#f10n
genius.html

other	appetites	in	this	respect:	indulging	it	tends	to	increase
rather	than	to	sate	it.	Questions	lead	to	more	questions.

Curiosity	seems	to	be	more	individual	than	fastidiousness	about
truth	or	resistance	to	being	told	what	to	think.	To	the	degree
people	have	the	latter	two,	they're	usually	pretty	general,
whereas	different	people	can	be	curious	about	very	different
things.	So	perhaps	curiosity	is	the	compass	here.	Perhaps,	if	your
goal	is	to	discover	novel	ideas,	your	motto	should	not	be	"do	what
you	love"	so	much	as	"do	what	you're	curious	about."

Notes

[1]	One	convenient	consequence	of	the	fact	that	no	one	identifies
as	conventional-minded	is	that	you	can	say	what	you	like	about
conventional-minded	people	without	getting	in	too	much	trouble.
When	I	wrote	"The	Four	Quadrants	of	Conformism"	I	expected	a
firestorm	of	rage	from	the	aggressively	conventional-minded,	but
in	fact	it	was	quite	muted.	They	sensed	that	there	was	something
about	the	essay	that	they	disliked	intensely,	but	they	had	a	hard
time	finding	a	specific	passage	to	pin	it	on.

[2]	When	I	ask	myself	what	in	my	life	is	like	high	school,	the
answer	is	Twitter.	It's	not	just	full	of	conventional-minded	people,
as	anything	its	size	will	inevitably	be,	but	subject	to	violent
storms	of	conventional-mindedness	that	remind	me	of
descriptions	of	Jupiter.	But	while	it	probably	is	a	net	loss	to	spend
time	there,	it	has	at	least	made	me	think	more	about	the
distinction	between	independent-	and	conventional-mindedness,
which	I	probably	wouldn't	have	done	otherwise.

[3]	The	decrease	in	independent-mindedness	in	growing	startups
is	still	an	open	problem,	but	there	may	be	solutions.

Founders	can	delay	the	problem	by	making	a	conscious	effort

conformism.html

only	to	hire	independent-minded	people.	Which	of	course	also
has	the	ancillary	benefit	that	they	have	better	ideas.

Another	possible	solution	is	to	create	policies	that	somehow
disrupt	the	force	of	conformism,	much	as	control	rods	slow	chain
reactions,	so	that	the	conventional-minded	aren't	as	dangerous.
The	physical	separation	of	Lockheed's	Skunk	Works	may	have
had	this	as	a	side	benefit.	Recent	examples	suggest	employee
forums	like	Slack	may	not	be	an	unmitigated	good.

The	most	radical	solution	would	be	to	grow	revenues	without
growing	the	company.	You	think	hiring	that	junior	PR	person	will
be	cheap,	compared	to	a	programmer,	but	what	will	be	the	effect
on	the	average	level	of	independent-mindedness	in	your
company?	(The	growth	in	staff	relative	to	faculty	seems	to	have
had	a	similar	effect	on	universities.)	Perhaps	the	rule	about
outsourcing	work	that's	not	your	"core	competency"	should	be
augmented	by	one	about	outsourcing	work	done	by	people	who'd
ruin	your	culture	as	employees.

Some	investment	firms	already	seem	to	be	able	to	grow	revenues
without	growing	the	number	of	employees.	Automation	plus	the
ever	increasing	articulation	of	the	"tech	stack"	suggest	this	may
one	day	be	possible	for	product	companies.

[4]	There	are	intellectual	fashions	in	every	field,	but	their
influence	varies.	One	of	the	reasons	politics,	for	example,	tends
to	be	boring	is	that	it's	so	extremely	subject	to	them.	The
threshold	for	having	opinions	about	politics	is	much	lower	than
the	one	for	having	opinions	about	set	theory.	So	while	there	are
some	ideas	in	politics,	in	practice	they	tend	to	be	swamped	by
waves	of	intellectual	fashion.

[5]	The	conventional-minded	are	often	fooled	by	the	strength	of
their	opinions	into	believing	that	they're	independent-minded.
But	strong	convictions	are	not	a	sign	of	independent-mindedness.
Rather	the	opposite.

[6]	Fastidiousness	about	truth	doesn't	imply	that	an	independent-
minded	person	won't	be	dishonest,	but	that	he	won't	be	deluded.
It's	sort	of	like	the	definition	of	a	gentleman	as	someone	who	is

identity.html

never	unintentionally	rude.

[7]	You	see	this	especially	among	political	extremists.	They	think
themselves	nonconformists,	but	actually	they're	niche
conformists.	Their	opinions	may	be	different	from	the	average
person's,	but	they	are	often	more	influenced	by	their	peers'
opinions	than	the	average	person's	are.

[8]	If	we	broaden	the	concept	of	fastidiousness	about	truth	so
that	it	excludes	pandering,	bogusness,	and	pomposity	as	well	as
falsehood	in	the	strict	sense,	our	model	of	independent-
mindedness	can	expand	further	into	the	arts.

[9]	This	correlation	is	far	from	perfect,	though.	G�del	and	Dirac
don't	seem	to	have	been	very	strong	in	the	humor	department.
But	someone	who	is	both	"neurotypical"	and	humorless	is	very
likely	to	be	conventional-minded.

[10]	Exception:	gossip.	Almost	everyone	is	curious	about	gossip.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Patrick	Collison,
Jessica	Livingston,	Robert	Morris,	Harj	Taggar,	and	Peter	Thiel
for	reading	drafts	of	this.

	

The	Airbnbs
December	2020

To	celebrate	Airbnb's	IPO	and	to	help	future	founders,	I	thought
it	might	be	useful	to	explain	what	was	special	about	Airbnb.

What	was	special	about	the	Airbnbs	was	how	earnest	they	were.
They	did	nothing	half-way,	and	we	could	sense	this	even	in	the
interview.	Sometimes	after	we	interviewed	a	startup	we'd	be
uncertain	what	to	do,	and	have	to	talk	it	over.	Other	times	we'd
just	look	at	one	another	and	smile.	The	Airbnbs'	interview	was
that	kind.	We	didn't	even	like	the	idea	that	much.	Nor	did	users,
at	that	stage;	they	had	no	growth.	But	the	founders	seemed	so
full	of	energy	that	it	was	impossible	not	to	like	them.

That	first	impression	was	not	misleading.	During	the	batch	our
nickname	for	Brian	Chesky	was	The	Tasmanian	Devil,	because
like	the	cartoon	character	he	seemed	a	tornado	of	energy.	All
three	of	them	were	like	that.	No	one	ever	worked	harder	during
YC	than	the	Airbnbs	did.	When	you	talked	to	the	Airbnbs,	they
took	notes.	If	you	suggested	an	idea	to	them	in	office	hours,	the
next	time	you	talked	to	them	they'd	not	only	have	implemented	it,
but	also	implemented	two	new	ideas	they	had	in	the	process.
"They	probably	have	the	best	attitude	of	any	startup	we've
funded"	I	wrote	to	Mike	Arrington	during	the	batch.

They're	still	like	that.	Jessica	and	I	had	dinner	with	Brian	in	the
summer	of	2018,	just	the	three	of	us.	By	this	point	the	company
is	ten	years	old.	He	took	a	page	of	notes	about	ideas	for	new
things	Airbnb	could	do.

What	we	didn't	realize	when	we	first	met	Brian	and	Joe	and	Nate
was	that	Airbnb	was	on	its	last	legs.	After	working	on	the
company	for	a	year	and	getting	no	growth,	they'd	agreed	to	give
it	one	last	shot.	They'd	try	this	Y	Combinator	thing,	and	if	the
company	still	didn't	take	off,	they'd	give	up.

http://www.youtube.com/watch?v=StG2u5qfFRg&t=2m27s

Any	normal	person	would	have	given	up	already.	They'd	been
funding	the	company	with	credit	cards.	They	had	a	binder	full	of
credit	cards	they'd	maxed	out.	Investors	didn't	think	much	of	the
idea.	One	investor	they	met	in	a	cafe	walked	out	in	the	middle	of
meeting	with	them.	They	thought	he	was	going	to	the	bathroom,
but	he	never	came	back.	"He	didn't	even	finish	his	smoothie,"
Brian	said.	And	now,	in	late	2008,	it	was	the	worst	recession	in
decades.	The	stock	market	was	in	free	fall	and	wouldn't	hit
bottom	for	another	four	months.

Why	hadn't	they	given	up?	This	is	a	useful	question	to	ask.
People,	like	matter,	reveal	their	nature	under	extreme	conditions.
One	thing	that's	clear	is	that	they	weren't	doing	this	just	for	the
money.	As	a	money-making	scheme,	this	was	pretty	lousy:	a
year's	work	and	all	they	had	to	show	for	it	was	a	binder	full	of
maxed-out	credit	cards.	So	why	were	they	still	working	on	this
startup?	Because	of	the	experience	they'd	had	as	the	first	hosts.

When	they	first	tried	renting	out	airbeds	on	their	floor	during	a
design	convention,	all	they	were	hoping	for	was	to	make	enough
money	to	pay	their	rent	that	month.	But	something	surprising
happened:	they	enjoyed	having	those	first	three	guests	staying
with	them.	And	the	guests	enjoyed	it	too.	Both	they	and	the
guests	had	done	it	because	they	were	in	a	sense	forced	to,	and
yet	they'd	all	had	a	great	experience.	Clearly	there	was
something	new	here:	for	hosts,	a	new	way	to	make	money	that
had	literally	been	right	under	their	noses,	and	for	guests,	a	new
way	to	travel	that	was	in	many	ways	better	than	hotels.

That	experience	was	why	the	Airbnbs	didn't	give	up.	They	knew
they'd	discovered	something.	They'd	seen	a	glimpse	of	the	future,
and	they	couldn't	let	it	go.

They	knew	that	once	people	tried	staying	in	what	is	now	called
"an	airbnb,"	they	would	also	realize	that	this	was	the	future.	But
only	if	they	tried	it,	and	they	weren't.	That	was	the	problem
during	Y	Combinator:	to	get	growth	started.

Airbnb's	goal	during	YC	was	to	reach	what	we	call	ramen
profitability,	which	means	making	enough	money	that	the

http://paulgraham.com/ramenprofitable.html

company	can	pay	the	founders'	living	expenses,	if	they	live	on
ramen	noodles.	Ramen	profitability	is	not,	obviously,	the	end	goal
of	any	startup,	but	it's	the	most	important	threshold	on	the	way,
because	this	is	the	point	where	you're	airborne.	This	is	the	point
where	you	no	longer	need	investors'	permission	to	continue
existing.	For	the	Airbnbs,	ramen	profitability	was	$4000	a	month:
$3500	for	rent,	and	$500	for	food.	They	taped	this	goal	to	the
mirror	in	the	bathroom	of	their	apartment.

The	way	to	get	growth	started	in	something	like	Airbnb	is	to
focus	on	the	hottest	subset	of	the	market.	If	you	can	get	growth
started	there,	it	will	spread	to	the	rest.	When	I	asked	the	Airbnbs
where	there	was	most	demand,	they	knew	from	searches:	New
York	City.	So	they	focused	on	New	York.	They	went	there	in
person	to	visit	their	hosts	and	help	them	make	their	listings	more
attractive.	A	big	part	of	that	was	better	pictures.	So	Joe	and
Brian	rented	a	professional	camera	and	took	pictures	of	the
hosts'	places	themselves.

This	didn't	just	make	the	listings	better.	It	also	taught	them	about
their	hosts.	When	they	came	back	from	their	first	trip	to	New
York,	I	asked	what	they'd	noticed	about	hosts	that	surprised
them,	and	they	said	the	biggest	surprise	was	how	many	of	the
hosts	were	in	the	same	position	they'd	been	in:	they	needed	this
money	to	pay	their	rent.	This	was,	remember,	the	worst	recession
in	decades,	and	it	had	hit	New	York	first.	It	definitely	added	to
the	Airbnbs'	sense	of	mission	to	feel	that	people	needed	them.

In	late	January	2009,	about	three	weeks	into	Y	Combinator,	their
efforts	started	to	show	results,	and	their	numbers	crept	upward.
But	it	was	hard	to	say	for	sure	whether	it	was	growth	or	just
random	fluctuation.	By	February	it	was	clear	that	it	was	real
growth.	They	made	$460	in	fees	in	the	first	week	of	February,
$897	in	the	second,	and	$1428	in	the	third.	That	was	it:	they
were	airborne.	Brian	sent	me	an	email	on	February	22
announcing	that	they	were	ramen	profitable	and	giving	the	last
three	weeks'	numbers.

"I	assume	you	know	what	you've	now	set	yourself	up	for	next
week,"	I	responded.

http://paulgraham.com/ds.html

Brian's	reply	was	seven	words:	"We	are	not	going	to	slow	down."

	

Billionaires	Build
December	2020

As	I	was	deciding	what	to	write	about	next,	I	was	surprised	to
find	that	two	separate	essays	I'd	been	planning	to	write	were
actually	the	same.

The	first	is	about	how	to	ace	your	Y	Combinator	interview.	There
has	been	so	much	nonsense	written	about	this	topic	that	I've
been	meaning	for	years	to	write	something	telling	founders	the
truth.

The	second	is	about	something	politicians	sometimes	say	�	that
the	only	way	to	become	a	billionaire	is	by	exploiting	people	�
and	why	this	is	mistaken.

Keep	reading,	and	you'll	learn	both	simultaneously.

I	know	the	politicians	are	mistaken	because	it	was	my	job	to
predict	which	people	will	become	billionaires.	I	think	I	can
truthfully	say	that	I	know	as	much	about	how	to	do	this	as
anyone.	If	the	key	to	becoming	a	billionaire	�	the	defining
feature	of	billionaires	�	was	to	exploit	people,	then	I,	as	a
professional	billionaire	scout,	would	surely	realize	this	and	look
for	people	who	would	be	good	at	it,	just	as	an	NFL	scout	looks	for
speed	in	wide	receivers.

But	aptitude	for	exploiting	people	is	not	what	Y	Combinator	looks
for	at	all.	In	fact,	it's	the	opposite	of	what	they	look	for.	I'll	tell
you	what	they	do	look	for,	by	explaining	how	to	convince
Y	Combinator	to	fund	you,	and	you	can	see	for	yourself.

What	YC	looks	for,	above	all,	is	founders	who	understand	some
group	of	users	and	can	make	what	they	want.	This	is	so
important	that	it's	YC's	motto:	"Make	something	people	want."

A	big	company	can	to	some	extent	force	unsuitable	products	on
unwilling	customers,	but	a	startup	doesn't	have	the	power	to	do
that.	A	startup	must	sing	for	its	supper,	by	making	things	that
genuinely	delight	its	customers.	Otherwise	it	will	never	get	off
the	ground.

Here's	where	things	get	difficult,	both	for	you	as	a	founder	and
for	the	YC	partners	trying	to	decide	whether	to	fund	you.	In	a
market	economy,	it's	hard	to	make	something	people	want	that
they	don't	already	have.	That's	the	great	thing	about	market
economies.	If	other	people	both	knew	about	this	need	and	were
able	to	satisfy	it,	they	already	would	be,	and	there	would	be	no
room	for	your	startup.

Which	means	the	conversation	during	your	YC	interview	will
have	to	be	about	something	new:	either	a	new	need,	or	a	new
way	to	satisfy	one.	And	not	just	new,	but	uncertain.	If	it	were
certain	that	the	need	existed	and	that	you	could	satisfy	it,	that
certainty	would	be	reflected	in	large	and	rapidly	growing
revenues,	and	you	wouldn't	be	seeking	seed	funding.

So	the	YC	partners	have	to	guess	both	whether	you've	discovered
a	real	need,	and	whether	you'll	be	able	to	satisfy	it.	That's	what
they	are,	at	least	in	this	part	of	their	job:	professional	guessers.
They	have	1001	heuristics	for	doing	this,	and	I'm	not	going	to	tell
you	all	of	them,	but	I'm	happy	to	tell	you	the	most	important
ones,	because	these	can't	be	faked;	the	only	way	to	"hack"	them
would	be	to	do	what	you	should	be	doing	anyway	as	a	founder.

The	first	thing	the	partners	will	try	to	figure	out,	usually,	is
whether	what	you're	making	will	ever	be	something	a	lot	of
people	want.	It	doesn't	have	to	be	something	a	lot	of	people	want
now.	The	product	and	the	market	will	both	evolve,	and	will
influence	each	other's	evolution.	But	in	the	end	there	has	to	be
something	with	a	huge	market.	That's	what	the	partners	will	be
trying	to	figure	out:	is	there	a	path	to	a	huge	market?	[1]

Sometimes	it's	obvious	there	will	be	a	huge	market.	If	Boom
manages	to	ship	an	airliner	at	all,	international	airlines	will	have
to	buy	it.	But	usually	it's	not	obvious.	Usually	the	path	to	a	huge
market	is	by	growing	a	small	market.	This	idea	is	important

#f1n
https://boomsupersonic.com/

enough	that	it's	worth	coining	a	phrase	for,	so	let's	call	one	of
these	small	but	growable	markets	a	"larval	market."

The	perfect	example	of	a	larval	market	might	be	Apple's	market
when	they	were	founded	in	1976.	In	1976,	not	many	people
wanted	their	own	computer.	But	more	and	more	started	to	want
one,	till	now	every	10	year	old	on	the	planet	wants	a	computer
(but	calls	it	a	"phone").

The	ideal	combination	is	the	group	of	founders	who	are	"living	in
the	future"	in	the	sense	of	being	at	the	leading	edge	of	some	kind
of	change,	and	who	are	building	something	they	themselves
want.	Most	super-successful	startups	are	of	this	type.	Steve
Wozniak	wanted	a	computer.	Mark	Zuckerberg	wanted	to	engage
online	with	his	college	friends.	Larry	and	Sergey	wanted	to	find
things	on	the	web.	All	these	founders	were	building	things	they
and	their	peers	wanted,	and	the	fact	that	they	were	at	the
leading	edge	of	change	meant	that	more	people	would	want
these	things	in	the	future.

But	although	the	ideal	larval	market	is	oneself	and	one's	peers,
that's	not	the	only	kind.	A	larval	market	might	also	be	regional,
for	example.	You	build	something	to	serve	one	location,	and	then
expand	to	others.

The	crucial	feature	of	the	initial	market	is	that	it	exist.	That	may
seem	like	an	obvious	point,	but	the	lack	of	it	is	the	biggest	flaw	in
most	startup	ideas.	There	have	to	be	some	people	who	want	what
you're	building	right	now,	and	want	it	so	urgently	that	they're
willing	to	use	it,	bugs	and	all,	even	though	you're	a	small
company	they've	never	heard	of.	There	don't	have	to	be	many,
but	there	have	to	be	some.	As	long	as	you	have	some	users,	there
are	straightforward	ways	to	get	more:	build	new	features	they
want,	seek	out	more	people	like	them,	get	them	to	refer	you	to
their	friends,	and	so	on.	But	these	techniques	all	require	some
initial	seed	group	of	users.

So	this	is	one	thing	the	YC	partners	will	almost	certainly	dig	into
during	your	interview.	Who	are	your	first	users	going	to	be,	and
how	do	you	know	they	want	this?	If	I	had	to	decide	whether	to
fund	startups	based	on	a	single	question,	it	would	be	"How	do

startupideas.html

you	know	people	want	this?"

The	most	convincing	answer	is	"Because	we	and	our	friends	want
it."	It's	even	better	when	this	is	followed	by	the	news	that	you've
already	built	a	prototype,	and	even	though	it's	very	crude,	your
friends	are	using	it,	and	it's	spreading	by	word	of	mouth.	If	you
can	say	that	and	you're	not	lying,	the	partners	will	switch	from
default	no	to	default	yes.	Meaning	you're	in	unless	there's	some
other	disqualifying	flaw.

That	is	a	hard	standard	to	meet,	though.	Airbnb	didn't	meet	it.
They	had	the	first	part.	They	had	made	something	they
themselves	wanted.	But	it	wasn't	spreading.	So	don't	feel	bad	if
you	don't	hit	this	gold	standard	of	convincingness.	If	Airbnb
didn't	hit	it,	it	must	be	too	high.

In	practice,	the	YC	partners	will	be	satisfied	if	they	feel	that	you
have	a	deep	understanding	of	your	users'	needs.	And	the	Airbnbs
did	have	that.	They	were	able	to	tell	us	all	about	what	motivated
hosts	and	guests.	They	knew	from	first-hand	experience,	because
they'd	been	the	first	hosts.	We	couldn't	ask	them	a	question	they
didn't	know	the	answer	to.	We	ourselves	were	not	very	excited
about	the	idea	as	users,	but	we	knew	this	didn't	prove	anything,
because	there	were	lots	of	successful	startups	we	hadn't	been
excited	about	as	users.	We	were	able	to	say	to	ourselves	"They
seem	to	know	what	they're	talking	about.	Maybe	they're	onto
something.	It's	not	growing	yet,	but	maybe	they	can	figure	out
how	to	make	it	grow	during	YC."	Which	they	did,	about	three
weeks	into	the	batch.

The	best	thing	you	can	do	in	a	YC	interview	is	to	teach	the
partners	about	your	users.	So	if	you	want	to	prepare	for	your
interview,	one	of	the	best	ways	to	do	it	is	to	go	talk	to	your	users
and	find	out	exactly	what	they're	thinking.	Which	is	what	you
should	be	doing	anyway.

This	may	sound	strangely	credulous,	but	the	YC	partners	want	to
rely	on	the	founders	to	tell	them	about	the	market.	Think	about
how	VCs	typically	judge	the	potential	market	for	an	idea.	They're
not	ordinarily	domain	experts	themselves,	so	they	forward	the
idea	to	someone	who	is,	and	ask	for	their	opinion.	YC	doesn't

have	time	to	do	this,	but	if	the	YC	partners	can	convince
themselves	that	the	founders	both	(a)	know	what	they're	talking
about	and	(b)	aren't	lying,	they	don't	need	outside	domain
experts.	They	can	use	the	founders	themselves	as	domain	experts
when	evaluating	their	own	idea.

This	is	why	YC	interviews	aren't	pitches.	To	give	as	many
founders	as	possible	a	chance	to	get	funded,	we	made	interviews
as	short	as	we	could:	10	minutes.	That	is	not	enough	time	for	the
partners	to	figure	out,	through	the	indirect	evidence	in	a	pitch,
whether	you	know	what	you're	talking	about	and	aren't	lying.
They	need	to	dig	in	and	ask	you	questions.	There's	not	enough
time	for	sequential	access.	They	need	random	access.	[2]

The	worst	advice	I	ever	heard	about	how	to	succeed	in	a	YC
interview	is	that	you	should	take	control	of	the	interview	and
make	sure	to	deliver	the	message	you	want	to.	In	other	words,
turn	the	interview	into	a	pitch.	⟨elaborate	expletive⟩.	It	is	so
annoying	when	people	try	to	do	that.	You	ask	them	a	question,
and	instead	of	answering	it,	they	deliver	some	obviously
prefabricated	blob	of	pitch.	It	eats	up	10	minutes	really	fast.

There	is	no	one	who	can	give	you	accurate	advice	about	what	to
do	in	a	YC	interview	except	a	current	or	former	YC	partner.
People	who've	merely	been	interviewed,	even	successfully,	have
no	idea	of	this,	but	interviews	take	all	sorts	of	different	forms
depending	on	what	the	partners	want	to	know	about	most.
Sometimes	they're	all	about	the	founders,	other	times	they're	all
about	the	idea.	Sometimes	some	very	narrow	aspect	of	the	idea.
Founders	sometimes	walk	away	from	interviews	complaining	that
they	didn't	get	to	explain	their	idea	completely.	True,	but	they
explained	enough.

Since	a	YC	interview	consists	of	questions,	the	way	to	do	it	well	is
to	answer	them	well.	Part	of	that	is	answering	them	candidly.	The
partners	don't	expect	you	to	know	everything.	But	if	you	don't
know	the	answer	to	a	question,	don't	try	to	bullshit	your	way	out
of	it.	The	partners,	like	most	experienced	investors,	are
professional	bullshit	detectors,	and	you	are	(hopefully)	an
amateur	bullshitter.	And	if	you	try	to	bullshit	them	and	fail,	they
may	not	even	tell	you	that	you	failed.	So	it's	better	to	be	honest

#f2n

than	to	try	to	sell	them.	If	you	don't	know	the	answer	to	a
question,	say	you	don't,	and	tell	them	how	you'd	go	about	finding
it,	or	tell	them	the	answer	to	some	related	question.

If	you're	asked,	for	example,	what	could	go	wrong,	the	worst
possible	answer	is	"nothing."	Instead	of	convincing	them	that
your	idea	is	bullet-proof,	this	will	convince	them	that	you're	a	fool
or	a	liar.	Far	better	to	go	into	gruesome	detail.	That's	what
experts	do	when	you	ask	what	could	go	wrong.	The	partners
know	that	your	idea	is	risky.	That's	what	a	good	bet	looks	like	at
this	stage:	a	tiny	probability	of	a	huge	outcome.

Ditto	if	they	ask	about	competitors.	Competitors	are	rarely	what
kills	startups.	Poor	execution	does.	But	you	should	know	who
your	competitors	are,	and	tell	the	YC	partners	candidly	what	your
relative	strengths	and	weaknesses	are.	Because	the	YC	partners
know	that	competitors	don't	kill	startups,	they	won't	hold
competitors	against	you	too	much.	They	will,	however,	hold	it
against	you	if	you	seem	either	to	be	unaware	of	competitors,	or
to	be	minimizing	the	threat	they	pose.	They	may	not	be	sure
whether	you're	clueless	or	lying,	but	they	don't	need	to	be.

The	partners	don't	expect	your	idea	to	be	perfect.	This	is	seed
investing.	At	this	stage,	all	they	can	expect	are	promising
hypotheses.	But	they	do	expect	you	to	be	thoughtful	and	honest.
So	if	trying	to	make	your	idea	seem	perfect	causes	you	to	come
off	as	glib	or	clueless,	you've	sacrificed	something	you	needed	for
something	you	didn't.

If	the	partners	are	sufficiently	convinced	that	there's	a	path	to	a
big	market,	the	next	question	is	whether	you'll	be	able	to	find	it.
That	in	turn	depends	on	three	things:	the	general	qualities	of	the
founders,	their	specific	expertise	in	this	domain,	and	the
relationship	between	them.	How	determined	are	the	founders?
Are	they	good	at	building	things?	Are	they	resilient	enough	to
keep	going	when	things	go	wrong?	How	strong	is	their
friendship?

Though	the	Airbnbs	only	did	ok	in	the	idea	department,	they	did
spectacularly	well	in	this	department.	The	story	of	how	they'd
funded	themselves	by	making	Obama-	and	McCain-themed

breakfast	cereal	was	the	single	most	important	factor	in	our
decision	to	fund	them.	They	didn't	realize	it	at	the	time,	but	what
seemed	to	them	an	irrelevant	story	was	in	fact	fabulously	good
evidence	of	their	qualities	as	founders.	It	showed	they	were
resourceful	and	determined,	and	could	work	together.

It	wasn't	just	the	cereal	story	that	showed	that,	though.	The
whole	interview	showed	that	they	cared.	They	weren't	doing	this
just	for	the	money,	or	because	startups	were	cool.	The	reason
they	were	working	so	hard	on	this	company	was	because	it	was
their	project.	They	had	discovered	an	interesting	new	idea,	and
they	just	couldn't	let	it	go.

Mundane	as	it	sounds,	that's	the	most	powerful	motivator	of	all,
not	just	in	startups,	but	in	most	ambitious	undertakings:	to	be
genuinely	interested	in	what	you're	building.	This	is	what	really
drives	billionaires,	or	at	least	the	ones	who	become	billionaires
from	starting	companies.	The	company	is	their	project.

One	thing	few	people	realize	about	billionaires	is	that	all	of	them
could	have	stopped	sooner.	They	could	have	gotten	acquired,	or
found	someone	else	to	run	the	company.	Many	founders	do.	The
ones	who	become	really	rich	are	the	ones	who	keep	working.	And
what	makes	them	keep	working	is	not	just	money.	What	keeps
them	working	is	the	same	thing	that	keeps	anyone	else	working
when	they	could	stop	if	they	wanted	to:	that	there's	nothing	else
they'd	rather	do.

That,	not	exploiting	people,	is	the	defining	quality	of	people	who
become	billionaires	from	starting	companies.	So	that's	what	YC
looks	for	in	founders:	authenticity.	People's	motives	for	starting
startups	are	usually	mixed.	They're	usually	doing	it	from	some
combination	of	the	desire	to	make	money,	the	desire	to	seem
cool,	genuine	interest	in	the	problem,	and	unwillingness	to	work
for	someone	else.	The	last	two	are	more	powerful	motivators
than	the	first	two.	It's	ok	for	founders	to	want	to	make	money	or
to	seem	cool.	Most	do.	But	if	the	founders	seem	like	they're	doing
it	just	to	make	money	or	just	to	seem	cool,	they're	not	likely	to
succeed	on	a	big	scale.	The	founders	who	are	doing	it	for	the
money	will	take	the	first	sufficiently	large	acquisition	offer,	and
the	ones	who	are	doing	it	to	seem	cool	will	rapidly	discover	that

genius.html

there	are	much	less	painful	ways	of	seeming	cool.	[3]

Y	Combinator	certainly	sees	founders	whose	m.o.	is	to	exploit
people.	YC	is	a	magnet	for	them,	because	they	want	the	YC
brand.	But	when	the	YC	partners	detect	someone	like	that,	they
reject	them.	If	bad	people	made	good	founders,	the	YC	partners
would	face	a	moral	dilemma.	Fortunately	they	don't,	because	bad
people	make	bad	founders.	This	exploitative	type	of	founder	is
not	going	to	succeed	on	a	large	scale,	and	in	fact	probably	won't
even	succeed	on	a	small	one,	because	they're	always	going	to	be
taking	shortcuts.	They	see	YC	itself	as	a	shortcut.

Their	exploitation	usually	begins	with	their	own	cofounders,
which	is	disastrous,	since	the	cofounders'	relationship	is	the
foundation	of	the	company.	Then	it	moves	on	to	the	users,	which
is	also	disastrous,	because	the	sort	of	early	adopters	a	successful
startup	wants	as	its	initial	users	are	the	hardest	to	fool.	The	best
this	kind	of	founder	can	hope	for	is	to	keep	the	edifice	of
deception	tottering	along	until	some	acquirer	can	be	tricked	into
buying	it.	But	that	kind	of	acquisition	is	never	very	big.	[4]

If	professional	billionaire	scouts	know	that	exploiting	people	is
not	the	skill	to	look	for,	why	do	some	politicians	think	this	is	the
defining	quality	of	billionaires?

I	think	they	start	from	the	feeling	that	it's	wrong	that	one	person
could	have	so	much	more	money	than	another.	It's
understandable	where	that	feeling	comes	from.	It's	in	our	DNA,
and	even	in	the	DNA	of	other	species.

If	they	limited	themselves	to	saying	that	it	made	them	feel	bad
when	one	person	had	so	much	more	money	than	other	people,
who	would	disagree?	It	makes	me	feel	bad	too,	and	I	think	people
who	make	a	lot	of	money	have	a	moral	obligation	to	use	it	for	the
common	good.	The	mistake	they	make	is	to	jump	from	feeling
bad	that	some	people	are	much	richer	than	others	to	the
conclusion	that	there's	no	legitimate	way	to	make	a	very	large
amount	of	money.	Now	we're	getting	into	statements	that	are	not
only	falsifiable,	but	false.

There	are	certainly	some	people	who	become	rich	by	doing	bad

#f3n
#f4n

things.	But	there	are	also	plenty	of	people	who	behave	badly	and
don't	make	that	much	from	it.	There	is	no	correlation	�	in	fact,
probably	an	inverse	correlation	�	between	how	badly	you
behave	and	how	much	money	you	make.

The	greatest	danger	of	this	nonsense	may	not	even	be	that	it
sends	policy	astray,	but	that	it	misleads	ambitious	people.	Can
you	imagine	a	better	way	to	destroy	social	mobility	than	by
telling	poor	kids	that	the	way	to	get	rich	is	by	exploiting	people,
while	the	rich	kids	know,	from	having	watched	the	preceding
generation	do	it,	how	it's	really	done?

I'll	tell	you	how	it's	really	done,	so	you	can	at	least	tell	your	own
kids	the	truth.	It's	all	about	users.	The	most	reliable	way	to
become	a	billionaire	is	to	start	a	company	that	grows	fast,	and
the	way	to	grow	fast	is	to	make	what	users	want.	Newly	started
startups	have	no	choice	but	to	delight	users,	or	they'll	never	even
get	rolling.	But	this	never	stops	being	the	lodestar,	and	bigger
companies	take	their	eye	off	it	at	their	peril.	Stop	delighting
users,	and	eventually	someone	else	will.

Users	are	what	the	partners	want	to	know	about	in	YC
interviews,	and	what	I	want	to	know	about	when	I	talk	to
founders	that	we	funded	ten	years	ago	and	who	are	billionaires
now.	What	do	users	want?	What	new	things	could	you	build	for
them?	Founders	who've	become	billionaires	are	always	eager	to
talk	about	that	topic.	That's	how	they	became	billionaires.

Notes

[1]	The	YC	partners	have	so	much	practice	doing	this	that	they
sometimes	see	paths	that	the	founders	themselves	haven't	seen
yet.	The	partners	don't	try	to	seem	skeptical,	as	buyers	in

growth.html

transactions	often	do	to	increase	their	leverage.	Although	the
founders	feel	their	job	is	to	convince	the	partners	of	the	potential
of	their	idea,	these	roles	are	not	infrequently	reversed,	and	the
founders	leave	the	interview	feeling	their	idea	has	more	potential
than	they	realized.

[2]	In	practice,	7	minutes	would	be	enough.	You	rarely	change
your	mind	at	minute	8.	But	10	minutes	is	socially	convenient.

[3]	I	myself	took	the	first	sufficiently	large	acquisition	offer	in	my
first	startup,	so	I	don't	blame	founders	for	doing	this.	There's
nothing	wrong	with	starting	a	startup	to	make	money.	You	need
to	make	money	somehow,	and	for	some	people	startups	are	the
most	efficient	way	to	do	it.	I'm	just	saying	that	these	are	not	the
startups	that	get	really	big.

[4]	Not	these	days,	anyway.	There	were	some	big	ones	during	the
Internet	Bubble,	and	indeed	some	big	IPOs.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Robert	Morris,
Geoff	Ralston,	and	Harj	Taggar	for	reading	drafts	of	this.

	

Earnestness
December	2020

Jessica	and	I	have	certain	words	that	have	special	significance
when	we're	talking	about	startups.	The	highest	compliment	we
can	pay	to	founders	is	to	describe	them	as	"earnest."	This	is	not
by	itself	a	guarantee	of	success.	You	could	be	earnest	but
incapable.	But	when	founders	are	both	formidable	(another	of
our	words)	and	earnest,	they're	as	close	to	unstoppable	as	you
get.

Earnestness	sounds	like	a	boring,	even	Victorian	virtue.	It	seems
a	bit	of	an	anachronism	that	people	in	Silicon	Valley	would	care
about	it.	Why	does	this	matter	so	much?

When	you	call	someone	earnest,	you're	making	a	statement	about
their	motives.	It	means	both	that	they're	doing	something	for	the
right	reasons,	and	that	they're	trying	as	hard	as	they	can.	If	we
imagine	motives	as	vectors,	it	means	both	the	direction	and	the
magnitude	are	right.	Though	these	are	of	course	related:	when
people	are	doing	something	for	the	right	reasons,	they	try	harder.
[1]

The	reason	motives	matter	so	much	in	Silicon	Valley	is	that	so
many	people	there	have	the	wrong	ones.	Starting	a	successful
startup	makes	you	rich	and	famous.	So	a	lot	of	the	people	trying
to	start	them	are	doing	it	for	those	reasons.	Instead	of	what?
Instead	of	interest	in	the	problem	for	its	own	sake.	That	is	the
root	of	earnestness.	[2]

It's	also	the	hallmark	of	a	nerd.	Indeed,	when	people	describe
themselves	as	"x	nerds,"	what	they	mean	is	that	they're
interested	in	x	for	its	own	sake,	and	not	because	it's	cool	to	be
interested	in	x,	or	because	of	what	they	can	get	from	it.	They're
saying	they	care	so	much	about	x	that	they're	willing	to	sacrifice
seeming	cool	for	its	sake.

#f1n
#f2n

A	genuine	interest	in	something	is	a	very	powerful	motivator	�
for	some	people,	the	most	powerful	motivator	of	all.	[3]	Which	is
why	it's	what	Jessica	and	I	look	for	in	founders.	But	as	well	as
being	a	source	of	strength,	it's	also	a	source	of	vulnerability.
Caring	constrains	you.	The	earnest	can't	easily	reply	in	kind	to
mocking	banter,	or	put	on	a	cool	facade	of	nihil	admirari.	They
care	too	much.	They	are	doomed	to	be	the	straight	man.	That's	a
real	disadvantage	in	your	teenage	years,	when	mocking	banter
and	nihil	admirari	often	have	the	upper	hand.	But	it	becomes	an
advantage	later.

It's	a	commonplace	now	that	the	kids	who	were	nerds	in	high
school	become	the	cool	kids'	bosses	later	on.	But	people
misunderstand	why	this	happens.	It's	not	just	because	the	nerds
are	smarter,	but	also	because	they're	more	earnest.	When	the
problems	get	harder	than	the	fake	ones	you're	given	in	high
school,	caring	about	them	starts	to	matter.

Does	it	always	matter?	Do	the	earnest	always	win?	Not	always.	It
probably	doesn't	matter	much	in	politics,	or	in	crime,	or	in
certain	types	of	business	that	are	similar	to	crime,	like	gambling,
personal	injury	law,	patent	trolling,	and	so	on.	Nor	does	it	matter
in	academic	fields	at	the	more	bogus	end	of	the	spectrum.	And
though	I	don't	know	enough	to	say	for	sure,	it	may	not	matter	in
some	kinds	of	humor:	it	may	be	possible	to	be	completely	cynical
and	still	be	very	funny.	[4]

Looking	at	the	list	of	fields	I	mentioned,	there's	an	obvious
pattern.	Except	possibly	for	humor,	these	are	all	types	of	work	I'd
avoid	like	the	plague.	So	that	could	be	a	useful	heuristic	for
deciding	which	fields	to	work	in:	how	much	does	earnestness
matter?	Which	can	in	turn	presumably	be	inferred	from	the
prevalence	of	nerds	at	the	top.

Along	with	"nerd,"	another	word	that	tends	to	be	associated	with
earnestness	is	"naive."	The	earnest	often	seem	naive.	It's	not	just
that	they	don't	have	the	motives	other	people	have.	They	often
don't	fully	grasp	that	such	motives	exist.	Or	they	may	know
intellectually	that	they	do,	but	because	they	don't	feel	them,	they
forget	about	them.	[5]

genius.html
#f3n
nerds.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=hermeneutic+dialectics+hegemonic+phenomenology+intersectionality
#f4n
#f5n

It	works	to	be	slightly	naive	not	just	about	motives	but	also,
believe	it	or	not,	about	the	problems	you're	working	on.	Naive
optimism	can	compensate	for	the	bit	rot	that	rapid	change
causes	in	established	beliefs.	You	plunge	into	some	problem
saying	"How	hard	can	it	be?",	and	then	after	solving	it	you	learn
that	it	was	till	recently	insoluble.

Naivete	is	an	obstacle	for	anyone	who	wants	to	seem
sophisticated,	and	this	is	one	reason	would-be	intellectuals	find	it
so	difficult	to	understand	Silicon	Valley.	It	hasn't	been	safe	for
such	people	to	use	the	word	"earnest"	outside	scare	quotes	since
Oscar	Wilde	wrote	"The	Importance	of	Being	Earnest"	in	1895.
And	yet	when	you	zoom	in	on	Silicon	Valley,	right	into	Jessica
Livingston's	brain,	that's	what	her	x-ray	vision	is	seeking	out	in
founders.	Earnestness!	Who'd	have	guessed?	Reporters	literally
can't	believe	it	when	founders	making	piles	of	money	say	that
they	started	their	companies	to	make	the	world	better.	The
situation	seems	made	for	mockery.	How	can	these	founders	be	so
naive	as	not	to	realize	how	implausible	they	sound?

Though	those	asking	this	question	don't	realize	it,	that's	not	a
rhetorical	question.

A	lot	of	founders	are	faking	it,	of	course,	particularly	the	smaller
fry,	and	the	soon	to	be	smaller	fry.	But	not	all	of	them.	There	are
a	significant	number	of	founders	who	really	are	interested	in	the
problem	they're	solving	mainly	for	its	own	sake.

Why	shouldn't	there	be?	We	have	no	difficulty	believing	that
people	would	be	interested	in	history	or	math	or	even	old	bus
tickets	for	their	own	sake.	Why	can't	there	be	people	interested
in	self-driving	cars	or	social	networks	for	their	own	sake?	When
you	look	at	the	question	from	this	side,	it	seems	obvious	there
would	be.	And	isn't	it	likely	that	having	a	deep	interest	in
something	would	be	a	source	of	great	energy	and	resilience?	It	is
in	every	other	field.

The	question	really	is	why	we	have	a	blind	spot	about	business.
And	the	answer	to	that	is	obvious	if	you	know	enough	history.	For
most	of	history,	making	large	amounts	of	money	has	not	been

ecw.html
jessica.html

very	intellectually	interesting.	In	preindustrial	times	it	was	never
far	from	robbery,	and	some	areas	of	business	still	retain	that
character,	except	using	lawyers	instead	of	soldiers.

But	there	are	other	areas	of	business	where	the	work	is
genuinely	interesting.	Henry	Ford	got	to	spend	much	of	his	time
working	on	interesting	technical	problems,	and	for	the	last
several	decades	the	trend	in	that	direction	has	been	accelerating.
It's	much	easier	now	to	make	a	lot	of	money	by	working	on
something	you're	interested	in	than	it	was	50	years	ago.	And
that,	rather	than	how	fast	they	grow,	may	be	the	most	important
change	that	startups	represent.	Though	indeed,	the	fact	that	the
work	is	genuinely	interesting	is	a	big	part	of	why	it	gets	done	so
fast.	[6]

Can	you	imagine	a	more	important	change	than	one	in	the
relationship	between	intellectual	curiosity	and	money?	These	are
two	of	the	most	powerful	forces	in	the	world,	and	in	my	lifetime
they've	become	significantly	more	aligned.	How	could	you	not	be
fascinated	to	watch	something	like	this	happening	in	real	time?

I	meant	this	essay	to	be	about	earnestness	generally,	and	now
I've	gone	and	talked	about	startups	again.	But	I	suppose	at	least
it	serves	as	an	example	of	an	x	nerd	in	the	wild.

Notes

[1]	It's	interesting	how	many	different	ways	there	are	not	to	be
earnest:	to	be	cleverly	cynical,	to	be	superficially	brilliant,	to	be
conspicuously	virtuous,	to	be	cool,	to	be	sophisticated,	to	be
orthodox,	to	be	a	snob,	to	bully,	to	pander,	to	be	on	the	make.
This	pattern	suggests	that	earnestness	is	not	one	end	of	a
continuum,	but	a	target	one	can	fall	short	of	in	multiple

re.html
#f6n

dimensions.

Another	thing	I	notice	about	this	list	is	that	it	sounds	like	a	list	of
the	ways	people	behave	on	Twitter.	Whatever	else	social	media
is,	it's	a	vivid	catalogue	of	ways	not	to	be	earnest.

[2]	People's	motives	are	as	mixed	in	Silicon	Valley	as	anywhere
else.	Even	the	founders	motivated	mostly	by	money	tend	to	be	at
least	somewhat	interested	in	the	problem	they're	solving,	and
even	the	founders	most	interested	in	the	problem	they're	solving
also	like	the	idea	of	getting	rich.	But	there's	great	variation	in
the	relative	proportions	of	different	founders'	motivations.

And	when	I	talk	about	"wrong"	motives,	I	don't	mean	morally
wrong.	There's	nothing	morally	wrong	with	starting	a	startup	to
make	money.	I	just	mean	that	those	startups	don't	do	as	well.

[3]	The	most	powerful	motivator	for	most	people	is	probably
family.	But	there	are	some	for	whom	intellectual	curiosity	comes
first.	In	his	(wonderful)	autobiography,	Paul	Halmos	says
explicitly	that	for	a	mathematician,	math	must	come	before
anything	else,	including	family.	Which	at	least	implies	that	it	did
for	him.

[4]	Interestingly,	just	as	the	word	"nerd"	implies	earnestness
even	when	used	as	a	metaphor,	the	word	"politics"	implies	the
opposite.	It's	not	only	in	actual	politics	that	earnestness	seems	to
be	a	handicap,	but	also	in	office	politics	and	academic	politics.

[5]	It's	a	bigger	social	error	to	seem	naive	in	most	European
countries	than	it	is	in	America,	and	this	may	be	one	of	subtler
reasons	startups	are	less	common	there.	Founder	culture	is
completely	at	odds	with	sophisticated	cynicism.

The	most	earnest	part	of	Europe	is	Scandinavia,	and	not
surprisingly	this	is	also	the	region	with	the	highest	number	of
successful	startups	per	capita.

[6]	Much	of	business	is	schleps,	and	probably	always	will	be.	But
even	being	a	professor	is	largely	schleps.	It	would	be	interesting
to	collect	statistics	about	the	schlep	ratios	of	different	jobs,	but	I

suspect	they'd	rarely	be	less	than	30%.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	Suhail	Doshi,
Jessica	Livingston,	Mattias	Ljungman,	Harj	Taggar,	and	Kyle	Vogt
for	reading	drafts	of	this.

	

What	I	Worked	On
February	2021

Before	college	the	two	main	things	I	worked	on,	outside	of
school,	were	writing	and	programming.	I	didn't	write	essays.	I
wrote	what	beginning	writers	were	supposed	to	write	then,	and
probably	still	are:	short	stories.	My	stories	were	awful.	They	had
hardly	any	plot,	just	characters	with	strong	feelings,	which	I
imagined	made	them	deep.

The	first	programs	I	tried	writing	were	on	the	IBM	1401	that	our
school	district	used	for	what	was	then	called	"data	processing."
This	was	in	9th	grade,	so	I	was	13	or	14.	The	school	district's
1401	happened	to	be	in	the	basement	of	our	junior	high	school,
and	my	friend	Rich	Draves	and	I	got	permission	to	use	it.	It	was
like	a	mini	Bond	villain's	lair	down	there,	with	all	these	alien-
looking	machines	�	CPU,	disk	drives,	printer,	card	reader	�
sitting	up	on	a	raised	floor	under	bright	fluorescent	lights.

The	language	we	used	was	an	early	version	of	Fortran.	You	had
to	type	programs	on	punch	cards,	then	stack	them	in	the	card
reader	and	press	a	button	to	load	the	program	into	memory	and
run	it.	The	result	would	ordinarily	be	to	print	something	on	the
spectacularly	loud	printer.

I	was	puzzled	by	the	1401.	I	couldn't	figure	out	what	to	do	with
it.	And	in	retrospect	there's	not	much	I	could	have	done	with	it.
The	only	form	of	input	to	programs	was	data	stored	on	punched
cards,	and	I	didn't	have	any	data	stored	on	punched	cards.	The
only	other	option	was	to	do	things	that	didn't	rely	on	any	input,
like	calculate	approximations	of	pi,	but	I	didn't	know	enough
math	to	do	anything	interesting	of	that	type.	So	I'm	not	surprised
I	can't	remember	any	programs	I	wrote,	because	they	can't	have
done	much.	My	clearest	memory	is	of	the	moment	I	learned	it
was	possible	for	programs	not	to	terminate,	when	one	of	mine
didn't.	On	a	machine	without	time-sharing,	this	was	a	social	as

well	as	a	technical	error,	as	the	data	center	manager's	expression
made	clear.

With	microcomputers,	everything	changed.	Now	you	could	have
a	computer	sitting	right	in	front	of	you,	on	a	desk,	that	could
respond	to	your	keystrokes	as	it	was	running	instead	of	just
churning	through	a	stack	of	punch	cards	and	then	stopping.	[1]

The	first	of	my	friends	to	get	a	microcomputer	built	it	himself.	It
was	sold	as	a	kit	by	Heathkit.	I	remember	vividly	how	impressed
and	envious	I	felt	watching	him	sitting	in	front	of	it,	typing
programs	right	into	the	computer.

Computers	were	expensive	in	those	days	and	it	took	me	years	of
nagging	before	I	convinced	my	father	to	buy	one,	a	TRS-80,	in
about	1980.	The	gold	standard	then	was	the	Apple	II,	but	a	TRS-
80	was	good	enough.	This	was	when	I	really	started
programming.	I	wrote	simple	games,	a	program	to	predict	how
high	my	model	rockets	would	fly,	and	a	word	processor	that	my
father	used	to	write	at	least	one	book.	There	was	only	room	in
memory	for	about	2	pages	of	text,	so	he'd	write	2	pages	at	a	time
and	then	print	them	out,	but	it	was	a	lot	better	than	a	typewriter.

Though	I	liked	programming,	I	didn't	plan	to	study	it	in	college.
In	college	I	was	going	to	study	philosophy,	which	sounded	much
more	powerful.	It	seemed,	to	my	naive	high	school	self,	to	be	the
study	of	the	ultimate	truths,	compared	to	which	the	things
studied	in	other	fields	would	be	mere	domain	knowledge.	What	I
discovered	when	I	got	to	college	was	that	the	other	fields	took	up
so	much	of	the	space	of	ideas	that	there	wasn't	much	left	for
these	supposed	ultimate	truths.	All	that	seemed	left	for
philosophy	were	edge	cases	that	people	in	other	fields	felt	could
safely	be	ignored.

I	couldn't	have	put	this	into	words	when	I	was	18.	All	I	knew	at
the	time	was	that	I	kept	taking	philosophy	courses	and	they	kept
being	boring.	So	I	decided	to	switch	to	AI.

AI	was	in	the	air	in	the	mid	1980s,	but	there	were	two	things
especially	that	made	me	want	to	work	on	it:	a	novel	by	Heinlein
called	The	Moon	is	a	Harsh	Mistress,	which	featured	an

#f1n

intelligent	computer	called	Mike,	and	a	PBS	documentary	that
showed	Terry	Winograd	using	SHRDLU.	I	haven't	tried	rereading
The	Moon	is	a	Harsh	Mistress,	so	I	don't	know	how	well	it	has
aged,	but	when	I	read	it	I	was	drawn	entirely	into	its	world.	It
seemed	only	a	matter	of	time	before	we'd	have	Mike,	and	when	I
saw	Winograd	using	SHRDLU,	it	seemed	like	that	time	would	be
a	few	years	at	most.	All	you	had	to	do	was	teach	SHRDLU	more
words.

There	weren't	any	classes	in	AI	at	Cornell	then,	not	even
graduate	classes,	so	I	started	trying	to	teach	myself.	Which
meant	learning	Lisp,	since	in	those	days	Lisp	was	regarded	as
the	language	of	AI.	The	commonly	used	programming	languages
then	were	pretty	primitive,	and	programmers'	ideas
correspondingly	so.	The	default	language	at	Cornell	was	a	Pascal-
like	language	called	PL/I,	and	the	situation	was	similar
elsewhere.	Learning	Lisp	expanded	my	concept	of	a	program	so
fast	that	it	was	years	before	I	started	to	have	a	sense	of	where
the	new	limits	were.	This	was	more	like	it;	this	was	what	I	had
expected	college	to	do.	It	wasn't	happening	in	a	class,	like	it	was
supposed	to,	but	that	was	ok.	For	the	next	couple	years	I	was	on
a	roll.	I	knew	what	I	was	going	to	do.

For	my	undergraduate	thesis,	I	reverse-engineered	SHRDLU.	My
God	did	I	love	working	on	that	program.	It	was	a	pleasing	bit	of
code,	but	what	made	it	even	more	exciting	was	my	belief	�	hard
to	imagine	now,	but	not	unique	in	1985	�	that	it	was	already
climbing	the	lower	slopes	of	intelligence.

I	had	gotten	into	a	program	at	Cornell	that	didn't	make	you
choose	a	major.	You	could	take	whatever	classes	you	liked,	and
choose	whatever	you	liked	to	put	on	your	degree.	I	of	course
chose	"Artificial	Intelligence."	When	I	got	the	actual	physical
diploma,	I	was	dismayed	to	find	that	the	quotes	had	been
included,	which	made	them	read	as	scare-quotes.	At	the	time	this
bothered	me,	but	now	it	seems	amusingly	accurate,	for	reasons	I
was	about	to	discover.

I	applied	to	3	grad	schools:	MIT	and	Yale,	which	were	renowned
for	AI	at	the	time,	and	Harvard,	which	I'd	visited	because	Rich
Draves	went	there,	and	was	also	home	to	Bill	Woods,	who'd

invented	the	type	of	parser	I	used	in	my	SHRDLU	clone.	Only
Harvard	accepted	me,	so	that	was	where	I	went.

I	don't	remember	the	moment	it	happened,	or	if	there	even	was	a
specific	moment,	but	during	the	first	year	of	grad	school	I
realized	that	AI,	as	practiced	at	the	time,	was	a	hoax.	By	which	I
mean	the	sort	of	AI	in	which	a	program	that's	told	"the	dog	is
sitting	on	the	chair"	translates	this	into	some	formal
representation	and	adds	it	to	the	list	of	things	it	knows.

What	these	programs	really	showed	was	that	there's	a	subset	of
natural	language	that's	a	formal	language.	But	a	very	proper
subset.	It	was	clear	that	there	was	an	unbridgeable	gap	between
what	they	could	do	and	actually	understanding	natural	language.
It	was	not,	in	fact,	simply	a	matter	of	teaching	SHRDLU	more
words.	That	whole	way	of	doing	AI,	with	explicit	data	structures
representing	concepts,	was	not	going	to	work.	Its	brokenness
did,	as	so	often	happens,	generate	a	lot	of	opportunities	to	write
papers	about	various	band-aids	that	could	be	applied	to	it,	but	it
was	never	going	to	get	us	Mike.

So	I	looked	around	to	see	what	I	could	salvage	from	the
wreckage	of	my	plans,	and	there	was	Lisp.	I	knew	from
experience	that	Lisp	was	interesting	for	its	own	sake	and	not	just
for	its	association	with	AI,	even	though	that	was	the	main	reason
people	cared	about	it	at	the	time.	So	I	decided	to	focus	on	Lisp.
In	fact,	I	decided	to	write	a	book	about	Lisp	hacking.	It's	scary	to
think	how	little	I	knew	about	Lisp	hacking	when	I	started	writing
that	book.	But	there's	nothing	like	writing	a	book	about
something	to	help	you	learn	it.	The	book,	On	Lisp,	wasn't
published	till	1993,	but	I	wrote	much	of	it	in	grad	school.

Computer	Science	is	an	uneasy	alliance	between	two	halves,
theory	and	systems.	The	theory	people	prove	things,	and	the
systems	people	build	things.	I	wanted	to	build	things.	I	had
plenty	of	respect	for	theory	�	indeed,	a	sneaking	suspicion	that
it	was	the	more	admirable	of	the	two	halves	�	but	building
things	seemed	so	much	more	exciting.

The	problem	with	systems	work,	though,	was	that	it	didn't	last.
Any	program	you	wrote	today,	no	matter	how	good,	would	be

obsolete	in	a	couple	decades	at	best.	People	might	mention	your
software	in	footnotes,	but	no	one	would	actually	use	it.	And
indeed,	it	would	seem	very	feeble	work.	Only	people	with	a	sense
of	the	history	of	the	field	would	even	realize	that,	in	its	time,	it
had	been	good.

There	were	some	surplus	Xerox	Dandelions	floating	around	the
computer	lab	at	one	point.	Anyone	who	wanted	one	to	play
around	with	could	have	one.	I	was	briefly	tempted,	but	they	were
so	slow	by	present	standards;	what	was	the	point?	No	one	else
wanted	one	either,	so	off	they	went.	That	was	what	happened	to
systems	work.

I	wanted	not	just	to	build	things,	but	to	build	things	that	would
last.

In	this	dissatisfied	state	I	went	in	1988	to	visit	Rich	Draves	at
CMU,	where	he	was	in	grad	school.	One	day	I	went	to	visit	the
Carnegie	Institute,	where	I'd	spent	a	lot	of	time	as	a	kid.	While
looking	at	a	painting	there	I	realized	something	that	might	seem
obvious,	but	was	a	big	surprise	to	me.	There,	right	on	the	wall,
was	something	you	could	make	that	would	last.	Paintings	didn't
become	obsolete.	Some	of	the	best	ones	were	hundreds	of	years
old.

And	moreover	this	was	something	you	could	make	a	living	doing.
Not	as	easily	as	you	could	by	writing	software,	of	course,	but	I
thought	if	you	were	really	industrious	and	lived	really	cheaply,	it
had	to	be	possible	to	make	enough	to	survive.	And	as	an	artist
you	could	be	truly	independent.	You	wouldn't	have	a	boss,	or
even	need	to	get	research	funding.

I	had	always	liked	looking	at	paintings.	Could	I	make	them?	I	had
no	idea.	I'd	never	imagined	it	was	even	possible.	I	knew
intellectually	that	people	made	art	�	that	it	didn't	just	appear
spontaneously	�	but	it	was	as	if	the	people	who	made	it	were	a
different	species.	They	either	lived	long	ago	or	were	mysterious
geniuses	doing	strange	things	in	profiles	in	Life	magazine.	The
idea	of	actually	being	able	to	make	art,	to	put	that	verb	before
that	noun,	seemed	almost	miraculous.

That	fall	I	started	taking	art	classes	at	Harvard.	Grad	students
could	take	classes	in	any	department,	and	my	advisor,	Tom
Cheatham,	was	very	easy	going.	If	he	even	knew	about	the
strange	classes	I	was	taking,	he	never	said	anything.

So	now	I	was	in	a	PhD	program	in	computer	science,	yet
planning	to	be	an	artist,	yet	also	genuinely	in	love	with	Lisp
hacking	and	working	away	at	On	Lisp.	In	other	words,	like	many
a	grad	student,	I	was	working	energetically	on	multiple	projects
that	were	not	my	thesis.

I	didn't	see	a	way	out	of	this	situation.	I	didn't	want	to	drop	out	of
grad	school,	but	how	else	was	I	going	to	get	out?	I	remember
when	my	friend	Robert	Morris	got	kicked	out	of	Cornell	for
writing	the	internet	worm	of	1988,	I	was	envious	that	he'd	found
such	a	spectacular	way	to	get	out	of	grad	school.

Then	one	day	in	April	1990	a	crack	appeared	in	the	wall.	I	ran
into	professor	Cheatham	and	he	asked	if	I	was	far	enough	along
to	graduate	that	June.	I	didn't	have	a	word	of	my	dissertation
written,	but	in	what	must	have	been	the	quickest	bit	of	thinking
in	my	life,	I	decided	to	take	a	shot	at	writing	one	in	the	5	weeks
or	so	that	remained	before	the	deadline,	reusing	parts	of	On	Lisp
where	I	could,	and	I	was	able	to	respond,	with	no	perceptible
delay	"Yes,	I	think	so.	I'll	give	you	something	to	read	in	a	few
days."

I	picked	applications	of	continuations	as	the	topic.	In	retrospect	I
should	have	written	about	macros	and	embedded	languages.
There's	a	whole	world	there	that's	barely	been	explored.	But	all	I
wanted	was	to	get	out	of	grad	school,	and	my	rapidly	written
dissertation	sufficed,	just	barely.

Meanwhile	I	was	applying	to	art	schools.	I	applied	to	two:	RISD
in	the	US,	and	the	Accademia	di	Belli	Arti	in	Florence,	which,
because	it	was	the	oldest	art	school,	I	imagined	would	be	good.
RISD	accepted	me,	and	I	never	heard	back	from	the	Accademia,
so	off	to	Providence	I	went.

I'd	applied	for	the	BFA	program	at	RISD,	which	meant	in	effect
that	I	had	to	go	to	college	again.	This	was	not	as	strange	as	it

sounds,	because	I	was	only	25,	and	art	schools	are	full	of	people
of	different	ages.	RISD	counted	me	as	a	transfer	sophomore	and
said	I	had	to	do	the	foundation	that	summer.	The	foundation
means	the	classes	that	everyone	has	to	take	in	fundamental
subjects	like	drawing,	color,	and	design.

Toward	the	end	of	the	summer	I	got	a	big	surprise:	a	letter	from
the	Accademia,	which	had	been	delayed	because	they'd	sent	it	to
Cambridge	England	instead	of	Cambridge	Massachusetts,
inviting	me	to	take	the	entrance	exam	in	Florence	that	fall.	This
was	now	only	weeks	away.	My	nice	landlady	let	me	leave	my	stuff
in	her	attic.	I	had	some	money	saved	from	consulting	work	I'd
done	in	grad	school;	there	was	probably	enough	to	last	a	year	if	I
lived	cheaply.	Now	all	I	had	to	do	was	learn	Italian.

Only	stranieri	(foreigners)	had	to	take	this	entrance	exam.	In
retrospect	it	may	well	have	been	a	way	of	excluding	them,
because	there	were	so	many	stranieri	attracted	by	the	idea	of
studying	art	in	Florence	that	the	Italian	students	would
otherwise	have	been	outnumbered.	I	was	in	decent	shape	at
painting	and	drawing	from	the	RISD	foundation	that	summer,	but
I	still	don't	know	how	I	managed	to	pass	the	written	exam.	I
remember	that	I	answered	the	essay	question	by	writing	about
Cezanne,	and	that	I	cranked	up	the	intellectual	level	as	high	as	I
could	to	make	the	most	of	my	limited	vocabulary.	[2]

I'm	only	up	to	age	25	and	already	there	are	such	conspicuous
patterns.	Here	I	was,	yet	again	about	to	attend	some	august
institution	in	the	hopes	of	learning	about	some	prestigious
subject,	and	yet	again	about	to	be	disappointed.	The	students
and	faculty	in	the	painting	department	at	the	Accademia	were
the	nicest	people	you	could	imagine,	but	they	had	long	since
arrived	at	an	arrangement	whereby	the	students	wouldn't
require	the	faculty	to	teach	anything,	and	in	return	the	faculty
wouldn't	require	the	students	to	learn	anything.	And	at	the	same
time	all	involved	would	adhere	outwardly	to	the	conventions	of	a
19th	century	atelier.	We	actually	had	one	of	those	little	stoves,
fed	with	kindling,	that	you	see	in	19th	century	studio	paintings,
and	a	nude	model	sitting	as	close	to	it	as	possible	without	getting
burned.	Except	hardly	anyone	else	painted	her	besides	me.	The
rest	of	the	students	spent	their	time	chatting	or	occasionally

#f2n

trying	to	imitate	things	they'd	seen	in	American	art	magazines.

Our	model	turned	out	to	live	just	down	the	street	from	me.	She
made	a	living	from	a	combination	of	modelling	and	making	fakes
for	a	local	antique	dealer.	She'd	copy	an	obscure	old	painting	out
of	a	book,	and	then	he'd	take	the	copy	and	maltreat	it	to	make	it
look	old.	[3]

While	I	was	a	student	at	the	Accademia	I	started	painting	still
lives	in	my	bedroom	at	night.	These	paintings	were	tiny,	because
the	room	was,	and	because	I	painted	them	on	leftover	scraps	of
canvas,	which	was	all	I	could	afford	at	the	time.	Painting	still
lives	is	different	from	painting	people,	because	the	subject,	as	its
name	suggests,	can't	move.	People	can't	sit	for	more	than	about
15	minutes	at	a	time,	and	when	they	do	they	don't	sit	very	still.
So	the	traditional	m.o.	for	painting	people	is	to	know	how	to
paint	a	generic	person,	which	you	then	modify	to	match	the
specific	person	you're	painting.	Whereas	a	still	life	you	can,	if	you
want,	copy	pixel	by	pixel	from	what	you're	seeing.	You	don't	want
to	stop	there,	of	course,	or	you	get	merely	photographic
accuracy,	and	what	makes	a	still	life	interesting	is	that	it's	been
through	a	head.	You	want	to	emphasize	the	visual	cues	that	tell
you,	for	example,	that	the	reason	the	color	changes	suddenly	at	a
certain	point	is	that	it's	the	edge	of	an	object.	By	subtly
emphasizing	such	things	you	can	make	paintings	that	are	more
realistic	than	photographs	not	just	in	some	metaphorical	sense,
but	in	the	strict	information-theoretic	sense.	[4]

I	liked	painting	still	lives	because	I	was	curious	about	what	I	was
seeing.	In	everyday	life,	we	aren't	consciously	aware	of	much
we're	seeing.	Most	visual	perception	is	handled	by	low-level
processes	that	merely	tell	your	brain	"that's	a	water	droplet"
without	telling	you	details	like	where	the	lightest	and	darkest
points	are,	or	"that's	a	bush"	without	telling	you	the	shape	and
position	of	every	leaf.	This	is	a	feature	of	brains,	not	a	bug.	In
everyday	life	it	would	be	distracting	to	notice	every	leaf	on	every
bush.	But	when	you	have	to	paint	something,	you	have	to	look
more	closely,	and	when	you	do	there's	a	lot	to	see.	You	can	still
be	noticing	new	things	after	days	of	trying	to	paint	something
people	usually	take	for	granted,	just	as	you	can	after	days	of
trying	to	write	an	essay	about	something	people	usually	take	for

#f3n
#f4n

granted.

This	is	not	the	only	way	to	paint.	I'm	not	100%	sure	it's	even	a
good	way	to	paint.	But	it	seemed	a	good	enough	bet	to	be	worth
trying.

Our	teacher,	professor	Ulivi,	was	a	nice	guy.	He	could	see	I
worked	hard,	and	gave	me	a	good	grade,	which	he	wrote	down	in
a	sort	of	passport	each	student	had.	But	the	Accademia	wasn't
teaching	me	anything	except	Italian,	and	my	money	was	running
out,	so	at	the	end	of	the	first	year	I	went	back	to	the	US.

I	wanted	to	go	back	to	RISD,	but	I	was	now	broke	and	RISD	was
very	expensive,	so	I	decided	to	get	a	job	for	a	year	and	then
return	to	RISD	the	next	fall.	I	got	one	at	a	company	called
Interleaf,	which	made	software	for	creating	documents.	You
mean	like	Microsoft	Word?	Exactly.	That	was	how	I	learned	that
low	end	software	tends	to	eat	high	end	software.	But	Interleaf
still	had	a	few	years	to	live	yet.	[5]

Interleaf	had	done	something	pretty	bold.	Inspired	by	Emacs,
they'd	added	a	scripting	language,	and	even	made	the	scripting
language	a	dialect	of	Lisp.	Now	they	wanted	a	Lisp	hacker	to
write	things	in	it.	This	was	the	closest	thing	I've	had	to	a	normal
job,	and	I	hereby	apologize	to	my	boss	and	coworkers,	because	I
was	a	bad	employee.	Their	Lisp	was	the	thinnest	icing	on	a	giant
C	cake,	and	since	I	didn't	know	C	and	didn't	want	to	learn	it,	I
never	understood	most	of	the	software.	Plus	I	was	terribly
irresponsible.	This	was	back	when	a	programming	job	meant
showing	up	every	day	during	certain	working	hours.	That	seemed
unnatural	to	me,	and	on	this	point	the	rest	of	the	world	is	coming
around	to	my	way	of	thinking,	but	at	the	time	it	caused	a	lot	of
friction.	Toward	the	end	of	the	year	I	spent	much	of	my	time
surreptitiously	working	on	On	Lisp,	which	I	had	by	this	time
gotten	a	contract	to	publish.

The	good	part	was	that	I	got	paid	huge	amounts	of	money,
especially	by	art	student	standards.	In	Florence,	after	paying	my
part	of	the	rent,	my	budget	for	everything	else	had	been	$7	a	day.
Now	I	was	getting	paid	more	than	4	times	that	every	hour,	even
when	I	was	just	sitting	in	a	meeting.	By	living	cheaply	I	not	only

#f5n

managed	to	save	enough	to	go	back	to	RISD,	but	also	paid	off	my
college	loans.

I	learned	some	useful	things	at	Interleaf,	though	they	were
mostly	about	what	not	to	do.	I	learned	that	it's	better	for
technology	companies	to	be	run	by	product	people	than	sales
people	(though	sales	is	a	real	skill	and	people	who	are	good	at	it
are	really	good	at	it),	that	it	leads	to	bugs	when	code	is	edited	by
too	many	people,	that	cheap	office	space	is	no	bargain	if	it's
depressing,	that	planned	meetings	are	inferior	to	corridor
conversations,	that	big,	bureaucratic	customers	are	a	dangerous
source	of	money,	and	that	there's	not	much	overlap	between
conventional	office	hours	and	the	optimal	time	for	hacking,	or
conventional	offices	and	the	optimal	place	for	it.

But	the	most	important	thing	I	learned,	and	which	I	used	in	both
Viaweb	and	Y	Combinator,	is	that	the	low	end	eats	the	high	end:
that	it's	good	to	be	the	"entry	level"	option,	even	though	that	will
be	less	prestigious,	because	if	you're	not,	someone	else	will	be,
and	will	squash	you	against	the	ceiling.	Which	in	turn	means	that
prestige	is	a	danger	sign.

When	I	left	to	go	back	to	RISD	the	next	fall,	I	arranged	to	do
freelance	work	for	the	group	that	did	projects	for	customers,	and
this	was	how	I	survived	for	the	next	several	years.	When	I	came
back	to	visit	for	a	project	later	on,	someone	told	me	about	a	new
thing	called	HTML,	which	was,	as	he	described	it,	a	derivative	of
SGML.	Markup	language	enthusiasts	were	an	occupational
hazard	at	Interleaf	and	I	ignored	him,	but	this	HTML	thing	later
became	a	big	part	of	my	life.

In	the	fall	of	1992	I	moved	back	to	Providence	to	continue	at
RISD.	The	foundation	had	merely	been	intro	stuff,	and	the
Accademia	had	been	a	(very	civilized)	joke.	Now	I	was	going	to
see	what	real	art	school	was	like.	But	alas	it	was	more	like	the
Accademia	than	not.	Better	organized,	certainly,	and	a	lot	more
expensive,	but	it	was	now	becoming	clear	that	art	school	did	not
bear	the	same	relationship	to	art	that	medical	school	bore	to
medicine.	At	least	not	the	painting	department.	The	textile
department,	which	my	next	door	neighbor	belonged	to,	seemed
to	be	pretty	rigorous.	No	doubt	illustration	and	architecture	were

too.	But	painting	was	post-rigorous.	Painting	students	were
supposed	to	express	themselves,	which	to	the	more	worldly	ones
meant	to	try	to	cook	up	some	sort	of	distinctive	signature	style.

A	signature	style	is	the	visual	equivalent	of	what	in	show
business	is	known	as	a	"schtick":	something	that	immediately
identifies	the	work	as	yours	and	no	one	else's.	For	example,	when
you	see	a	painting	that	looks	like	a	certain	kind	of	cartoon,	you
know	it's	by	Roy	Lichtenstein.	So	if	you	see	a	big	painting	of	this
type	hanging	in	the	apartment	of	a	hedge	fund	manager,	you
know	he	paid	millions	of	dollars	for	it.	That's	not	always	why
artists	have	a	signature	style,	but	it's	usually	why	buyers	pay	a
lot	for	such	work.	[6]

There	were	plenty	of	earnest	students	too:	kids	who	"could	draw"
in	high	school,	and	now	had	come	to	what	was	supposed	to	be
the	best	art	school	in	the	country,	to	learn	to	draw	even	better.
They	tended	to	be	confused	and	demoralized	by	what	they	found
at	RISD,	but	they	kept	going,	because	painting	was	what	they
did.	I	was	not	one	of	the	kids	who	could	draw	in	high	school,	but
at	RISD	I	was	definitely	closer	to	their	tribe	than	the	tribe	of
signature	style	seekers.

I	learned	a	lot	in	the	color	class	I	took	at	RISD,	but	otherwise	I
was	basically	teaching	myself	to	paint,	and	I	could	do	that	for
free.	So	in	1993	I	dropped	out.	I	hung	around	Providence	for	a
bit,	and	then	my	college	friend	Nancy	Parmet	did	me	a	big	favor.
A	rent-controlled	apartment	in	a	building	her	mother	owned	in
New	York	was	becoming	vacant.	Did	I	want	it?	It	wasn't	much
more	than	my	current	place,	and	New	York	was	supposed	to	be
where	the	artists	were.	So	yes,	I	wanted	it!	[7]

Asterix	comics	begin	by	zooming	in	on	a	tiny	corner	of	Roman
Gaul	that	turns	out	not	to	be	controlled	by	the	Romans.	You	can
do	something	similar	on	a	map	of	New	York	City:	if	you	zoom	in
on	the	Upper	East	Side,	there's	a	tiny	corner	that's	not	rich,	or	at
least	wasn't	in	1993.	It's	called	Yorkville,	and	that	was	my	new
home.	Now	I	was	a	New	York	artist	�	in	the	strictly	technical
sense	of	making	paintings	and	living	in	New	York.

I	was	nervous	about	money,	because	I	could	sense	that	Interleaf

#f6n
#f7n

was	on	the	way	down.	Freelance	Lisp	hacking	work	was	very
rare,	and	I	didn't	want	to	have	to	program	in	another	language,
which	in	those	days	would	have	meant	C++	if	I	was	lucky.	So
with	my	unerring	nose	for	financial	opportunity,	I	decided	to
write	another	book	on	Lisp.	This	would	be	a	popular	book,	the
sort	of	book	that	could	be	used	as	a	textbook.	I	imagined	myself
living	frugally	off	the	royalties	and	spending	all	my	time	painting.
(The	painting	on	the	cover	of	this	book,	ANSI	Common	Lisp,	is
one	that	I	painted	around	this	time.)

The	best	thing	about	New	York	for	me	was	the	presence	of	Idelle
and	Julian	Weber.	Idelle	Weber	was	a	painter,	one	of	the	early
photorealists,	and	I'd	taken	her	painting	class	at	Harvard.	I've
never	known	a	teacher	more	beloved	by	her	students.	Large
numbers	of	former	students	kept	in	touch	with	her,	including	me.
After	I	moved	to	New	York	I	became	her	de	facto	studio	assistant.

She	liked	to	paint	on	big,	square	canvases,	4	to	5	feet	on	a	side.
One	day	in	late	1994	as	I	was	stretching	one	of	these	monsters
there	was	something	on	the	radio	about	a	famous	fund	manager.
He	wasn't	that	much	older	than	me,	and	was	super	rich.	The
thought	suddenly	occurred	to	me:	why	don't	I	become	rich?	Then
I'll	be	able	to	work	on	whatever	I	want.

Meanwhile	I'd	been	hearing	more	and	more	about	this	new	thing
called	the	World	Wide	Web.	Robert	Morris	showed	it	to	me	when
I	visited	him	in	Cambridge,	where	he	was	now	in	grad	school	at
Harvard.	It	seemed	to	me	that	the	web	would	be	a	big	deal.	I'd
seen	what	graphical	user	interfaces	had	done	for	the	popularity
of	microcomputers.	It	seemed	like	the	web	would	do	the	same	for
the	internet.

If	I	wanted	to	get	rich,	here	was	the	next	train	leaving	the
station.	I	was	right	about	that	part.	What	I	got	wrong	was	the
idea.	I	decided	we	should	start	a	company	to	put	art	galleries
online.	I	can't	honestly	say,	after	reading	so	many	Y	Combinator
applications,	that	this	was	the	worst	startup	idea	ever,	but	it	was
up	there.	Art	galleries	didn't	want	to	be	online,	and	still	don't,	not
the	fancy	ones.	That's	not	how	they	sell.	I	wrote	some	software	to
generate	web	sites	for	galleries,	and	Robert	wrote	some	to	resize
images	and	set	up	an	http	server	to	serve	the	pages.	Then	we

tried	to	sign	up	galleries.	To	call	this	a	difficult	sale	would	be	an
understatement.	It	was	difficult	to	give	away.	A	few	galleries	let
us	make	sites	for	them	for	free,	but	none	paid	us.

Then	some	online	stores	started	to	appear,	and	I	realized	that
except	for	the	order	buttons	they	were	identical	to	the	sites	we'd
been	generating	for	galleries.	This	impressive-sounding	thing
called	an	"internet	storefront"	was	something	we	already	knew
how	to	build.

So	in	the	summer	of	1995,	after	I	submitted	the	camera-ready
copy	of	ANSI	Common	Lisp	to	the	publishers,	we	started	trying
to	write	software	to	build	online	stores.	At	first	this	was	going	to
be	normal	desktop	software,	which	in	those	days	meant	Windows
software.	That	was	an	alarming	prospect,	because	neither	of	us
knew	how	to	write	Windows	software	or	wanted	to	learn.	We
lived	in	the	Unix	world.	But	we	decided	we'd	at	least	try	writing	a
prototype	store	builder	on	Unix.	Robert	wrote	a	shopping	cart,
and	I	wrote	a	new	site	generator	for	stores	�	in	Lisp,	of	course.

We	were	working	out	of	Robert's	apartment	in	Cambridge.	His
roommate	was	away	for	big	chunks	of	time,	during	which	I	got	to
sleep	in	his	room.	For	some	reason	there	was	no	bed	frame	or
sheets,	just	a	mattress	on	the	floor.	One	morning	as	I	was	lying
on	this	mattress	I	had	an	idea	that	made	me	sit	up	like	a	capital
L.	What	if	we	ran	the	software	on	the	server,	and	let	users
control	it	by	clicking	on	links?	Then	we'd	never	have	to	write
anything	to	run	on	users'	computers.	We	could	generate	the	sites
on	the	same	server	we'd	serve	them	from.	Users	wouldn't	need
anything	more	than	a	browser.

This	kind	of	software,	known	as	a	web	app,	is	common	now,	but
at	the	time	it	wasn't	clear	that	it	was	even	possible.	To	find	out,
we	decided	to	try	making	a	version	of	our	store	builder	that	you
could	control	through	the	browser.	A	couple	days	later,	on	August
12,	we	had	one	that	worked.	The	UI	was	horrible,	but	it	proved
you	could	build	a	whole	store	through	the	browser,	without	any
client	software	or	typing	anything	into	the	command	line	on	the
server.

Now	we	felt	like	we	were	really	onto	something.	I	had	visions	of	a

whole	new	generation	of	software	working	this	way.	You	wouldn't
need	versions,	or	ports,	or	any	of	that	crap.	At	Interleaf	there	had
been	a	whole	group	called	Release	Engineering	that	seemed	to
be	at	least	as	big	as	the	group	that	actually	wrote	the	software.
Now	you	could	just	update	the	software	right	on	the	server.

We	started	a	new	company	we	called	Viaweb,	after	the	fact	that
our	software	worked	via	the	web,	and	we	got	$10,000	in	seed
funding	from	Idelle's	husband	Julian.	In	return	for	that	and	doing
the	initial	legal	work	and	giving	us	business	advice,	we	gave	him
10%	of	the	company.	Ten	years	later	this	deal	became	the	model
for	Y	Combinator's.	We	knew	founders	needed	something	like
this,	because	we'd	needed	it	ourselves.

At	this	stage	I	had	a	negative	net	worth,	because	the	thousand
dollars	or	so	I	had	in	the	bank	was	more	than	counterbalanced	by
what	I	owed	the	government	in	taxes.	(Had	I	diligently	set	aside
the	proper	proportion	of	the	money	I'd	made	consulting	for
Interleaf?	No,	I	had	not.)	So	although	Robert	had	his	graduate
student	stipend,	I	needed	that	seed	funding	to	live	on.

We	originally	hoped	to	launch	in	September,	but	we	got	more
ambitious	about	the	software	as	we	worked	on	it.	Eventually	we
managed	to	build	a	WYSIWYG	site	builder,	in	the	sense	that	as
you	were	creating	pages,	they	looked	exactly	like	the	static	ones
that	would	be	generated	later,	except	that	instead	of	leading	to
static	pages,	the	links	all	referred	to	closures	stored	in	a	hash
table	on	the	server.

It	helped	to	have	studied	art,	because	the	main	goal	of	an	online
store	builder	is	to	make	users	look	legit,	and	the	key	to	looking
legit	is	high	production	values.	If	you	get	page	layouts	and	fonts
and	colors	right,	you	can	make	a	guy	running	a	store	out	of	his
bedroom	look	more	legit	than	a	big	company.

(If	you're	curious	why	my	site	looks	so	old-fashioned,	it's	because
it's	still	made	with	this	software.	It	may	look	clunky	today,	but	in
1996	it	was	the	last	word	in	slick.)

In	September,	Robert	rebelled.	"We've	been	working	on	this	for	a
month,"	he	said,	"and	it's	still	not	done."	This	is	funny	in

retrospect,	because	he	would	still	be	working	on	it	almost	3	years
later.	But	I	decided	it	might	be	prudent	to	recruit	more
programmers,	and	I	asked	Robert	who	else	in	grad	school	with
him	was	really	good.	He	recommended	Trevor	Blackwell,	which
surprised	me	at	first,	because	at	that	point	I	knew	Trevor	mainly
for	his	plan	to	reduce	everything	in	his	life	to	a	stack	of
notecards,	which	he	carried	around	with	him.	But	Rtm	was	right,
as	usual.	Trevor	turned	out	to	be	a	frighteningly	effective	hacker.

It	was	a	lot	of	fun	working	with	Robert	and	Trevor.	They're	the
two	most	independent-minded	people	I	know,	and	in	completely
different	ways.	If	you	could	see	inside	Rtm's	brain	it	would	look
like	a	colonial	New	England	church,	and	if	you	could	see	inside
Trevor's	it	would	look	like	the	worst	excesses	of	Austrian	Rococo.

We	opened	for	business,	with	6	stores,	in	January	1996.	It	was
just	as	well	we	waited	a	few	months,	because	although	we
worried	we	were	late,	we	were	actually	almost	fatally	early.
There	was	a	lot	of	talk	in	the	press	then	about	ecommerce,	but
not	many	people	actually	wanted	online	stores.	[8]

There	were	three	main	parts	to	the	software:	the	editor,	which
people	used	to	build	sites	and	which	I	wrote,	the	shopping	cart,
which	Robert	wrote,	and	the	manager,	which	kept	track	of	orders
and	statistics,	and	which	Trevor	wrote.	In	its	time,	the	editor	was
one	of	the	best	general-purpose	site	builders.	I	kept	the	code
tight	and	didn't	have	to	integrate	with	any	other	software	except
Robert's	and	Trevor's,	so	it	was	quite	fun	to	work	on.	If	all	I'd	had
to	do	was	work	on	this	software,	the	next	3	years	would	have
been	the	easiest	of	my	life.	Unfortunately	I	had	to	do	a	lot	more,
all	of	it	stuff	I	was	worse	at	than	programming,	and	the	next	3
years	were	instead	the	most	stressful.

There	were	a	lot	of	startups	making	ecommerce	software	in	the
second	half	of	the	90s.	We	were	determined	to	be	the	Microsoft
Word,	not	the	Interleaf.	Which	meant	being	easy	to	use	and
inexpensive.	It	was	lucky	for	us	that	we	were	poor,	because	that
caused	us	to	make	Viaweb	even	more	inexpensive	than	we
realized.	We	charged	$100	a	month	for	a	small	store	and	$300	a
month	for	a	big	one.	This	low	price	was	a	big	attraction,	and	a
constant	thorn	in	the	sides	of	competitors,	but	it	wasn't	because

think.html
#f8n

of	some	clever	insight	that	we	set	the	price	low.	We	had	no	idea
what	businesses	paid	for	things.	$300	a	month	seemed	like	a	lot
of	money	to	us.

We	did	a	lot	of	things	right	by	accident	like	that.	For	example,	we
did	what's	now	called	"doing	things	that	don't	scale,"	although	at
the	time	we	would	have	described	it	as	"being	so	lame	that	we're
driven	to	the	most	desperate	measures	to	get	users."	The	most
common	of	which	was	building	stores	for	them.	This	seemed
particularly	humiliating,	since	the	whole	raison	d'etre	of	our
software	was	that	people	could	use	it	to	make	their	own	stores.
But	anything	to	get	users.

We	learned	a	lot	more	about	retail	than	we	wanted	to	know.	For
example,	that	if	you	could	only	have	a	small	image	of	a	man's
shirt	(and	all	images	were	small	then	by	present	standards),	it
was	better	to	have	a	closeup	of	the	collar	than	a	picture	of	the
whole	shirt.	The	reason	I	remember	learning	this	was	that	it
meant	I	had	to	rescan	about	30	images	of	men's	shirts.	My	first
set	of	scans	were	so	beautiful	too.

Though	this	felt	wrong,	it	was	exactly	the	right	thing	to	be	doing.
Building	stores	for	users	taught	us	about	retail,	and	about	how	it
felt	to	use	our	software.	I	was	initially	both	mystified	and
repelled	by	"business"	and	thought	we	needed	a	"business
person"	to	be	in	charge	of	it,	but	once	we	started	to	get	users,	I
was	converted,	in	much	the	same	way	I	was	converted	to
fatherhood	once	I	had	kids.	Whatever	users	wanted,	I	was	all
theirs.	Maybe	one	day	we'd	have	so	many	users	that	I	couldn't
scan	their	images	for	them,	but	in	the	meantime	there	was
nothing	more	important	to	do.

Another	thing	I	didn't	get	at	the	time	is	that	growth	rate	is	the
ultimate	test	of	a	startup.	Our	growth	rate	was	fine.	We	had
about	70	stores	at	the	end	of	1996	and	about	500	at	the	end	of
1997.	I	mistakenly	thought	the	thing	that	mattered	was	the
absolute	number	of	users.	And	that	is	the	thing	that	matters	in
the	sense	that	that's	how	much	money	you're	making,	and	if
you're	not	making	enough,	you	might	go	out	of	business.	But	in
the	long	term	the	growth	rate	takes	care	of	the	absolute	number.
If	we'd	been	a	startup	I	was	advising	at	Y	Combinator,	I	would

ds.html
kids.html
growth.html

have	said:	Stop	being	so	stressed	out,	because	you're	doing	fine.
You're	growing	7x	a	year.	Just	don't	hire	too	many	more	people
and	you'll	soon	be	profitable,	and	then	you'll	control	your	own
destiny.

Alas	I	hired	lots	more	people,	partly	because	our	investors
wanted	me	to,	and	partly	because	that's	what	startups	did	during
the	Internet	Bubble.	A	company	with	just	a	handful	of	employees
would	have	seemed	amateurish.	So	we	didn't	reach	breakeven
until	about	when	Yahoo	bought	us	in	the	summer	of	1998.	Which
in	turn	meant	we	were	at	the	mercy	of	investors	for	the	entire
life	of	the	company.	And	since	both	we	and	our	investors	were
noobs	at	startups,	the	result	was	a	mess	even	by	startup
standards.

It	was	a	huge	relief	when	Yahoo	bought	us.	In	principle	our
Viaweb	stock	was	valuable.	It	was	a	share	in	a	business	that	was
profitable	and	growing	rapidly.	But	it	didn't	feel	very	valuable	to
me;	I	had	no	idea	how	to	value	a	business,	but	I	was	all	too
keenly	aware	of	the	near-death	experiences	we	seemed	to	have
every	few	months.	Nor	had	I	changed	my	grad	student	lifestyle
significantly	since	we	started.	So	when	Yahoo	bought	us	it	felt
like	going	from	rags	to	riches.	Since	we	were	going	to	California,
I	bought	a	car,	a	yellow	1998	VW	GTI.	I	remember	thinking	that
its	leather	seats	alone	were	by	far	the	most	luxurious	thing	I
owned.

The	next	year,	from	the	summer	of	1998	to	the	summer	of	1999,
must	have	been	the	least	productive	of	my	life.	I	didn't	realize	it
at	the	time,	but	I	was	worn	out	from	the	effort	and	stress	of
running	Viaweb.	For	a	while	after	I	got	to	California	I	tried	to
continue	my	usual	m.o.	of	programming	till	3	in	the	morning,	but
fatigue	combined	with	Yahoo's	prematurely	aged	culture	and
grim	cube	farm	in	Santa	Clara	gradually	dragged	me	down.	After
a	few	months	it	felt	disconcertingly	like	working	at	Interleaf.

Yahoo	had	given	us	a	lot	of	options	when	they	bought	us.	At	the
time	I	thought	Yahoo	was	so	overvalued	that	they'd	never	be
worth	anything,	but	to	my	astonishment	the	stock	went	up	5x	in
the	next	year.	I	hung	on	till	the	first	chunk	of	options	vested,	then
in	the	summer	of	1999	I	left.	It	had	been	so	long	since	I'd	painted

yahoo.html

anything	that	I'd	half	forgotten	why	I	was	doing	this.	My	brain
had	been	entirely	full	of	software	and	men's	shirts	for	4	years.
But	I	had	done	this	to	get	rich	so	I	could	paint,	I	reminded
myself,	and	now	I	was	rich,	so	I	should	go	paint.

When	I	said	I	was	leaving,	my	boss	at	Yahoo	had	a	long
conversation	with	me	about	my	plans.	I	told	him	all	about	the
kinds	of	pictures	I	wanted	to	paint.	At	the	time	I	was	touched
that	he	took	such	an	interest	in	me.	Now	I	realize	it	was	because
he	thought	I	was	lying.	My	options	at	that	point	were	worth
about	$2	million	a	month.	If	I	was	leaving	that	kind	of	money	on
the	table,	it	could	only	be	to	go	and	start	some	new	startup,	and
if	I	did,	I	might	take	people	with	me.	This	was	the	height	of	the
Internet	Bubble,	and	Yahoo	was	ground	zero	of	it.	My	boss	was	at
that	moment	a	billionaire.	Leaving	then	to	start	a	new	startup
must	have	seemed	to	him	an	insanely,	and	yet	also	plausibly,
ambitious	plan.

But	I	really	was	quitting	to	paint,	and	I	started	immediately.
There	was	no	time	to	lose.	I'd	already	burned	4	years	getting
rich.	Now	when	I	talk	to	founders	who	are	leaving	after	selling
their	companies,	my	advice	is	always	the	same:	take	a	vacation.
That's	what	I	should	have	done,	just	gone	off	somewhere	and
done	nothing	for	a	month	or	two,	but	the	idea	never	occurred	to
me.

So	I	tried	to	paint,	but	I	just	didn't	seem	to	have	any	energy	or
ambition.	Part	of	the	problem	was	that	I	didn't	know	many	people
in	California.	I'd	compounded	this	problem	by	buying	a	house	up
in	the	Santa	Cruz	Mountains,	with	a	beautiful	view	but	miles
from	anywhere.	I	stuck	it	out	for	a	few	more	months,	then	in
desperation	I	went	back	to	New	York,	where	unless	you
understand	about	rent	control	you'll	be	surprised	to	hear	I	still
had	my	apartment,	sealed	up	like	a	tomb	of	my	old	life.	Idelle	was
in	New	York	at	least,	and	there	were	other	people	trying	to	paint
there,	even	though	I	didn't	know	any	of	them.

When	I	got	back	to	New	York	I	resumed	my	old	life,	except	now	I
was	rich.	It	was	as	weird	as	it	sounds.	I	resumed	all	my	old
patterns,	except	now	there	were	doors	where	there	hadn't	been.
Now	when	I	was	tired	of	walking,	all	I	had	to	do	was	raise	my

hand,	and	(unless	it	was	raining)	a	taxi	would	stop	to	pick	me	up.
Now	when	I	walked	past	charming	little	restaurants	I	could	go	in
and	order	lunch.	It	was	exciting	for	a	while.	Painting	started	to
go	better.	I	experimented	with	a	new	kind	of	still	life	where	I'd
paint	one	painting	in	the	old	way,	then	photograph	it	and	print	it,
blown	up,	on	canvas,	and	then	use	that	as	the	underpainting	for	a
second	still	life,	painted	from	the	same	objects	(which	hopefully
hadn't	rotted	yet).

Meanwhile	I	looked	for	an	apartment	to	buy.	Now	I	could	actually
choose	what	neighborhood	to	live	in.	Where,	I	asked	myself	and
various	real	estate	agents,	is	the	Cambridge	of	New	York?	Aided
by	occasional	visits	to	actual	Cambridge,	I	gradually	realized
there	wasn't	one.	Huh.

Around	this	time,	in	the	spring	of	2000,	I	had	an	idea.	It	was
clear	from	our	experience	with	Viaweb	that	web	apps	were	the
future.	Why	not	build	a	web	app	for	making	web	apps?	Why	not
let	people	edit	code	on	our	server	through	the	browser,	and	then
host	the	resulting	applications	for	them?	[9]	You	could	run	all
sorts	of	services	on	the	servers	that	these	applications	could	use
just	by	making	an	API	call:	making	and	receiving	phone	calls,
manipulating	images,	taking	credit	card	payments,	etc.

I	got	so	excited	about	this	idea	that	I	couldn't	think	about
anything	else.	It	seemed	obvious	that	this	was	the	future.	I	didn't
particularly	want	to	start	another	company,	but	it	was	clear	that
this	idea	would	have	to	be	embodied	as	one,	so	I	decided	to	move
to	Cambridge	and	start	it.	I	hoped	to	lure	Robert	into	working	on
it	with	me,	but	there	I	ran	into	a	hitch.	Robert	was	now	a	postdoc
at	MIT,	and	though	he'd	made	a	lot	of	money	the	last	time	I'd
lured	him	into	working	on	one	of	my	schemes,	it	had	also	been	a
huge	time	sink.	So	while	he	agreed	that	it	sounded	like	a
plausible	idea,	he	firmly	refused	to	work	on	it.

Hmph.	Well,	I'd	do	it	myself	then.	I	recruited	Dan	Giffin,	who	had
worked	for	Viaweb,	and	two	undergrads	who	wanted	summer
jobs,	and	we	got	to	work	trying	to	build	what	it's	now	clear	is
about	twenty	companies	and	several	open	source	projects	worth
of	software.	The	language	for	defining	applications	would	of
course	be	a	dialect	of	Lisp.	But	I	wasn't	so	naive	as	to	assume	I

#f9n

could	spring	an	overt	Lisp	on	a	general	audience;	we'd	hide	the
parentheses,	like	Dylan	did.

By	then	there	was	a	name	for	the	kind	of	company	Viaweb	was,
an	"application	service	provider,"	or	ASP.	This	name	didn't	last
long	before	it	was	replaced	by	"software	as	a	service,"	but	it	was
current	for	long	enough	that	I	named	this	new	company	after	it:
it	was	going	to	be	called	Aspra.

I	started	working	on	the	application	builder,	Dan	worked	on
network	infrastructure,	and	the	two	undergrads	worked	on	the
first	two	services	(images	and	phone	calls).	But	about	halfway
through	the	summer	I	realized	I	really	didn't	want	to	run	a
company	�	especially	not	a	big	one,	which	it	was	looking	like
this	would	have	to	be.	I'd	only	started	Viaweb	because	I	needed
the	money.	Now	that	I	didn't	need	money	anymore,	why	was	I
doing	this?	If	this	vision	had	to	be	realized	as	a	company,	then
screw	the	vision.	I'd	build	a	subset	that	could	be	done	as	an	open
source	project.

Much	to	my	surprise,	the	time	I	spent	working	on	this	stuff	was
not	wasted	after	all.	After	we	started	Y	Combinator,	I	would	often
encounter	startups	working	on	parts	of	this	new	architecture,
and	it	was	very	useful	to	have	spent	so	much	time	thinking	about
it	and	even	trying	to	write	some	of	it.

The	subset	I	would	build	as	an	open	source	project	was	the	new
Lisp,	whose	parentheses	I	now	wouldn't	even	have	to	hide.	A	lot
of	Lisp	hackers	dream	of	building	a	new	Lisp,	partly	because	one
of	the	distinctive	features	of	the	language	is	that	it	has	dialects,
and	partly,	I	think,	because	we	have	in	our	minds	a	Platonic	form
of	Lisp	that	all	existing	dialects	fall	short	of.	I	certainly	did.	So	at
the	end	of	the	summer	Dan	and	I	switched	to	working	on	this
new	dialect	of	Lisp,	which	I	called	Arc,	in	a	house	I	bought	in
Cambridge.

The	following	spring,	lightning	struck.	I	was	invited	to	give	a	talk
at	a	Lisp	conference,	so	I	gave	one	about	how	we'd	used	Lisp	at
Viaweb.	Afterward	I	put	a	postscript	file	of	this	talk	online,	on
paulgraham.com,	which	I'd	created	years	before	using	Viaweb
but	had	never	used	for	anything.	In	one	day	it	got	30,000	page

views.	What	on	earth	had	happened?	The	referring	urls	showed
that	someone	had	posted	it	on	Slashdot.	[10]

Wow,	I	thought,	there's	an	audience.	If	I	write	something	and	put
it	on	the	web,	anyone	can	read	it.	That	may	seem	obvious	now,
but	it	was	surprising	then.	In	the	print	era	there	was	a	narrow
channel	to	readers,	guarded	by	fierce	monsters	known	as	editors.
The	only	way	to	get	an	audience	for	anything	you	wrote	was	to
get	it	published	as	a	book,	or	in	a	newspaper	or	magazine.	Now
anyone	could	publish	anything.

This	had	been	possible	in	principle	since	1993,	but	not	many
people	had	realized	it	yet.	I	had	been	intimately	involved	with
building	the	infrastructure	of	the	web	for	most	of	that	time,	and	a
writer	as	well,	and	it	had	taken	me	8	years	to	realize	it.	Even
then	it	took	me	several	years	to	understand	the	implications.	It
meant	there	would	be	a	whole	new	generation	of	essays.	[11]

In	the	print	era,	the	channel	for	publishing	essays	had	been
vanishingly	small.	Except	for	a	few	officially	anointed	thinkers
who	went	to	the	right	parties	in	New	York,	the	only	people
allowed	to	publish	essays	were	specialists	writing	about	their
specialties.	There	were	so	many	essays	that	had	never	been
written,	because	there	had	been	no	way	to	publish	them.	Now
they	could	be,	and	I	was	going	to	write	them.	[12]

I've	worked	on	several	different	things,	but	to	the	extent	there
was	a	turning	point	where	I	figured	out	what	to	work	on,	it	was
when	I	started	publishing	essays	online.	From	then	on	I	knew
that	whatever	else	I	did,	I'd	always	write	essays	too.

I	knew	that	online	essays	would	be	a	marginal	medium	at	first.
Socially	they'd	seem	more	like	rants	posted	by	nutjobs	on	their
GeoCities	sites	than	the	genteel	and	beautifully	typeset
compositions	published	in	The	New	Yorker.	But	by	this	point	I
knew	enough	to	find	that	encouraging	instead	of	discouraging.

One	of	the	most	conspicuous	patterns	I've	noticed	in	my	life	is
how	well	it	has	worked,	for	me	at	least,	to	work	on	things	that
weren't	prestigious.	Still	life	has	always	been	the	least
prestigious	form	of	painting.	Viaweb	and	Y	Combinator	both

#f10n
essay.html
#f11n
#f12n
marginal.html

seemed	lame	when	we	started	them.	I	still	get	the	glassy	eye
from	strangers	when	they	ask	what	I'm	writing,	and	I	explain	that
it's	an	essay	I'm	going	to	publish	on	my	web	site.	Even	Lisp,
though	prestigious	intellectually	in	something	like	the	way	Latin
is,	also	seems	about	as	hip.

It's	not	that	unprestigious	types	of	work	are	good	per	se.	But
when	you	find	yourself	drawn	to	some	kind	of	work	despite	its
current	lack	of	prestige,	it's	a	sign	both	that	there's	something
real	to	be	discovered	there,	and	that	you	have	the	right	kind	of
motives.	Impure	motives	are	a	big	danger	for	the	ambitious.	If
anything	is	going	to	lead	you	astray,	it	will	be	the	desire	to
impress	people.	So	while	working	on	things	that	aren't
prestigious	doesn't	guarantee	you're	on	the	right	track,	it	at	least
guarantees	you're	not	on	the	most	common	type	of	wrong	one.

Over	the	next	several	years	I	wrote	lots	of	essays	about	all	kinds
of	different	topics.	O'Reilly	reprinted	a	collection	of	them	as	a
book,	called	Hackers	&	Painters	after	one	of	the	essays	in	it.	I
also	worked	on	spam	filters,	and	did	some	more	painting.	I	used
to	have	dinners	for	a	group	of	friends	every	thursday	night,
which	taught	me	how	to	cook	for	groups.	And	I	bought	another
building	in	Cambridge,	a	former	candy	factory	(and	later,	twas
said,	porn	studio),	to	use	as	an	office.

One	night	in	October	2003	there	was	a	big	party	at	my	house.	It
was	a	clever	idea	of	my	friend	Maria	Daniels,	who	was	one	of	the
thursday	diners.	Three	separate	hosts	would	all	invite	their
friends	to	one	party.	So	for	every	guest,	two	thirds	of	the	other
guests	would	be	people	they	didn't	know	but	would	probably	like.
One	of	the	guests	was	someone	I	didn't	know	but	would	turn	out
to	like	a	lot:	a	woman	called	Jessica	Livingston.	A	couple	days
later	I	asked	her	out.

Jessica	was	in	charge	of	marketing	at	a	Boston	investment	bank.
This	bank	thought	it	understood	startups,	but	over	the	next	year,
as	she	met	friends	of	mine	from	the	startup	world,	she	was
surprised	how	different	reality	was.	And	how	colorful	their
stories	were.	So	she	decided	to	compile	a	book	of	interviews	with
startup	founders.

https://www.amazon.com/Founders-Work-Stories-Startups-Early/dp/1430210788

When	the	bank	had	financial	problems	and	she	had	to	fire	half
her	staff,	she	started	looking	for	a	new	job.	In	early	2005	she
interviewed	for	a	marketing	job	at	a	Boston	VC	firm.	It	took	them
weeks	to	make	up	their	minds,	and	during	this	time	I	started
telling	her	about	all	the	things	that	needed	to	be	fixed	about
venture	capital.	They	should	make	a	larger	number	of	smaller
investments	instead	of	a	handful	of	giant	ones,	they	should	be
funding	younger,	more	technical	founders	instead	of	MBAs,	they
should	let	the	founders	remain	as	CEO,	and	so	on.

One	of	my	tricks	for	writing	essays	had	always	been	to	give	talks.
The	prospect	of	having	to	stand	up	in	front	of	a	group	of	people
and	tell	them	something	that	won't	waste	their	time	is	a	great
spur	to	the	imagination.	When	the	Harvard	Computer	Society,
the	undergrad	computer	club,	asked	me	to	give	a	talk,	I	decided	I
would	tell	them	how	to	start	a	startup.	Maybe	they'd	be	able	to
avoid	the	worst	of	the	mistakes	we'd	made.

So	I	gave	this	talk,	in	the	course	of	which	I	told	them	that	the
best	sources	of	seed	funding	were	successful	startup	founders,
because	then	they'd	be	sources	of	advice	too.	Whereupon	it
seemed	they	were	all	looking	expectantly	at	me.	Horrified	at	the
prospect	of	having	my	inbox	flooded	by	business	plans	(if	I'd	only
known),	I	blurted	out	"But	not	me!"	and	went	on	with	the	talk.
But	afterward	it	occurred	to	me	that	I	should	really	stop
procrastinating	about	angel	investing.	I'd	been	meaning	to	since
Yahoo	bought	us,	and	now	it	was	7	years	later	and	I	still	hadn't
done	one	angel	investment.

Meanwhile	I	had	been	scheming	with	Robert	and	Trevor	about
projects	we	could	work	on	together.	I	missed	working	with	them,
and	it	seemed	like	there	had	to	be	something	we	could
collaborate	on.

As	Jessica	and	I	were	walking	home	from	dinner	on	March	11,	at
the	corner	of	Garden	and	Walker	streets,	these	three	threads
converged.	Screw	the	VCs	who	were	taking	so	long	to	make	up
their	minds.	We'd	start	our	own	investment	firm	and	actually
implement	the	ideas	we'd	been	talking	about.	I'd	fund	it,	and
Jessica	could	quit	her	job	and	work	for	it,	and	we'd	get	Robert
and	Trevor	as	partners	too.	[13]

#f13n

Once	again,	ignorance	worked	in	our	favor.	We	had	no	idea	how
to	be	angel	investors,	and	in	Boston	in	2005	there	were	no	Ron
Conways	to	learn	from.	So	we	just	made	what	seemed	like	the
obvious	choices,	and	some	of	the	things	we	did	turned	out	to	be
novel.

There	are	multiple	components	to	Y	Combinator,	and	we	didn't
figure	them	all	out	at	once.	The	part	we	got	first	was	to	be	an
angel	firm.	In	those	days,	those	two	words	didn't	go	together.
There	were	VC	firms,	which	were	organized	companies	with
people	whose	job	it	was	to	make	investments,	but	they	only	did
big,	million	dollar	investments.	And	there	were	angels,	who	did
smaller	investments,	but	these	were	individuals	who	were	usually
focused	on	other	things	and	made	investments	on	the	side.	And
neither	of	them	helped	founders	enough	in	the	beginning.	We
knew	how	helpless	founders	were	in	some	respects,	because	we
remembered	how	helpless	we'd	been.	For	example,	one	thing
Julian	had	done	for	us	that	seemed	to	us	like	magic	was	to	get	us
set	up	as	a	company.	We	were	fine	writing	fairly	difficult
software,	but	actually	getting	incorporated,	with	bylaws	and
stock	and	all	that	stuff,	how	on	earth	did	you	do	that?	Our	plan
was	not	only	to	make	seed	investments,	but	to	do	for	startups
everything	Julian	had	done	for	us.

YC	was	not	organized	as	a	fund.	It	was	cheap	enough	to	run	that
we	funded	it	with	our	own	money.	That	went	right	by	99%	of
readers,	but	professional	investors	are	thinking	"Wow,	that
means	they	got	all	the	returns."	But	once	again,	this	was	not	due
to	any	particular	insight	on	our	part.	We	didn't	know	how	VC
firms	were	organized.	It	never	occurred	to	us	to	try	to	raise	a
fund,	and	if	it	had,	we	wouldn't	have	known	where	to	start.	[14]

The	most	distinctive	thing	about	YC	is	the	batch	model:	to	fund	a
bunch	of	startups	all	at	once,	twice	a	year,	and	then	to	spend
three	months	focusing	intensively	on	trying	to	help	them.	That
part	we	discovered	by	accident,	not	merely	implicitly	but
explicitly	due	to	our	ignorance	about	investing.	We	needed	to	get
experience	as	investors.	What	better	way,	we	thought,	than	to
fund	a	whole	bunch	of	startups	at	once?	We	knew	undergrads	got
temporary	jobs	at	tech	companies	during	the	summer.	Why	not

#f14n

organize	a	summer	program	where	they'd	start	startups	instead?
We	wouldn't	feel	guilty	for	being	in	a	sense	fake	investors,
because	they	would	in	a	similar	sense	be	fake	founders.	So	while
we	probably	wouldn't	make	much	money	out	of	it,	we'd	at	least
get	to	practice	being	investors	on	them,	and	they	for	their	part
would	probably	have	a	more	interesting	summer	than	they	would
working	at	Microsoft.

We'd	use	the	building	I	owned	in	Cambridge	as	our	headquarters.
We'd	all	have	dinner	there	once	a	week	�	on	tuesdays,	since	I
was	already	cooking	for	the	thursday	diners	on	thursdays	�	and
after	dinner	we'd	bring	in	experts	on	startups	to	give	talks.

We	knew	undergrads	were	deciding	then	about	summer	jobs,	so
in	a	matter	of	days	we	cooked	up	something	we	called	the
Summer	Founders	Program,	and	I	posted	an	announcement	on
my	site,	inviting	undergrads	to	apply.	I	had	never	imagined	that
writing	essays	would	be	a	way	to	get	"deal	flow,"	as	investors	call
it,	but	it	turned	out	to	be	the	perfect	source.	[15]	We	got	225
applications	for	the	Summer	Founders	Program,	and	we	were
surprised	to	find	that	a	lot	of	them	were	from	people	who'd
already	graduated,	or	were	about	to	that	spring.	Already	this	SFP
thing	was	starting	to	feel	more	serious	than	we'd	intended.

We	invited	about	20	of	the	225	groups	to	interview	in	person,	and
from	those	we	picked	8	to	fund.	They	were	an	impressive	group.
That	first	batch	included	reddit,	Justin	Kan	and	Emmett	Shear,
who	went	on	to	found	Twitch,	Aaron	Swartz,	who	had	already
helped	write	the	RSS	spec	and	would	a	few	years	later	become	a
martyr	for	open	access,	and	Sam	Altman,	who	would	later
become	the	second	president	of	YC.	I	don't	think	it	was	entirely
luck	that	the	first	batch	was	so	good.	You	had	to	be	pretty	bold	to
sign	up	for	a	weird	thing	like	the	Summer	Founders	Program
instead	of	a	summer	job	at	a	legit	place	like	Microsoft	or
Goldman	Sachs.

The	deal	for	startups	was	based	on	a	combination	of	the	deal	we
did	with	Julian	($10k	for	10%)	and	what	Robert	said	MIT	grad
students	got	for	the	summer	($6k).	We	invested	$6k	per	founder,
which	in	the	typical	two-founder	case	was	$12k,	in	return	for	6%.
That	had	to	be	fair,	because	it	was	twice	as	good	as	the	deal	we

summerfounder.html
#f15n

ourselves	had	taken.	Plus	that	first	summer,	which	was	really	hot,
Jessica	brought	the	founders	free	air	conditioners.	[16]

Fairly	quickly	I	realized	that	we	had	stumbled	upon	the	way	to
scale	startup	funding.	Funding	startups	in	batches	was	more
convenient	for	us,	because	it	meant	we	could	do	things	for	a	lot
of	startups	at	once,	but	being	part	of	a	batch	was	better	for	the
startups	too.	It	solved	one	of	the	biggest	problems	faced	by
founders:	the	isolation.	Now	you	not	only	had	colleagues,	but
colleagues	who	understood	the	problems	you	were	facing	and
could	tell	you	how	they	were	solving	them.

As	YC	grew,	we	started	to	notice	other	advantages	of	scale.	The
alumni	became	a	tight	community,	dedicated	to	helping	one
another,	and	especially	the	current	batch,	whose	shoes	they
remembered	being	in.	We	also	noticed	that	the	startups	were
becoming	one	another's	customers.	We	used	to	refer	jokingly	to
the	"YC	GDP,"	but	as	YC	grows	this	becomes	less	and	less	of	a
joke.	Now	lots	of	startups	get	their	initial	set	of	customers	almost
entirely	from	among	their	batchmates.

I	had	not	originally	intended	YC	to	be	a	full-time	job.	I	was	going
to	do	three	things:	hack,	write	essays,	and	work	on	YC.	As	YC
grew,	and	I	grew	more	excited	about	it,	it	started	to	take	up	a	lot
more	than	a	third	of	my	attention.	But	for	the	first	few	years	I
was	still	able	to	work	on	other	things.

In	the	summer	of	2006,	Robert	and	I	started	working	on	a	new
version	of	Arc.	This	one	was	reasonably	fast,	because	it	was
compiled	into	Scheme.	To	test	this	new	Arc,	I	wrote	Hacker	News
in	it.	It	was	originally	meant	to	be	a	news	aggregator	for	startup
founders	and	was	called	Startup	News,	but	after	a	few	months	I
got	tired	of	reading	about	nothing	but	startups.	Plus	it	wasn't
startup	founders	we	wanted	to	reach.	It	was	future	startup
founders.	So	I	changed	the	name	to	Hacker	News	and	the	topic
to	whatever	engaged	one's	intellectual	curiosity.

HN	was	no	doubt	good	for	YC,	but	it	was	also	by	far	the	biggest
source	of	stress	for	me.	If	all	I'd	had	to	do	was	select	and	help
founders,	life	would	have	been	so	easy.	And	that	implies	that	HN
was	a	mistake.	Surely	the	biggest	source	of	stress	in	one's	work

#f16n

should	at	least	be	something	close	to	the	core	of	the	work.
Whereas	I	was	like	someone	who	was	in	pain	while	running	a
marathon	not	from	the	exertion	of	running,	but	because	I	had	a
blister	from	an	ill-fitting	shoe.	When	I	was	dealing	with	some
urgent	problem	during	YC,	there	was	about	a	60%	chance	it	had
to	do	with	HN,	and	a	40%	chance	it	had	do	with	everything	else
combined.	[17]

As	well	as	HN,	I	wrote	all	of	YC's	internal	software	in	Arc.	But
while	I	continued	to	work	a	good	deal	in	Arc,	I	gradually	stopped
working	on	Arc,	partly	because	I	didn't	have	time	to,	and	partly
because	it	was	a	lot	less	attractive	to	mess	around	with	the
language	now	that	we	had	all	this	infrastructure	depending	on	it.
So	now	my	three	projects	were	reduced	to	two:	writing	essays
and	working	on	YC.

YC	was	different	from	other	kinds	of	work	I've	done.	Instead	of
deciding	for	myself	what	to	work	on,	the	problems	came	to	me.
Every	6	months	there	was	a	new	batch	of	startups,	and	their
problems,	whatever	they	were,	became	our	problems.	It	was	very
engaging	work,	because	their	problems	were	quite	varied,	and
the	good	founders	were	very	effective.	If	you	were	trying	to	learn
the	most	you	could	about	startups	in	the	shortest	possible	time,
you	couldn't	have	picked	a	better	way	to	do	it.

There	were	parts	of	the	job	I	didn't	like.	Disputes	between
cofounders,	figuring	out	when	people	were	lying	to	us,	fighting
with	people	who	maltreated	the	startups,	and	so	on.	But	I	worked
hard	even	at	the	parts	I	didn't	like.	I	was	haunted	by	something
Kevin	Hale	once	said	about	companies:	"No	one	works	harder
than	the	boss."	He	meant	it	both	descriptively	and	prescriptively,
and	it	was	the	second	part	that	scared	me.	I	wanted	YC	to	be
good,	so	if	how	hard	I	worked	set	the	upper	bound	on	how	hard
everyone	else	worked,	I'd	better	work	very	hard.

One	day	in	2010,	when	he	was	visiting	California	for	interviews,
Robert	Morris	did	something	astonishing:	he	offered	me
unsolicited	advice.	I	can	only	remember	him	doing	that	once
before.	One	day	at	Viaweb,	when	I	was	bent	over	double	from	a
kidney	stone,	he	suggested	that	it	would	be	a	good	idea	for	him
to	take	me	to	the	hospital.	That	was	what	it	took	for	Rtm	to	offer

#f17n

unsolicited	advice.	So	I	remember	his	exact	words	very	clearly.
"You	know,"	he	said,	"you	should	make	sure	Y	Combinator	isn't
the	last	cool	thing	you	do."

At	the	time	I	didn't	understand	what	he	meant,	but	gradually	it
dawned	on	me	that	he	was	saying	I	should	quit.	This	seemed
strange	advice,	because	YC	was	doing	great.	But	if	there	was	one
thing	rarer	than	Rtm	offering	advice,	it	was	Rtm	being	wrong.	So
this	set	me	thinking.	It	was	true	that	on	my	current	trajectory,	YC
would	be	the	last	thing	I	did,	because	it	was	only	taking	up	more
of	my	attention.	It	had	already	eaten	Arc,	and	was	in	the	process
of	eating	essays	too.	Either	YC	was	my	life's	work	or	I'd	have	to
leave	eventually.	And	it	wasn't,	so	I	would.

In	the	summer	of	2012	my	mother	had	a	stroke,	and	the	cause
turned	out	to	be	a	blood	clot	caused	by	colon	cancer.	The	stroke
destroyed	her	balance,	and	she	was	put	in	a	nursing	home,	but
she	really	wanted	to	get	out	of	it	and	back	to	her	house,	and	my
sister	and	I	were	determined	to	help	her	do	it.	I	used	to	fly	up	to
Oregon	to	visit	her	regularly,	and	I	had	a	lot	of	time	to	think	on
those	flights.	On	one	of	them	I	realized	I	was	ready	to	hand	YC
over	to	someone	else.

I	asked	Jessica	if	she	wanted	to	be	president,	but	she	didn't,	so
we	decided	we'd	try	to	recruit	Sam	Altman.	We	talked	to	Robert
and	Trevor	and	we	agreed	to	make	it	a	complete	changing	of	the
guard.	Up	till	that	point	YC	had	been	controlled	by	the	original
LLC	we	four	had	started.	But	we	wanted	YC	to	last	for	a	long
time,	and	to	do	that	it	couldn't	be	controlled	by	the	founders.	So
if	Sam	said	yes,	we'd	let	him	reorganize	YC.	Robert	and	I	would
retire,	and	Jessica	and	Trevor	would	become	ordinary	partners.

When	we	asked	Sam	if	he	wanted	to	be	president	of	YC,	initially
he	said	no.	He	wanted	to	start	a	startup	to	make	nuclear
reactors.	But	I	kept	at	it,	and	in	October	2013	he	finally	agreed.
We	decided	he'd	take	over	starting	with	the	winter	2014	batch.
For	the	rest	of	2013	I	left	running	YC	more	and	more	to	Sam,
partly	so	he	could	learn	the	job,	and	partly	because	I	was	focused
on	my	mother,	whose	cancer	had	returned.

She	died	on	January	15,	2014.	We	knew	this	was	coming,	but	it

was	still	hard	when	it	did.

I	kept	working	on	YC	till	March,	to	help	get	that	batch	of	startups
through	Demo	Day,	then	I	checked	out	pretty	completely.	(I	still
talk	to	alumni	and	to	new	startups	working	on	things	I'm
interested	in,	but	that	only	takes	a	few	hours	a	week.)

What	should	I	do	next?	Rtm's	advice	hadn't	included	anything
about	that.	I	wanted	to	do	something	completely	different,	so	I
decided	I'd	paint.	I	wanted	to	see	how	good	I	could	get	if	I	really
focused	on	it.	So	the	day	after	I	stopped	working	on	YC,	I	started
painting.	I	was	rusty	and	it	took	a	while	to	get	back	into	shape,
but	it	was	at	least	completely	engaging.	[18]

I	spent	most	of	the	rest	of	2014	painting.	I'd	never	been	able	to
work	so	uninterruptedly	before,	and	I	got	to	be	better	than	I	had
been.	Not	good	enough,	but	better.	Then	in	November,	right	in
the	middle	of	a	painting,	I	ran	out	of	steam.	Up	till	that	point	I'd
always	been	curious	to	see	how	the	painting	I	was	working	on
would	turn	out,	but	suddenly	finishing	this	one	seemed	like	a
chore.	So	I	stopped	working	on	it	and	cleaned	my	brushes	and
haven't	painted	since.	So	far	anyway.

I	realize	that	sounds	rather	wimpy.	But	attention	is	a	zero	sum
game.	If	you	can	choose	what	to	work	on,	and	you	choose	a
project	that's	not	the	best	one	(or	at	least	a	good	one)	for	you,
then	it's	getting	in	the	way	of	another	project	that	is.	And	at	50
there	was	some	opportunity	cost	to	screwing	around.

I	started	writing	essays	again,	and	wrote	a	bunch	of	new	ones
over	the	next	few	months.	I	even	wrote	a	couple	that	weren't
about	startups.	Then	in	March	2015	I	started	working	on	Lisp
again.

The	distinctive	thing	about	Lisp	is	that	its	core	is	a	language
defined	by	writing	an	interpreter	in	itself.	It	wasn't	originally
intended	as	a	programming	language	in	the	ordinary	sense.	It
was	meant	to	be	a	formal	model	of	computation,	an	alternative	to
the	Turing	machine.	If	you	want	to	write	an	interpreter	for	a
language	in	itself,	what's	the	minimum	set	of	predefined
operators	you	need?	The	Lisp	that	John	McCarthy	invented,	or

#f18n
know.html

more	accurately	discovered,	is	an	answer	to	that	question.	[19]

McCarthy	didn't	realize	this	Lisp	could	even	be	used	to	program
computers	till	his	grad	student	Steve	Russell	suggested	it.
Russell	translated	McCarthy's	interpreter	into	IBM	704	machine
language,	and	from	that	point	Lisp	started	also	to	be	a
programming	language	in	the	ordinary	sense.	But	its	origins	as	a
model	of	computation	gave	it	a	power	and	elegance	that	other
languages	couldn't	match.	It	was	this	that	attracted	me	in
college,	though	I	didn't	understand	why	at	the	time.

McCarthy's	1960	Lisp	did	nothing	more	than	interpret	Lisp
expressions.	It	was	missing	a	lot	of	things	you'd	want	in	a
programming	language.	So	these	had	to	be	added,	and	when	they
were,	they	weren't	defined	using	McCarthy's	original	axiomatic
approach.	That	wouldn't	have	been	feasible	at	the	time.
McCarthy	tested	his	interpreter	by	hand-simulating	the	execution
of	programs.	But	it	was	already	getting	close	to	the	limit	of
interpreters	you	could	test	that	way	�	indeed,	there	was	a	bug	in
it	that	McCarthy	had	overlooked.	To	test	a	more	complicated
interpreter,	you'd	have	had	to	run	it,	and	computers	then	weren't
powerful	enough.

Now	they	are,	though.	Now	you	could	continue	using	McCarthy's
axiomatic	approach	till	you'd	defined	a	complete	programming
language.	And	as	long	as	every	change	you	made	to	McCarthy's
Lisp	was	a	discoveredness-preserving	transformation,	you	could,
in	principle,	end	up	with	a	complete	language	that	had	this
quality.	Harder	to	do	than	to	talk	about,	of	course,	but	if	it	was
possible	in	principle,	why	not	try?	So	I	decided	to	take	a	shot	at
it.	It	took	4	years,	from	March	26,	2015	to	October	12,	2019.	It
was	fortunate	that	I	had	a	precisely	defined	goal,	or	it	would
have	been	hard	to	keep	at	it	for	so	long.

I	wrote	this	new	Lisp,	called	Bel,	in	itself	in	Arc.	That	may	sound
like	a	contradiction,	but	it's	an	indication	of	the	sort	of	trickery	I
had	to	engage	in	to	make	this	work.	By	means	of	an	egregious
collection	of	hacks	I	managed	to	make	something	close	enough	to
an	interpreter	written	in	itself	that	could	actually	run.	Not	fast,
but	fast	enough	to	test.

#f19n
bel.html

I	had	to	ban	myself	from	writing	essays	during	most	of	this	time,
or	I'd	never	have	finished.	In	late	2015	I	spent	3	months	writing
essays,	and	when	I	went	back	to	working	on	Bel	I	could	barely
understand	the	code.	Not	so	much	because	it	was	badly	written
as	because	the	problem	is	so	convoluted.	When	you're	working
on	an	interpreter	written	in	itself,	it's	hard	to	keep	track	of
what's	happening	at	what	level,	and	errors	can	be	practically
encrypted	by	the	time	you	get	them.

So	I	said	no	more	essays	till	Bel	was	done.	But	I	told	few	people
about	Bel	while	I	was	working	on	it.	So	for	years	it	must	have
seemed	that	I	was	doing	nothing,	when	in	fact	I	was	working
harder	than	I'd	ever	worked	on	anything.	Occasionally	after
wrestling	for	hours	with	some	gruesome	bug	I'd	check	Twitter	or
HN	and	see	someone	asking	"Does	Paul	Graham	still	code?"

Working	on	Bel	was	hard	but	satisfying.	I	worked	on	it	so
intensively	that	at	any	given	time	I	had	a	decent	chunk	of	the
code	in	my	head	and	could	write	more	there.	I	remember	taking
the	boys	to	the	coast	on	a	sunny	day	in	2015	and	figuring	out
how	to	deal	with	some	problem	involving	continuations	while	I
watched	them	play	in	the	tide	pools.	It	felt	like	I	was	doing	life
right.	I	remember	that	because	I	was	slightly	dismayed	at	how
novel	it	felt.	The	good	news	is	that	I	had	more	moments	like	this
over	the	next	few	years.

In	the	summer	of	2016	we	moved	to	England.	We	wanted	our
kids	to	see	what	it	was	like	living	in	another	country,	and	since	I
was	a	British	citizen	by	birth,	that	seemed	the	obvious	choice.	We
only	meant	to	stay	for	a	year,	but	we	liked	it	so	much	that	we	still
live	there.	So	most	of	Bel	was	written	in	England.

In	the	fall	of	2019,	Bel	was	finally	finished.	Like	McCarthy's
original	Lisp,	it's	a	spec	rather	than	an	implementation,	although
like	McCarthy's	Lisp	it's	a	spec	expressed	as	code.

Now	that	I	could	write	essays	again,	I	wrote	a	bunch	about	topics
I'd	had	stacked	up.	I	kept	writing	essays	through	2020,	but	I	also
started	to	think	about	other	things	I	could	work	on.	How	should	I
choose	what	to	do?	Well,	how	had	I	chosen	what	to	work	on	in
the	past?	I	wrote	an	essay	for	myself	to	answer	that	question,

and	I	was	surprised	how	long	and	messy	the	answer	turned	out
to	be.	If	this	surprised	me,	who'd	lived	it,	then	I	thought	perhaps
it	would	be	interesting	to	other	people,	and	encouraging	to	those
with	similarly	messy	lives.	So	I	wrote	a	more	detailed	version	for
others	to	read,	and	this	is	the	last	sentence	of	it.

Notes

[1]	My	experience	skipped	a	step	in	the	evolution	of	computers:
time-sharing	machines	with	interactive	OSes.	I	went	straight
from	batch	processing	to	microcomputers,	which	made
microcomputers	seem	all	the	more	exciting.

[2]	Italian	words	for	abstract	concepts	can	nearly	always	be
predicted	from	their	English	cognates	(except	for	occasional
traps	like	polluzione).	It's	the	everyday	words	that	differ.	So	if
you	string	together	a	lot	of	abstract	concepts	with	a	few	simple
verbs,	you	can	make	a	little	Italian	go	a	long	way.

[3]	I	lived	at	Piazza	San	Felice	4,	so	my	walk	to	the	Accademia
went	straight	down	the	spine	of	old	Florence:	past	the	Pitti,
across	the	bridge,	past	Orsanmichele,	between	the	Duomo	and
the	Baptistery,	and	then	up	Via	Ricasoli	to	Piazza	San	Marco.	I
saw	Florence	at	street	level	in	every	possible	condition,	from
empty	dark	winter	evenings	to	sweltering	summer	days	when	the
streets	were	packed	with	tourists.

[4]	You	can	of	course	paint	people	like	still	lives	if	you	want	to,
and	they're	willing.	That	sort	of	portrait	is	arguably	the	apex	of
still	life	painting,	though	the	long	sitting	does	tend	to	produce
pained	expressions	in	the	sitters.

[5]	Interleaf	was	one	of	many	companies	that	had	smart	people

and	built	impressive	technology,	and	yet	got	crushed	by	Moore's
Law.	In	the	1990s	the	exponential	growth	in	the	power	of
commodity	(i.e.	Intel)	processors	rolled	up	high-end,	special-
purpose	hardware	and	software	companies	like	a	bulldozer.

[6]	The	signature	style	seekers	at	RISD	weren't	specifically
mercenary.	In	the	art	world,	money	and	coolness	are	tightly
coupled.	Anything	expensive	comes	to	be	seen	as	cool,	and
anything	seen	as	cool	will	soon	become	equally	expensive.

[7]	Technically	the	apartment	wasn't	rent-controlled	but	rent-
stabilized,	but	this	is	a	refinement	only	New	Yorkers	would	know
or	care	about.	The	point	is	that	it	was	really	cheap,	less	than	half
market	price.

[8]	Most	software	you	can	launch	as	soon	as	it's	done.	But	when
the	software	is	an	online	store	builder	and	you're	hosting	the
stores,	if	you	don't	have	any	users	yet,	that	fact	will	be	painfully
obvious.	So	before	we	could	launch	publicly	we	had	to	launch
privately,	in	the	sense	of	recruiting	an	initial	set	of	users	and
making	sure	they	had	decent-looking	stores.

[9]	We'd	had	a	code	editor	in	Viaweb	for	users	to	define	their	own
page	styles.	They	didn't	know	it,	but	they	were	editing	Lisp
expressions	underneath.	But	this	wasn't	an	app	editor,	because
the	code	ran	when	the	merchants'	sites	were	generated,	not
when	shoppers	visited	them.

[10]	This	was	the	first	instance	of	what	is	now	a	familiar
experience,	and	so	was	what	happened	next,	when	I	read	the
comments	and	found	they	were	full	of	angry	people.	How	could	I
claim	that	Lisp	was	better	than	other	languages?	Weren't	they	all
Turing	complete?	People	who	see	the	responses	to	essays	I	write
sometimes	tell	me	how	sorry	they	feel	for	me,	but	I'm	not
exaggerating	when	I	reply	that	it	has	always	been	like	this,	since
the	very	beginning.	It	comes	with	the	territory.	An	essay	must	tell
readers	things	they	don't	already	know,	and	some	people	dislike
being	told	such	things.

[11]	People	put	plenty	of	stuff	on	the	internet	in	the	90s	of
course,	but	putting	something	online	is	not	the	same	as

useful.html

publishing	it	online.	Publishing	online	means	you	treat	the	online
version	as	the	(or	at	least	a)	primary	version.

[12]	There	is	a	general	lesson	here	that	our	experience	with	Y
Combinator	also	teaches:	Customs	continue	to	constrain	you	long
after	the	restrictions	that	caused	them	have	disappeared.
Customary	VC	practice	had	once,	like	the	customs	about
publishing	essays,	been	based	on	real	constraints.	Startups	had
once	been	much	more	expensive	to	start,	and	proportionally	rare.
Now	they	could	be	cheap	and	common,	but	the	VCs'	customs	still
reflected	the	old	world,	just	as	customs	about	writing	essays	still
reflected	the	constraints	of	the	print	era.

Which	in	turn	implies	that	people	who	are	independent-minded
(i.e.	less	influenced	by	custom)	will	have	an	advantage	in	fields
affected	by	rapid	change	(where	customs	are	more	likely	to	be
obsolete).

Here's	an	interesting	point,	though:	you	can't	always	predict
which	fields	will	be	affected	by	rapid	change.	Obviously	software
and	venture	capital	will	be,	but	who	would	have	predicted	that
essay	writing	would	be?

[13]	Y	Combinator	was	not	the	original	name.	At	first	we	were
called	Cambridge	Seed.	But	we	didn't	want	a	regional	name,	in
case	someone	copied	us	in	Silicon	Valley,	so	we	renamed
ourselves	after	one	of	the	coolest	tricks	in	the	lambda	calculus,
the	Y	combinator.

I	picked	orange	as	our	color	partly	because	it's	the	warmest,	and
partly	because	no	VC	used	it.	In	2005	all	the	VCs	used	staid
colors	like	maroon,	navy	blue,	and	forest	green,	because	they
were	trying	to	appeal	to	LPs,	not	founders.	The	YC	logo	itself	is
an	inside	joke:	the	Viaweb	logo	had	been	a	white	V	on	a	red
circle,	so	I	made	the	YC	logo	a	white	Y	on	an	orange	square.

[14]	YC	did	become	a	fund	for	a	couple	years	starting	in	2009,
because	it	was	getting	so	big	I	could	no	longer	afford	to	fund	it
personally.	But	after	Heroku	got	bought	we	had	enough	money	to
go	back	to	being	self-funded.

[15]	I've	never	liked	the	term	"deal	flow,"	because	it	implies	that
the	number	of	new	startups	at	any	given	time	is	fixed.	This	is	not
only	false,	but	it's	the	purpose	of	YC	to	falsify	it,	by	causing
startups	to	be	founded	that	would	not	otherwise	have	existed.

[16]	She	reports	that	they	were	all	different	shapes	and	sizes,
because	there	was	a	run	on	air	conditioners	and	she	had	to	get
whatever	she	could,	but	that	they	were	all	heavier	than	she	could
carry	now.

[17]	Another	problem	with	HN	was	a	bizarre	edge	case	that
occurs	when	you	both	write	essays	and	run	a	forum.	When	you
run	a	forum,	you're	assumed	to	see	if	not	every	conversation,	at
least	every	conversation	involving	you.	And	when	you	write
essays,	people	post	highly	imaginative	misinterpretations	of	them
on	forums.	Individually	these	two	phenomena	are	tedious	but
bearable,	but	the	combination	is	disastrous.	You	actually	have	to
respond	to	the	misinterpretations,	because	the	assumption	that
you're	present	in	the	conversation	means	that	not	responding	to
any	sufficiently	upvoted	misinterpretation	reads	as	a	tacit
admission	that	it's	correct.	But	that	in	turn	encourages	more;
anyone	who	wants	to	pick	a	fight	with	you	senses	that	now	is
their	chance.

[18]	The	worst	thing	about	leaving	YC	was	not	working	with
Jessica	anymore.	We'd	been	working	on	YC	almost	the	whole	time
we'd	known	each	other,	and	we'd	neither	tried	nor	wanted	to
separate	it	from	our	personal	lives,	so	leaving	was	like	pulling	up
a	deeply	rooted	tree.

[19]	One	way	to	get	more	precise	about	the	concept	of	invented
vs	discovered	is	to	talk	about	space	aliens.	Any	sufficiently
advanced	alien	civilization	would	certainly	know	about	the
Pythagorean	theorem,	for	example.	I	believe,	though	with	less
certainty,	that	they	would	also	know	about	the	Lisp	in	McCarthy's
1960	paper.

But	if	so	there's	no	reason	to	suppose	that	this	is	the	limit	of	the
language	that	might	be	known	to	them.	Presumably	aliens	need
numbers	and	errors	and	I/O	too.	So	it	seems	likely	there	exists	at
least	one	path	out	of	McCarthy's	Lisp	along	which

discoveredness	is	preserved.

Thanks	to	Trevor	Blackwell,	John	Collison,	Patrick	Collison,
Daniel	Gackle,	Ralph	Hazell,	Jessica	Livingston,	Robert	Morris,
and	Harj	Taggar	for	reading	drafts	of	this.

	

Donate	Unrestricted
March	2021

The	secret	curse	of	the	nonprofit	world	is	restricted	donations.	If
you	haven't	been	involved	with	nonprofits,	you	may	never	have
heard	this	phrase	before.	But	if	you	have	been,	it	probably	made
you	wince.

Restricted	donations	mean	donations	where	the	donor	limits
what	can	be	done	with	the	money.	This	is	common	with	big
donations,	perhaps	the	default.	And	yet	it's	usually	a	bad	idea.
Usually	the	way	the	donor	wants	the	money	spent	is	not	the	way
the	nonprofit	would	have	chosen.	Otherwise	there	would	have
been	no	need	to	restrict	the	donation.	But	who	has	a	better
understanding	of	where	money	needs	to	be	spent,	the	nonprofit
or	the	donor?

If	a	nonprofit	doesn't	understand	better	than	its	donors	where
money	needs	to	be	spent,	then	it's	incompetent	and	you	shouldn't
be	donating	to	it	at	all.

Which	means	a	restricted	donation	is	inherently	suboptimal.	It's
either	a	donation	to	a	bad	nonprofit,	or	a	donation	for	the	wrong
things.

There	are	a	couple	exceptions	to	this	principle.	One	is	when	the
nonprofit	is	an	umbrella	organization.	It's	reasonable	to	make	a
restricted	donation	to	a	university,	for	example,	because	a
university	is	only	nominally	a	single	nonprofit.	Another	exception
is	when	the	donor	actually	does	know	as	much	as	the	nonprofit
about	where	money	needs	to	be	spent.	The	Gates	Foundation,	for
example,	has	specific	goals	and	often	makes	restricted	donations
to	individual	nonprofits	to	accomplish	them.	But	unless	you're	a
domain	expert	yourself	or	donating	to	an	umbrella	organization,
your	donation	would	do	more	good	if	it	were	unrestricted.

If	restricted	donations	do	less	good	than	unrestricted	ones,	why
do	donors	so	often	make	them?	Partly	because	doing	good	isn't
donors'	only	motive.	They	often	have	other	motives	as	well	—	to
make	a	mark,	or	to	generate	good	publicity	[1],	or	to	comply	with
regulations	or	corporate	policies.	Many	donors	may	simply	never
have	considered	the	distinction	between	restricted	and
unrestricted	donations.	They	may	believe	that	donating	money
for	some	specific	purpose	is	just	how	donation	works.	And	to	be
fair,	nonprofits	don't	try	very	hard	to	discourage	such	illusions.
They	can't	afford	to.	People	running	nonprofits	are	almost	always
anxious	about	money.	They	can't	afford	to	talk	back	to	big
donors.

You	can't	expect	candor	in	a	relationship	so	asymmetric.	So	I'll
tell	you	what	nonprofits	wish	they	could	tell	you.	If	you	want	to
donate	to	a	nonprofit,	donate	unrestricted.	If	you	trust	them	to
spend	your	money,	trust	them	to	decide	how.

Note

[1]	Unfortunately	restricted	donations	tend	to	generate	more
publicity	than	unrestricted	ones.	"X	donates	money	to	build	a
school	in	Africa"	is	not	only	more	interesting	than	"X	donates
money	to	Y	nonprofit	to	spend	as	Y	chooses,"	but	also	focuses
more	attention	on	X.

Thanks	to	Chase	Adam,	Ingrid	Bassett,	Trevor	Blackwell,	and
Edith	Elliot	for	reading	drafts	of	this.

#f1n

	

Write	Simply
March	2021

I	try	to	write	using	ordinary	words	and	simple	sentences.

That	kind	of	writing	is	easier	to	read,	and	the	easier	something	is
to	read,	the	more	deeply	readers	will	engage	with	it.	The	less
energy	they	expend	on	your	prose,	the	more	they'll	have	left	for
your	ideas.

And	the	further	they'll	read.	Most	readers'	energy	tends	to	flag
part	way	through	an	article	or	essay.	If	the	friction	of	reading	is
low	enough,	more	keep	going	till	the	end.

There's	an	Italian	dish	called	saltimbocca,	which	means	"leap
into	the	mouth."	My	goal	when	writing	might	be	called
saltintesta:	the	ideas	leap	into	your	head	and	you	barely	notice
the	words	that	got	them	there.

It's	too	much	to	hope	that	writing	could	ever	be	pure	ideas.	You
might	not	even	want	it	to	be.	But	for	most	writers,	most	of	the
time,	that's	the	goal	to	aim	for.	The	gap	between	most	writing
and	pure	ideas	is	not	filled	with	poetry.

Plus	it's	more	considerate	to	write	simply.	When	you	write	in	a
fancy	way	to	impress	people,	you're	making	them	do	extra	work
just	so	you	can	seem	cool.	It's	like	trailing	a	long	train	behind	you
that	readers	have	to	carry.

And	remember,	if	you're	writing	in	English,	that	a	lot	of	your
readers	won't	be	native	English	speakers.	Their	understanding	of
ideas	may	be	way	ahead	of	their	understanding	of	English.	So
you	can't	assume	that	writing	about	a	difficult	topic	means	you
can	use	difficult	words.

Of	course,	fancy	writing	doesn't	just	conceal	ideas.	It	can	also

conceal	the	lack	of	them.	That's	why	some	people	write	that	way,
to	conceal	the	fact	that	they	have	nothing	to	say.	Whereas	writing
simply	keeps	you	honest.	If	you	say	nothing	simply,	it	will	be
obvious	to	everyone,	including	you.

Simple	writing	also	lasts	better.	People	reading	your	stuff	in	the
future	will	be	in	much	the	same	position	as	people	from	other
countries	reading	it	today.	The	culture	and	the	language	will
have	changed.	It's	not	vain	to	care	about	that,	any	more	than	it's
vain	for	a	woodworker	to	build	a	chair	to	last.

Indeed,	lasting	is	not	merely	an	accidental	quality	of	chairs,	or
writing.	It's	a	sign	you	did	a	good	job.

But	although	these	are	all	real	advantages	of	writing	simply,	none
of	them	are	why	I	do	it.	The	main	reason	I	write	simply	is	that	it
offends	me	not	to.	When	I	write	a	sentence	that	seems	too
complicated,	or	that	uses	unnecessarily	intellectual	words,	it
doesn't	seem	fancy	to	me.	It	seems	clumsy.

There	are	of	course	times	when	you	want	to	use	a	complicated
sentence	or	fancy	word	for	effect.	But	you	should	never	do	it	by
accident.

The	other	reason	my	writing	ends	up	being	simple	is	the	way	I	do
it.	I	write	the	first	draft	fast,	then	spend	days	editing	it,	trying	to
get	everything	just	right.	Much	of	this	editing	is	cutting,	and	that
makes	simple	writing	even	simpler.

	

How	People	Get	Rich	Now
April	2021

Every	year	since	1982,	Forbes	magazine	has	published	a	list	of
the	richest	Americans.	If	we	compare	the	100	richest	people	in
1982	to	the	100	richest	in	2020,	we	notice	some	big	differences.

In	1982	the	most	common	source	of	wealth	was	inheritance.	Of
the	100	richest	people,	60	inherited	from	an	ancestor.	There
were	10	du	Pont	heirs	alone.	By	2020	the	number	of	heirs	had
been	cut	in	half,	accounting	for	only	27	of	the	biggest	100
fortunes.

Why	would	the	percentage	of	heirs	decrease?	Not	because
inheritance	taxes	increased.	In	fact,	they	decreased	significantly
during	this	period.	The	reason	the	percentage	of	heirs	has
decreased	is	not	that	fewer	people	are	inheriting	great	fortunes,
but	that	more	people	are	making	them.

How	are	people	making	these	new	fortunes?	Roughly	3/4	by
starting	companies	and	1/4	by	investing.	Of	the	73	new	fortunes
in	2020,	56	derive	from	founders'	or	early	employees'	equity	(52
founders,	2	early	employees,	and	2	wives	of	founders),	and	17
from	managing	investment	funds.

There	were	no	fund	managers	among	the	100	richest	Americans
in	1982.	Hedge	funds	and	private	equity	firms	existed	in	1982,
but	none	of	their	founders	were	rich	enough	yet	to	make	it	into
the	top	100.	Two	things	changed:	fund	managers	discovered	new
ways	to	generate	high	returns,	and	more	investors	were	willing
to	trust	them	with	their	money.	[1]

But	the	main	source	of	new	fortunes	now	is	starting	companies,
and	when	you	look	at	the	data,	you	see	big	changes	there	too.
People	get	richer	from	starting	companies	now	than	they	did	in
1982,	because	the	companies	do	different	things.

#f1n

In	1982,	there	were	two	dominant	sources	of	new	wealth:	oil	and
real	estate.	Of	the	40	new	fortunes	in	1982,	at	least	24	were	due
primarily	to	oil	or	real	estate.	Now	only	a	small	number	are:	of
the	73	new	fortunes	in	2020,	4	were	due	to	real	estate	and	only	2
to	oil.

By	2020	the	biggest	source	of	new	wealth	was	what	are
sometimes	called	"tech"	companies.	Of	the	73	new	fortunes,
about	30	derive	from	such	companies.	These	are	particularly
common	among	the	richest	of	the	rich:	8	of	the	top	10	fortunes	in
2020	were	new	fortunes	of	this	type.

Arguably	it's	slightly	misleading	to	treat	tech	as	a	category.	Isn't
Amazon	really	a	retailer,	and	Tesla	a	car	maker?	Yes	and	no.
Maybe	in	50	years,	when	what	we	call	tech	is	taken	for	granted,
it	won't	seem	right	to	put	these	two	businesses	in	the	same
category.	But	at	the	moment	at	least,	there	is	definitely
something	they	share	in	common	that	distinguishes	them.	What
retailer	starts	AWS?	What	car	maker	is	run	by	someone	who	also
has	a	rocket	company?

The	tech	companies	behind	the	top	100	fortunes	also	form	a	well-
differentiated	group	in	the	sense	that	they're	all	companies	that
venture	capitalists	would	readily	invest	in,	and	the	others	mostly
not.	And	there's	a	reason	why:	these	are	mostly	companies	that
win	by	having	better	technology,	rather	than	just	a	CEO	who's
really	driven	and	good	at	making	deals.

To	that	extent,	the	rise	of	the	tech	companies	represents	a
qualitative	change.	The	oil	and	real	estate	magnates	of	the	1982
Forbes	400	didn't	win	by	making	better	technology.	They	won	by
being	really	driven	and	good	at	making	deals.	[2]	And	indeed,
that	way	of	getting	rich	is	so	old	that	it	predates	the	Industrial
Revolution.	The	courtiers	who	got	rich	in	the	(nominal)	service	of
European	royal	houses	in	the	16th	and	17th	centuries	were	also,
as	a	rule,	really	driven	and	good	at	making	deals.

People	who	don't	look	any	deeper	than	the	Gini	coefficient	look
back	on	the	world	of	1982	as	the	good	old	days,	because	those
who	got	rich	then	didn't	get	as	rich.	But	if	you	dig	into	how	they

#f2n

got	rich,	the	old	days	don't	look	so	good.	In	1982,	84%	of	the
richest	100	people	got	rich	by	inheritance,	extracting	natural
resources,	or	doing	real	estate	deals.	Is	that	really	better	than	a
world	in	which	the	richest	people	get	rich	by	starting	tech
companies?

Why	are	people	starting	so	many	more	new	companies	than	they
used	to,	and	why	are	they	getting	so	rich	from	it?	The	answer	to
the	first	question,	curiously	enough,	is	that	it's	misphrased.	We
shouldn't	be	asking	why	people	are	starting	companies,	but	why
they're	starting	companies	again.	[3]

In	1892,	the	New	York	Herald	Tribune	compiled	a	list	of	all	the
millionaires	in	America.	They	found	4047	of	them.	How	many	had
inherited	their	wealth	then?	Only	about	20%,	which	is	less	than
the	proportion	of	heirs	today.	And	when	you	investigate	the
sources	of	the	new	fortunes,	1892	looks	even	more	like	today.
Hugh	Rockoff	found	that	"many	of	the	richest	...	gained	their
initial	edge	from	the	new	technology	of	mass	production."	[4]

So	it's	not	2020	that's	the	anomaly	here,	but	1982.	The	real
question	is	why	so	few	people	had	gotten	rich	from	starting
companies	in	1982.	And	the	answer	is	that	even	as	the	Herald
Tribune's	list	was	being	compiled,	a	wave	of	consolidation	was
sweeping	through	the	American	economy.	In	the	late	19th	and
early	20th	centuries,	financiers	like	J.	P.	Morgan	combined
thousands	of	smaller	companies	into	a	few	hundred	giant	ones
with	commanding	economies	of	scale.	By	the	end	of	World	War	II,
as	Michael	Lind	writes,	"the	major	sectors	of	the	economy	were
either	organized	as	government-backed	cartels	or	dominated	by
a	few	oligopolistic	corporations."	[5]

In	1960,	most	of	the	people	who	start	startups	today	would	have
gone	to	work	for	one	of	them.	You	could	get	rich	from	starting
your	own	company	in	1890	and	in	2020,	but	in	1960	it	was	not
really	a	viable	option.	You	couldn't	break	through	the	oligopolies
to	get	at	the	markets.	So	the	prestigious	route	in	1960	was	not	to
start	your	own	company,	but	to	work	your	way	up	the	corporate
ladder	at	an	existing	one.	[6]

Making	everyone	a	corporate	employee	decreased	economic

#f3n
#f4n
re.html
#f5n
#f6n

inequality	(and	every	other	kind	of	variation),	but	if	your	model	of
normal	is	the	mid	20th	century,	you	have	a	very	misleading	model
in	that	respect.	J.	P.	Morgan's	economy	turned	out	to	be	just	a
phase,	and	starting	in	the	1970s,	it	began	to	break	up.

Why	did	it	break	up?	Partly	senescence.	The	big	companies	that
seemed	models	of	scale	and	efficiency	in	1930	had	by	1970
become	slack	and	bloated.	By	1970	the	rigid	structure	of	the
economy	was	full	of	cosy	nests	that	various	groups	had	built	to
insulate	themselves	from	market	forces.	During	the	Carter
administration	the	federal	government	realized	something	was
amiss	and	began,	in	a	process	they	called	"deregulation,"	to	roll
back	the	policies	that	propped	up	the	oligopolies.

But	it	wasn't	just	decay	from	within	that	broke	up	J.	P.	Morgan's
economy.	There	was	also	pressure	from	without,	in	the	form	of
new	technology,	and	particularly	microelectronics.	The	best	way
to	envision	what	happened	is	to	imagine	a	pond	with	a	crust	of
ice	on	top.	Initially	the	only	way	from	the	bottom	to	the	surface	is
around	the	edges.	But	as	the	ice	crust	weakens,	you	start	to	be
able	to	punch	right	through	the	middle.

The	edges	of	the	pond	were	pure	tech:	companies	that	actually
described	themselves	as	being	in	the	electronics	or	software
business.	When	you	used	the	word	"startup"	in	1990,	that	was
what	you	meant.	But	now	startups	are	punching	right	through
the	middle	of	the	ice	crust	and	displacing	incumbents	like
retailers	and	TV	networks	and	car	companies.	[7]

But	though	the	breakup	of	J.	P.	Morgan's	economy	created	a	new
world	in	the	technological	sense,	it	was	a	reversion	to	the	norm
in	the	social	sense.	If	you	only	look	back	as	far	as	the	mid	20th
century,	it	seems	like	people	getting	rich	by	starting	their	own
companies	is	a	recent	phenomenon.	But	if	you	look	back	further,
you	realize	it's	actually	the	default.	So	what	we	should	expect	in
the	future	is	more	of	the	same.	Indeed,	we	should	expect	both
the	number	and	wealth	of	founders	to	grow,	because	every
decade	it	gets	easier	to	start	a	startup.

Part	of	the	reason	it's	getting	easier	to	start	a	startup	is	social.
Society	is	(re)assimilating	the	concept.	If	you	start	one	now,	your

#f7n

parents	won't	freak	out	the	way	they	would	have	a	generation
ago,	and	knowledge	about	how	to	do	it	is	much	more	widespread.
But	the	main	reason	it's	easier	to	start	a	startup	now	is	that	it's
cheaper.	Technology	has	driven	down	the	cost	of	both	building
products	and	acquiring	customers.

The	decreasing	cost	of	starting	a	startup	has	in	turn	changed	the
balance	of	power	between	founders	and	investors.	Back	when
starting	a	startup	meant	building	a	factory,	you	needed	investors'
permission	to	do	it	at	all.	But	now	investors	need	founders	more
than	founders	need	investors,	and	that,	combined	with	the
increasing	amount	of	venture	capital	available,	has	driven	up
valuations.	[8]

So	the	decreasing	cost	of	starting	a	startup	increases	the	number
of	rich	people	in	two	ways:	it	means	that	more	people	start	them,
and	that	those	who	do	can	raise	money	on	better	terms.

But	there's	also	a	third	factor	at	work:	the	companies	themselves
are	more	valuable,	because	newly	founded	companies	grow
faster	than	they	used	to.	Technology	hasn't	just	made	it	cheaper
to	build	and	distribute	things,	but	faster	too.

This	trend	has	been	running	for	a	long	time.	IBM,	founded	in
1896,	took	45	years	to	reach	a	billion	2020	dollars	in	revenue.
Hewlett-Packard,	founded	in	1939,	took	25	years.	Microsoft,
founded	in	1975,	took	13	years.	Now	the	norm	for	fast-growing
companies	is	7	or	8	years.	[9]

Fast	growth	has	a	double	effect	on	the	value	of	founders'	stock.
The	value	of	a	company	is	a	function	of	its	revenue	and	its
growth	rate.	So	if	a	company	grows	faster,	you	not	only	get	to	a
billion	dollars	in	revenue	sooner,	but	the	company	is	more
valuable	when	it	reaches	that	point	than	it	would	be	if	it	were
growing	slower.

That's	why	founders	sometimes	get	so	rich	so	young	now.	The
low	initial	cost	of	starting	a	startup	means	founders	can	start
young,	and	the	fast	growth	of	companies	today	means	that	if	they
succeed	they	could	be	surprisingly	rich	just	a	few	years	later.

#f8n
#f9n

It's	easier	now	to	start	and	grow	a	company	than	it	has	ever
been.	That	means	more	people	start	them,	that	those	who	do	get
better	terms	from	investors,	and	that	the	resulting	companies
become	more	valuable.	Once	you	understand	how	these
mechanisms	work,	and	that	startups	were	suppressed	for	most	of
the	20th	century,	you	don't	have	to	resort	to	some	vague	right
turn	the	country	took	under	Reagan	to	explain	why	America's
Gini	coefficient	is	increasing.	Of	course	the	Gini	coefficient	is
increasing.	With	more	people	starting	more	valuable	companies,
how	could	it	not	be?

Notes

[1]	Investment	firms	grew	rapidly	after	a	regulatory	change	by
the	Labor	Department	in	1978	allowed	pension	funds	to	invest	in
them,	but	the	effects	of	this	growth	were	not	yet	visible	in	the	top
100	fortunes	in	1982.

[2]	George	Mitchell	deserves	mention	as	an	exception.	Though
really	driven	and	good	at	making	deals,	he	was	also	the	first	to
figure	out	how	to	use	fracking	to	get	natural	gas	out	of	shale.

[3]	When	I	say	people	are	starting	more	companies,	I	mean	the
type	of	company	meant	to	grow	very	big.	There	has	actually	been
a	decrease	in	the	last	couple	decades	in	the	overall	number	of
new	companies.	But	the	vast	majority	of	companies	are	small
retail	and	service	businesses.	So	what	the	statistics	about	the
decreasing	number	of	new	businesses	mean	is	that	people	are
starting	fewer	shoe	stores	and	barber	shops.

People	sometimes	get	confused	when	they	see	a	graph	labelled

growth.html
https://www.inc.com/magazine/201505/leigh-buchanan/the-vanishing-startups-in-decline.html

"startups"	that's	going	down,	because	there	are	two	senses	of	the
word	"startup":	(1)	the	founding	of	a	company,	and	(2)	a
particular	type	of	company	designed	to	grow	big	fast.	The
statistics	mean	startup	in	sense	(1),	not	sense	(2).

[4]	Rockoff,	Hugh.	"Great	Fortunes	of	the	Gilded	Age."	NBER
Working	Paper	14555,	2008.

[5]	Lind,	Michael.	Land	of	Promise.	HarperCollins,	2012.

It's	also	likely	that	the	high	tax	rates	in	the	mid	20th	century
deterred	people	from	starting	their	own	companies.	Starting
one's	own	company	is	risky,	and	when	risk	isn't	rewarded,	people
opt	for	safety	instead.

But	it	wasn't	simply	cause	and	effect.	The	oligopolies	and	high
tax	rates	of	the	mid	20th	century	were	all	of	a	piece.	Lower	taxes
are	not	just	a	cause	of	entrepreneurship,	but	an	effect	as	well:
the	people	getting	rich	in	the	mid	20th	century	from	real	estate
and	oil	exploration	lobbied	for	and	got	huge	tax	loopholes	that
made	their	effective	tax	rate	much	lower,	and	presumably	if	it
had	been	more	common	to	grow	big	companies	by	building	new
technology,	the	people	doing	that	would	have	lobbied	for	their
own	loopholes	as	well.

[6]	That's	why	the	people	who	did	get	rich	in	the	mid	20th
century	so	often	got	rich	from	oil	exploration	or	real	estate.
Those	were	the	two	big	areas	of	the	economy	that	weren't
susceptible	to	consolidation.

[7]	The	pure	tech	companies	used	to	be	called	"high	technology"
startups.	But	now	that	startups	can	punch	through	the	middle	of
the	ice	crust,	we	don't	need	a	separate	name	for	the	edges,	and
the	term	"high-tech"	has	a	decidedly	retro	sound.

[8]	Higher	valuations	mean	you	either	sell	less	stock	to	get	a
given	amount	of	money,	or	get	more	money	for	a	given	amount	of
stock.	The	typical	startup	does	some	of	each.	Obviously	you	end
up	richer	if	you	keep	more	stock,	but	you	should	also	end	up
richer	if	you	raise	more	money,	because	(a)	it	should	make	the
company	more	successful,	and	(b)	you	should	be	able	to	last

inequality.html
https://books.google.com/ngrams/graph?content=high+tech&year_start=1900&year_end=2019&corpus=en-2019&smoothing=3

longer	before	the	next	round,	or	not	even	need	one.	Notice	all
those	shoulds	though.	In	practice	a	lot	of	money	slips	through
them.

It	might	seem	that	the	huge	rounds	raised	by	startups	nowadays
contradict	the	claim	that	it	has	become	cheaper	to	start	one.	But
there's	no	contradiction	here;	the	startups	that	raise	the	most	are
the	ones	doing	it	by	choice,	in	order	to	grow	faster,	not	the	ones
doing	it	because	they	need	the	money	to	survive.	There's	nothing
like	not	needing	money	to	make	people	offer	it	to	you.

You	would	think,	after	having	been	on	the	side	of	labor	in	its	fight
with	capital	for	almost	two	centuries,	that	the	far	left	would	be
happy	that	labor	has	finally	prevailed.	But	none	of	them	seem	to
be.	You	can	almost	hear	them	saying	"No,	no,	not	that	way."

[9]	IBM	was	created	in	1911	by	merging	three	companies,	the
most	important	of	which	was	Herman	Hollerith's	Tabulating
Machine	Company,	founded	in	1896.	In	1941	its	revenues	were
$60	million.

Hewlett-Packard's	revenues	in	1964	were	$125	million.

Microsoft's	revenues	in	1988	were	$590	million.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Bob	Lesko,
Robert	Morris,	Russ	Roberts,	and	Alex	Tabarrok	for	reading
drafts	of	this,	and	to	Jon	Erlichman	for	growth	data.

	

The	Real	Reason	to	End	the
Death	Penalty
April	2021

When	intellectuals	talk	about	the	death	penalty,	they	talk	about
things	like	whether	it's	permissible	for	the	state	to	take
someone's	life,	whether	the	death	penalty	acts	as	a	deterrent,
and	whether	more	death	sentences	are	given	to	some	groups
than	others.	But	in	practice	the	debate	about	the	death	penalty	is
not	about	whether	it's	ok	to	kill	murderers.	It's	about	whether	it's
ok	to	kill	innocent	people,	because	at	least	4%	of	people	on	death
row	are	innocent.

When	I	was	a	kid	I	imagined	that	it	was	unusual	for	people	to	be
convicted	of	crimes	they	hadn't	committed,	and	that	in	murder
cases	especially	this	must	be	very	rare.	Far	from	it.	Now,	thanks
to	organizations	like	the	Innocence	Project,	we	see	a	constant
stream	of	stories	about	murder	convictions	being	overturned
after	new	evidence	emerges.	Sometimes	the	police	and
prosecutors	were	just	very	sloppy.	Sometimes	they	were	crooked,
and	knew	full	well	they	were	convicting	an	innocent	person.

Kenneth	Adams	and	three	other	men	spent	18	years	in	prison	on
a	murder	conviction.	They	were	exonerated	after	DNA	testing
implicated	three	different	men,	two	of	whom	later	confessed.	The
police	had	been	told	about	the	other	men	early	in	the
investigation,	but	never	followed	up	the	lead.

Keith	Harward	spent	33	years	in	prison	on	a	murder	conviction.
He	was	convicted	because	"experts"	said	his	teeth	matched
photos	of	bite	marks	on	one	victim.	He	was	exonerated	after	DNA
testing	showed	the	murder	had	been	committed	by	another	man,
Jerry	Crotty.

Ricky	Jackson	and	two	other	men	spent	39	years	in	prison	after

https://www.pnas.org/content/111/20/7230
https://innocenceproject.org/all-cases

being	convicted	of	murder	on	the	testimony	of	a	12	year	old	boy,
who	later	recanted	and	said	he'd	been	coerced	by	police.
Multiple	people	have	confirmed	the	boy	was	elsewhere	at	the
time.	The	three	men	were	exonerated	after	the	county	prosecutor
dropped	the	charges,	saying	"The	state	is	conceding	the
obvious."

Alfred	Brown	spent	12	years	in	prison	on	a	murder	conviction,
including	10	years	on	death	row.	He	was	exonerated	after	it	was
discovered	that	the	assistant	district	attorney	had	concealed
phone	records	proving	he	could	not	have	committed	the	crimes.

Glenn	Ford	spent	29	years	on	death	row	after	having	been
convicted	of	murder.	He	was	exonerated	after	new	evidence
proved	he	was	not	even	at	the	scene	when	the	murder	occurred.
The	attorneys	assigned	to	represent	him	had	never	tried	a	jury
case	before.

Cameron	Willingham	was	actually	executed	in	2004	by	lethal
injection.	The	"expert"	who	testified	that	he	deliberately	set	fire
to	his	house	has	since	been	discredited.	A	re-examination	of	the
case	ordered	by	the	state	of	Texas	in	2009	concluded	that	"a
finding	of	arson	could	not	be	sustained."

Rich	Glossip	has	spent	20	years	on	death	row	after	being
convicted	of	murder	on	the	testimony	of	the	actual	killer,	who
escaped	with	a	life	sentence	in	return	for	implicating	him.	In
2015	he	came	within	minutes	of	execution	before	it	emerged	that
Oklahoma	had	been	planning	to	kill	him	with	an	illegal
combination	of	drugs.	They	still	plan	to	go	ahead	with	the
execution,	perhaps	as	soon	as	this	summer,	despite	new	evidence
exonerating	him.

I	could	go	on.	There	are	hundreds	of	similar	cases.	In	Florida
alone,	29	death	row	prisoners	have	been	exonerated	so	far.

Far	from	being	rare,	wrongful	murder	convictions	are	very
common.	Police	are	under	pressure	to	solve	a	crime	that	has
gotten	a	lot	of	attention.	When	they	find	a	suspect,	they	want	to
believe	he's	guilty,	and	ignore	or	even	destroy	evidence
suggesting	otherwise.	District	attorneys	want	to	be	seen	as

https://saverichardglossip.com/facts
https://www.usnews.com/news/best-states/oklahoma/articles/2020-10-14/attorney-for-oklahoma-death-row-inmate-claims-new-evidence
https://deathpenaltyinfo.org/policy-issues/innocence/description-of-innocence-cases

effective	and	tough	on	crime,	and	in	order	to	win	convictions	are
willing	to	manipulate	witnesses	and	withhold	evidence.	Court-
appointed	defense	attorneys	are	overworked	and	often
incompetent.	There's	a	ready	supply	of	criminals	willing	to	give
false	testimony	in	return	for	a	lighter	sentence,	suggestible
witnesses	who	can	be	made	to	say	whatever	police	want,	and
bogus	"experts"	eager	to	claim	that	science	proves	the	defendant
is	guilty.	And	juries	want	to	believe	them,	since	otherwise	some
terrible	crime	remains	unsolved.

This	circus	of	incompetence	and	dishonesty	is	the	real	issue	with
the	death	penalty.	We	don't	even	reach	the	point	where
theoretical	questions	about	the	moral	justification	or
effectiveness	of	capital	punishment	start	to	matter,	because	so
many	of	the	people	sentenced	to	death	are	actually	innocent.
Whatever	it	means	in	theory,	in	practice	capital	punishment
means	killing	innocent	people.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	and	Don	Knight
for	reading	drafts	of	this.

Related:

	

An	NFT	That	Saves	Lives
May	2021

Noora	Health,	a	nonprofit	I've	supported	for	years,	just	launched
a	new	NFT.	It	has	a	dramatic	name,	Save	Thousands	of	Lives,
because	that's	what	the	proceeds	will	do.

Noora	has	been	saving	lives	for	7	years.	They	run	programs	in
hospitals	in	South	Asia	to	teach	new	mothers	how	to	take	care	of
their	babies	once	they	get	home.	They're	in	165	hospitals	now.
And	because	they	know	the	numbers	before	and	after	they	start
at	a	new	hospital,	they	can	measure	the	impact	they	have.	It	is
massive.	For	every	1000	live	births,	they	save	9	babies.

This	number	comes	from	a	study	of	133,733	families	at	28
different	hospitals	that	Noora	conducted	in	collaboration	with	the
Better	Birth	team	at	Ariadne	Labs,	a	joint	center	for	health
systems	innovation	at	Brigham	and	Women�s	Hospital	and
Harvard	T.H.	Chan	School	of	Public	Health.

Noora	is	so	effective	that	even	if	you	measure	their	costs	in	the
most	conservative	way,	by	dividing	their	entire	budget	by	the
number	of	lives	saved,	the	cost	of	saving	a	life	is	the	lowest	I've
seen.	$1,235.

For	this	NFT,	they're	going	to	issue	a	public	report	tracking	how
this	specific	tranche	of	money	is	spent,	and	estimating	the
number	of	lives	saved	as	a	result.

NFTs	are	a	new	territory,	and	this	way	of	using	them	is	especially
new,	but	I'm	excited	about	its	potential.	And	I'm	excited	to	see
what	happens	with	this	particular	auction,	because	unlike	an
NFT	representing	something	that	has	already	happened,	this
NFT	gets	better	as	the	price	gets	higher.

The	reserve	price	was	about	$2.5	million,	because	that's	what	it

https://www.noorahealth.org/
http://bit.ly/NooraNFT
http://bit.ly/NFT-research

takes	for	the	name	to	be	accurate:	that's	what	it	costs	to	save
2000	lives.	But	the	higher	the	price	of	this	NFT	goes,	the	more
lives	will	be	saved.	What	a	sentence	to	be	able	to	write.

	

Crazy	New	Ideas
May	2021

There's	one	kind	of	opinion	I'd	be	very	afraid	to	express	publicly.
If	someone	I	knew	to	be	both	a	domain	expert	and	a	reasonable
person	proposed	an	idea	that	sounded	preposterous,	I'd	be	very
reluctant	to	say	"That	will	never	work."

Anyone	who	has	studied	the	history	of	ideas,	and	especially	the
history	of	science,	knows	that's	how	big	things	start.	Someone
proposes	an	idea	that	sounds	crazy,	most	people	dismiss	it,	then
it	gradually	takes	over	the	world.

Most	implausible-sounding	ideas	are	in	fact	bad	and	could	be
safely	dismissed.	But	not	when	they're	proposed	by	reasonable
domain	experts.	If	the	person	proposing	the	idea	is	reasonable,
then	they	know	how	implausible	it	sounds.	And	yet	they're
proposing	it	anyway.	That	suggests	they	know	something	you
don't.	And	if	they	have	deep	domain	expertise,	that's	probably
the	source	of	it.	[1]

Such	ideas	are	not	merely	unsafe	to	dismiss,	but
disproportionately	likely	to	be	interesting.	When	the	average
person	proposes	an	implausible-sounding	idea,	its	implausibility
is	evidence	of	their	incompetence.	But	when	a	reasonable	domain
expert	does	it,	the	situation	is	reversed.	There's	something	like
an	efficient	market	here:	on	average	the	ideas	that	seem	craziest
will,	if	correct,	have	the	biggest	effect.	So	if	you	can	eliminate
the	theory	that	the	person	proposing	an	implausible-sounding
idea	is	incompetent,	its	implausibility	switches	from	evidence
that	it's	boring	to	evidence	that	it's	exciting.	[2]

Such	ideas	are	not	guaranteed	to	work.	But	they	don't	have	to
be.	They	just	have	to	be	sufficiently	good	bets	—	to	have
sufficiently	high	expected	value.	And	I	think	on	average	they	do.	I
think	if	you	bet	on	the	entire	set	of	implausible-sounding	ideas

#f1n
#f2n

proposed	by	reasonable	domain	experts,	you'd	end	up	net	ahead.

The	reason	is	that	everyone	is	too	conservative.	The	word
"paradigm"	is	overused,	but	this	is	a	case	where	it's	warranted.
Everyone	is	too	much	in	the	grip	of	the	current	paradigm.	Even
the	people	who	have	the	new	ideas	undervalue	them	initially.
Which	means	that	before	they	reach	the	stage	of	proposing	them
publicly,	they've	already	subjected	them	to	an	excessively	strict
filter.	[3]

The	wise	response	to	such	an	idea	is	not	to	make	statements,	but
to	ask	questions,	because	there's	a	real	mystery	here.	Why	has
this	smart	and	reasonable	person	proposed	an	idea	that	seems	so
wrong?	Are	they	mistaken,	or	are	you?	One	of	you	has	to	be.	If
you're	the	one	who's	mistaken,	that	would	be	good	to	know,
because	it	means	there's	a	hole	in	your	model	of	the	world.	But
even	if	they're	mistaken,	it	should	be	interesting	to	learn	why.	A
trap	that	an	expert	falls	into	is	one	you	have	to	worry	about	too.

This	all	seems	pretty	obvious.	And	yet	there	are	clearly	a	lot	of
people	who	don't	share	my	fear	of	dismissing	new	ideas.	Why	do
they	do	it?	Why	risk	looking	like	a	jerk	now	and	a	fool	later,
instead	of	just	reserving	judgement?

One	reason	they	do	it	is	envy.	If	you	propose	a	radical	new	idea
and	it	succeeds,	your	reputation	(and	perhaps	also	your	wealth)
will	increase	proportionally.	Some	people	would	be	envious	if	that
happened,	and	this	potential	envy	propagates	back	into	a
conviction	that	you	must	be	wrong.

Another	reason	people	dismiss	new	ideas	is	that	it's	an	easy	way
to	seem	sophisticated.	When	a	new	idea	first	emerges,	it	usually
seems	pretty	feeble.	It's	a	mere	hatchling.	Received	wisdom	is	a
full-grown	eagle	by	comparison.	So	it's	easy	to	launch	a
devastating	attack	on	a	new	idea,	and	anyone	who	does	will	seem
clever	to	those	who	don't	understand	this	asymmetry.

This	phenomenon	is	exacerbated	by	the	difference	between	how
those	working	on	new	ideas	and	those	attacking	them	are
rewarded.	The	rewards	for	working	on	new	ideas	are	weighted
by	the	value	of	the	outcome.	So	it's	worth	working	on	something

#f3n

that	only	has	a	10%	chance	of	succeeding	if	it	would	make	things
more	than	10x	better.	Whereas	the	rewards	for	attacking	new
ideas	are	roughly	constant;	such	attacks	seem	roughly	equally
clever	regardless	of	the	target.

People	will	also	attack	new	ideas	when	they	have	a	vested
interest	in	the	old	ones.	It's	not	surprising,	for	example,	that
some	of	Darwin's	harshest	critics	were	churchmen.	People	build
whole	careers	on	some	ideas.	When	someone	claims	they're	false
or	obsolete,	they	feel	threatened.

The	lowest	form	of	dismissal	is	mere	factionalism:	to
automatically	dismiss	any	idea	associated	with	the	opposing
faction.	The	lowest	form	of	all	is	to	dismiss	an	idea	because	of
who	proposed	it.

But	the	main	thing	that	leads	reasonable	people	to	dismiss	new
ideas	is	the	same	thing	that	holds	people	back	from	proposing
them:	the	sheer	pervasiveness	of	the	current	paradigm.	It	doesn't
just	affect	the	way	we	think;	it	is	the	Lego	blocks	we	build
thoughts	out	of.	Popping	out	of	the	current	paradigm	is
something	only	a	few	people	can	do.	And	even	they	usually	have
to	suppress	their	intuitions	at	first,	like	a	pilot	flying	through
cloud	who	has	to	trust	his	instruments	over	his	sense	of	balance.
[4]

Paradigms	don't	just	define	our	present	thinking.	They	also
vacuum	up	the	trail	of	crumbs	that	led	to	them,	making	our
standards	for	new	ideas	impossibly	high.	The	current	paradigm
seems	so	perfect	to	us,	its	offspring,	that	we	imagine	it	must
have	been	accepted	completely	as	soon	as	it	was	discovered	—
that	whatever	the	church	thought	of	the	heliocentric	model,
astronomers	must	have	been	convinced	as	soon	as	Copernicus
proposed	it.	Far,	in	fact,	from	it.	Copernicus	published	the
heliocentric	model	in	1532,	but	it	wasn't	till	the	mid	seventeenth
century	that	the	balance	of	scientific	opinion	shifted	in	its	favor.
[5]

Few	understand	how	feeble	new	ideas	look	when	they	first
appear.	So	if	you	want	to	have	new	ideas	yourself,	one	of	the
most	valuable	things	you	can	do	is	to	learn	what	they	look	like

#f4n
#f5n

when	they're	born.	Read	about	how	new	ideas	happened,	and	try
to	get	yourself	into	the	heads	of	people	at	the	time.	How	did
things	look	to	them,	when	the	new	idea	was	only	half-finished,
and	even	the	person	who	had	it	was	only	half-convinced	it	was
right?

But	you	don't	have	to	stop	at	history.	You	can	observe	big	new
ideas	being	born	all	around	you	right	now.	Just	look	for	a
reasonable	domain	expert	proposing	something	that	sounds
wrong.

If	you're	nice,	as	well	as	wise,	you	won't	merely	resist	attacking
such	people,	but	encourage	them.	Having	new	ideas	is	a	lonely
business.	Only	those	who've	tried	it	know	how	lonely.	These
people	need	your	help.	And	if	you	help	them,	you'll	probably
learn	something	in	the	process.

Notes

[1]	This	domain	expertise	could	be	in	another	field.	Indeed,	such
crossovers	tend	to	be	particularly	promising.

[2]	I'm	not	claiming	this	principle	extends	much	beyond	math,
engineering,	and	the	hard	sciences.	In	politics,	for	example,
crazy-sounding	ideas	generally	are	as	bad	as	they	sound.	Though
arguably	this	is	not	an	exception,	because	the	people	who
propose	them	are	not	in	fact	domain	experts;	politicians	are
domain	experts	in	political	tactics,	like	how	to	get	elected	and
how	to	get	legislation	passed,	but	not	in	the	world	that	policy
acts	upon.	Perhaps	no	one	could	be.

[3]	This	sense	of	"paradigm"	was	defined	by	Thomas	Kuhn	in	his
Structure	of	Scientific	Revolutions,	but	I	also	recommend	his

Copernican	Revolution,	where	you	can	see	him	at	work
developing	the	idea.

[4]	This	is	one	reason	people	with	a	touch	of	Asperger's	may	have
an	advantage	in	discovering	new	ideas.	They're	always	flying	on
instruments.

[5]	Hall,	Rupert.	From	Galileo	to	Newton.	Collins,	1963.	This
book	is	particularly	good	at	getting	into	contemporaries'	heads.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	Suhail	Doshi,	Daniel
Gackle,	Jessica	Livingston,	and	Robert	Morris	for	reading	drafts
of	this.

	

Fierce	Nerds
May	2021

Most	people	think	of	nerds	as	quiet,	diffident	people.	In	ordinary
social	situations	they	are	—	as	quiet	and	diffident	as	the	star
quarterback	would	be	if	he	found	himself	in	the	middle	of	a
physics	symposium.	And	for	the	same	reason:	they	are	fish	out	of
water.	But	the	apparent	diffidence	of	nerds	is	an	illusion	due	to
the	fact	that	when	non-nerds	observe	them,	it's	usually	in
ordinary	social	situations.	In	fact	some	nerds	are	quite	fierce.

The	fierce	nerds	are	a	small	but	interesting	group.	They	are	as	a
rule	extremely	competitive	—	more	competitive,	I'd	say,	than
highly	competitive	non-nerds.	Competition	is	more	personal	for
them.	Partly	perhaps	because	they're	not	emotionally	mature
enough	to	distance	themselves	from	it,	but	also	because	there's
less	randomness	in	the	kinds	of	competition	they	engage	in,	and
they	are	thus	more	justified	in	taking	the	results	personally.

Fierce	nerds	also	tend	to	be	somewhat	overconfident,	especially
when	young.	It	might	seem	like	it	would	be	a	disadvantage	to	be
mistaken	about	one's	abilities,	but	empirically	it	isn't.	Up	to	a
point,	confidence	is	a	self-fullfilling	prophecy.

Another	quality	you	find	in	most	fierce	nerds	is	intelligence.	Not
all	nerds	are	smart,	but	the	fierce	ones	are	always	at	least
moderately	so.	If	they	weren't,	they	wouldn't	have	the	confidence
to	be	fierce.	[1]

There's	also	a	natural	connection	between	nerdiness	and
independent-mindedness.	It's	hard	to	be	independent-minded
without	being	somewhat	socially	awkward,	because	conventional
beliefs	are	so	often	mistaken,	or	at	least	arbitrary.	No	one	who
was	both	independent-minded	and	ambitious	would	want	to
waste	the	effort	it	takes	to	fit	in.	And	the	independent-
mindedness	of	the	fierce	nerds	will	obviously	be	of	the	aggressive

#f1n
think.html
conformism.html

rather	than	the	passive	type:	they'll	be	annoyed	by	rules,	rather
than	dreamily	unaware	of	them.

I'm	less	sure	why	fierce	nerds	are	impatient,	but	most	seem	to
be.	You	notice	it	first	in	conversation,	where	they	tend	to
interrupt	you.	This	is	merely	annoying,	but	in	the	more	promising
fierce	nerds	it's	connected	to	a	deeper	impatience	about	solving
problems.	Perhaps	the	competitiveness	and	impatience	of	fierce
nerds	are	not	separate	qualities,	but	two	manifestations	of	a
single	underlying	drivenness.

When	you	combine	all	these	qualities	in	sufficient	quantities,	the
result	is	quite	formidable.	The	most	vivid	example	of	fierce	nerds
in	action	may	be	James	Watson's	The	Double	Helix.	The	first
sentence	of	the	book	is	"I	have	never	seen	Francis	Crick	in	a
modest	mood,"	and	the	portrait	he	goes	on	to	paint	of	Crick	is	the
quintessential	fierce	nerd:	brilliant,	socially	awkward,
competitive,	independent-minded,	overconfident.	But	so	is	the
implicit	portrait	he	paints	of	himself.	Indeed,	his	lack	of	social
awareness	makes	both	portraits	that	much	more	realistic,
because	he	baldly	states	all	sorts	of	opinions	and	motivations	that
a	smoother	person	would	conceal.	And	moreover	it's	clear	from
the	story	that	Crick	and	Watson's	fierce	nerdiness	was	integral	to
their	success.	Their	independent-mindedness	caused	them	to
consider	approaches	that	most	others	ignored,	their
overconfidence	allowed	them	to	work	on	problems	they	only	half
understood	(they	were	literally	described	as	"clowns"	by	one
eminent	insider),	and	their	impatience	and	competitiveness	got
them	to	the	answer	ahead	of	two	other	groups	that	would
otherwise	have	found	it	within	the	next	year,	if	not	the	next
several	months.	[2]

The	idea	that	there	could	be	fierce	nerds	is	an	unfamiliar	one	not
just	to	many	normal	people	but	even	to	some	young	nerds.
Especially	early	on,	nerds	spend	so	much	of	their	time	in
ordinary	social	situations	and	so	little	doing	real	work	that	they
get	a	lot	more	evidence	of	their	awkwardness	than	their	power.
So	there	will	be	some	who	read	this	description	of	the	fierce	nerd
and	realize	"Hmm,	that's	me."	And	it	is	to	you,	young	fierce	nerd,
that	I	now	turn.

#f2n

I	have	some	good	news,	and	some	bad	news.	The	good	news	is
that	your	fierceness	will	be	a	great	help	in	solving	difficult
problems.	And	not	just	the	kind	of	scientific	and	technical
problems	that	nerds	have	traditionally	solved.	As	the	world
progresses,	the	number	of	things	you	can	win	at	by	getting	the
right	answer	increases.	Recently	getting	rich	became	one	of
them:	7	of	the	8	richest	people	in	America	are	now	fierce	nerds.

Indeed,	being	a	fierce	nerd	is	probably	even	more	helpful	in
business	than	in	nerds'	original	territory	of	scholarship.
Fierceness	seems	optional	there.	Darwin	for	example	doesn't
seem	to	have	been	especially	fierce.	Whereas	it's	impossible	to
be	the	CEO	of	a	company	over	a	certain	size	without	being	fierce,
so	now	that	nerds	can	win	at	business,	fierce	nerds	will
increasingly	monopolize	the	really	big	successes.

The	bad	news	is	that	if	it's	not	exercised,	your	fierceness	will
turn	to	bitterness,	and	you	will	become	an	intellectual
playground	bully:	the	grumpy	sysadmin,	the	forum	troll,	the
hater,	the	shooter	down	of	new	ideas.

How	do	you	avoid	this	fate?	Work	on	ambitious	projects.	If	you
succeed,	it	will	bring	you	a	kind	of	satisfaction	that	neutralizes
bitterness.	But	you	don't	need	to	have	succeeded	to	feel	this;
merely	working	on	hard	projects	gives	most	fierce	nerds	some
feeling	of	satisfaction.	And	those	it	doesn't,	it	at	least	keeps	busy.
[3]

Another	solution	may	be	to	somehow	turn	off	your	fierceness,	by
devoting	yourself	to	meditation	or	psychotherapy	or	something
like	that.	Maybe	that's	the	right	answer	for	some	people.	I	have
no	idea.	But	it	doesn't	seem	the	optimal	solution	to	me.	If	you're
given	a	sharp	knife,	it	seems	to	me	better	to	use	it	than	to	blunt
its	edge	to	avoid	cutting	yourself.

If	you	do	choose	the	ambitious	route,	you'll	have	a	tailwind
behind	you.	There	has	never	been	a	better	time	to	be	a	nerd.	In
the	past	century	we've	seen	a	continuous	transfer	of	power	from
dealmakers	to	technicians	—	from	the	charismatic	to	the
competent	—	and	I	don't	see	anything	on	the	horizon	that	will
end	it.	At	least	not	till	the	nerds	end	it	themselves	by	bringing

richnow.html
fh.html
newideas.html
#f3n

about	the	singularity.

Notes

[1]	To	be	a	nerd	is	to	be	socially	awkward,	and	there	are	two
distinct	ways	to	do	that:	to	be	playing	the	same	game	as
everyone	else,	but	badly,	and	to	be	playing	a	different	game.	The
smart	nerds	are	the	latter	type.

[2]	The	same	qualities	that	make	fierce	nerds	so	effective	can
also	make	them	very	annoying.	Fierce	nerds	would	do	well	to
remember	this,	and	(a)	try	to	keep	a	lid	on	it,	and	(b)	seek	out
organizations	and	types	of	work	where	getting	the	right	answer
matters	more	than	preserving	social	harmony.	In	practice	that
means	small	groups	working	on	hard	problems.	Which
fortunately	is	the	most	fun	kind	of	environment	anyway.

[3]	If	success	neutralizes	bitterness,	why	are	there	some	people
who	are	at	least	moderately	successful	and	yet	still	quite	bitter?
Because	people's	potential	bitterness	varies	depending	on	how
naturally	bitter	their	personality	is,	and	how	ambitious	they	are:
someone	who's	naturally	very	bitter	will	still	have	a	lot	left	after
success	neutralizes	some	of	it,	and	someone	who's	very	ambitious
will	need	proportionally	more	success	to	satisfy	that	ambition.

So	the	worst-case	scenario	is	someone	who's	both	naturally	bitter
and	extremely	ambitious,	and	yet	only	moderately	successful.

Thanks	to	Trevor	Blackwell,	Steve	Blank,	Patrick	Collison,	Jessica
Livingston,	Amjad	Masad,	and	Robert	Morris	for	reading	drafts	of
this.

	

A	Project	of	One's	Own
June	2021

A	few	days	ago,	on	the	way	home	from	school,	my	nine	year	old
son	told	me	he	couldn't	wait	to	get	home	to	write	more	of	the
story	he	was	working	on.	This	made	me	as	happy	as	anything	I've
heard	him	say	—	not	just	because	he	was	excited	about	his	story,
but	because	he'd	discovered	this	way	of	working.	Working	on	a
project	of	your	own	is	as	different	from	ordinary	work	as	skating
is	from	walking.	It's	more	fun,	but	also	much	more	productive.

What	proportion	of	great	work	has	been	done	by	people	who
were	skating	in	this	sense?	If	not	all	of	it,	certainly	a	lot.

There	is	something	special	about	working	on	a	project	of	your
own.	I	wouldn't	say	exactly	that	you're	happier.	A	better	word
would	be	excited,	or	engaged.	You're	happy	when	things	are
going	well,	but	often	they	aren't.	When	I'm	writing	an	essay,	most
of	the	time	I'm	worried	and	puzzled:	worried	that	the	essay	will
turn	out	badly,	and	puzzled	because	I'm	groping	for	some	idea
that	I	can't	see	clearly	enough.	Will	I	be	able	to	pin	it	down	with
words?	In	the	end	I	usually	can,	if	I	take	long	enough,	but	I'm
never	sure;	the	first	few	attempts	often	fail.

You	have	moments	of	happiness	when	things	work	out,	but	they
don't	last	long,	because	then	you're	on	to	the	next	problem.	So
why	do	it	at	all?	Because	to	the	kind	of	people	who	like	working
this	way,	nothing	else	feels	as	right.	You	feel	as	if	you're	an
animal	in	its	natural	habitat,	doing	what	you	were	meant	to	do	—
not	always	happy,	maybe,	but	awake	and	alive.

Many	kids	experience	the	excitement	of	working	on	projects	of
their	own.	The	hard	part	is	making	this	converge	with	the	work
you	do	as	an	adult.	And	our	customs	make	it	harder.	We	treat
"playing"	and	"hobbies"	as	qualitatively	different	from	"work".	It's
not	clear	to	a	kid	building	a	treehouse	that	there's	a	direct

(though	long)	route	from	that	to	architecture	or	engineering.	And
instead	of	pointing	out	the	route,	we	conceal	it,	by	implicitly
treating	the	stuff	kids	do	as	different	from	real	work.	[1]

Instead	of	telling	kids	that	their	treehouses	could	be	on	the	path
to	the	work	they	do	as	adults,	we	tell	them	the	path	goes	through
school.	And	unfortunately	schoolwork	tends	to	be	very	different
from	working	on	projects	of	one's	own.	It's	usually	neither	a
project,	nor	one's	own.	So	as	school	gets	more	serious,	working
on	projects	of	one's	own	is	something	that	survives,	if	at	all,	as	a
thin	thread	off	to	the	side.

It's	a	bit	sad	to	think	of	all	the	high	school	kids	turning	their
backs	on	building	treehouses	and	sitting	in	class	dutifully
learning	about	Darwin	or	Newton	to	pass	some	exam,	when	the
work	that	made	Darwin	and	Newton	famous	was	actually	closer
in	spirit	to	building	treehouses	than	studying	for	exams.

If	I	had	to	choose	between	my	kids	getting	good	grades	and
working	on	ambitious	projects	of	their	own,	I'd	pick	the	projects.
And	not	because	I'm	an	indulgent	parent,	but	because	I've	been
on	the	other	end	and	I	know	which	has	more	predictive	value.
When	I	was	picking	startups	for	Y	Combinator,	I	didn't	care	about
applicants'	grades.	But	if	they'd	worked	on	projects	of	their	own,
I	wanted	to	hear	all	about	those.	[2]

It	may	be	inevitable	that	school	is	the	way	it	is.	I'm	not	saying	we
have	to	redesign	it	(though	I'm	not	saying	we	don't),	just	that	we
should	understand	what	it	does	to	our	attitudes	to	work	—	that	it
steers	us	toward	the	dutiful	plodding	kind	of	work,	often	using
competition	as	bait,	and	away	from	skating.

There	are	occasionally	times	when	schoolwork	becomes	a	project
of	one's	own.	Whenever	I	had	to	write	a	paper,	that	would
become	a	project	of	my	own	—	except	in	English	classes,
ironically,	because	the	things	one	has	to	write	in	English	classes
are	so	bogus.	And	when	I	got	to	college	and	started	taking	CS
classes,	the	programs	I	had	to	write	became	projects	of	my	own.
Whenever	I	was	writing	or	programming,	I	was	usually	skating,
and	that	has	been	true	ever	since.

#f1n
#f2n
essay.html

So	where	exactly	is	the	edge	of	projects	of	one's	own?	That's	an
interesting	question,	partly	because	the	answer	is	so
complicated,	and	partly	because	there's	so	much	at	stake.	There
turn	out	to	be	two	senses	in	which	work	can	be	one's	own:	1)	that
you're	doing	it	voluntarily,	rather	than	merely	because	someone
told	you	to,	and	2)	that	you're	doing	it	by	yourself.

The	edge	of	the	former	is	quite	sharp.	People	who	care	a	lot
about	their	work	are	usually	very	sensitive	to	the	difference
between	pulling,	and	being	pushed,	and	work	tends	to	fall	into
one	category	or	the	other.	But	the	test	isn't	simply	whether
you're	told	to	do	something.	You	can	choose	to	do	something
you're	told	to	do.	Indeed,	you	can	own	it	far	more	thoroughly
than	the	person	who	told	you	to	do	it.

For	example,	math	homework	is	for	most	people	something
they're	told	to	do.	But	for	my	father,	who	was	a	mathematician,	it
wasn't.	Most	of	us	think	of	the	problems	in	a	math	book	as	a	way
to	test	or	develop	our	knowledge	of	the	material	explained	in
each	section.	But	to	my	father	the	problems	were	the	part	that
mattered,	and	the	text	was	merely	a	sort	of	annotation.
Whenever	he	got	a	new	math	book	it	was	to	him	like	being	given
a	puzzle:	here	was	a	new	set	of	problems	to	solve,	and	he'd
immediately	set	about	solving	all	of	them.

The	other	sense	of	a	project	being	one's	own	—	working	on	it	by
oneself	—	has	a	much	softer	edge.	It	shades	gradually	into
collaboration.	And	interestingly,	it	shades	into	collaboration	in
two	different	ways.	One	way	to	collaborate	is	to	share	a	single
project.	For	example,	when	two	mathematicians	collaborate	on	a
proof	that	takes	shape	in	the	course	of	a	conversation	between
them.	The	other	way	is	when	multiple	people	work	on	separate
projects	of	their	own	that	fit	together	like	a	jigsaw	puzzle.	For
example,	when	one	person	writes	the	text	of	a	book	and	another
does	the	graphic	design.	[3]

These	two	paths	into	collaboration	can	of	course	be	combined.
But	under	the	right	conditions,	the	excitement	of	working	on	a
project	of	one's	own	can	be	preserved	for	quite	a	while	before
disintegrating	into	the	turbulent	flow	of	work	in	a	large
organization.	Indeed,	the	history	of	successful	organizations	is

#f3n

partly	the	history	of	techniques	for	preserving	that	excitement.
[4]

The	team	that	made	the	original	Macintosh	were	a	great	example
of	this	phenomenon.	People	like	Burrell	Smith	and	Andy
Hertzfeld	and	Bill	Atkinson	and	Susan	Kare	were	not	just
following	orders.	They	were	not	tennis	balls	hit	by	Steve	Jobs,	but
rockets	let	loose	by	Steve	Jobs.	There	was	a	lot	of	collaboration
between	them,	but	they	all	seem	to	have	individually	felt	the
excitement	of	working	on	a	project	of	one's	own.

In	Andy	Hertzfeld's	book	on	the	Macintosh,	he	describes	how
they'd	come	back	into	the	office	after	dinner	and	work	late	into
the	night.	People	who've	never	experienced	the	thrill	of	working
on	a	project	they're	excited	about	can't	distinguish	this	kind	of
working	long	hours	from	the	kind	that	happens	in	sweatshops
and	boiler	rooms,	but	they're	at	opposite	ends	of	the	spectrum.
That's	why	it's	a	mistake	to	insist	dogmatically	on	"work/life
balance."	Indeed,	the	mere	expression	"work/life"	embodies	a
mistake:	it	assumes	work	and	life	are	distinct.	For	those	to	whom
the	word	"work"	automatically	implies	the	dutiful	plodding	kind,
they	are.	But	for	the	skaters,	the	relationship	between	work	and
life	would	be	better	represented	by	a	dash	than	a	slash.	I
wouldn't	want	to	work	on	anything	that	I	didn't	want	to	take	over
my	life.

Of	course,	it's	easier	to	achieve	this	level	of	motivation	when
you're	making	something	like	the	Macintosh.	It's	easy	for
something	new	to	feel	like	a	project	of	your	own.	That's	one	of
the	reasons	for	the	tendency	programmers	have	to	rewrite	things
that	don't	need	rewriting,	and	to	write	their	own	versions	of
things	that	already	exist.	This	sometimes	alarms	managers,	and
measured	by	total	number	of	characters	typed,	it's	rarely	the
optimal	solution.	But	it's	not	always	driven	simply	by	arrogance
or	cluelessness.	Writing	code	from	scratch	is	also	much	more
rewarding	—	so	much	more	rewarding	that	a	good	programmer
can	end	up	net	ahead,	despite	the	shocking	waste	of	characters.
Indeed,	it	may	be	one	of	the	advantages	of	capitalism	that	it
encourages	such	rewriting.	A	company	that	needs	software	to	do
something	can't	use	the	software	already	written	to	do	it	at
another	company,	and	thus	has	to	write	their	own,	which	often

#f4n

turns	out	better.	[5]

The	natural	alignment	between	skating	and	solving	new
problems	is	one	of	the	reasons	the	payoffs	from	startups	are	so
high.	Not	only	is	the	market	price	of	unsolved	problems	higher,
you	also	get	a	discount	on	productivity	when	you	work	on	them.
In	fact,	you	get	a	double	increase	in	productivity:	when	you're
doing	a	clean-sheet	design,	it's	easier	to	recruit	skaters,	and	they
get	to	spend	all	their	time	skating.

Steve	Jobs	knew	a	thing	or	two	about	skaters	from	having
watched	Steve	Wozniak.	If	you	can	find	the	right	people,	you	only
have	to	tell	them	what	to	do	at	the	highest	level.	They'll	handle
the	details.	Indeed,	they	insist	on	it.	For	a	project	to	feel	like	your
own,	you	must	have	sufficient	autonomy.	You	can't	be	working	to
order,	or	slowed	down	by	bureaucracy.

One	way	to	ensure	autonomy	is	not	to	have	a	boss	at	all.	There
are	two	ways	to	do	that:	to	be	the	boss	yourself,	and	to	work	on
projects	outside	of	work.	Though	they're	at	opposite	ends	of	the
scale	financially,	startups	and	open	source	projects	have	a	lot	in
common,	including	the	fact	that	they're	often	run	by	skaters.	And
indeed,	there's	a	wormhole	from	one	end	of	the	scale	to	the
other:	one	of	the	best	ways	to	discover	startup	ideas	is	to	work
on	a	project	just	for	fun.

If	your	projects	are	the	kind	that	make	money,	it's	easy	to	work
on	them.	It's	harder	when	they're	not.	And	the	hardest	part,
usually,	is	morale.	That's	where	adults	have	it	harder	than	kids.
Kids	just	plunge	in	and	build	their	treehouse	without	worrying
about	whether	they're	wasting	their	time,	or	how	it	compares	to
other	treehouses.	And	frankly	we	could	learn	a	lot	from	kids
here.	The	high	standards	most	grownups	have	for	"real"	work	do
not	always	serve	us	well.

The	most	important	phase	in	a	project	of	one's	own	is	at	the
beginning:	when	you	go	from	thinking	it	might	be	cool	to	do	x	to
actually	doing	x.	And	at	that	point	high	standards	are	not	merely
useless	but	positively	harmful.	There	are	a	few	people	who	start
too	many	new	projects,	but	far	more,	I	suspect,	who	are	deterred
by	fear	of	failure	from	starting	projects	that	would	have

#f5n
artistsship.html
startupideas.html

succeeded	if	they	had.

But	if	we	couldn't	benefit	as	kids	from	the	knowledge	that	our
treehouses	were	on	the	path	to	grownup	projects,	we	can	at	least
benefit	as	grownups	from	knowing	that	our	projects	are	on	a
path	that	stretches	back	to	treehouses.	Remember	that	careless
confidence	you	had	as	a	kid	when	starting	something	new?	That
would	be	a	powerful	thing	to	recapture.

If	it's	harder	as	adults	to	retain	that	kind	of	confidence,	we	at
least	tend	to	be	more	aware	of	what	we're	doing.	Kids	bounce,	or
are	herded,	from	one	kind	of	work	to	the	next,	barely	realizing
what's	happening	to	them.	Whereas	we	know	more	about
different	types	of	work	and	have	more	control	over	which	we	do.
Ideally	we	can	have	the	best	of	both	worlds:	to	be	deliberate	in
choosing	to	work	on	projects	of	our	own,	and	carelessly	confident
in	starting	new	ones.

Notes

[1]	"Hobby"	is	a	curious	word.	Now	it	means	work	that	isn't	real
work	—	work	that	one	is	not	to	be	judged	by	—	but	originally	it
just	meant	an	obsession	in	a	fairly	general	sense	(even	a	political
opinion,	for	example)	that	one	metaphorically	rode	as	a	child
rides	a	hobby-horse.	It's	hard	to	say	if	its	recent,	narrower
meaning	is	a	change	for	the	better	or	the	worse.	For	sure	there
are	lots	of	false	positives	—	lots	of	projects	that	end	up	being
important	but	are	dismissed	initially	as	mere	hobbies.	But	on	the
other	hand,	the	concept	provides	valuable	cover	for	projects	in
the	early,	ugly	duckling	phase.

[2]	Tiger	parents,	as	parents	so	often	do,	are	fighting	the	last
war.	Grades	mattered	more	in	the	old	days	when	the	route	to

success	was	to	acquire	credentials	while	ascending	some
predefined	ladder.	But	it's	just	as	well	that	their	tactics	are
focused	on	grades.	How	awful	it	would	be	if	they	invaded	the
territory	of	projects,	and	thereby	gave	their	kids	a	distaste	for
this	kind	of	work	by	forcing	them	to	do	it.	Grades	are	already	a
grim,	fake	world,	and	aren't	harmed	much	by	parental
interference,	but	working	on	one's	own	projects	is	a	more
delicate,	private	thing	that	could	be	damaged	very	easily.

[3]	The	complicated,	gradual	edge	between	working	on	one's	own
projects	and	collaborating	with	others	is	one	reason	there	is	so
much	disagreement	about	the	idea	of	the	"lone	genius."	In
practice	people	collaborate	(or	not)	in	all	kinds	of	different	ways,
but	the	idea	of	the	lone	genius	is	definitely	not	a	myth.	There's	a
core	of	truth	to	it	that	goes	with	a	certain	way	of	working.

[4]	Collaboration	is	powerful	too.	The	optimal	organization	would
combine	collaboration	and	ownership	in	such	a	way	as	to	do	the
least	damage	to	each.	Interestingly,	companies	and	university
departments	approach	this	ideal	from	opposite	directions:
companies	insist	on	collaboration,	and	occasionally	also	manage
both	to	recruit	skaters	and	allow	them	to	skate,	and	university
departments	insist	on	the	ability	to	do	independent	research
(which	is	by	custom	treated	as	skating,	whether	it	is	or	not),	and
the	people	they	hire	collaborate	as	much	as	they	choose.

[5]	If	a	company	could	design	its	software	in	such	a	way	that	the
best	newly	arrived	programmers	always	got	a	clean	sheet,	it
could	have	a	kind	of	eternal	youth.	That	might	not	be	impossible.
If	you	had	a	software	backbone	defining	a	game	with	sufficiently
clear	rules,	individual	programmers	could	write	their	own
players.

Thanks	to	Trevor	Blackwell,	Paul	Buchheit,	Andy	Hertzfeld,
Jessica	Livingston,	and	Peter	Norvig	for	reading	drafts	of	this.

credentials.html

	

How	to	Work	Hard
June	2021

It	might	not	seem	there's	much	to	learn	about	how	to	work	hard.
Anyone	who's	been	to	school	knows	what	it	entails,	even	if	they
chose	not	to	do	it.	There	are	12	year	olds	who	work	amazingly
hard.	And	yet	when	I	ask	if	I	know	more	about	working	hard	now
than	when	I	was	in	school,	the	answer	is	definitely	yes.

One	thing	I	know	is	that	if	you	want	to	do	great	things,	you'll
have	to	work	very	hard.	I	wasn't	sure	of	that	as	a	kid.	Schoolwork
varied	in	difficulty;	one	didn't	always	have	to	work	super	hard	to
do	well.	And	some	of	the	things	famous	adults	did,	they	seemed
to	do	almost	effortlessly.	Was	there,	perhaps,	some	way	to	evade
hard	work	through	sheer	brilliance?	Now	I	know	the	answer	to
that	question.	There	isn't.

The	reason	some	subjects	seemed	easy	was	that	my	school	had
low	standards.	And	the	reason	famous	adults	seemed	to	do	things
effortlessly	was	years	of	practice;	they	made	it	look	easy.

Of	course,	those	famous	adults	usually	had	a	lot	of	natural	ability
too.	There	are	three	ingredients	in	great	work:	natural	ability,
practice,	and	effort.	You	can	do	pretty	well	with	just	two,	but	to
do	the	best	work	you	need	all	three:	you	need	great	natural
ability	and	to	have	practiced	a	lot	and	to	be	trying	very	hard.	[1]

Bill	Gates,	for	example,	was	among	the	smartest	people	in
business	in	his	era,	but	he	was	also	among	the	hardest	working.
"I	never	took	a	day	off	in	my	twenties,"	he	said.	"Not	one."	It	was
similar	with	Lionel	Messi.	He	had	great	natural	ability,	but	when
his	youth	coaches	talk	about	him,	what	they	remember	is	not	his
talent	but	his	dedication	and	his	desire	to	win.	P.	G.	Wodehouse
would	probably	get	my	vote	for	best	English	writer	of	the	20th
century,	if	I	had	to	choose.	Certainly	no	one	ever	made	it	look
easier.	But	no	one	ever	worked	harder.	At	74,	he	wrote

#f1n

with	each	new	book	of	mine	I	have,	as	I	say,	the
feeling	that	this	time	I	have	picked	a	lemon	in	the
garden	of	literature.	A	good	thing,	really,	I	suppose.
Keeps	one	up	on	one's	toes	and	makes	one	rewrite
every	sentence	ten	times.	Or	in	many	cases	twenty
times.

Sounds	a	bit	extreme,	you	think.	And	yet	Bill	Gates	sounds	even
more	extreme.	Not	one	day	off	in	ten	years?	These	two	had	about
as	much	natural	ability	as	anyone	could	have,	and	yet	they	also
worked	about	as	hard	as	anyone	could	work.	You	need	both.

That	seems	so	obvious,	and	yet	in	practice	we	find	it	slightly	hard
to	grasp.	There's	a	faint	xor	between	talent	and	hard	work.	It
comes	partly	from	popular	culture,	where	it	seems	to	run	very
deep,	and	partly	from	the	fact	that	the	outliers	are	so	rare.	If
great	talent	and	great	drive	are	both	rare,	then	people	with	both
are	rare	squared.	Most	people	you	meet	who	have	a	lot	of	one
will	have	less	of	the	other.	But	you'll	need	both	if	you	want	to	be
an	outlier	yourself.	And	since	you	can't	really	change	how	much
natural	talent	you	have,	in	practice	doing	great	work,	insofar	as
you	can,	reduces	to	working	very	hard.

It's	straightforward	to	work	hard	if	you	have	clearly	defined,
externally	imposed	goals,	as	you	do	in	school.	There	is	some
technique	to	it:	you	have	to	learn	not	to	lie	to	yourself,	not	to
procrastinate	(which	is	a	form	of	lying	to	yourself),	not	to	get
distracted,	and	not	to	give	up	when	things	go	wrong.	But	this
level	of	discipline	seems	to	be	within	the	reach	of	quite	young
children,	if	they	want	it.

What	I've	learned	since	I	was	a	kid	is	how	to	work	toward	goals
that	are	neither	clearly	defined	nor	externally	imposed.	You'll
probably	have	to	learn	both	if	you	want	to	do	really	great	things.

The	most	basic	level	of	which	is	simply	to	feel	you	should	be
working	without	anyone	telling	you	to.	Now,	when	I'm	not
working	hard,	alarm	bells	go	off.	I	can't	be	sure	I'm	getting
anywhere	when	I'm	working	hard,	but	I	can	be	sure	I'm	getting
nowhere	when	I'm	not,	and	it	feels	awful.	[2]

#f2n

There	wasn't	a	single	point	when	I	learned	this.	Like	most	little
kids,	I	enjoyed	the	feeling	of	achievement	when	I	learned	or	did
something	new.	As	I	grew	older,	this	morphed	into	a	feeling	of
disgust	when	I	wasn't	achieving	anything.	The	one	precisely
dateable	landmark	I	have	is	when	I	stopped	watching	TV,	at
age	13.

Several	people	I've	talked	to	remember	getting	serious	about
work	around	this	age.	When	I	asked	Patrick	Collison	when	he
started	to	find	idleness	distasteful,	he	said

I	think	around	age	13	or	14.	I	have	a	clear	memory
from	around	then	of	sitting	in	the	sitting	room,
staring	outside,	and	wondering	why	I	was	wasting
my	summer	holiday.

Perhaps	something	changes	at	adolescence.	That	would	make
sense.

Strangely	enough,	the	biggest	obstacle	to	getting	serious	about
work	was	probably	school,	which	made	work	(what	they	called
work)	seem	boring	and	pointless.	I	had	to	learn	what	real	work
was	before	I	could	wholeheartedly	desire	to	do	it.	That	took	a
while,	because	even	in	college	a	lot	of	the	work	is	pointless;	there
are	entire	departments	that	are	pointless.	But	as	I	learned	the
shape	of	real	work,	I	found	that	my	desire	to	do	it	slotted	into	it
as	if	they'd	been	made	for	each	other.

I	suspect	most	people	have	to	learn	what	work	is	before	they	can
love	it.	Hardy	wrote	eloquently	about	this	in	A	Mathematician's
Apology:

I	do	not	remember	having	felt,	as	a	boy,	any	passion
for	mathematics,	and	such	notions	as	I	may	have	had
of	the	career	of	a	mathematician	were	far	from
noble.	I	thought	of	mathematics	in	terms	of
examinations	and	scholarships:	I	wanted	to	beat
other	boys,	and	this	seemed	to	be	the	way	in	which	I
could	do	so	most	decisively.

He	didn't	learn	what	math	was	really	about	till	part	way	through

college,	when	he	read	Jordan's	Cours	d'analyse.

I	shall	never	forget	the	astonishment	with	which	I
read	that	remarkable	work,	the	first	inspiration	for
so	many	mathematicians	of	my	generation,	and
learnt	for	the	first	time	as	I	read	it	what	mathematics
really	meant.

There	are	two	separate	kinds	of	fakeness	you	need	to	learn	to
discount	in	order	to	understand	what	real	work	is.	One	is	the
kind	Hardy	encountered	in	school.	Subjects	get	distorted	when
they're	adapted	to	be	taught	to	kids	—	often	so	distorted	that
they're	nothing	like	the	work	done	by	actual	practitioners.	[3]
The	other	kind	of	fakeness	is	intrinsic	to	certain	types	of	work.
Some	types	of	work	are	inherently	bogus,	or	at	best	mere
busywork.

There's	a	kind	of	solidity	to	real	work.	It's	not	all	writing	the
Principia,	but	it	all	feels	necessary.	That's	a	vague	criterion,	but
it's	deliberately	vague,	because	it	has	to	cover	a	lot	of	different
types.	[4]

Once	you	know	the	shape	of	real	work,	you	have	to	learn	how
many	hours	a	day	to	spend	on	it.	You	can't	solve	this	problem	by
simply	working	every	waking	hour,	because	in	many	kinds	of
work	there's	a	point	beyond	which	the	quality	of	the	result	will
start	to	decline.

That	limit	varies	depending	on	the	type	of	work	and	the	person.
I've	done	several	different	kinds	of	work,	and	the	limits	were
different	for	each.	My	limit	for	the	harder	types	of	writing	or
programming	is	about	five	hours	a	day.	Whereas	when	I	was
running	a	startup,	I	could	work	all	the	time.	At	least	for	the	three
years	I	did	it;	if	I'd	kept	going	much	longer,	I'd	probably	have
needed	to	take	occasional	vacations.	[5]

The	only	way	to	find	the	limit	is	by	crossing	it.	Cultivate	a
sensitivity	to	the	quality	of	the	work	you're	doing,	and	then	you'll
notice	if	it	decreases	because	you're	working	too	hard.	Honesty
is	critical	here,	in	both	directions:	you	have	to	notice	when	you're
being	lazy,	but	also	when	you're	working	too	hard.	And	if	you

#f3n
#f4n
#f5n

think	there's	something	admirable	about	working	too	hard,	get
that	idea	out	of	your	head.	You're	not	merely	getting	worse
results,	but	getting	them	because	you're	showing	off	—	if	not	to
other	people,	then	to	yourself.	[6]

Finding	the	limit	of	working	hard	is	a	constant,	ongoing	process,
not	something	you	do	just	once.	Both	the	difficulty	of	the	work
and	your	ability	to	do	it	can	vary	hour	to	hour,	so	you	need	to	be
constantly	judging	both	how	hard	you're	trying	and	how	well
you're	doing.

Trying	hard	doesn't	mean	constantly	pushing	yourself	to	work,
though.	There	may	be	some	people	who	do,	but	I	think	my
experience	is	fairly	typical,	and	I	only	have	to	push	myself
occasionally	when	I'm	starting	a	project	or	when	I	encounter
some	sort	of	check.	That's	when	I'm	in	danger	of	procrastinating.
But	once	I	get	rolling,	I	tend	to	keep	going.

What	keeps	me	going	depends	on	the	type	of	work.	When	I	was
working	on	Viaweb,	I	was	driven	by	fear	of	failure.	I	barely
procrastinated	at	all	then,	because	there	was	always	something
that	needed	doing,	and	if	I	could	put	more	distance	between	me
and	the	pursuing	beast	by	doing	it,	why	wait?	[7]	Whereas	what
drives	me	now,	writing	essays,	is	the	flaws	in	them.	Between
essays	I	fuss	for	a	few	days,	like	a	dog	circling	while	it	decides
exactly	where	to	lie	down.	But	once	I	get	started	on	one,	I	don't
have	to	push	myself	to	work,	because	there's	always	some	error
or	omission	already	pushing	me.

I	do	make	some	amount	of	effort	to	focus	on	important	topics.
Many	problems	have	a	hard	core	at	the	center,	surrounded	by
easier	stuff	at	the	edges.	Working	hard	means	aiming	toward	the
center	to	the	extent	you	can.	Some	days	you	may	not	be	able	to;
some	days	you'll	only	be	able	to	work	on	the	easier,	peripheral
stuff.	But	you	should	always	be	aiming	as	close	to	the	center	as
you	can	without	stalling.

The	bigger	question	of	what	to	do	with	your	life	is	one	of	these
problems	with	a	hard	core.	There	are	important	problems	at	the
center,	which	tend	to	be	hard,	and	less	important,	easier	ones	at
the	edges.	So	as	well	as	the	small,	daily	adjustments	involved	in

#f6n
#f7n

working	on	a	specific	problem,	you'll	occasionally	have	to	make
big,	lifetime-scale	adjustments	about	which	type	of	work	to	do.
And	the	rule	is	the	same:	working	hard	means	aiming	toward	the
center	—	toward	the	most	ambitious	problems.

By	center,	though,	I	mean	the	actual	center,	not	merely	the
current	consensus	about	the	center.	The	consensus	about	which
problems	are	most	important	is	often	mistaken,	both	in	general
and	within	specific	fields.	If	you	disagree	with	it,	and	you're
right,	that	could	represent	a	valuable	opportunity	to	do
something	new.

The	more	ambitious	types	of	work	will	usually	be	harder,	but
although	you	should	not	be	in	denial	about	this,	neither	should
you	treat	difficulty	as	an	infallible	guide	in	deciding	what	to	do.	If
you	discover	some	ambitious	type	of	work	that's	a	bargain	in	the
sense	of	being	easier	for	you	than	other	people,	either	because	of
the	abilities	you	happen	to	have,	or	because	of	some	new	way
you've	found	to	approach	it,	or	simply	because	you're	more
excited	about	it,	by	all	means	work	on	that.	Some	of	the	best
work	is	done	by	people	who	find	an	easy	way	to	do	something
hard.

As	well	as	learning	the	shape	of	real	work,	you	need	to	figure	out
which	kind	you're	suited	for.	And	that	doesn't	just	mean	figuring
out	which	kind	your	natural	abilities	match	the	best;	it	doesn't
mean	that	if	you're	7	feet	tall,	you	have	to	play	basketball.	What
you're	suited	for	depends	not	just	on	your	talents	but	perhaps
even	more	on	your	interests.	A	deep	interest	in	a	topic	makes
people	work	harder	than	any	amount	of	discipline	can.

It	can	be	harder	to	discover	your	interests	than	your	talents.
There	are	fewer	types	of	talent	than	interest,	and	they	start	to	be
judged	early	in	childhood,	whereas	interest	in	a	topic	is	a	subtle
thing	that	may	not	mature	till	your	twenties,	or	even	later.	The
topic	may	not	even	exist	earlier.	Plus	there	are	some	powerful
sources	of	error	you	need	to	learn	to	discount.	Are	you	really
interested	in	x,	or	do	you	want	to	work	on	it	because	you'll	make
a	lot	of	money,	or	because	other	people	will	be	impressed	with
you,	or	because	your	parents	want	you	to?	[8]

genius.html
#f8n

The	difficulty	of	figuring	out	what	to	work	on	varies	enormously
from	one	person	to	another.	That's	one	of	the	most	important
things	I've	learned	about	work	since	I	was	a	kid.	As	a	kid,	you	get
the	impression	that	everyone	has	a	calling,	and	all	they	have	to
do	is	figure	out	what	it	is.	That's	how	it	works	in	movies,	and	in
the	streamlined	biographies	fed	to	kids.	Sometimes	it	works	that
way	in	real	life.	Some	people	figure	out	what	to	do	as	children
and	just	do	it,	like	Mozart.	But	others,	like	Newton,	turn
restlessly	from	one	kind	of	work	to	another.	Maybe	in	retrospect
we	can	identify	one	as	their	calling	—	we	can	wish	Newton	spent
more	time	on	math	and	physics	and	less	on	alchemy	and	theology
—	but	this	is	an	illusion	induced	by	hindsight	bias.	There	was	no
voice	calling	to	him	that	he	could	have	heard.

So	while	some	people's	lives	converge	fast,	there	will	be	others
whose	lives	never	converge.	And	for	these	people,	figuring	out
what	to	work	on	is	not	so	much	a	prelude	to	working	hard	as	an
ongoing	part	of	it,	like	one	of	a	set	of	simultaneous	equations.	For
these	people,	the	process	I	described	earlier	has	a	third
component:	along	with	measuring	both	how	hard	you're	working
and	how	well	you're	doing,	you	have	to	think	about	whether	you
should	keep	working	in	this	field	or	switch	to	another.	If	you're
working	hard	but	not	getting	good	enough	results,	you	should
switch.	It	sounds	simple	expressed	that	way,	but	in	practice	it's
very	difficult.	You	shouldn't	give	up	on	the	first	day	just	because
you	work	hard	and	don't	get	anywhere.	You	need	to	give	yourself
time	to	get	going.	But	how	much	time?	And	what	should	you	do	if
work	that	was	going	well	stops	going	well?	How	much	time	do
you	give	yourself	then?	[9]

What	even	counts	as	good	results?	That	can	be	really	hard	to
decide.	If	you're	exploring	an	area	few	others	have	worked	in,
you	may	not	even	know	what	good	results	look	like.	History	is	full
of	examples	of	people	who	misjudged	the	importance	of	what
they	were	working	on.

The	best	test	of	whether	it's	worthwhile	to	work	on	something	is
whether	you	find	it	interesting.	That	may	sound	like	a
dangerously	subjective	measure,	but	it's	probably	the	most
accurate	one	you're	going	to	get.	You're	the	one	working	on	the
stuff.	Who's	in	a	better	position	than	you	to	judge	whether	it's

disc.html
#f9n

important,	and	what's	a	better	predictor	of	its	importance	than
whether	it's	interesting?

For	this	test	to	work,	though,	you	have	to	be	honest	with
yourself.	Indeed,	that's	the	most	striking	thing	about	the	whole
question	of	working	hard:	how	at	each	point	it	depends	on	being
honest	with	yourself.

Working	hard	is	not	just	a	dial	you	turn	up	to	11.	It's	a
complicated,	dynamic	system	that	has	to	be	tuned	just	right	at
each	point.	You	have	to	understand	the	shape	of	real	work,	see
clearly	what	kind	you're	best	suited	for,	aim	as	close	to	the	true
core	of	it	as	you	can,	accurately	judge	at	each	moment	both	what
you're	capable	of	and	how	you're	doing,	and	put	in	as	many	hours
each	day	as	you	can	without	harming	the	quality	of	the	result.
This	network	is	too	complicated	to	trick.	But	if	you're
consistently	honest	and	clear-sighted,	it	will	automatically
assume	an	optimal	shape,	and	you'll	be	productive	in	a	way	few
people	are.

Notes

[1]	In	"The	Bus	Ticket	Theory	of	Genius"	I	said	the	three
ingredients	in	great	work	were	natural	ability,	determination,	and
interest.	That's	the	formula	in	the	preceding	stage;	determination
and	interest	yield	practice	and	effort.

[2]	I	mean	this	at	a	resolution	of	days,	not	hours.	You'll	often	get
somewhere	while	not	working	in	the	sense	that	the	solution	to	a
problem	comes	to	you	while	taking	a	shower,	or	even	in	your
sleep,	but	only	because	you	were	working	hard	on	it	the	day

top.html

before.

It's	good	to	go	on	vacation	occasionally,	but	when	I	go	on
vacation,	I	like	to	learn	new	things.	I	wouldn't	like	just	sitting	on
a	beach.

[3]	The	thing	kids	do	in	school	that's	most	like	the	real	version	is
sports.	Admittedly	because	many	sports	originated	as	games
played	in	schools.	But	in	this	one	area,	at	least,	kids	are	doing
exactly	what	adults	do.

In	the	average	American	high	school,	you	have	a	choice	of
pretending	to	do	something	serious,	or	seriously	doing	something
pretend.	Arguably	the	latter	is	no	worse.

[4]	Knowing	what	you	want	to	work	on	doesn't	mean	you'll	be
able	to.	Most	people	have	to	spend	a	lot	of	their	time	working	on
things	they	don't	want	to,	especially	early	on.	But	if	you	know
what	you	want	to	do,	you	at	least	know	what	direction	to	nudge
your	life	in.

[5]	The	lower	time	limits	for	intense	work	suggest	a	solution	to
the	problem	of	having	less	time	to	work	after	you	have	kids:
switch	to	harder	problems.	In	effect	I	did	that,	though	not
deliberately.

[6]	Some	cultures	have	a	tradition	of	performative	hard	work.	I
don't	love	this	idea,	because	(a)	it	makes	a	parody	of	something
important	and	(b)	it	causes	people	to	wear	themselves	out	doing
things	that	don't	matter.	I	don't	know	enough	to	say	for	sure
whether	it's	net	good	or	bad,	but	my	guess	is	bad.

[7]	One	of	the	reasons	people	work	so	hard	on	startups	is	that
startups	can	fail,	and	when	they	do,	that	failure	tends	to	be	both
decisive	and	conspicuous.

[8]	It's	ok	to	work	on	something	to	make	a	lot	of	money.	You	need
to	solve	the	money	problem	somehow,	and	there's	nothing	wrong
with	doing	that	efficiently	by	trying	to	make	a	lot	at	once.	I
suppose	it	would	even	be	ok	to	be	interested	in	money	for	its	own
sake;	whatever	floats	your	boat.	Just	so	long	as	you're	conscious

of	your	motivations.	The	thing	to	avoid	is	unconsciously	letting
the	need	for	money	warp	your	ideas	about	what	kind	of	work	you
find	most	interesting.

[9]	Many	people	face	this	question	on	a	smaller	scale	with
individual	projects.	But	it's	easier	both	to	recognize	and	to	accept
a	dead	end	in	a	single	project	than	to	abandon	some	type	of	work
entirely.	The	more	determined	you	are,	the	harder	it	gets.	Like	a
Spanish	Flu	victim,	you're	fighting	your	own	immune	system:
Instead	of	giving	up,	you	tell	yourself,	I	should	just	try	harder.
And	who	can	say	you're	not	right?

Thanks	to	Trevor	Blackwell,	John	Carmack,	John	Collison,	Patrick
Collison,	Robert	Morris,	Geoff	Ralston,	and	Harj	Taggar	for
reading	drafts	of	this.

	

Weird	Languages
August	2021

When	people	say	that	in	their	experience	all	programming
languages	are	basically	equivalent,	they're	making	a	statement
not	about	languages	but	about	the	kind	of	programming	they've
done.

99.5%	of	programming	consists	of	gluing	together	calls	to	library
functions.	All	popular	languages	are	equally	good	at	this.	So	one
can	easily	spend	one's	whole	career	operating	in	the	intersection
of	popular	programming	languages.

But	the	other	.5%	of	programming	is	disproportionately
interesting.	If	you	want	to	learn	what	it	consists	of,	the	weirdness
of	weird	languages	is	a	good	clue	to	follow.

Weird	languages	aren't	weird	by	accident.	Not	the	good	ones,	at
least.	The	weirdness	of	the	good	ones	usually	implies	the
existence	of	some	form	of	programming	that's	not	just	the	usual
gluing	together	of	library	calls.

A	concrete	example:	Lisp	macros.	Lisp	macros	seem	weird	even
to	many	Lisp	programmers.	They're	not	only	not	in	the
intersection	of	popular	languages,	but	by	their	nature	would	be
hard	to	implement	properly	in	a	language	without	turning	it	into
a	dialect	of	Lisp.	And	macros	are	definitely	evidence	of
techniques	that	go	beyond	glue	programming.	For	example,
solving	problems	by	first	writing	a	language	for	problems	of	that
type,	and	then	writing	your	specific	application	in	it.	Nor	is	this
all	you	can	do	with	macros;	it's	just	one	region	in	a	space	of
program-manipulating	techniques	that	even	now	is	far	from	fully
explored.

So	if	you	want	to	expand	your	concept	of	what	programming	can
be,	one	way	to	do	it	is	by	learning	weird	languages.	Pick	a

language	that	most	programmers	consider	weird	but	whose
median	user	is	smart,	and	then	focus	on	the	differences	between
this	language	and	the	intersection	of	popular	languages.	What
can	you	say	in	this	language	that	would	be	impossibly
inconvenient	to	say	in	others?	In	the	process	of	learning	how	to
say	things	you	couldn't	previously	say,	you'll	probably	be	learning
how	to	think	things	you	couldn't	previously	think.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	Daniel	Gackle,
Amjad	Masad,	and	Robert	Morris	for	reading	drafts	of	this.	

	

Beyond	Smart
October	2021

If	you	asked	people	what	was	special	about	Einstein,	most	would
say	that	he	was	really	smart.	Even	the	ones	who	tried	to	give	you
a	more	sophisticated-sounding	answer	would	probably	think	this
first.	Till	a	few	years	ago	I	would	have	given	the	same	answer
myself.	But	that	wasn't	what	was	special	about	Einstein.	What
was	special	about	him	was	that	he	had	important	new	ideas.
Being	very	smart	was	a	necessary	precondition	for	having	those
ideas,	but	the	two	are	not	identical.

It	may	seem	a	hair-splitting	distinction	to	point	out	that
intelligence	and	its	consequences	are	not	identical,	but	it	isn't.
There's	a	big	gap	between	them.	Anyone	who's	spent	time
around	universities	and	research	labs	knows	how	big.	There	are
a	lot	of	genuinely	smart	people	who	don't	achieve	very	much.

I	grew	up	thinking	that	being	smart	was	the	thing	most	to	be
desired.	Perhaps	you	did	too.	But	I	bet	it's	not	what	you	really
want.	Imagine	you	had	a	choice	between	being	really	smart	but
discovering	nothing	new,	and	being	less	smart	but	discovering
lots	of	new	ideas.	Surely	you'd	take	the	latter.	I	would.	The	choice
makes	me	uncomfortable,	but	when	you	see	the	two	options	laid
out	explicitly	like	that,	it's	obvious	which	is	better.

The	reason	the	choice	makes	me	uncomfortable	is	that	being
smart	still	feels	like	the	thing	that	matters,	even	though	I	know
intellectually	that	it	isn't.	I	spent	so	many	years	thinking	it	was.
The	circumstances	of	childhood	are	a	perfect	storm	for	fostering
this	illusion.	Intelligence	is	much	easier	to	measure	than	the
value	of	new	ideas,	and	you're	constantly	being	judged	by	it.
Whereas	even	the	kids	who	will	ultimately	discover	new	things
aren't	usually	discovering	them	yet.	For	kids	that	way	inclined,
intelligence	is	the	only	game	in	town.

There	are	more	subtle	reasons	too,	which	persist	long	into
adulthood.	Intelligence	wins	in	conversation,	and	thus	becomes
the	basis	of	the	dominance	hierarchy.	[1]	Plus	having	new	ideas	is
such	a	new	thing	historically,	and	even	now	done	by	so	few
people,	that	society	hasn't	yet	assimilated	the	fact	that	this	is	the
actual	destination,	and	intelligence	merely	a	means	to	an	end.	[2]

Why	do	so	many	smart	people	fail	to	discover	anything	new?
Viewed	from	that	direction,	the	question	seems	a	rather
depressing	one.	But	there's	another	way	to	look	at	it	that's	not
just	more	optimistic,	but	more	interesting	as	well.	Clearly
intelligence	is	not	the	only	ingredient	in	having	new	ideas.	What
are	the	other	ingredients?	Are	they	things	we	could	cultivate?

Because	the	trouble	with	intelligence,	they	say,	is	that	it's	mostly
inborn.	The	evidence	for	this	seems	fairly	convincing,	especially
considering	that	most	of	us	don't	want	it	to	be	true,	and	the
evidence	thus	has	to	face	a	stiff	headwind.	But	I'm	not	going	to
get	into	that	question	here,	because	it's	the	other	ingredients	in
new	ideas	that	I	care	about,	and	it's	clear	that	many	of	them	can
be	cultivated.

That	means	the	truth	is	excitingly	different	from	the	story	I	got
as	a	kid.	If	intelligence	is	what	matters,	and	also	mostly	inborn,
the	natural	consequence	is	a	sort	of	Brave	New	World	fatalism.
The	best	you	can	do	is	figure	out	what	sort	of	work	you	have	an
"aptitude"	for,	so	that	whatever	intelligence	you	were	born	with
will	at	least	be	put	to	the	best	use,	and	then	work	as	hard	as	you
can	at	it.	Whereas	if	intelligence	isn't	what	matters,	but	only	one
of	several	ingredients	in	what	does,	and	many	of	those	aren't
inborn,	things	get	more	interesting.	You	have	a	lot	more	control,
but	the	problem	of	how	to	arrange	your	life	becomes	that	much
more	complicated.

So	what	are	the	other	ingredients	in	having	new	ideas?	The	fact
that	I	can	even	ask	this	question	proves	the	point	I	raised	earlier
—	that	society	hasn't	assimilated	the	fact	that	it's	this	and	not
intelligence	that	matters.	Otherwise	we'd	all	know	the	answers	to
such	a	fundamental	question.	[3]

I'm	not	going	to	try	to	provide	a	complete	catalogue	of	the	other

#f1n
#f2n
#f3n

ingredients	here.	This	is	the	first	time	I've	posed	the	question	to
myself	this	way,	and	I	think	it	may	take	a	while	to	answer.	But	I
wrote	recently	about	one	of	the	most	important:	an	obsessive
interest	in	a	particular	topic.	And	this	can	definitely	be
cultivated.

Another	quality	you	need	in	order	to	discover	new	ideas	is
independent-mindedness.	I	wouldn't	want	to	claim	that	this	is
distinct	from	intelligence	—	I'd	be	reluctant	to	call	someone
smart	who	wasn't	independent-minded	—	but	though	largely
inborn,	this	quality	seems	to	be	something	that	can	be	cultivated
to	some	extent.

There	are	general	techniques	for	having	new	ideas	—	for
example,	for	working	on	your	own	projects	and	for	overcoming
the	obstacles	you	face	with	early	work	—	and	these	can	all	be
learned.	Some	of	them	can	be	learned	by	societies.	And	there	are
also	collections	of	techniques	for	generating	specific	types	of	new
ideas,	like	startup	ideas	and	essay	topics.

And	of	course	there	are	a	lot	of	fairly	mundane	ingredients	in
discovering	new	ideas,	like	working	hard,	getting	enough	sleep,
avoiding	certain	kinds	of	stress,	having	the	right	colleagues,	and
finding	tricks	for	working	on	what	you	want	even	when	it's	not
what	you're	supposed	to	be	working	on.	Anything	that	prevents
people	from	doing	great	work	has	an	inverse	that	helps	them	to.
And	this	class	of	ingredients	is	not	as	boring	as	it	might	seem	at
first.	For	example,	having	new	ideas	is	generally	associated	with
youth.	But	perhaps	it's	not	youth	per	se	that	yields	new	ideas,	but
specific	things	that	come	with	youth,	like	good	health	and	lack	of
responsibilities.	Investigating	this	might	lead	to	strategies	that
will	help	people	of	any	age	to	have	better	ideas.

One	of	the	most	surprising	ingredients	in	having	new	ideas	is
writing	ability.	There's	a	class	of	new	ideas	that	are	best
discovered	by	writing	essays	and	books.	And	that	"by"	is
deliberate:	you	don't	think	of	the	ideas	first,	and	then	merely
write	them	down.	There	is	a	kind	of	thinking	that	one	does	by
writing,	and	if	you're	clumsy	at	writing,	or	don't	enjoy	doing	it,
that	will	get	in	your	way	if	you	try	to	do	this	kind	of	thinking.	[4]

genius.html
think.html
own.html
early.html
startupideas.html
essay.html
hwh.html
#f4n

I	predict	the	gap	between	intelligence	and	new	ideas	will	turn
out	to	be	an	interesting	place.	If	we	think	of	this	gap	merely	as	a
measure	of	unrealized	potential,	it	becomes	a	sort	of	wasteland
that	we	try	to	hurry	through	with	our	eyes	averted.	But	if	we	flip
the	question,	and	start	inquiring	into	the	other	ingredients	in
new	ideas	that	it	implies	must	exist,	we	can	mine	this	gap	for
discoveries	about	discovery.

Notes

[1]	What	wins	in	conversation	depends	on	who	with.	It	ranges
from	mere	aggressiveness	at	the	bottom,	through	quick-
wittedness	in	the	middle,	to	something	closer	to	actual
intelligence	at	the	top,	though	probably	always	with	some
component	of	quick-wittedness.

[2]	Just	as	intelligence	isn't	the	only	ingredient	in	having	new
ideas,	having	new	ideas	isn't	the	only	thing	intelligence	is	useful
for.	It's	also	useful,	for	example,	in	diagnosing	problems	and
figuring	out	how	to	fix	them.	Both	overlap	with	having	new	ideas,
but	both	have	an	end	that	doesn't.

Those	ways	of	using	intelligence	are	much	more	common	than
having	new	ideas.	And	in	such	cases	intelligence	is	even	harder
to	distinguish	from	its	consequences.

[3]	Some	would	attribute	the	difference	between	intelligence	and
having	new	ideas	to	"creativity,"	but	this	doesn't	seem	a	very
useful	term.	As	well	as	being	pretty	vague,	it's	shifted	half	a
frame	sideways	from	what	we	care	about:	it's	neither	separable
from	intelligence,	nor	responsible	for	all	the	difference	between
intelligence	and	having	new	ideas.

[4]	Curiously	enough,	this	essay	is	an	example.	It	started	out	as
an	essay	about	writing	ability.	But	when	I	came	to	the	distinction
between	intelligence	and	having	new	ideas,	that	seemed	so	much
more	important	that	I	turned	the	original	essay	inside	out,
making	that	the	topic	and	my	original	topic	one	of	the	points	in	it.
As	in	many	other	fields,	that	level	of	reworking	is	easier	to
contemplate	once	you've	had	a	lot	of	practice.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	Jessica	Livingston,
Robert	Morris,	Michael	Nielsen,	and	Lisa	Randall	for	reading
drafts	of	this.	

	

Is	There	Such	a	Thing	as
Good	Taste?
November	2021

(This	essay	is	derived	from	a	talk	at	the	Cambridge	Union.)

When	I	was	a	kid,	I'd	have	said	there	wasn't.	My	father	told	me
so.	Some	people	like	some	things,	and	other	people	like	other
things,	and	who's	to	say	who's	right?

It	seemed	so	obvious	that	there	was	no	such	thing	as	good	taste
that	it	was	only	through	indirect	evidence	that	I	realized	my
father	was	wrong.	And	that's	what	I'm	going	to	give	you	here:	a
proof	by	reductio	ad	absurdum.	If	we	start	from	the	premise	that
there's	no	such	thing	as	good	taste,	we	end	up	with	conclusions
that	are	obviously	false,	and	therefore	the	premise	must	be
wrong.

We'd	better	start	by	saying	what	good	taste	is.	There's	a	narrow
sense	in	which	it	refers	to	aesthetic	judgements	and	a	broader
one	in	which	it	refers	to	preferences	of	any	kind.	The	strongest
proof	would	be	to	show	that	taste	exists	in	the	narrowest	sense,
so	I'm	going	to	talk	about	taste	in	art.	You	have	better	taste	than
me	if	the	art	you	like	is	better	than	the	art	I	like.

If	there's	no	such	thing	as	good	taste,	then	there's	no	such	thing
as	good	art.	Because	if	there	is	such	a	thing	as	good	art,	it's	easy
to	tell	which	of	two	people	has	better	taste.	Show	them	a	lot	of
works	by	artists	they've	never	seen	before	and	ask	them	to
choose	the	best,	and	whoever	chooses	the	better	art	has	better
taste.

So	if	you	want	to	discard	the	concept	of	good	taste,	you	also	have
to	discard	the	concept	of	good	art.	And	that	means	you	have	to
discard	the	possibility	of	people	being	good	at	making	it.	Which

goodart.html

means	there's	no	way	for	artists	to	be	good	at	their	jobs.	And	not
just	visual	artists,	but	anyone	who	is	in	any	sense	an	artist.	You
can't	have	good	actors,	or	novelists,	or	composers,	or	dancers
either.	You	can	have	popular	novelists,	but	not	good	ones.

We	don't	realize	how	far	we'd	have	to	go	if	we	discarded	the
concept	of	good	taste,	because	we	don't	even	debate	the	most
obvious	cases.	But	it	doesn't	just	mean	we	can't	say	which	of	two
famous	painters	is	better.	It	means	we	can't	say	that	any	painter
is	better	than	a	randomly	chosen	eight	year	old.

That	was	how	I	realized	my	father	was	wrong.	I	started	studying
painting.	And	it	was	just	like	other	kinds	of	work	I'd	done:	you
could	do	it	well,	or	badly,	and	if	you	tried	hard,	you	could	get
better	at	it.	And	it	was	obvious	that	Leonardo	and	Bellini	were
much	better	at	it	than	me.	That	gap	between	us	was	not
imaginary.	They	were	so	good.	And	if	they	could	be	good,	then	art
could	be	good,	and	there	was	such	a	thing	as	good	taste	after	all.

Now	that	I've	explained	how	to	show	there	is	such	a	thing	as
good	taste,	I	should	also	explain	why	people	think	there	isn't.
There	are	two	reasons.	One	is	that	there's	always	so	much
disagreement	about	taste.	Most	people's	response	to	art	is	a
tangle	of	unexamined	impulses.	Is	the	artist	famous?	Is	the
subject	attractive?	Is	this	the	sort	of	art	they're	supposed	to	like?
Is	it	hanging	in	a	famous	museum,	or	reproduced	in	a	big,
expensive	book?	In	practice	most	people's	response	to	art	is
dominated	by	such	extraneous	factors.

And	the	people	who	do	claim	to	have	good	taste	are	so	often
mistaken.	The	paintings	admired	by	the	so-called	experts	in	one
generation	are	often	so	different	from	those	admired	a	few
generations	later.	It's	easy	to	conclude	there's	nothing	real	there
at	all.	It's	only	when	you	isolate	this	force,	for	example	by	trying
to	paint	and	comparing	your	work	to	Bellini's,	that	you	can	see
that	it	does	in	fact	exist.

The	other	reason	people	doubt	that	art	can	be	good	is	that	there
doesn't	seem	to	be	any	room	in	the	art	for	this	goodness.	The
argument	goes	like	this.	Imagine	several	people	looking	at	a
work	of	art	and	judging	how	good	it	is.	If	being	good	art	really	is

a	property	of	objects,	it	should	be	in	the	object	somehow.	But	it
doesn't	seem	to	be;	it	seems	to	be	something	happening	in	the
heads	of	each	of	the	observers.	And	if	they	disagree,	how	do	you
choose	between	them?

The	solution	to	this	puzzle	is	to	realize	that	the	purpose	of	art	is
to	work	on	its	human	audience,	and	humans	have	a	lot	in
common.	And	to	the	extent	the	things	an	object	acts	upon
respond	in	the	same	way,	that's	arguably	what	it	means	for	the
object	to	have	the	corresponding	property.	If	everything	a
particle	interacts	with	behaves	as	if	the	particle	had	a	mass	of	m,
then	it	has	a	mass	of	m.	So	the	distinction	between	"objective"
and	"subjective"	is	not	binary,	but	a	matter	of	degree,	depending
on	how	much	the	subjects	have	in	common.	Particles	interacting
with	one	another	are	at	one	pole,	but	people	interacting	with	art
are	not	all	the	way	at	the	other;	their	reactions	aren't	random.

Because	people's	responses	to	art	aren't	random,	art	can	be
designed	to	operate	on	people,	and	be	good	or	bad	depending	on
how	effectively	it	does	so.	Much	as	a	vaccine	can	be.	If	someone
were	talking	about	the	ability	of	a	vaccine	to	confer	immunity,	it
would	seem	very	frivolous	to	object	that	conferring	immunity
wasn't	really	a	property	of	vaccines,	because	acquiring	immunity
is	something	that	happens	in	the	immune	system	of	each
individual	person.	Sure,	people's	immune	systems	vary,	and	a
vaccine	that	worked	on	one	might	not	work	on	another,	but	that
doesn't	make	it	meaningless	to	talk	about	the	effectiveness	of	a
vaccine.

The	situation	with	art	is	messier,	of	course.	You	can't	measure
effectiveness	by	simply	taking	a	vote,	as	you	do	with	vaccines.
You	have	to	imagine	the	responses	of	subjects	with	a	deep
knowledge	of	art,	and	enough	clarity	of	mind	to	be	able	to	ignore
extraneous	influences	like	the	fame	of	the	artist.	And	even	then
you'd	still	see	some	disagreement.	People	do	vary,	and	judging
art	is	hard,	especially	recent	art.	There	is	definitely	not	a	total
order	either	of	works	or	of	people's	ability	to	judge	them.	But
there	is	equally	definitely	a	partial	order	of	both.	So	while	it's	not
possible	to	have	perfect	taste,	it	is	possible	to	have	good	taste.

Thanks	to	the	Cambridge	Union	for	inviting	me,	and	to	Trevor
Blackwell,	Jessica	Livingston,	and	Robert	Morris	for	reading
drafts	of	this.	

	

Putting	Ideas	into	Words
February	2022

Writing	about	something,	even	something	you	know	well,	usually
shows	you	that	you	didn't	know	it	as	well	as	you	thought.	Putting
ideas	into	words	is	a	severe	test.	The	first	words	you	choose	are
usually	wrong;	you	have	to	rewrite	sentences	over	and	over	to
get	them	exactly	right.	And	your	ideas	won't	just	be	imprecise,
but	incomplete	too.	Half	the	ideas	that	end	up	in	an	essay	will	be
ones	you	thought	of	while	you	were	writing	it.	Indeed,	that's	why
I	write	them.

Once	you	publish	something,	the	convention	is	that	whatever	you
wrote	was	what	you	thought	before	you	wrote	it.	These	were
your	ideas,	and	now	you've	expressed	them.	But	you	know	this
isn't	true.	You	know	that	putting	your	ideas	into	words	changed
them.	And	not	just	the	ideas	you	published.	Presumably	there
were	others	that	turned	out	to	be	too	broken	to	fix,	and	those	you
discarded	instead.

It's	not	just	having	to	commit	your	ideas	to	specific	words	that
makes	writing	so	exacting.	The	real	test	is	reading	what	you've
written.	You	have	to	pretend	to	be	a	neutral	reader	who	knows
nothing	of	what's	in	your	head,	only	what	you	wrote.	When	he
reads	what	you	wrote,	does	it	seem	correct?	Does	it	seem
complete?	If	you	make	an	effort,	you	can	read	your	writing	as	if
you	were	a	complete	stranger,	and	when	you	do	the	news	is
usually	bad.	It	takes	me	many	cycles	before	I	can	get	an	essay
past	the	stranger.	But	the	stranger	is	rational,	so	you	always	can,
if	you	ask	him	what	he	needs.	If	he's	not	satisfied	because	you
failed	to	mention	x	or	didn't	qualify	some	sentence	sufficiently,
then	you	mention	x	or	add	more	qualifications.	Happy	now?	It
may	cost	you	some	nice	sentences,	but	you	have	to	resign
yourself	to	that.	You	just	have	to	make	them	as	good	as	you	can
and	still	satisfy	the	stranger.

This	much,	I	assume,	won't	be	that	controversial.	I	think	it	will
accord	with	the	experience	of	anyone	who	has	tried	to	write
about	anything	nontrivial.	There	may	exist	people	whose
thoughts	are	so	perfectly	formed	that	they	just	flow	straight	into
words.	But	I've	never	known	anyone	who	could	do	this,	and	if	I
met	someone	who	said	they	could,	it	would	seem	evidence	of
their	limitations	rather	than	their	ability.	Indeed,	this	is	a	trope	in
movies:	the	guy	who	claims	to	have	a	plan	for	doing	some
difficult	thing,	and	who	when	questioned	further,	taps	his	head
and	says	"It's	all	up	here."	Everyone	watching	the	movie	knows
what	that	means.	At	best	the	plan	is	vague	and	incomplete.	Very
likely	there's	some	undiscovered	flaw	that	invalidates	it
completely.	At	best	it's	a	plan	for	a	plan.

In	precisely	defined	domains	it's	possible	to	form	complete	ideas
in	your	head.	People	can	play	chess	in	their	heads,	for	example.
And	mathematicians	can	do	some	amount	of	math	in	their	heads,
though	they	don't	seem	to	feel	sure	of	a	proof	over	a	certain
length	till	they	write	it	down.	But	this	only	seems	possible	with
ideas	you	can	express	in	a	formal	language.	[1]	Arguably	what
such	people	are	doing	is	putting	ideas	into	words	in	their	heads.	I
can	to	some	extent	write	essays	in	my	head.	I'll	sometimes	think
of	a	paragraph	while	walking	or	lying	in	bed	that	survives	nearly
unchanged	in	the	final	version.	But	really	I'm	writing	when	I	do
this.	I'm	doing	the	mental	part	of	writing;	my	fingers	just	aren't
moving	as	I	do	it.	[2]

You	can	know	a	great	deal	about	something	without	writing
about	it.	Can	you	ever	know	so	much	that	you	wouldn't	learn
more	from	trying	to	explain	what	you	know?	I	don't	think	so.	I've
written	about	at	least	two	subjects	I	know	well	—	Lisp	hacking
and	startups	—	and	in	both	cases	I	learned	a	lot	from	writing
about	them.	In	both	cases	there	were	things	I	didn't	consciously
realize	till	I	had	to	explain	them.	And	I	don't	think	my	experience
was	anomalous.	A	great	deal	of	knowledge	is	unconscious,	and
experts	have	if	anything	a	higher	proportion	of	unconscious
knowledge	than	beginners.

I'm	not	saying	that	writing	is	the	best	way	to	explore	all	ideas.	If
you	have	ideas	about	architecture,	presumably	the	best	way	to
explore	them	is	to	build	actual	buildings.	What	I'm	saying	is	that

#f1n
#f2n

however	much	you	learn	from	exploring	ideas	in	other	ways,
you'll	still	learn	new	things	from	writing	about	them.

Putting	ideas	into	words	doesn't	have	to	mean	writing,	of	course.
You	can	also	do	it	the	old	way,	by	talking.	But	in	my	experience,
writing	is	the	stricter	test.	You	have	to	commit	to	a	single,
optimal	sequence	of	words.	Less	can	go	unsaid	when	you	don't
have	tone	of	voice	to	carry	meaning.	And	you	can	focus	in	a	way
that	would	seem	excessive	in	conversation.	I'll	often	spend	2
weeks	on	an	essay	and	reread	drafts	50	times.	If	you	did	that	in
conversation	it	would	seem	evidence	of	some	kind	of	mental
disorder.	If	you're	lazy,	of	course,	writing	and	talking	are	equally
useless.	But	if	you	want	to	push	yourself	to	get	things	right,
writing	is	the	steeper	hill.	[3]

The	reason	I've	spent	so	long	establishing	this	rather	obvious
point	is	that	it	leads	to	another	that	many	people	will	find
shocking.	If	writing	down	your	ideas	always	makes	them	more
precise	and	more	complete,	then	no	one	who	hasn't	written	about
a	topic	has	fully	formed	ideas	about	it.	And	someone	who	never
writes	has	no	fully	formed	ideas	about	anything	nontrivial.

It	feels	to	them	as	if	they	do,	especially	if	they're	not	in	the	habit
of	critically	examining	their	own	thinking.	Ideas	can	feel
complete.	It's	only	when	you	try	to	put	them	into	words	that	you
discover	they're	not.	So	if	you	never	subject	your	ideas	to	that
test,	you'll	not	only	never	have	fully	formed	ideas,	but	also	never
realize	it.

Putting	ideas	into	words	is	certainly	no	guarantee	that	they'll	be
right.	Far	from	it.	But	though	it's	not	a	sufficient	condition,	it	is	a
necessary	one.

#f3n

Notes

[1]	Machinery	and	circuits	are	formal	languages.

[2]	I	thought	of	this	sentence	as	I	was	walking	down	the	street	in
Palo	Alto.

[3]	There	are	two	senses	of	talking	to	someone:	a	strict	sense	in
which	the	conversation	is	verbal,	and	a	more	general	sense	in
which	it	can	take	any	form,	including	writing.	In	the	limit	case
(e.g.	Seneca's	letters),	conversation	in	the	latter	sense	becomes
essay	writing.

It	can	be	very	useful	to	talk	(in	either	sense)	with	other	people	as
you're	writing	something.	But	a	verbal	conversation	will	never	be
more	exacting	than	when	you're	talking	about	something	you're
writing.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	and	Robert	Morris
for	reading	drafts	of	this.	

	

Heresy
April	2022

One	of	the	most	surprising	things	I've	witnessed	in	my	lifetime	is
the	rebirth	of	the	concept	of	heresy.

In	his	excellent	biography	of	Newton,	Richard	Westfall	writes
about	the	moment	when	he	was	elected	a	fellow	of	Trinity
College:

Supported	comfortably,	Newton	was	free	to	devote
himself	wholly	to	whatever	he	chose.	To	remain	on,
he	had	only	to	avoid	the	three	unforgivable	sins:
crime,	heresy,	and	marriage.	[1]

The	first	time	I	read	that,	in	the	1990s,	it	sounded	amusingly
medieval.	How	strange,	to	have	to	avoid	committing	heresy.	But
when	I	reread	it	20	years	later	it	sounded	like	a	description	of
contemporary	employment.

There	are	an	ever-increasing	number	of	opinions	you	can	be	fired
for.	Those	doing	the	firing	don't	use	the	word	"heresy"	to
describe	them,	but	structurally	they're	equivalent.	Structurally
there	are	two	distinctive	things	about	heresy:	(1)	that	it	takes
priority	over	the	question	of	truth	or	falsity,	and	(2)	that	it
outweighs	everything	else	the	speaker	has	done.

For	example,	when	someone	calls	a	statement	"x-ist,"	they're	also
implicitly	saying	that	this	is	the	end	of	the	discussion.	They	do
not,	having	said	this,	go	on	to	consider	whether	the	statement	is
true	or	not.	Using	such	labels	is	the	conversational	equivalent	of
signalling	an	exception.	That's	one	of	the	reasons	they're	used:	to
end	a	discussion.

If	you	find	yourself	talking	to	someone	who	uses	these	labels	a
lot,	it	might	be	worthwhile	to	ask	them	explicitly	if	they	believe
any	babies	are	being	thrown	out	with	the	bathwater.	Can	a

#f1n

statement	be	x-ist,	for	whatever	value	of	x,	and	also	true?	If	the
answer	is	yes,	then	they're	admitting	to	banning	the	truth.	That's
obvious	enough	that	I'd	guess	most	would	answer	no.	But	if	they
answer	no,	it's	easy	to	show	that	they're	mistaken,	and	that	in
practice	such	labels	are	applied	to	statements	regardless	of	their
truth	or	falsity.

The	clearest	evidence	of	this	is	that	whether	a	statement	is
considered	x-ist	often	depends	on	who	said	it.	Truth	doesn't	work
that	way.	The	same	statement	can't	be	true	when	one	person	says
it,	but	x-ist,	and	therefore	false,	when	another	person	does.	[2]

The	other	distinctive	thing	about	heresies,	compared	to	ordinary
opinions,	is	that	the	public	expression	of	them	outweighs
everything	else	the	speaker	has	done.	In	ordinary	matters,	like
knowledge	of	history,	or	taste	in	music,	you're	judged	by	the
average	of	your	opinions.	A	heresy	is	qualitatively	different.	It's
like	dropping	a	chunk	of	uranium	onto	the	scale.

Back	in	the	day	(and	still,	in	some	places)	the	punishment	for
heresy	was	death.	You	could	have	led	a	life	of	exemplary
goodness,	but	if	you	publicly	doubted,	say,	the	divinity	of	Christ,
you	were	going	to	burn.	Nowadays,	in	civilized	countries,
heretics	only	get	fired	in	the	metaphorical	sense,	by	losing	their
jobs.	But	the	structure	of	the	situation	is	the	same:	the	heresy
outweighs	everything	else.	You	could	have	spent	the	last	ten
years	saving	children's	lives,	but	if	you	express	certain	opinions,
you're	automatically	fired.

It's	much	the	same	as	if	you	committed	a	crime.	No	matter	how
virtuously	you've	lived,	if	you	commit	a	crime,	you	must	still
suffer	the	penalty	of	the	law.	Having	lived	a	previously	blameless
life	might	mitigate	the	punishment,	but	it	doesn't	affect	whether
you're	guilty	or	not.

A	heresy	is	an	opinion	whose	expression	is	treated	like	a	crime	—
one	that	makes	some	people	feel	not	merely	that	you're
mistaken,	but	that	you	should	be	punished.	Indeed,	their	desire
to	see	you	punished	is	often	stronger	than	it	would	be	if	you'd
committed	an	actual	crime.	There	are	many	on	the	far	left	who
believe	strongly	in	the	reintegration	of	felons	(as	I	do	myself),

#f2n

and	yet	seem	to	feel	that	anyone	guilty	of	certain	heresies	should
never	work	again.

There	are	always	some	heresies	—	some	opinions	you'd	be
punished	for	expressing.	But	there	are	a	lot	more	now	than	there
were	a	few	decades	ago,	and	even	those	who	are	happy	about
this	would	have	to	agree	that	it's	so.

Why?	Why	has	this	antiquated-sounding	religious	concept	come
back	in	a	secular	form?	And	why	now?

You	need	two	ingredients	for	a	wave	of	intolerance:	intolerant
people,	and	an	ideology	to	guide	them.	The	intolerant	people	are
always	there.	They	exist	in	every	sufficiently	large	society.	That's
why	waves	of	intolerance	can	arise	so	suddenly;	all	they	need	is
something	to	set	them	off.

I've	already	written	an	essay	describing	the	aggressively
conventional-minded.	The	short	version	is	that	people	can	be
classified	in	two	dimensions	according	to	(1)	how	independent-	or
conventional-minded	they	are,	and	(2)	how	aggressive	they	are
about	it.	The	aggressively	conventional-minded	are	the	enforcers
of	orthodoxy.

Normally	they're	only	locally	visible.	They're	the	grumpy,
censorious	people	in	a	group	—	the	ones	who	are	always	first	to
complain	when	something	violates	the	current	rules	of	propriety.
But	occasionally,	like	a	vector	field	whose	elements	become
aligned,	a	large	number	of	aggressively	conventional-minded
people	unite	behind	some	ideology	all	at	once.	Then	they	become
much	more	of	a	problem,	because	a	mob	dynamic	takes	over,
where	the	enthusiasm	of	each	participant	is	increased	by	the
enthusiasm	of	the	others.

The	most	notorious	20th	century	case	may	have	been	the
Cultural	Revolution.	Though	initiated	by	Mao	to	undermine	his
rivals,	the	Cultural	Revolution	was	otherwise	mostly	a	grass-roots
phenomenon.	Mao	said	in	essence:	There	are	heretics	among	us.
Seek	them	out	and	punish	them.	And	that's	all	the	aggressively
conventional-minded	ever	need	to	hear.	They	went	at	it	with	the
delight	of	dogs	chasing	squirrels.

conformism.html

To	unite	the	conventional-minded,	an	ideology	must	have	many	of
the	features	of	a	religion.	In	particular	it	must	have	strict	and
arbitrary	rules	that	adherents	can	demonstrate	their	purity	by
obeying,	and	its	adherents	must	believe	that	anyone	who	obeys
these	rules	is	ipso	facto	morally	superior	to	anyone	who	doesn't.
[3]

In	the	late	1980s	a	new	ideology	of	this	type	appeared	in	US
universities.	It	had	a	very	strong	component	of	moral	purity,	and
the	aggressively	conventional-minded	seized	upon	it	with	their
usual	eagerness	—	all	the	more	because	the	relaxation	of	social
norms	in	the	preceding	decades	meant	there	had	been	less	and
less	to	forbid.	The	resulting	wave	of	intolerance	has	been	eerily
similar	in	form	to	the	Cultural	Revolution,	though	fortunately
much	smaller	in	magnitude.	[4]

I've	deliberately	avoided	mentioning	any	specific	heresies	here.
Partly	because	one	of	the	universal	tactics	of	heretic	hunters,
now	as	in	the	past,	is	to	accuse	those	who	disapprove	of	the	way
in	which	they	suppress	ideas	of	being	heretics	themselves.
Indeed,	this	tactic	is	so	consistent	that	you	could	use	it	as	a	way
of	detecting	witch	hunts	in	any	era.

And	that's	the	second	reason	I've	avoided	mentioning	any
specific	heresies.	I	want	this	essay	to	work	in	the	future,	not	just
now.	And	unfortunately	it	probably	will.	The	aggressively
conventional-minded	will	always	be	among	us,	looking	for	things
to	forbid.	All	they	need	is	an	ideology	to	tell	them	what.	And	it's
unlikely	the	current	one	will	be	the	last.

There	are	aggressively	conventional-minded	people	on	both	the
right	and	the	left.	The	reason	the	current	wave	of	intolerance
comes	from	the	left	is	simply	because	the	new	unifying	ideology
happened	to	come	from	the	left.	The	next	one	might	come	from
the	right.	Imagine	what	that	would	be	like.

Fortunately	in	western	countries	the	suppression	of	heresies	is
nothing	like	as	bad	as	it	used	to	be.	Though	the	window	of
opinions	you	can	express	publicly	has	narrowed	in	the	last
decade,	it's	still	much	wider	than	it	was	a	few	hundred	years	ago.

https://www.youtube.com/watch?v=qaHLd8de6nM
#f3n
#f4n

The	problem	is	the	derivative.	Up	till	about	1985	the	window	had
been	growing	ever	wider.	Anyone	looking	into	the	future	in	1985
would	have	expected	freedom	of	expression	to	continue	to
increase.	Instead	it	has	decreased.	[5]

The	situation	is	similar	to	what's	happened	with	infectious
diseases	like	measles.	Anyone	looking	into	the	future	in	2010
would	have	expected	the	number	of	measles	cases	in	the	US	to
continue	to	decrease.	Instead,	thanks	to	anti-vaxxers,	it	has
increased.	The	absolute	number	is	still	not	that	high.	The
problem	is	the	derivative.	[6]

In	both	cases	it's	hard	to	know	how	much	to	worry.	Is	it	really
dangerous	to	society	as	a	whole	if	a	handful	of	extremists	refuse
to	get	their	kids	vaccinated,	or	shout	down	speakers	at
universities?	The	point	to	start	worrying	is	presumably	when
their	efforts	start	to	spill	over	into	everyone	else's	lives.	And	in
both	cases	that	does	seem	to	be	happening.

So	it's	probably	worth	spending	some	amount	of	effort	on
pushing	back	to	keep	open	the	window	of	free	expression.	My
hope	is	that	this	essay	will	help	form	social	antibodies	not	just
against	current	efforts	to	suppress	ideas,	but	against	the	concept
of	heresy	in	general.	That's	the	real	prize.	How	do	you	disable
the	concept	of	heresy?	Since	the	Enlightenment,	western
societies	have	discovered	many	techniques	for	doing	that,	but
there	are	surely	more	to	be	discovered.

Overall	I'm	optimistic.	Though	the	trend	in	freedom	of	expression
has	been	bad	over	the	last	decade,	it's	been	good	over	the	longer
term.	And	there	are	signs	that	the	current	wave	of	intolerance	is
peaking.	Independent-minded	people	I	talk	to	seem	more
confident	than	they	did	a	few	years	ago.	On	the	other	side,	even
some	of	the	leaders	are	starting	to	wonder	if	things	have	gone
too	far.	And	popular	culture	among	the	young	has	already	moved
on.	All	we	have	to	do	is	keep	pushing	back,	and	the	wave
collapses.	And	then	we'll	be	net	ahead,	because	as	well	as	having
defeated	this	wave,	we'll	also	have	developed	new	tactics	for
resisting	the	next	one.

#f5n
#f6n
https://www.nytimes.com/2022/03/18/opinion/cancel-culture-free-speech-poll.html

Notes

[1]	Or	more	accurately,	biographies	of	Newton,	since	Westfall
wrote	two:	a	long	version	called	Never	at	Rest,	and	a	shorter	one
called	The	Life	of	Isaac	Newton.	Both	are	great.	The	short
version	moves	faster,	but	the	long	one	is	full	of	interesting	and
often	very	funny	details.	This	passage	is	the	same	in	both.

[2]	Another	more	subtle	but	equally	damning	bit	of	evidence	is
that	claims	of	x-ism	are	never	qualified.	You	never	hear	anyone
say	that	a	statement	is	"probably	x-ist"	or	"almost	certainly	y-ist."
If	claims	of	x-ism	were	actually	claims	about	truth,	you'd	expect
to	see	"probably"	in	front	of	"x-ist"	as	often	as	you	see	it	in	front
of	"fallacious."

[3]	The	rules	must	be	strict,	but	they	need	not	be	demanding.	So
the	most	effective	type	of	rules	are	those	about	superficial
matters,	like	doctrinal	minutiae,	or	the	precise	words	adherents
must	use.	Such	rules	can	be	made	extremely	complicated,	and
yet	don't	repel	potential	converts	by	requiring	significant
sacrifice.

The	superficial	demands	of	orthodoxy	make	it	an	inexpensive
substitute	for	virtue.	And	that	in	turn	is	one	of	the	reasons
orthodoxy	is	so	attractive	to	bad	people.	You	could	be	a	horrible
person,	and	yet	as	long	as	you're	orthodox,	you're	better	than
everyone	who	isn't.

[4]	Arguably	there	were	two.	The	first	had	died	down	somewhat
by	2000,	but	was	followed	by	a	second	in	the	2010s,	probably
caused	by	social	media.

[5]	Fortunately	most	of	those	trying	to	suppress	ideas	today	still
respect	Enlightenment	principles	enough	to	pay	lip	service	to

them.	They	know	they're	not	supposed	to	ban	ideas	per	se,	so
they	have	to	recast	the	ideas	as	causing	"harm,"	which	sounds
like	something	that	can	be	banned.	The	more	extreme	try	to
claim	speech	itself	is	violence,	or	even	that	silence	is.	But	strange
as	it	may	sound,	such	gymnastics	are	a	good	sign.	We'll	know
we're	really	in	trouble	when	they	stop	bothering	to	invent
pretenses	for	banning	ideas	—	when,	like	the	medieval	church,
they	say	"Damn	right	we're	banning	ideas,	and	in	fact	here's	a
list	of	them."

[6]	People	only	have	the	luxury	of	ignoring	the	medical	consensus
about	vaccines	because	vaccines	have	worked	so	well.	If	we
didn't	have	any	vaccines	at	all,	the	mortality	rate	would	be	so
high	that	most	current	anti-vaxxers	would	be	begging	for	them.
And	the	situation	with	freedom	of	expression	is	similar.	It's	only
because	they	live	in	a	world	created	by	the	Enlightenment	that
kids	from	the	suburbs	can	play	at	banning	ideas.

Thanks	to	Marc	Andreessen,	Chris	Best,	Trevor	Blackwell,
Nicholas	Christakis,	Daniel	Gackle,	Jonathan	Haidt,	Claire
Lehmann,	Jessica	Livingston,	Greg	Lukianoff,	Robert	Morris,	and
Garry	Tan	for	reading	drafts	of	this.

	

What	I've	Learned	from	Users
September	2022

I	recently	told	applicants	to	Y	Combinator	that	the	best	advice	I
could	give	for	getting	in,	per	word,	was

Explain	what	you've	learned	from	users.

That	tests	a	lot	of	things:	whether	you're	paying	attention	to
users,	how	well	you	understand	them,	and	even	how	much	they
need	what	you're	making.

Afterward	I	asked	myself	the	same	question.	What	have	I	learned
from	YC's	users,	the	startups	we've	funded?

The	first	thing	that	came	to	mind	was	that	most	startups	have	the
same	problems.	No	two	have	exactly	the	same	problems,	but	it's
surprising	how	much	the	problems	remain	the	same,	regardless
of	what	they're	making.	Once	you've	advised	100	startups	all
doing	different	things,	you	rarely	encounter	problems	you
haven't	seen	before.

This	fact	is	one	of	the	things	that	makes	YC	work.	But	I	didn't
know	it	when	we	started	YC.	I	only	had	a	few	data	points:	our
own	startup,	and	those	started	by	friends.	It	was	a	surprise	to	me
how	often	the	same	problems	recur	in	different	forms.	Many	later
stage	investors	might	never	realize	this,	because	later	stage
investors	might	not	advise	100	startups	in	their	whole	career,	but
a	YC	partner	will	get	this	much	experience	in	the	first	year	or
two.

That's	one	advantage	of	funding	large	numbers	of	early	stage
companies	rather	than	smaller	numbers	of	later-stage	ones.	You
get	a	lot	of	data.	Not	just	because	you're	looking	at	more
companies,	but	also	because	more	goes	wrong.

But	knowing	(nearly)	all	the	problems	startups	can	encounter

doesn't	mean	that	advising	them	can	be	automated,	or	reduced	to
a	formula.	There's	no	substitute	for	individual	office	hours	with	a
YC	partner.	Each	startup	is	unique,	which	means	they	have	to	be
advised	by	specific	partners	who	know	them	well.	[1]

We	learned	that	the	hard	way,	in	the	notorious	"batch	that	broke
YC"	in	the	summer	of	2012.	Up	till	that	point	we	treated	the
partners	as	a	pool.	When	a	startup	requested	office	hours,	they
got	the	next	available	slot	posted	by	any	partner.	That	meant
every	partner	had	to	know	every	startup.	This	worked	fine	up	to
60	startups,	but	when	the	batch	grew	to	80,	everything	broke.
The	founders	probably	didn't	realize	anything	was	wrong,	but	the
partners	were	confused	and	unhappy	because	halfway	through
the	batch	they	still	didn't	know	all	the	companies	yet.	[2]

At	first	I	was	puzzled.	How	could	things	be	fine	at	60	startups
and	broken	at	80?	It	was	only	a	third	more.	Then	I	realized	what
had	happened.	We	were	using	an	O(n2)	algorithm.	So	of	course	it
blew	up.

The	solution	we	adopted	was	the	classic	one	in	these	situations.
We	sharded	the	batch	into	smaller	groups	of	startups,	each
overseen	by	a	dedicated	group	of	partners.	That	fixed	the
problem,	and	has	worked	fine	ever	since.	But	the	batch	that
broke	YC	was	a	powerful	demonstration	of	how	individualized	the
process	of	advising	startups	has	to	be.

Another	related	surprise	is	how	bad	founders	can	be	at	realizing
what	their	problems	are.	Founders	will	sometimes	come	in	to	talk
about	some	problem,	and	we'll	discover	another	much	bigger	one
in	the	course	of	the	conversation.	For	example	(and	this	case	is
all	too	common),	founders	will	come	in	to	talk	about	the
difficulties	they're	having	raising	money,	and	after	digging	into
their	situation,	it	turns	out	the	reason	is	that	the	company	is
doing	badly,	and	investors	can	tell.	Or	founders	will	come	in
worried	that	they	still	haven't	cracked	the	problem	of	user
acquisition,	and	the	reason	turns	out	to	be	that	their	product	isn't
good	enough.	There	have	been	times	when	I've	asked	"Would	you
use	this	yourself,	if	you	hadn't	built	it?"	and	the	founders,	on
thinking	about	it,	said	"No."	Well,	there's	the	reason	you're

#f1n
#f2n

having	trouble	getting	users.

Often	founders	know	what	their	problems	are,	but	not	their
relative	importance.	[3]	They'll	come	in	to	talk	about	three
problems	they're	worrying	about.	One	is	of	moderate	importance,
one	doesn't	matter	at	all,	and	one	will	kill	the	company	if	it	isn't
addressed	immediately.	It's	like	watching	one	of	those	horror
movies	where	the	heroine	is	deeply	upset	that	her	boyfriend
cheated	on	her,	and	only	mildly	curious	about	the	door	that's
mysteriously	ajar.	You	want	to	say:	never	mind	about	your
boyfriend,	think	about	that	door!	Fortunately	in	office	hours	you
can.	So	while	startups	still	die	with	some	regularity,	it's	rarely
because	they	wandered	into	a	room	containing	a	murderer.	The
YC	partners	can	warn	them	where	the	murderers	are.

Not	that	founders	listen.	That	was	another	big	surprise:	how
often	founders	don't	listen	to	us.	A	couple	weeks	ago	I	talked	to	a
partner	who	had	been	working	for	YC	for	a	couple	batches	and
was	starting	to	see	the	pattern.	"They	come	back	a	year	later,"
she	said,	"and	say	'We	wish	we'd	listened	to	you.'"

It	took	me	a	long	time	to	figure	out	why	founders	don't	listen.	At
first	I	thought	it	was	mere	stubbornness.	That's	part	of	the
reason,	but	another	and	probably	more	important	reason	is	that
so	much	about	startups	is	counterintuitive.	And	when	you	tell
someone	something	counterintuitive,	what	it	sounds	to	them	is
wrong.	So	the	reason	founders	don't	listen	to	us	is	that	they	don't
believe	us.	At	least	not	till	experience	teaches	them	otherwise.
[4]

The	reason	startups	are	so	counterintuitive	is	that	they're	so
different	from	most	people's	other	experiences.	No	one	knows
what	it's	like	except	those	who've	done	it.	Which	is	why	YC
partners	should	usually	have	been	founders	themselves.	But
strangely	enough,	the	counterintuitiveness	of	startups	turns	out
to	be	another	of	the	things	that	make	YC	work.	If	it	weren't
counterintuitive,	founders	wouldn't	need	our	advice	about	how	to
do	it.

Focus	is	doubly	important	for	early	stage	startups,	because	not
only	do	they	have	a	hundred	different	problems,	they	don't	have

#f3n
before.html
#f4n

anyone	to	work	on	them	except	the	founders.	If	the	founders
focus	on	things	that	don't	matter,	there's	no	one	focusing	on	the
things	that	do.	So	the	essence	of	what	happens	at	YC	is	to	figure
out	which	problems	matter	most,	then	cook	up	ideas	for	solving
them	—	ideally	at	a	resolution	of	a	week	or	less	—	and	then	try
those	ideas	and	measure	how	well	they	worked.	The	focus	is	on
action,	with	measurable,	near-term	results.

This	doesn't	imply	that	founders	should	rush	forward	regardless
of	the	consequences.	If	you	correct	course	at	a	high	enough
frequency,	you	can	be	simultaneously	decisive	at	a	micro	scale
and	tentative	at	a	macro	scale.	The	result	is	a	somewhat	winding
path,	but	executed	very	rapidly,	like	the	path	a	running	back
takes	downfield.	And	in	practice	there's	less	backtracking	than
you	might	expect.	Founders	usually	guess	right	about	which
direction	to	run	in,	especially	if	they	have	someone	experienced
like	a	YC	partner	to	bounce	their	hypotheses	off.	And	when	they
guess	wrong,	they	notice	fast,	because	they'll	talk	about	the
results	at	office	hours	the	next	week.	[5]

A	small	improvement	in	navigational	ability	can	make	you	a	lot
faster,	because	it	has	a	double	effect:	the	path	is	shorter,	and	you
can	travel	faster	along	it	when	you're	more	certain	it's	the	right
one.	That's	where	a	lot	of	YC's	value	lies,	in	helping	founders	get
an	extra	increment	of	focus	that	lets	them	move	faster.	And	since
moving	fast	is	the	essence	of	a	startup,	YC	in	effect	makes
startups	more	startup-like.

Speed	defines	startups.	Focus	enables	speed.	YC	improves	focus.

Why	are	founders	uncertain	about	what	to	do?	Partly	because
startups	almost	by	definition	are	doing	something	new,	which
means	no	one	knows	how	to	do	it	yet,	or	in	most	cases	even	what
"it"	is.	Partly	because	startups	are	so	counterintuitive	generally.
And	partly	because	many	founders,	especially	young	and
ambitious	ones,	have	been	trained	to	win	the	wrong	way.	That
took	me	years	to	figure	out.	The	educational	system	in	most
countries	trains	you	to	win	by	hacking	the	test	instead	of	actually
doing	whatever	it's	supposed	to	measure.	But	that	stops	working
when	you	start	a	startup.	So	part	of	what	YC	does	is	to	retrain
founders	to	stop	trying	to	hack	the	test.	(It	takes	a	surprisingly

#f5n
lesson.html

long	time.	A	year	in,	you	still	see	them	reverting	to	their	old
habits.)

YC	is	not	simply	more	experienced	founders	passing	on	their
knowledge.	It's	more	like	specialization	than	apprenticeship.	The
knowledge	of	the	YC	partners	and	the	founders	have	different
shapes:	It	wouldn't	be	worthwhile	for	a	founder	to	acquire	the
encyclopedic	knowledge	of	startup	problems	that	a	YC	partner
has,	just	as	it	wouldn't	be	worthwhile	for	a	YC	partner	to	acquire
the	depth	of	domain	knowledge	that	a	founder	has.	That's	why	it
can	still	be	valuable	for	an	experienced	founder	to	do	YC,	just	as
it	can	still	be	valuable	for	an	experienced	athlete	to	have	a	coach.

The	other	big	thing	YC	gives	founders	is	colleagues,	and	this	may
be	even	more	important	than	the	advice	of	partners.	If	you	look
at	history,	great	work	clusters	around	certain	places	and
institutions:	Florence	in	the	late	15th	century,	the	University	of
G�ttingen	in	the	late	19th,	The	New	Yorker	under	Ross,	Bell
Labs,	Xerox	PARC.	However	good	you	are,	good	colleagues	make
you	better.	Indeed,	very	ambitious	people	probably	need
colleagues	more	than	anyone	else,	because	they're	so	starved	for
them	in	everyday	life.

Whether	or	not	YC	manages	one	day	to	be	listed	alongside	those
famous	clusters,	it	won't	be	for	lack	of	trying.	We	were	very
aware	of	this	historical	phenomenon	and	deliberately	designed
YC	to	be	one.	By	this	point	it's	not	bragging	to	say	that	it's	the
biggest	cluster	of	great	startup	founders.	Even	people	trying	to
attack	YC	concede	that.

Colleagues	and	startup	founders	are	two	of	the	most	powerful
forces	in	the	world,	so	you'd	expect	it	to	have	a	big	effect	to
combine	them.	Before	YC,	to	the	extent	people	thought	about	the
question	at	all,	most	assumed	they	couldn't	be	combined	—	that
loneliness	was	the	price	of	independence.	That	was	how	it	felt	to
us	when	we	started	our	own	startup	in	Boston	in	the	1990s.	We
had	a	handful	of	older	people	we	could	go	to	for	advice	(of
varying	quality),	but	no	peers.	There	was	no	one	we	could
commiserate	with	about	the	misbehavior	of	investors,	or
speculate	with	about	the	future	of	technology.	I	often	tell
founders	to	make	something	they	themselves	want,	and	YC	is

certainly	that:	it	was	designed	to	be	exactly	what	we	wanted
when	we	were	starting	a	startup.

One	thing	we	wanted	was	to	be	able	to	get	seed	funding	without
having	to	make	the	rounds	of	random	rich	people.	That	has
become	a	commodity	now,	at	least	in	the	US.	But	great
colleagues	can	never	become	a	commodity,	because	the	fact	that
they	cluster	in	some	places	means	they're	proportionally	absent
from	the	rest.

Something	magical	happens	where	they	do	cluster	though.	The
energy	in	the	room	at	a	YC	dinner	is	like	nothing	else	I've
experienced.	We	would	have	been	happy	just	to	have	one	or	two
other	startups	to	talk	to.	When	you	have	a	whole	roomful	it's
another	thing	entirely.

YC	founders	aren't	just	inspired	by	one	another.	They	also	help
one	another.	That's	the	happiest	thing	I've	learned	about	startup
founders:	how	generous	they	can	be	in	helping	one	another.	We
noticed	this	in	the	first	batch	and	consciously	designed	YC	to
magnify	it.	The	result	is	something	far	more	intense	than,	say,	a
university.	Between	the	partners,	the	alumni,	and	their
batchmates,	founders	are	surrounded	by	people	who	want	to	help
them,	and	can.

Notes

[1]	This	is	why	I've	never	liked	it	when	people	refer	to	YC	as	a
"bootcamp."	It's	intense	like	a	bootcamp,	but	the	opposite	in
structure.	Instead	of	everyone	doing	the	same	thing,	they're	each
talking	to	YC	partners	to	figure	out	what	their	specific	startup

needs.

[2]	When	I	say	the	summer	2012	batch	was	broken,	I	mean	it	felt
to	the	partners	that	something	was	wrong.	Things	weren't	yet	so
broken	that	the	startups	had	a	worse	experience.	In	fact	that
batch	did	unusually	well.

[3]	This	situation	reminds	me	of	the	research	showing	that
people	are	much	better	at	answering	questions	than	they	are	at
judging	how	accurate	their	answers	are.	The	two	phenomena	feel
very	similar.

[4]	The	Airbnbs	were	particularly	good	at	listening	—	partly
because	they	were	flexible	and	disciplined,	but	also	because
they'd	had	such	a	rough	time	during	the	preceding	year.	They
were	ready	to	listen.

[5]	The	optimal	unit	of	decisiveness	depends	on	how	long	it	takes
to	get	results,	and	that	depends	on	the	type	of	problem	you're
solving.	When	you're	negotiating	with	investors,	it	could	be	a
couple	days,	whereas	if	you're	building	hardware	it	could	be
months.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Harj	Taggar,	and
Garry	Tan	for	reading	drafts	of	this.

airbnbs.html

	

Alien	Truth
October	2022

If	there	were	intelligent	beings	elsewhere	in	the	universe,	they'd
share	certain	truths	in	common	with	us.	The	truths	of
mathematics	would	be	the	same,	because	they're	true	by
definition.	Ditto	for	the	truths	of	physics;	the	mass	of	a	carbon
atom	would	be	the	same	on	their	planet.	But	I	think	we'd	share
other	truths	with	aliens	besides	the	truths	of	math	and	physics,
and	that	it	would	be	worthwhile	to	think	about	what	these	might
be.

For	example,	I	think	we'd	share	the	principle	that	a	controlled
experiment	testing	some	hypothesis	entitles	us	to	have
proportionally	increased	belief	in	it.	It	seems	fairly	likely,	too,
that	it	would	be	true	for	aliens	that	one	can	get	better	at
something	by	practicing.	We'd	probably	share	Occam's	razor.
There	doesn't	seem	anything	specifically	human	about	any	of
these	ideas.

We	can	only	guess,	of	course.	We	can't	say	for	sure	what	forms
intelligent	life	might	take.	Nor	is	it	my	goal	here	to	explore	that
question,	interesting	though	it	is.	The	point	of	the	idea	of	alien
truth	is	not	that	it	gives	us	a	way	to	speculate	about	what	forms
intelligent	life	might	take,	but	that	it	gives	us	a	threshold,	or
more	precisely	a	target,	for	truth.	If	you're	trying	to	find	the	most
general	truths	short	of	those	of	math	or	physics,	then	presumably
they'll	be	those	we'd	share	in	common	with	other	forms	of
intelligent	life.

Alien	truth	will	work	best	as	a	heuristic	if	we	err	on	the	side	of
generosity.	If	an	idea	might	plausibly	be	relevant	to	aliens,	that's
enough.	Justice,	for	example.	I	wouldn't	want	to	bet	that	all
intelligent	beings	would	understand	the	concept	of	justice,	but	I
wouldn't	want	to	bet	against	it	either.

The	idea	of	alien	truth	is	related	to	Erdos's	idea	of	God's	book.
He	used	to	describe	a	particularly	good	proof	as	being	in	God's
book,	the	implication	being	(a)	that	a	sufficiently	good	proof	was
more	discovered	than	invented,	and	(b)	that	its	goodness	would
be	universally	recognized.	If	there's	such	a	thing	as	alien	truth,
then	there's	more	in	God's	book	than	math.

What	should	we	call	the	search	for	alien	truth?	The	obvious
choice	is	"philosophy."	Whatever	else	philosophy	includes,	it
should	probably	include	this.	I'm	fairly	sure	Aristotle	would	have
thought	so.	One	could	even	make	the	case	that	the	search	for
alien	truth	is,	if	not	an	accurate	description	of	philosophy,	a	good
definition	for	it.	I.e.	that	it's	what	people	who	call	themselves
philosophers	should	be	doing,	whether	or	not	they	currently	are.
But	I'm	not	wedded	to	that;	doing	it	is	what	matters,	not	what	we
call	it.

We	may	one	day	have	something	like	alien	life	among	us	in	the
form	of	AIs.	And	that	may	in	turn	allow	us	to	be	precise	about
what	truths	an	intelligent	being	would	have	to	share	with	us.	We
might	find,	for	example,	that	it's	impossible	to	create	something
we'd	consider	intelligent	that	doesn't	use	Occam's	razor.	We
might	one	day	even	be	able	to	prove	that.	But	though	this	sort	of
research	would	be	very	interesting,	it's	not	necessary	for	our
purposes,	or	even	the	same	field;	the	goal	of	philosophy,	if	we're
going	to	call	it	that,	would	be	to	see	what	ideas	we	come	up	with
using	alien	truth	as	a	target,	not	to	say	precisely	where	the
threshold	of	it	is.	Those	two	questions	might	one	day	converge,
but	they'll	converge	from	quite	different	directions,	and	till	they
do,	it	would	be	too	constraining	to	restrict	ourselves	to	thinking
only	about	things	we're	certain	would	be	alien	truths.	Especially
since	this	will	probably	be	one	of	those	areas	where	the	best
guesses	turn	out	to	be	surprisingly	close	to	optimal.	(Let's	see	if
that	one	does.)

Whatever	we	call	it,	the	attempt	to	discover	alien	truths	would	be
a	worthwhile	undertaking.	And	curiously	enough,	that	is	itself
probably	an	alien	truth.

Thanks	to	Trevor	Blackwell,	Greg	Brockman,	Patrick	Collison,
Robert	Morris,	and	Michael	Nielsen	for	reading	drafts	of	this.

	

What	You	(Want	to)*	Want
November	2022

Since	I	was	about	9	I've	been	puzzled	by	the	apparent
contradiction	between	being	made	of	matter	that	behaves	in	a
predictable	way,	and	the	feeling	that	I	could	choose	to	do
whatever	I	wanted.	At	the	time	I	had	a	self-interested	motive	for
exploring	the	question.	At	that	age	(like	most	succeeding	ages)	I
was	always	in	trouble	with	the	authorities,	and	it	seemed	to	me
that	there	might	possibly	be	some	way	to	get	out	of	trouble	by
arguing	that	I	wasn't	responsible	for	my	actions.	I	gradually	lost
hope	of	that,	but	the	puzzle	remained:	How	do	you	reconcile
being	a	machine	made	of	matter	with	the	feeling	that	you're	free
to	choose	what	you	do?	[1]

The	best	way	to	explain	the	answer	may	be	to	start	with	a	slightly
wrong	version,	and	then	fix	it.	The	wrong	version	is:	You	can	do
what	you	want,	but	you	can't	want	what	you	want.	Yes,	you	can
control	what	you	do,	but	you'll	do	what	you	want,	and	you	can't
control	that.

The	reason	this	is	mistaken	is	that	people	do	sometimes	change
what	they	want.	People	who	don't	want	to	want	something	—
drug	addicts,	for	example	—	can	sometimes	make	themselves
stop	wanting	it.	And	people	who	want	to	want	something	—	who
want	to	like	classical	music,	or	broccoli	—	sometimes	succeed.

So	we	modify	our	initial	statement:	You	can	do	what	you	want,
but	you	can't	want	to	want	what	you	want.

That's	still	not	quite	true.	It's	possible	to	change	what	you	want
to	want.	I	can	imagine	someone	saying	"I	decided	to	stop	wanting
to	like	classical	music."	But	we're	getting	closer	to	the	truth.	It's
rare	for	people	to	change	what	they	want	to	want,	and	the	more
"want	to"s	we	add,	the	rarer	it	gets.

#f1n

We	can	get	arbitrarily	close	to	a	true	statement	by	adding	more
"want	to"s	in	much	the	same	way	we	can	get	arbitrarily	close	to	1
by	adding	more	9s	to	a	string	of	9s	following	a	decimal	point.	In
practice	three	or	four	"want	to"s	must	surely	be	enough.	It's	hard
even	to	envision	what	it	would	mean	to	change	what	you	want	to
want	to	want	to	want,	let	alone	actually	do	it.

So	one	way	to	express	the	correct	answer	is	to	use	a	regular
expression.	You	can	do	what	you	want,	but	there's	some
statement	of	the	form	"you	can't	(want	to)*	want	what	you	want"
that's	true.	Ultimately	you	get	back	to	a	want	that	you	don't
control.	[2]

Notes

[1]	I	didn't	know	when	I	was	9	that	matter	might	behave
randomly,	but	I	don't	think	it	affects	the	problem	much.
Randomness	destroys	the	ghost	in	the	machine	as	effectively	as
determinism.

[2]	If	you	don't	like	using	an	expression,	you	can	make	the	same
point	using	higher-order	desires:	There	is	some	n	such	that	you
don't	control	your	nth-order	desires.

Thanks	to	Trevor	Blackwell,	Jessica	Livingston,	Robert	Morris,
and	Michael	Nielsen	for	reading	drafts	of	this.

#f2n

	

The	Need	to	Read
November	2022

In	the	science	fiction	books	I	read	as	a	kid,	reading	had	often
been	replaced	by	some	more	efficient	way	of	acquiring
knowledge.	Mysterious	"tapes"	would	load	it	into	one's	brain	like
a	program	being	loaded	into	a	computer.

That	sort	of	thing	is	unlikely	to	happen	anytime	soon.	Not	just
because	it	would	be	hard	to	build	a	replacement	for	reading,	but
because	even	if	one	existed,	it	would	be	insufficient.	Reading
about	x	doesn't	just	teach	you	about	x;	it	also	teaches	you	how	to
write.	[1]

Would	that	matter?	If	we	replaced	reading,	would	anyone	need	to
be	good	at	writing?

The	reason	it	would	matter	is	that	writing	is	not	just	a	way	to
convey	ideas,	but	also	a	way	to	have	them.

A	good	writer	doesn't	just	think,	and	then	write	down	what	he
thought,	as	a	sort	of	transcript.	A	good	writer	will	almost	always
discover	new	things	in	the	process	of	writing.	And	there	is,	as	far
as	I	know,	no	substitute	for	this	kind	of	discovery.	Talking	about
your	ideas	with	other	people	is	a	good	way	to	develop	them.	But
even	after	doing	this,	you'll	find	you	still	discover	new	things
when	you	sit	down	to	write.	There	is	a	kind	of	thinking	that	can
only	be	done	by	writing.

There	are	of	course	kinds	of	thinking	that	can	be	done	without
writing.	If	you	don't	need	to	go	too	deeply	into	a	problem,	you
can	solve	it	without	writing.	If	you're	thinking	about	how	two
pieces	of	machinery	should	fit	together,	writing	about	it	probably
won't	help	much.	And	when	a	problem	can	be	described	formally,
you	can	sometimes	solve	it	in	your	head.	But	if	you	need	to	solve
a	complicated,	ill-defined	problem,	it	will	almost	always	help	to

#f1n
words.html

write	about	it.	Which	in	turn	means	that	someone	who's	not	good
at	writing	will	almost	always	be	at	a	disadvantage	in	solving	such
problems.

You	can't	think	well	without	writing	well,	and	you	can't	write	well
without	reading	well.	And	I	mean	that	last	"well"	in	both	senses.
You	have	to	be	good	at	reading,	and	read	good	things.	[2]

People	who	just	want	information	may	find	other	ways	to	get	it.
But	people	who	want	to	have	ideas	can't	afford	to.

Notes

[1]	Audiobooks	can	give	you	examples	of	good	writing,	but
having	them	read	to	you	doesn't	teach	you	as	much	about	writing
as	reading	them	yourself.

[2]	By	"good	at	reading"	I	don't	mean	good	at	the	mechanics	of
reading.	You	don't	have	to	be	good	at	extracting	words	from	the
page	so	much	as	extracting	meaning	from	the	words.

#f2n

	

How	to	Get	New	Ideas
January	2023

(Someone	fed	my	essays	into	GPT	to	make	something	that	could
answer	questions	based	on	them,	then	asked	it	where	good	ideas
come	from.	The	answer	was	ok,	but	not	what	I	would	have	said.
This	is	what	I	would	have	said.)

The	way	to	get	new	ideas	is	to	notice	anomalies:	what	seems
strange,	or	missing,	or	broken?	You	can	see	anomalies	in
everyday	life	(much	of	standup	comedy	is	based	on	this),	but	the
best	place	to	look	for	them	is	at	the	frontiers	of	knowledge.

Knowledge	grows	fractally.	From	a	distance	its	edges	look
smooth,	but	when	you	learn	enough	to	get	close	to	one,	you'll
notice	it's	full	of	gaps.	These	gaps	will	seem	obvious;	it	will	seem
inexplicable	that	no	one	has	tried	x	or	wondered	about	y.	In	the
best	case,	exploring	such	gaps	yields	whole	new	fractal	buds.

https://twitter.com/stef/status/1617222428727586816

	

How	to	Do	Great	Work
July	2023

If	you	collected	lists	of	techniques	for	doing	great	work	in	a	lot	of
different	fields,	what	would	the	intersection	look	like?	I	decided
to	find	out	by	making	it.

Partly	my	goal	was	to	create	a	guide	that	could	be	used	by
someone	working	in	any	field.	But	I	was	also	curious	about	the
shape	of	the	intersection.	And	one	thing	this	exercise	shows	is
that	it	does	have	a	definite	shape;	it's	not	just	a	point	labelled
"work	hard."

The	following	recipe	assumes	you're	very	ambitious.

The	first	step	is	to	decide	what	to	work	on.	The	work	you	choose
needs	to	have	three	qualities:	it	has	to	be	something	you	have	a
natural	aptitude	for,	that	you	have	a	deep	interest	in,	and	that
offers	scope	to	do	great	work.

In	practice	you	don't	have	to	worry	much	about	the	third
criterion.	Ambitious	people	are	if	anything	already	too
conservative	about	it.	So	all	you	need	to	do	is	find	something	you
have	an	aptitude	for	and	great	interest	in.	[1]

That	sounds	straightforward,	but	it's	often	quite	difficult.	When
you're	young	you	don't	know	what	you're	good	at	or	what
different	kinds	of	work	are	like.	Some	kinds	of	work	you	end	up
doing	may	not	even	exist	yet.	So	while	some	people	know	what
they	want	to	do	at	14,	most	have	to	figure	it	out.

The	way	to	figure	out	what	to	work	on	is	by	working.	If	you're	not

#f1n

sure	what	to	work	on,	guess.	But	pick	something	and	get	going.
You'll	probably	guess	wrong	some	of	the	time,	but	that's	fine.	It's
good	to	know	about	multiple	things;	some	of	the	biggest
discoveries	come	from	noticing	connections	between	different
fields.

Develop	a	habit	of	working	on	your	own	projects.	Don't	let	"work"
mean	something	other	people	tell	you	to	do.	If	you	do	manage	to
do	great	work	one	day,	it	will	probably	be	on	a	project	of	your
own.	It	may	be	within	some	bigger	project,	but	you'll	be	driving
your	part	of	it.

What	should	your	projects	be?	Whatever	seems	to	you	excitingly
ambitious.	As	you	grow	older	and	your	taste	in	projects	evolves,
exciting	and	important	will	converge.	At	7	it	may	seem	excitingly
ambitious	to	build	huge	things	out	of	Lego,	then	at	14	to	teach
yourself	calculus,	till	at	21	you're	starting	to	explore	unanswered
questions	in	physics.	But	always	preserve	excitingness.

There's	a	kind	of	excited	curiosity	that's	both	the	engine	and	the
rudder	of	great	work.	It	will	not	only	drive	you,	but	if	you	let	it
have	its	way,	will	also	show	you	what	to	work	on.

What	are	you	excessively	curious	about	—	curious	to	a	degree
that	would	bore	most	other	people?	That's	what	you're	looking
for.

Once	you've	found	something	you're	excessively	interested	in,
the	next	step	is	to	learn	enough	about	it	to	get	you	to	one	of	the
frontiers	of	knowledge.	Knowledge	expands	fractally,	and	from	a
distance	its	edges	look	smooth,	but	once	you	learn	enough	to	get
close	to	one,	they	turn	out	to	be	full	of	gaps.

The	next	step	is	to	notice	them.	This	takes	some	skill,	because
your	brain	wants	to	ignore	such	gaps	in	order	to	make	a	simpler
model	of	the	world.	Many	discoveries	have	come	from	asking
questions	about	things	that	everyone	else	took	for	granted.	[2]

If	the	answers	seem	strange,	so	much	the	better.	Great	work
often	has	a	tincture	of	strangeness.	You	see	this	from	painting	to
math.	It	would	be	affected	to	try	to	manufacture	it,	but	if	it

#f2n

appears,	embrace	it.

Boldly	chase	outlier	ideas,	even	if	other	people	aren't	interested
in	them	—	in	fact,	especially	if	they	aren't.	If	you're	excited	about
some	possibility	that	everyone	else	ignores,	and	you	have	enough
expertise	to	say	precisely	what	they're	all	overlooking,	that's	as
good	a	bet	as	you'll	find.	[3]

Four	steps:	choose	a	field,	learn	enough	to	get	to	the	frontier,
notice	gaps,	explore	promising	ones.	This	is	how	practically
everyone	who's	done	great	work	has	done	it,	from	painters	to
physicists.

Steps	two	and	four	will	require	hard	work.	It	may	not	be	possible
to	prove	that	you	have	to	work	hard	to	do	great	things,	but	the
empirical	evidence	is	on	the	scale	of	the	evidence	for	mortality.
That's	why	it's	essential	to	work	on	something	you're	deeply
interested	in.	Interest	will	drive	you	to	work	harder	than	mere
diligence	ever	could.

The	three	most	powerful	motives	are	curiosity,	delight,	and	the
desire	to	do	something	impressive.	Sometimes	they	converge,
and	that	combination	is	the	most	powerful	of	all.

The	big	prize	is	to	discover	a	new	fractal	bud.	You	notice	a	crack
in	the	surface	of	knowledge,	pry	it	open,	and	there's	a	whole
world	inside.

Let's	talk	a	little	more	about	the	complicated	business	of	figuring
out	what	to	work	on.	The	main	reason	it's	hard	is	that	you	can't
tell	what	most	kinds	of	work	are	like	except	by	doing	them.
Which	means	the	four	steps	overlap:	you	may	have	to	work	at
something	for	years	before	you	know	how	much	you	like	it	or
how	good	you	are	at	it.	And	in	the	meantime	you're	not	doing,
and	thus	not	learning	about,	most	other	kinds	of	work.	So	in	the
worst	case	you	choose	late	based	on	very	incomplete	information.
[4]

#f3n
#f4n

The	nature	of	ambition	exacerbates	this	problem.	Ambition
comes	in	two	forms,	one	that	precedes	interest	in	the	subject	and
one	that	grows	out	of	it.	Most	people	who	do	great	work	have	a
mix,	and	the	more	you	have	of	the	former,	the	harder	it	will	be	to
decide	what	to	do.

The	educational	systems	in	most	countries	pretend	it's	easy.	They
expect	you	to	commit	to	a	field	long	before	you	could	know	what
it's	really	like.	And	as	a	result	an	ambitious	person	on	an	optimal
trajectory	will	often	read	to	the	system	as	an	instance	of
breakage.

It	would	be	better	if	they	at	least	admitted	it	—	if	they	admitted
that	the	system	not	only	can't	do	much	to	help	you	figure	out
what	to	work	on,	but	is	designed	on	the	assumption	that	you'll
somehow	magically	guess	as	a	teenager.	They	don't	tell	you,	but	I
will:	when	it	comes	to	figuring	out	what	to	work	on,	you're	on
your	own.	Some	people	get	lucky	and	do	guess	correctly,	but	the
rest	will	find	themselves	scrambling	diagonally	across	tracks	laid
down	on	the	assumption	that	everyone	does.

What	should	you	do	if	you're	young	and	ambitious	but	don't	know
what	to	work	on?	What	you	should	not	do	is	drift	along	passively,
assuming	the	problem	will	solve	itself.	You	need	to	take	action.
But	there	is	no	systematic	procedure	you	can	follow.	When	you
read	biographies	of	people	who've	done	great	work,	it's
remarkable	how	much	luck	is	involved.	They	discover	what	to
work	on	as	a	result	of	a	chance	meeting,	or	by	reading	a	book
they	happen	to	pick	up.	So	you	need	to	make	yourself	a	big
target	for	luck,	and	the	way	to	do	that	is	to	be	curious.	Try	lots	of
things,	meet	lots	of	people,	read	lots	of	books,	ask	lots	of
questions.	[5]

When	in	doubt,	optimize	for	interestingness.	Fields	change	as
you	learn	more	about	them.	What	mathematicians	do,	for
example,	is	very	different	from	what	you	do	in	high	school	math
classes.	So	you	need	to	give	different	types	of	work	a	chance	to
show	you	what	they're	like.	But	a	field	should	become
increasingly	interesting	as	you	learn	more	about	it.	If	it	doesn't,
it's	probably	not	for	you.

#f5n

Don't	worry	if	you	find	you're	interested	in	different	things	than
other	people.	The	stranger	your	tastes	in	interestingness,	the
better.	Strange	tastes	are	often	strong	ones,	and	a	strong	taste
for	work	means	you'll	be	productive.	And	you're	more	likely	to
find	new	things	if	you're	looking	where	few	have	looked	before.

One	sign	that	you're	suited	for	some	kind	of	work	is	when	you
like	even	the	parts	that	other	people	find	tedious	or	frightening.

But	fields	aren't	people;	you	don't	owe	them	any	loyalty.	If	in	the
course	of	working	on	one	thing	you	discover	another	that's	more
exciting,	don't	be	afraid	to	switch.

If	you're	making	something	for	people,	make	sure	it's	something
they	actually	want.	The	best	way	to	do	this	is	to	make	something
you	yourself	want.	Write	the	story	you	want	to	read;	build	the
tool	you	want	to	use.	Since	your	friends	probably	have	similar
interests,	this	will	also	get	you	your	initial	audience.

This	should	follow	from	the	excitingness	rule.	Obviously	the	most
exciting	story	to	write	will	be	the	one	you	want	to	read.	The
reason	I	mention	this	case	explicitly	is	that	so	many	people	get	it
wrong.	Instead	of	making	what	they	want,	they	try	to	make	what
some	imaginary,	more	sophisticated	audience	wants.	And	once
you	go	down	that	route,	you're	lost.	[6]

There	are	a	lot	of	forces	that	will	lead	you	astray	when	you're
trying	to	figure	out	what	to	work	on.	Pretentiousness,	fashion,
fear,	money,	politics,	other	people's	wishes,	eminent	frauds.	But	if
you	stick	to	what	you	find	genuinely	interesting,	you'll	be	proof
against	all	of	them.	If	you're	interested,	you're	not	astray.

Following	your	interests	may	sound	like	a	rather	passive	strategy,
but	in	practice	it	usually	means	following	them	past	all	sorts	of
obstacles.	You	usually	have	to	risk	rejection	and	failure.	So	it
does	take	a	good	deal	of	boldness.

#f6n

But	while	you	need	boldness,	you	don't	usually	need	much
planning.	In	most	cases	the	recipe	for	doing	great	work	is	simply:
work	hard	on	excitingly	ambitious	projects,	and	something	good
will	come	of	it.	Instead	of	making	a	plan	and	then	executing	it,
you	just	try	to	preserve	certain	invariants.

The	trouble	with	planning	is	that	it	only	works	for	achievements
you	can	describe	in	advance.	You	can	win	a	gold	medal	or	get
rich	by	deciding	to	as	a	child	and	then	tenaciously	pursuing	that
goal,	but	you	can't	discover	natural	selection	that	way.

I	think	for	most	people	who	want	to	do	great	work,	the	right
strategy	is	not	to	plan	too	much.	At	each	stage	do	whatever
seems	most	interesting	and	gives	you	the	best	options	for	the
future.	I	call	this	approach	"staying	upwind."	This	is	how	most
people	who've	done	great	work	seem	to	have	done	it.

Even	when	you've	found	something	exciting	to	work	on,	working
on	it	is	not	always	straightforward.	There	will	be	times	when
some	new	idea	makes	you	leap	out	of	bed	in	the	morning	and	get
straight	to	work.	But	there	will	also	be	plenty	of	times	when
things	aren't	like	that.

You	don't	just	put	out	your	sail	and	get	blown	forward	by
inspiration.	There	are	headwinds	and	currents	and	hidden	shoals.
So	there's	a	technique	to	working,	just	as	there	is	to	sailing.

For	example,	while	you	must	work	hard,	it's	possible	to	work	too
hard,	and	if	you	do	that	you'll	find	you	get	diminishing	returns:
fatigue	will	make	you	stupid,	and	eventually	even	damage	your
health.	The	point	at	which	work	yields	diminishing	returns
depends	on	the	type.	Some	of	the	hardest	types	you	might	only
be	able	to	do	for	four	or	five	hours	a	day.

Ideally	those	hours	will	be	contiguous.	To	the	extent	you	can,	try
to	arrange	your	life	so	you	have	big	blocks	of	time	to	work	in.

You'll	shy	away	from	hard	tasks	if	you	know	you	might	be
interrupted.

It	will	probably	be	harder	to	start	working	than	to	keep	working.
You'll	often	have	to	trick	yourself	to	get	over	that	initial
threshold.	Don't	worry	about	this;	it's	the	nature	of	work,	not	a
flaw	in	your	character.	Work	has	a	sort	of	activation	energy,	both
per	day	and	per	project.	And	since	this	threshold	is	fake	in	the
sense	that	it's	higher	than	the	energy	required	to	keep	going,	it's
ok	to	tell	yourself	a	lie	of	corresponding	magnitude	to	get	over	it.

It's	usually	a	mistake	to	lie	to	yourself	if	you	want	to	do	great
work,	but	this	is	one	of	the	rare	cases	where	it	isn't.	When	I'm
reluctant	to	start	work	in	the	morning,	I	often	trick	myself	by
saying	"I'll	just	read	over	what	I've	got	so	far."	Five	minutes	later
I've	found	something	that	seems	mistaken	or	incomplete,	and	I'm
off.

Similar	techniques	work	for	starting	new	projects.	It's	ok	to	lie	to
yourself	about	how	much	work	a	project	will	entail,	for	example.
Lots	of	great	things	began	with	someone	saying	"How	hard	could
it	be?"

This	is	one	case	where	the	young	have	an	advantage.	They're
more	optimistic,	and	even	though	one	of	the	sources	of	their
optimism	is	ignorance,	in	this	case	ignorance	can	sometimes	beat
knowledge.

Try	to	finish	what	you	start,	though,	even	if	it	turns	out	to	be
more	work	than	you	expected.	Finishing	things	is	not	just	an
exercise	in	tidiness	or	self-discipline.	In	many	projects	a	lot	of	the
best	work	happens	in	what	was	meant	to	be	the	final	stage.

Another	permissible	lie	is	to	exaggerate	the	importance	of	what
you're	working	on,	at	least	in	your	own	mind.	If	that	helps	you
discover	something	new,	it	may	turn	out	not	to	have	been	a	lie
after	all.	[7]

#f7n

Since	there	are	two	senses	of	starting	work	—	per	day	and	per
project	—	there	are	also	two	forms	of	procrastination.	Per-project
procrastination	is	far	the	more	dangerous.	You	put	off	starting
that	ambitious	project	from	year	to	year	because	the	time	isn't
quite	right.	When	you're	procrastinating	in	units	of	years,	you
can	get	a	lot	not	done.	[8]

One	reason	per-project	procrastination	is	so	dangerous	is	that	it
usually	camouflages	itself	as	work.	You're	not	just	sitting	around
doing	nothing;	you're	working	industriously	on	something	else.
So	per-project	procrastination	doesn't	set	off	the	alarms	that	per-
day	procrastination	does.	You're	too	busy	to	notice	it.

The	way	to	beat	it	is	to	stop	occasionally	and	ask	yourself:	Am	I
working	on	what	I	most	want	to	work	on?	When	you're	young	it's
ok	if	the	answer	is	sometimes	no,	but	this	gets	increasingly
dangerous	as	you	get	older.	[9]

Great	work	usually	entails	spending	what	would	seem	to	most
people	an	unreasonable	amount	of	time	on	a	problem.	You	can't
think	of	this	time	as	a	cost,	or	it	will	seem	too	high.	You	have	to
find	the	work	sufficiently	engaging	as	it's	happening.

There	may	be	some	jobs	where	you	have	to	work	diligently	for
years	at	things	you	hate	before	you	get	to	the	good	part,	but	this
is	not	how	great	work	happens.	Great	work	happens	by	focusing
consistently	on	something	you're	genuinely	interested	in.	When
you	pause	to	take	stock,	you're	surprised	how	far	you've	come.

The	reason	we're	surprised	is	that	we	underestimate	the
cumulative	effect	of	work.	Writing	a	page	a	day	doesn't	sound
like	much,	but	if	you	do	it	every	day	you'll	write	a	book	a	year.
That's	the	key:	consistency.	People	who	do	great	things	don't	get
a	lot	done	every	day.	They	get	something	done,	rather	than
nothing.

#f8n
#f9n

If	you	do	work	that	compounds,	you'll	get	exponential	growth.
Most	people	who	do	this	do	it	unconsciously,	but	it's	worth
stopping	to	think	about.	Learning,	for	example,	is	an	instance	of
this	phenomenon:	the	more	you	learn	about	something,	the
easier	it	is	to	learn	more.	Growing	an	audience	is	another:	the
more	fans	you	have,	the	more	new	fans	they'll	bring	you.

The	trouble	with	exponential	growth	is	that	the	curve	feels	flat	in
the	beginning.	It	isn't;	it's	still	a	wonderful	exponential	curve.	But
we	can't	grasp	that	intuitively,	so	we	underrate	exponential
growth	in	its	early	stages.

Something	that	grows	exponentially	can	become	so	valuable	that
it's	worth	making	an	extraordinary	effort	to	get	it	started.	But
since	we	underrate	exponential	growth	early	on,	this	too	is
mostly	done	unconsciously:	people	push	through	the	initial,
unrewarding	phase	of	learning	something	new	because	they
know	from	experience	that	learning	new	things	always	takes	an
initial	push,	or	they	grow	their	audience	one	fan	at	a	time
because	they	have	nothing	better	to	do.	If	people	consciously
realized	they	could	invest	in	exponential	growth,	many	more
would	do	it.

Work	doesn't	just	happen	when	you're	trying	to.	There's	a	kind	of
undirected	thinking	you	do	when	walking	or	taking	a	shower	or
lying	in	bed	that	can	be	very	powerful.	By	letting	your	mind
wander	a	little,	you'll	often	solve	problems	you	were	unable	to
solve	by	frontal	attack.

You	have	to	be	working	hard	in	the	normal	way	to	benefit	from
this	phenomenon,	though.	You	can't	just	walk	around
daydreaming.	The	daydreaming	has	to	be	interleaved	with
deliberate	work	that	feeds	it	questions.	[10]

Everyone	knows	to	avoid	distractions	at	work,	but	it's	also
important	to	avoid	them	in	the	other	half	of	the	cycle.	When	you
let	your	mind	wander,	it	wanders	to	whatever	you	care	about

#f10n

most	at	that	moment.	So	avoid	the	kind	of	distraction	that	pushes
your	work	out	of	the	top	spot,	or	you'll	waste	this	valuable	type	of
thinking	on	the	distraction	instead.	(Exception:	Don't	avoid	love.)

Consciously	cultivate	your	taste	in	the	work	done	in	your	field.
Until	you	know	which	is	the	best	and	what	makes	it	so,	you	don't
know	what	you're	aiming	for.

And	that	is	what	you're	aiming	for,	because	if	you	don't	try	to	be
the	best,	you	won't	even	be	good.	This	observation	has	been
made	by	so	many	people	in	so	many	different	fields	that	it	might
be	worth	thinking	about	why	it's	true.	It	could	be	because
ambition	is	a	phenomenon	where	almost	all	the	error	is	in	one
direction	—	where	almost	all	the	shells	that	miss	the	target	miss
by	falling	short.	Or	it	could	be	because	ambition	to	be	the	best	is
a	qualitatively	different	thing	from	ambition	to	be	good.	Or
maybe	being	good	is	simply	too	vague	a	standard.	Probably	all
three	are	true.	[11]

Fortunately	there's	a	kind	of	economy	of	scale	here.	Though	it
might	seem	like	you'd	be	taking	on	a	heavy	burden	by	trying	to
be	the	best,	in	practice	you	often	end	up	net	ahead.	It's	exciting,
and	also	strangely	liberating.	It	simplifies	things.	In	some	ways
it's	easier	to	try	to	be	the	best	than	to	try	merely	to	be	good.

One	way	to	aim	high	is	to	try	to	make	something	that	people	will
care	about	in	a	hundred	years.	Not	because	their	opinions	matter
more	than	your	contemporaries',	but	because	something	that	still
seems	good	in	a	hundred	years	is	more	likely	to	be	genuinely
good.

Don't	try	to	work	in	a	distinctive	style.	Just	try	to	do	the	best	job
you	can;	you	won't	be	able	to	help	doing	it	in	a	distinctive	way.

#f11n

Style	is	doing	things	in	a	distinctive	way	without	trying	to.	Trying
to	is	affectation.

Affectation	is	in	effect	to	pretend	that	someone	other	than	you	is
doing	the	work.	You	adopt	an	impressive	but	fake	persona,	and
while	you're	pleased	with	the	impressiveness,	the	fakeness	is
what	shows	in	the	work.	[12]

The	temptation	to	be	someone	else	is	greatest	for	the	young.
They	often	feel	like	nobodies.	But	you	never	need	to	worry	about
that	problem,	because	it's	self-solving	if	you	work	on	sufficiently
ambitious	projects.	If	you	succeed	at	an	ambitious	project,	you're
not	a	nobody;	you're	the	person	who	did	it.	So	just	do	the	work
and	your	identity	will	take	care	of	itself.

"Avoid	affectation"	is	a	useful	rule	so	far	as	it	goes,	but	how
would	you	express	this	idea	positively?	How	would	you	say	what
to	be,	instead	of	what	not	to	be?	The	best	answer	is	earnest.	If
you're	earnest	you	avoid	not	just	affectation	but	a	whole	set	of
similar	vices.

The	core	of	being	earnest	is	being	intellectually	honest.	We're
taught	as	children	to	be	honest	as	an	unselfish	virtue	—	as	a	kind
of	sacrifice.	But	in	fact	it's	a	source	of	power	too.	To	see	new
ideas,	you	need	an	exceptionally	sharp	eye	for	the	truth.	You're
trying	to	see	more	truth	than	others	have	seen	so	far.	And	how
can	you	have	a	sharp	eye	for	the	truth	if	you're	intellectually
dishonest?

One	way	to	avoid	intellectual	dishonesty	is	to	maintain	a	slight
positive	pressure	in	the	opposite	direction.	Be	aggressively
willing	to	admit	that	you're	mistaken.	Once	you've	admitted	you
were	mistaken	about	something,	you're	free.	Till	then	you	have	to
carry	it.	[13]

Another	more	subtle	component	of	earnestness	is	informality.

#f12n
#f13n

Informality	is	much	more	important	than	its	grammatically
negative	name	implies.	It's	not	merely	the	absence	of	something.
It	means	focusing	on	what	matters	instead	of	what	doesn't.

What	formality	and	affectation	have	in	common	is	that	as	well	as
doing	the	work,	you're	trying	to	seem	a	certain	way	as	you're
doing	it.	But	any	energy	that	goes	into	how	you	seem	comes	out
of	being	good.	That's	one	reason	nerds	have	an	advantage	in
doing	great	work:	they	expend	little	effort	on	seeming	anything.
In	fact	that's	basically	the	definition	of	a	nerd.

Nerds	have	a	kind	of	innocent	boldness	that's	exactly	what	you
need	in	doing	great	work.	It's	not	learned;	it's	preserved	from
childhood.	So	hold	onto	it.	Be	the	one	who	puts	things	out	there
rather	than	the	one	who	sits	back	and	offers	sophisticated-
sounding	criticisms	of	them.	"It's	easy	to	criticize"	is	true	in	the
most	literal	sense,	and	the	route	to	great	work	is	never	easy.

There	may	be	some	jobs	where	it's	an	advantage	to	be	cynical
and	pessimistic,	but	if	you	want	to	do	great	work	it's	an
advantage	to	be	optimistic,	even	though	that	means	you'll	risk
looking	like	a	fool	sometimes.	There's	an	old	tradition	of	doing
the	opposite.	The	Old	Testament	says	it's	better	to	keep	quiet	lest
you	look	like	a	fool.	But	that's	advice	for	seeming	smart.	If	you
actually	want	to	discover	new	things,	it's	better	to	take	the	risk
of	telling	people	your	ideas.

Some	people	are	naturally	earnest,	and	with	others	it	takes	a
conscious	effort.	Either	kind	of	earnestness	will	suffice.	But	I
doubt	it	would	be	possible	to	do	great	work	without	being
earnest.	It's	so	hard	to	do	even	if	you	are.	You	don't	have	enough
margin	for	error	to	accommodate	the	distortions	introduced	by
being	affected,	intellectually	dishonest,	orthodox,	fashionable,	or
cool.	[14]

Great	work	is	consistent	not	only	with	who	did	it,	but	with	itself.
It's	usually	all	of	a	piece.	So	if	you	face	a	decision	in	the	middle

#f14n

of	working	on	something,	ask	which	choice	is	more	consistent.

You	may	have	to	throw	things	away	and	redo	them.	You	won't
necessarily	have	to,	but	you	have	to	be	willing	to.	And	that	can
take	some	effort;	when	there's	something	you	need	to	redo,
status	quo	bias	and	laziness	will	combine	to	keep	you	in	denial
about	it.	To	beat	this	ask:	If	I'd	already	made	the	change,	would	I
want	to	revert	to	what	I	have	now?

Have	the	confidence	to	cut.	Don't	keep	something	that	doesn't	fit
just	because	you're	proud	of	it,	or	because	it	cost	you	a	lot	of
effort.

Indeed,	in	some	kinds	of	work	it's	good	to	strip	whatever	you're
doing	to	its	essence.	The	result	will	be	more	concentrated;	you'll
understand	it	better;	and	you	won't	be	able	to	lie	to	yourself
about	whether	there's	anything	real	there.

Mathematical	elegance	may	sound	like	a	mere	metaphor,	drawn
from	the	arts.	That's	what	I	thought	when	I	first	heard	the	term
"elegant"	applied	to	a	proof.	But	now	I	suspect	it's	conceptually
prior	—	that	the	main	ingredient	in	artistic	elegance	is
mathematical	elegance.	At	any	rate	it's	a	useful	standard	well
beyond	math.

Elegance	can	be	a	long-term	bet,	though.	Laborious	solutions	will
often	have	more	prestige	in	the	short	term.	They	cost	a	lot	of
effort	and	they're	hard	to	understand,	both	of	which	impress
people,	at	least	temporarily.

Whereas	some	of	the	very	best	work	will	seem	like	it	took
comparatively	little	effort,	because	it	was	in	a	sense	already
there.	It	didn't	have	to	be	built,	just	seen.	It's	a	very	good	sign
when	it's	hard	to	say	whether	you're	creating	something	or
discovering	it.

When	you're	doing	work	that	could	be	seen	as	either	creation	or
discovery,	err	on	the	side	of	discovery.	Try	thinking	of	yourself	as
a	mere	conduit	through	which	the	ideas	take	their	natural	shape.

(Strangely	enough,	one	exception	is	the	problem	of	choosing	a

problem	to	work	on.	This	is	usually	seen	as	search,	but	in	the
best	case	it's	more	like	creating	something.	In	the	best	case	you
create	the	field	in	the	process	of	exploring	it.)

Similarly,	if	you're	trying	to	build	a	powerful	tool,	make	it
gratuitously	unrestrictive.	A	powerful	tool	almost	by	definition
will	be	used	in	ways	you	didn't	expect,	so	err	on	the	side	of
eliminating	restrictions,	even	if	you	don't	know	what	the	benefit
will	be.

Great	work	will	often	be	tool-like	in	the	sense	of	being	something
others	build	on.	So	it's	a	good	sign	if	you're	creating	ideas	that
others	could	use,	or	exposing	questions	that	others	could	answer.
The	best	ideas	have	implications	in	many	different	areas.

If	you	express	your	ideas	in	the	most	general	form,	they'll	be
truer	than	you	intended.

True	by	itself	is	not	enough,	of	course.	Great	ideas	have	to	be
true	and	new.	And	it	takes	a	certain	amount	of	ability	to	see	new
ideas	even	once	you've	learned	enough	to	get	to	one	of	the
frontiers	of	knowledge.

In	English	we	give	this	ability	names	like	originality,	creativity,
and	imagination.	And	it	seems	reasonable	to	give	it	a	separate
name,	because	it	does	seem	to	some	extent	a	separate	skill.	It's
possible	to	have	a	great	deal	of	ability	in	other	respects	—	to
have	a	great	deal	of	what's	often	called	"technical	ability"	—	and
yet	not	have	much	of	this.

I've	never	liked	the	term	"creative	process."	It	seems	misleading.
Originality	isn't	a	process,	but	a	habit	of	mind.	Original	thinkers
throw	off	new	ideas	about	whatever	they	focus	on,	like	an	angle
grinder	throwing	off	sparks.	They	can't	help	it.

If	the	thing	they're	focused	on	is	something	they	don't
understand	very	well,	these	new	ideas	might	not	be	good.	One	of

the	most	original	thinkers	I	know	decided	to	focus	on	dating	after
he	got	divorced.	He	knew	roughly	as	much	about	dating	as	the
average	15	year	old,	and	the	results	were	spectacularly	colorful.
But	to	see	originality	separated	from	expertise	like	that	made	its
nature	all	the	more	clear.

I	don't	know	if	it's	possible	to	cultivate	originality,	but	there	are
definitely	ways	to	make	the	most	of	however	much	you	have.	For
example,	you're	much	more	likely	to	have	original	ideas	when
you're	working	on	something.	Original	ideas	don't	come	from
trying	to	have	original	ideas.	They	come	from	trying	to	build	or
understand	something	slightly	too	difficult.	[15]

Talking	or	writing	about	the	things	you're	interested	in	is	a	good
way	to	generate	new	ideas.	When	you	try	to	put	ideas	into	words,
a	missing	idea	creates	a	sort	of	vacuum	that	draws	it	out	of	you.
Indeed,	there's	a	kind	of	thinking	that	can	only	be	done	by
writing.

Changing	your	context	can	help.	If	you	visit	a	new	place,	you'll
often	find	you	have	new	ideas	there.	The	journey	itself	often
dislodges	them.	But	you	may	not	have	to	go	far	to	get	this
benefit.	Sometimes	it's	enough	just	to	go	for	a	walk.	[16]

It	also	helps	to	travel	in	topic	space.	You'll	have	more	new	ideas
if	you	explore	lots	of	different	topics,	partly	because	it	gives	the
angle	grinder	more	surface	area	to	work	on,	and	partly	because
analogies	are	an	especially	fruitful	source	of	new	ideas.

Don't	divide	your	attention	evenly	between	many	topics	though,
or	you'll	spread	yourself	too	thin.	You	want	to	distribute	it
according	to	something	more	like	a	power	law.	[17]	Be
professionally	curious	about	a	few	topics	and	idly	curious	about
many	more.

Curiosity	and	originality	are	closely	related.	Curiosity	feeds
originality	by	giving	it	new	things	to	work	on.	But	the
relationship	is	closer	than	that.	Curiosity	is	itself	a	kind	of
originality;	it's	roughly	to	questions	what	originality	is	to
answers.	And	since	questions	at	their	best	are	a	big	component
of	answers,	curiosity	at	its	best	is	a	creative	force.

#f15n
#f16n
#f17n

Having	new	ideas	is	a	strange	game,	because	it	usually	consists
of	seeing	things	that	were	right	under	your	nose.	Once	you've
seen	a	new	idea,	it	tends	to	seem	obvious.	Why	did	no	one	think
of	this	before?

When	an	idea	seems	simultaneously	novel	and	obvious,	it's
probably	a	good	one.

Seeing	something	obvious	sounds	easy.	And	yet	empirically
having	new	ideas	is	hard.	What's	the	source	of	this	apparent
contradiction?	It's	that	seeing	the	new	idea	usually	requires	you
to	change	the	way	you	look	at	the	world.	We	see	the	world
through	models	that	both	help	and	constrain	us.	When	you	fix	a
broken	model,	new	ideas	become	obvious.	But	noticing	and	fixing
a	broken	model	is	hard.	That's	how	new	ideas	can	be	both
obvious	and	yet	hard	to	discover:	they're	easy	to	see	after	you	do
something	hard.

One	way	to	discover	broken	models	is	to	be	stricter	than	other
people.	Broken	models	of	the	world	leave	a	trail	of	clues	where
they	bash	against	reality.	Most	people	don't	want	to	see	these
clues.	It	would	be	an	understatement	to	say	that	they're	attached
to	their	current	model;	it's	what	they	think	in;	so	they'll	tend	to
ignore	the	trail	of	clues	left	by	its	breakage,	however
conspicuous	it	may	seem	in	retrospect.

To	find	new	ideas	you	have	to	seize	on	signs	of	breakage	instead
of	looking	away.	That's	what	Einstein	did.	He	was	able	to	see	the
wild	implications	of	Maxwell's	equations	not	so	much	because	he
was	looking	for	new	ideas	as	because	he	was	stricter.

The	other	thing	you	need	is	a	willingness	to	break	rules.
Paradoxical	as	it	sounds,	if	you	want	to	fix	your	model	of	the
world,	it	helps	to	be	the	sort	of	person	who's	comfortable
breaking	rules.	From	the	point	of	view	of	the	old	model,	which
everyone	including	you	initially	shares,	the	new	model	usually

breaks	at	least	implicit	rules.

Few	understand	the	degree	of	rule-breaking	required,	because
new	ideas	seem	much	more	conservative	once	they	succeed.
They	seem	perfectly	reasonable	once	you're	using	the	new	model
of	the	world	they	brought	with	them.	But	they	didn't	at	the	time;
it	took	the	greater	part	of	a	century	for	the	heliocentric	model	to
be	generally	accepted,	even	among	astronomers,	because	it	felt
so	wrong.

Indeed,	if	you	think	about	it,	a	good	new	idea	has	to	seem	bad	to
most	people,	or	someone	would	have	already	explored	it.	So	what
you're	looking	for	is	ideas	that	seem	crazy,	but	the	right	kind	of
crazy.	How	do	you	recognize	these?	You	can't	with	certainty.
Often	ideas	that	seem	bad	are	bad.	But	ideas	that	are	the	right
kind	of	crazy	tend	to	be	exciting;	they're	rich	in	implications;
whereas	ideas	that	are	merely	bad	tend	to	be	depressing.

There	are	two	ways	to	be	comfortable	breaking	rules:	to	enjoy
breaking	them,	and	to	be	indifferent	to	them.	I	call	these	two
cases	being	aggressively	and	passively	independent-minded.

The	aggressively	independent-minded	are	the	naughty	ones.
Rules	don't	merely	fail	to	stop	them;	breaking	rules	gives	them
additional	energy.	For	this	sort	of	person,	delight	at	the	sheer
audacity	of	a	project	sometimes	supplies	enough	activation
energy	to	get	it	started.

The	other	way	to	break	rules	is	not	to	care	about	them,	or
perhaps	even	to	know	they	exist.	This	is	why	novices	and
outsiders	often	make	new	discoveries;	their	ignorance	of	a	field's
assumptions	acts	as	a	source	of	temporary	passive	independent-
mindedness.	Aspies	also	seem	to	have	a	kind	of	immunity	to
conventional	beliefs.	Several	I	know	say	that	this	helps	them	to
have	new	ideas.

Strictness	plus	rule-breaking	sounds	like	a	strange	combination.
In	popular	culture	they're	opposed.	But	popular	culture	has	a
broken	model	in	this	respect.	It	implicitly	assumes	that	issues	are
trivial	ones,	and	in	trivial	matters	strictness	and	rule-breaking
are	opposed.	But	in	questions	that	really	matter,	only	rule-

breakers	can	be	truly	strict.

An	overlooked	idea	often	doesn't	lose	till	the	semifinals.	You	do
see	it,	subconsciously,	but	then	another	part	of	your	subconscious
shoots	it	down	because	it	would	be	too	weird,	too	risky,	too	much
work,	too	controversial.	This	suggests	an	exciting	possibility:	if
you	could	turn	off	such	filters,	you	could	see	more	new	ideas.

One	way	to	do	that	is	to	ask	what	would	be	good	ideas	for
someone	else	to	explore.	Then	your	subconscious	won't	shoot
them	down	to	protect	you.

You	could	also	discover	overlooked	ideas	by	working	in	the	other
direction:	by	starting	from	what's	obscuring	them.	Every
cherished	but	mistaken	principle	is	surrounded	by	a	dead	zone	of
valuable	ideas	that	are	unexplored	because	they	contradict	it.

Religions	are	collections	of	cherished	but	mistaken	principles.	So
anything	that	can	be	described	either	literally	or	metaphorically
as	a	religion	will	have	valuable	unexplored	ideas	in	its	shadow.
Copernicus	and	Darwin	both	made	discoveries	of	this	type.	[18]

What	are	people	in	your	field	religious	about,	in	the	sense	of
being	too	attached	to	some	principle	that	might	not	be	as	self-
evident	as	they	think?	What	becomes	possible	if	you	discard	it?

People	show	much	more	originality	in	solving	problems	than	in
deciding	which	problems	to	solve.	Even	the	smartest	can	be
surprisingly	conservative	when	deciding	what	to	work	on.	People
who'd	never	dream	of	being	fashionable	in	any	other	way	get
sucked	into	working	on	fashionable	problems.

One	reason	people	are	more	conservative	when	choosing

#f18n

problems	than	solutions	is	that	problems	are	bigger	bets.	A
problem	could	occupy	you	for	years,	while	exploring	a	solution
might	only	take	days.	But	even	so	I	think	most	people	are	too
conservative.	They're	not	merely	responding	to	risk,	but	to
fashion	as	well.	Unfashionable	problems	are	undervalued.

One	of	the	most	interesting	kinds	of	unfashionable	problem	is	the
problem	that	people	think	has	been	fully	explored,	but	hasn't.
Great	work	often	takes	something	that	already	exists	and	shows
its	latent	potential.	Durer	and	Watt	both	did	this.	So	if	you're
interested	in	a	field	that	others	think	is	tapped	out,	don't	let	their
skepticism	deter	you.	People	are	often	wrong	about	this.

Working	on	an	unfashionable	problem	can	be	very	pleasing.
There's	no	hype	or	hurry.	Opportunists	and	critics	are	both
occupied	elsewhere.	The	existing	work	often	has	an	old-school
solidity.	And	there's	a	satisfying	sense	of	economy	in	cultivating
ideas	that	would	otherwise	be	wasted.

But	the	most	common	type	of	overlooked	problem	is	not	explicitly
unfashionable	in	the	sense	of	being	out	of	fashion.	It	just	doesn't
seem	to	matter	as	much	as	it	actually	does.	How	do	you	find
these?	By	being	self-indulgent	—	by	letting	your	curiosity	have	its
way,	and	tuning	out,	at	least	temporarily,	the	little	voice	in	your
head	that	says	you	should	only	be	working	on	"important"
problems.

You	do	need	to	work	on	important	problems,	but	almost	everyone
is	too	conservative	about	what	counts	as	one.	And	if	there's	an
important	but	overlooked	problem	in	your	neighborhood,	it's
probably	already	on	your	subconscious	radar	screen.	So	try
asking	yourself:	if	you	were	going	to	take	a	break	from	"serious"
work	to	work	on	something	just	because	it	would	be	really
interesting,	what	would	you	do?	The	answer	is	probably	more
important	than	it	seems.

Originality	in	choosing	problems	seems	to	matter	even	more	than
originality	in	solving	them.	That's	what	distinguishes	the	people
who	discover	whole	new	fields.	So	what	might	seem	to	be	merely
the	initial	step	—	deciding	what	to	work	on	—	is	in	a	sense	the
key	to	the	whole	game.

Few	grasp	this.	One	of	the	biggest	misconceptions	about	new
ideas	is	about	the	ratio	of	question	to	answer	in	their
composition.	People	think	big	ideas	are	answers,	but	often	the
real	insight	was	in	the	question.

Part	of	the	reason	we	underrate	questions	is	the	way	they're	used
in	schools.	In	schools	they	tend	to	exist	only	briefly	before	being
answered,	like	unstable	particles.	But	a	really	good	question	can
be	much	more	than	that.	A	really	good	question	is	a	partial
discovery.	How	do	new	species	arise?	Is	the	force	that	makes
objects	fall	to	earth	the	same	as	the	one	that	keeps	planets	in
their	orbits?	By	even	asking	such	questions	you	were	already	in
excitingly	novel	territory.

Unanswered	questions	can	be	uncomfortable	things	to	carry
around	with	you.	But	the	more	you're	carrying,	the	greater	the
chance	of	noticing	a	solution	—	or	perhaps	even	more	excitingly,
noticing	that	two	unanswered	questions	are	the	same.

Sometimes	you	carry	a	question	for	a	long	time.	Great	work	often
comes	from	returning	to	a	question	you	first	noticed	years	before
—	in	your	childhood,	even	—	and	couldn't	stop	thinking	about.
People	talk	a	lot	about	the	importance	of	keeping	your	youthful
dreams	alive,	but	it's	just	as	important	to	keep	your	youthful
questions	alive.	[19]

This	is	one	of	the	places	where	actual	expertise	differs	most	from
the	popular	picture	of	it.	In	the	popular	picture,	experts	are
certain.	But	actually	the	more	puzzled	you	are,	the	better,	so	long
as	(a)	the	things	you're	puzzled	about	matter,	and	(b)	no	one	else
understands	them	either.

Think	about	what's	happening	at	the	moment	just	before	a	new
idea	is	discovered.	Often	someone	with	sufficient	expertise	is
puzzled	about	something.	Which	means	that	originality	consists
partly	of	puzzlement	—	of	confusion!	You	have	to	be	comfortable

#f19n

enough	with	the	world	being	full	of	puzzles	that	you're	willing	to
see	them,	but	not	so	comfortable	that	you	don't	want	to	solve
them.	[20]

It's	a	great	thing	to	be	rich	in	unanswered	questions.	And	this	is
one	of	those	situations	where	the	rich	get	richer,	because	the
best	way	to	acquire	new	questions	is	to	try	answering	existing
ones.	Questions	don't	just	lead	to	answers,	but	also	to	more
questions.

The	best	questions	grow	in	the	answering.	You	notice	a	thread
protruding	from	the	current	paradigm	and	try	pulling	on	it,	and	it
just	gets	longer	and	longer.	So	don't	require	a	question	to	be
obviously	big	before	you	try	answering	it.	You	can	rarely	predict
that.	It's	hard	enough	even	to	notice	the	thread,	let	alone	to
predict	how	much	will	unravel	if	you	pull	on	it.

It's	better	to	be	promiscuously	curious	—	to	pull	a	little	bit	on	a
lot	of	threads,	and	see	what	happens.	Big	things	start	small.	The
initial	versions	of	big	things	were	often	just	experiments,	or	side
projects,	or	talks,	which	then	grew	into	something	bigger.	So
start	lots	of	small	things.

Being	prolific	is	underrated.	The	more	different	things	you	try,
the	greater	the	chance	of	discovering	something	new.
Understand,	though,	that	trying	lots	of	things	will	mean	trying
lots	of	things	that	don't	work.	You	can't	have	a	lot	of	good	ideas
without	also	having	a	lot	of	bad	ones.	[21]

Though	it	sounds	more	responsible	to	begin	by	studying
everything	that's	been	done	before,	you'll	learn	faster	and	have
more	fun	by	trying	stuff.	And	you'll	understand	previous	work
better	when	you	do	look	at	it.	So	err	on	the	side	of	starting.
Which	is	easier	when	starting	means	starting	small;	those	two
ideas	fit	together	like	two	puzzle	pieces.

How	do	you	get	from	starting	small	to	doing	something	great?	By

#f20n
#f21n

making	successive	versions.	Great	things	are	almost	always
made	in	successive	versions.	You	start	with	something	small	and
evolve	it,	and	the	final	version	is	both	cleverer	and	more
ambitious	than	anything	you	could	have	planned.

It's	particularly	useful	to	make	successive	versions	when	you're
making	something	for	people	—	to	get	an	initial	version	in	front
of	them	quickly,	and	then	evolve	it	based	on	their	response.

Begin	by	trying	the	simplest	thing	that	could	possibly	work.
Surprisingly	often,	it	does.	If	it	doesn't,	this	will	at	least	get	you
started.

Don't	try	to	cram	too	much	new	stuff	into	any	one	version.	There
are	names	for	doing	this	with	the	first	version	(taking	too	long	to
ship)	and	the	second	(the	second	system	effect),	but	these	are
both	merely	instances	of	a	more	general	principle.

An	early	version	of	a	new	project	will	sometimes	be	dismissed	as
a	toy.	It's	a	good	sign	when	people	do	this.	That	means	it	has
everything	a	new	idea	needs	except	scale,	and	that	tends	to
follow.	[22]

The	alternative	to	starting	with	something	small	and	evolving	it	is
to	plan	in	advance	what	you're	going	to	do.	And	planning	does
usually	seem	the	more	responsible	choice.	It	sounds	more
organized	to	say	"we're	going	to	do	x	and	then	y	and	then	z"	than
"we're	going	to	try	x	and	see	what	happens."	And	it	is	more
organized;	it	just	doesn't	work	as	well.

Planning	per	se	isn't	good.	It's	sometimes	necessary,	but	it's	a
necessary	evil	—	a	response	to	unforgiving	conditions.	It's
something	you	have	to	do	because	you're	working	with	inflexible
media,	or	because	you	need	to	coordinate	the	efforts	of	a	lot	of
people.	If	you	keep	projects	small	and	use	flexible	media,	you
don't	have	to	plan	as	much,	and	your	designs	can	evolve	instead.

#f22n

Take	as	much	risk	as	you	can	afford.	In	an	efficient	market,	risk
is	proportionate	to	reward,	so	don't	look	for	certainty,	but	for	a
bet	with	high	expected	value.	If	you're	not	failing	occasionally,
you're	probably	being	too	conservative.

Though	conservatism	is	usually	associated	with	the	old,	it's	the
young	who	tend	to	make	this	mistake.	Inexperience	makes	them
fear	risk,	but	it's	when	you're	young	that	you	can	afford	the	most.

Even	a	project	that	fails	can	be	valuable.	In	the	process	of
working	on	it,	you'll	have	crossed	territory	few	others	have	seen,
and	encountered	questions	few	others	have	asked.	And	there's
probably	no	better	source	of	questions	than	the	ones	you
encounter	in	trying	to	do	something	slightly	too	hard.

Use	the	advantages	of	youth	when	you	have	them,	and	the
advantages	of	age	once	you	have	those.	The	advantages	of	youth
are	energy,	time,	optimism,	and	freedom.	The	advantages	of	age
are	knowledge,	efficiency,	money,	and	power.	With	effort	you	can
acquire	some	of	the	latter	when	young	and	keep	some	of	the
former	when	old.

The	old	also	have	the	advantage	of	knowing	which	advantages
they	have.	The	young	often	have	them	without	realizing	it.	The
biggest	is	probably	time.	The	young	have	no	idea	how	rich	they
are	in	time.	The	best	way	to	turn	this	time	to	advantage	is	to	use
it	in	slightly	frivolous	ways:	to	learn	about	something	you	don't
need	to	know	about,	just	out	of	curiosity,	or	to	try	building
something	just	because	it	would	be	cool,	or	to	become	freakishly
good	at	something.

That	"slightly"	is	an	important	qualification.	Spend	time	lavishly
when	you're	young,	but	don't	simply	waste	it.	There's	a	big
difference	between	doing	something	you	worry	might	be	a	waste
of	time	and	doing	something	you	know	for	sure	will	be.	The
former	is	at	least	a	bet,	and	possibly	a	better	one	than	you	think.
[23]

#f23n

The	most	subtle	advantage	of	youth,	or	more	precisely	of
inexperience,	is	that	you're	seeing	everything	with	fresh	eyes.
When	your	brain	embraces	an	idea	for	the	first	time,	sometimes
the	two	don't	fit	together	perfectly.	Usually	the	problem	is	with
your	brain,	but	occasionally	it's	with	the	idea.	A	piece	of	it	sticks
out	awkwardly	and	jabs	you	when	you	think	about	it.	People	who
are	used	to	the	idea	have	learned	to	ignore	it,	but	you	have	the
opportunity	not	to.	[24]

So	when	you're	learning	about	something	for	the	first	time,	pay
attention	to	things	that	seem	wrong	or	missing.	You'll	be	tempted
to	ignore	them,	since	there's	a	99%	chance	the	problem	is	with
you.	And	you	may	have	to	set	aside	your	misgivings	temporarily
to	keep	progressing.	But	don't	forget	about	them.	When	you've
gotten	further	into	the	subject,	come	back	and	check	if	they're
still	there.	If	they're	still	viable	in	the	light	of	your	present
knowledge,	they	probably	represent	an	undiscovered	idea.

One	of	the	most	valuable	kinds	of	knowledge	you	get	from
experience	is	to	know	what	you	don't	have	to	worry	about.	The
young	know	all	the	things	that	could	matter,	but	not	their	relative
importance.	So	they	worry	equally	about	everything,	when	they
should	worry	much	more	about	a	few	things	and	hardly	at	all
about	the	rest.

But	what	you	don't	know	is	only	half	the	problem	with
inexperience.	The	other	half	is	what	you	do	know	that	ain't	so.
You	arrive	at	adulthood	with	your	head	full	of	nonsense	—	bad
habits	you've	acquired	and	false	things	you've	been	taught	—	and
you	won't	be	able	to	do	great	work	till	you	clear	away	at	least	the
nonsense	in	the	way	of	whatever	type	of	work	you	want	to	do.

Much	of	the	nonsense	left	in	your	head	is	left	there	by	schools.
We're	so	used	to	schools	that	we	unconsciously	treat	going	to
school	as	identical	with	learning,	but	in	fact	schools	have	all	sorts
of	strange	qualities	that	warp	our	ideas	about	learning	and

#f24n

thinking.

For	example,	schools	induce	passivity.	Since	you	were	a	small
child,	there	was	an	authority	at	the	front	of	the	class	telling	all	of
you	what	you	had	to	learn	and	then	measuring	whether	you	did.
But	neither	classes	nor	tests	are	intrinsic	to	learning;	they're	just
artifacts	of	the	way	schools	are	usually	designed.

The	sooner	you	overcome	this	passivity,	the	better.	If	you're	still
in	school,	try	thinking	of	your	education	as	your	project,	and	your
teachers	as	working	for	you	rather	than	vice	versa.	That	may
seem	a	stretch,	but	it's	not	merely	some	weird	thought
experiment.	It's	the	truth,	economically,	and	in	the	best	case	it's
the	truth	intellectually	as	well.	The	best	teachers	don't	want	to
be	your	bosses.	They'd	prefer	it	if	you	pushed	ahead,	using	them
as	a	source	of	advice,	rather	than	being	pulled	by	them	through
the	material.

Schools	also	give	you	a	misleading	impression	of	what	work	is
like.	In	school	they	tell	you	what	the	problems	are,	and	they're
almost	always	soluble	using	no	more	than	you've	been	taught	so
far.	In	real	life	you	have	to	figure	out	what	the	problems	are,	and
you	often	don't	know	if	they're	soluble	at	all.

But	perhaps	the	worst	thing	schools	do	to	you	is	train	you	to	win
by	hacking	the	test.	You	can't	do	great	work	by	doing	that.	You
can't	trick	God.	So	stop	looking	for	that	kind	of	shortcut.	The	way
to	beat	the	system	is	to	focus	on	problems	and	solutions	that
others	have	overlooked,	not	to	skimp	on	the	work	itself.

Don't	think	of	yourself	as	dependent	on	some	gatekeeper	giving
you	a	"big	break."	Even	if	this	were	true,	the	best	way	to	get	it
would	be	to	focus	on	doing	good	work	rather	than	chasing
influential	people.

And	don't	take	rejection	by	committees	to	heart.	The	qualities
that	impress	admissions	officers	and	prize	committees	are	quite

different	from	those	required	to	do	great	work.	The	decisions	of
selection	committees	are	only	meaningful	to	the	extent	that
they're	part	of	a	feedback	loop,	and	very	few	are.

People	new	to	a	field	will	often	copy	existing	work.	There's
nothing	inherently	bad	about	that.	There's	no	better	way	to	learn
how	something	works	than	by	trying	to	reproduce	it.	Nor	does
copying	necessarily	make	your	work	unoriginal.	Originality	is	the
presence	of	new	ideas,	not	the	absence	of	old	ones.

There's	a	good	way	to	copy	and	a	bad	way.	If	you're	going	to	copy
something,	do	it	openly	instead	of	furtively,	or	worse	still,
unconsciously.	This	is	what's	meant	by	the	famously
misattributed	phrase	"Great	artists	steal."	The	really	dangerous
kind	of	copying,	the	kind	that	gives	copying	a	bad	name,	is	the
kind	that's	done	without	realizing	it,	because	you're	nothing
more	than	a	train	running	on	tracks	laid	down	by	someone	else.
But	at	the	other	extreme,	copying	can	be	a	sign	of	superiority
rather	than	subordination.	[25]

In	many	fields	it's	almost	inevitable	that	your	early	work	will	be
in	some	sense	based	on	other	people's.	Projects	rarely	arise	in	a
vacuum.	They're	usually	a	reaction	to	previous	work.	When
you're	first	starting	out,	you	don't	have	any	previous	work;	if
you're	going	to	react	to	something,	it	has	to	be	someone	else's.
Once	you're	established,	you	can	react	to	your	own.	But	while	the
former	gets	called	derivative	and	the	latter	doesn't,	structurally
the	two	cases	are	more	similar	than	they	seem.

Oddly	enough,	the	very	novelty	of	the	most	novel	ideas
sometimes	makes	them	seem	at	first	to	be	more	derivative	than
they	are.	New	discoveries	often	have	to	be	conceived	initially	as
variations	of	existing	things,	even	by	their	discoverers,	because
there	isn't	yet	the	conceptual	vocabulary	to	express	them.

There	are	definitely	some	dangers	to	copying,	though.	One	is	that
you'll	tend	to	copy	old	things	—	things	that	were	in	their	day	at

#f25n

the	frontier	of	knowledge,	but	no	longer	are.

And	when	you	do	copy	something,	don't	copy	every	feature	of	it.
Some	will	make	you	ridiculous	if	you	do.	Don't	copy	the	manner
of	an	eminent	50	year	old	professor	if	you're	18,	for	example,	or
the	idiom	of	a	Renaissance	poem	hundreds	of	years	later.

Some	of	the	features	of	things	you	admire	are	flaws	they
succeeded	despite.	Indeed,	the	features	that	are	easiest	to
imitate	are	the	most	likely	to	be	the	flaws.

This	is	particularly	true	for	behavior.	Some	talented	people	are
jerks,	and	this	sometimes	makes	it	seem	to	the	inexperienced
that	being	a	jerk	is	part	of	being	talented.	It	isn't;	being	talented
is	merely	how	they	get	away	with	it.

One	of	the	most	powerful	kinds	of	copying	is	to	copy	something
from	one	field	into	another.	History	is	so	full	of	chance
discoveries	of	this	type	that	it's	probably	worth	giving	chance	a
hand	by	deliberately	learning	about	other	kinds	of	work.	You	can
take	ideas	from	quite	distant	fields	if	you	let	them	be	metaphors.

Negative	examples	can	be	as	inspiring	as	positive	ones.	In	fact
you	can	sometimes	learn	more	from	things	done	badly	than	from
things	done	well;	sometimes	it	only	becomes	clear	what's	needed
when	it's	missing.

If	a	lot	of	the	best	people	in	your	field	are	collected	in	one	place,
it's	usually	a	good	idea	to	visit	for	a	while.	It	will	increase	your
ambition,	and	also,	by	showing	you	that	these	people	are	human,
increase	your	self-confidence.	[26]

If	you're	earnest	you'll	probably	get	a	warmer	welcome	than	you
might	expect.	Most	people	who	are	very	good	at	something	are
happy	to	talk	about	it	with	anyone	who's	genuinely	interested.	If
they're	really	good	at	their	work,	then	they	probably	have	a
hobbyist's	interest	in	it,	and	hobbyists	always	want	to	talk	about

#f26n

their	hobbies.

It	may	take	some	effort	to	find	the	people	who	are	really	good,
though.	Doing	great	work	has	such	prestige	that	in	some	places,
particularly	universities,	there's	a	polite	fiction	that	everyone	is
engaged	in	it.	And	that	is	far	from	true.	People	within	universities
can't	say	so	openly,	but	the	quality	of	the	work	being	done	in
different	departments	varies	immensely.	Some	departments	have
people	doing	great	work;	others	have	in	the	past;	others	never
have.

Seek	out	the	best	colleagues.	There	are	a	lot	of	projects	that
can't	be	done	alone,	and	even	if	you're	working	on	one	that	can
be,	it's	good	to	have	other	people	to	encourage	you	and	to
bounce	ideas	off.

Colleagues	don't	just	affect	your	work,	though;	they	also	affect
you.	So	work	with	people	you	want	to	become	like,	because	you
will.

Quality	is	more	important	than	quantity	in	colleagues.	It's	better
to	have	one	or	two	great	ones	than	a	building	full	of	pretty	good
ones.	In	fact	it's	not	merely	better,	but	necessary,	judging	from
history:	the	degree	to	which	great	work	happens	in	clusters
suggests	that	one's	colleagues	often	make	the	difference
between	doing	great	work	and	not.

How	do	you	know	when	you	have	sufficiently	good	colleagues?	In
my	experience,	when	you	do,	you	know.	Which	means	if	you're
unsure,	you	probably	don't.	But	it	may	be	possible	to	give	a	more
concrete	answer	than	that.	Here's	an	attempt:	sufficiently	good
colleagues	offer	surprising	insights.	They	can	see	and	do	things
that	you	can't.	So	if	you	have	a	handful	of	colleagues	good
enough	to	keep	you	on	your	toes	in	this	sense,	you're	probably
over	the	threshold.

Most	of	us	can	benefit	from	collaborating	with	colleagues,	but

some	projects	require	people	on	a	larger	scale,	and	starting	one
of	those	is	not	for	everyone.	If	you	want	to	run	a	project	like	that,
you'll	have	to	become	a	manager,	and	managing	well	takes
aptitude	and	interest	like	any	other	kind	of	work.	If	you	don't
have	them,	there	is	no	middle	path:	you	must	either	force
yourself	to	learn	management	as	a	second	language,	or	avoid
such	projects.	[27]

Husband	your	morale.	It's	the	basis	of	everything	when	you're
working	on	ambitious	projects.	You	have	to	nurture	and	protect	it
like	a	living	organism.

Morale	starts	with	your	view	of	life.	You're	more	likely	to	do
great	work	if	you're	an	optimist,	and	more	likely	to	if	you	think	of
yourself	as	lucky	than	if	you	think	of	yourself	as	a	victim.

Indeed,	work	can	to	some	extent	protect	you	from	your	problems.
If	you	choose	work	that's	pure,	its	very	difficulties	will	serve	as	a
refuge	from	the	difficulties	of	everyday	life.	If	this	is	escapism,
it's	a	very	productive	form	of	it,	and	one	that	has	been	used	by
some	of	the	greatest	minds	in	history.

Morale	compounds	via	work:	high	morale	helps	you	do	good
work,	which	increases	your	morale	and	helps	you	do	even	better
work.	But	this	cycle	also	operates	in	the	other	direction:	if	you're
not	doing	good	work,	that	can	demoralize	you	and	make	it	even
harder	to.	Since	it	matters	so	much	for	this	cycle	to	be	running	in
the	right	direction,	it	can	be	a	good	idea	to	switch	to	easier	work
when	you're	stuck,	just	so	you	start	to	get	something	done.

One	of	the	biggest	mistakes	ambitious	people	make	is	to	allow
setbacks	to	destroy	their	morale	all	at	once,	like	a	balloon
bursting.	You	can	inoculate	yourself	against	this	by	explicitly
considering	setbacks	a	part	of	your	process.	Solving	hard
problems	always	involves	some	backtracking.

Doing	great	work	is	a	depth-first	search	whose	root	node	is	the

#f27n

desire	to.	So	"If	at	first	you	don't	succeed,	try,	try	again"	isn't
quite	right.	It	should	be:	If	at	first	you	don't	succeed,	either	try
again,	or	backtrack	and	then	try	again.

"Never	give	up"	is	also	not	quite	right.	Obviously	there	are	times
when	it's	the	right	choice	to	eject.	A	more	precise	version	would
be:	Never	let	setbacks	panic	you	into	backtracking	more	than	you
need	to.	Corollary:	Never	abandon	the	root	node.

It's	not	necessarily	a	bad	sign	if	work	is	a	struggle,	any	more
than	it's	a	bad	sign	to	be	out	of	breath	while	running.	It	depends
how	fast	you're	running.	So	learn	to	distinguish	good	pain	from
bad.	Good	pain	is	a	sign	of	effort;	bad	pain	is	a	sign	of	damage.

An	audience	is	a	critical	component	of	morale.	If	you're	a	scholar,
your	audience	may	be	your	peers;	in	the	arts,	it	may	be	an
audience	in	the	traditional	sense.	Either	way	it	doesn't	need	to	be
big.	The	value	of	an	audience	doesn't	grow	anything	like	linearly
with	its	size.	Which	is	bad	news	if	you're	famous,	but	good	news
if	you're	just	starting	out,	because	it	means	a	small	but	dedicated
audience	can	be	enough	to	sustain	you.	If	a	handful	of	people
genuinely	love	what	you're	doing,	that's	enough.

To	the	extent	you	can,	avoid	letting	intermediaries	come	between
you	and	your	audience.	In	some	types	of	work	this	is	inevitable,
but	it's	so	liberating	to	escape	it	that	you	might	be	better	off
switching	to	an	adjacent	type	if	that	will	let	you	go	direct.	[28]

The	people	you	spend	time	with	will	also	have	a	big	effect	on
your	morale.	You'll	find	there	are	some	who	increase	your	energy
and	others	who	decrease	it,	and	the	effect	someone	has	is	not
always	what	you'd	expect.	Seek	out	the	people	who	increase	your
energy	and	avoid	those	who	decrease	it.	Though	of	course	if
there's	someone	you	need	to	take	care	of,	that	takes	precedence.

Don't	marry	someone	who	doesn't	understand	that	you	need	to
work,	or	sees	your	work	as	competition	for	your	attention.	If

#f28n

you're	ambitious,	you	need	to	work;	it's	almost	like	a	medical
condition;	so	someone	who	won't	let	you	work	either	doesn't
understand	you,	or	does	and	doesn't	care.

Ultimately	morale	is	physical.	You	think	with	your	body,	so	it's
important	to	take	care	of	it.	That	means	exercising	regularly,
eating	and	sleeping	well,	and	avoiding	the	more	dangerous	kinds
of	drugs.	Running	and	walking	are	particularly	good	forms	of
exercise	because	they're	good	for	thinking.	[29]

People	who	do	great	work	are	not	necessarily	happier	than
everyone	else,	but	they're	happier	than	they'd	be	if	they	didn't.	In
fact,	if	you're	smart	and	ambitious,	it's	dangerous	not	to	be
productive.	People	who	are	smart	and	ambitious	but	don't
achieve	much	tend	to	become	bitter.

It's	ok	to	want	to	impress	other	people,	but	choose	the	right
people.	The	opinion	of	people	you	respect	is	signal.	Fame,	which
is	the	opinion	of	a	much	larger	group	you	might	or	might	not
respect,	just	adds	noise.

The	prestige	of	a	type	of	work	is	at	best	a	trailing	indicator	and
sometimes	completely	mistaken.	If	you	do	anything	well	enough,
you'll	make	it	prestigious.	So	the	question	to	ask	about	a	type	of
work	is	not	how	much	prestige	it	has,	but	how	well	it	could	be
done.

Competition	can	be	an	effective	motivator,	but	don't	let	it	choose
the	problem	for	you;	don't	let	yourself	get	drawn	into	chasing
something	just	because	others	are.	In	fact,	don't	let	competitors
make	you	do	anything	much	more	specific	than	work	harder.

Curiosity	is	the	best	guide.	Your	curiosity	never	lies,	and	it	knows
more	than	you	do	about	what's	worth	paying	attention	to.

#f29n

Notice	how	often	that	word	has	come	up.	If	you	asked	an	oracle
the	secret	to	doing	great	work	and	the	oracle	replied	with	a
single	word,	my	bet	would	be	on	"curiosity."

That	doesn't	translate	directly	to	advice.	It's	not	enough	just	to
be	curious,	and	you	can't	command	curiosity	anyway.	But	you	can
nurture	it	and	let	it	drive	you.

Curiosity	is	the	key	to	all	four	steps	in	doing	great	work:	it	will
choose	the	field	for	you,	get	you	to	the	frontier,	cause	you	to
notice	the	gaps	in	it,	and	drive	you	to	explore	them.	The	whole
process	is	a	kind	of	dance	with	curiosity.

Believe	it	or	not,	I	tried	to	make	this	essay	as	short	as	I	could.
But	its	length	at	least	means	it	acts	as	a	filter.	If	you	made	it	this
far,	you	must	be	interested	in	doing	great	work.	And	if	so	you're
already	further	along	than	you	might	realize,	because	the	set	of
people	willing	to	want	to	is	small.

The	factors	in	doing	great	work	are	factors	in	the	literal,
mathematical	sense,	and	they	are:	ability,	interest,	effort,	and
luck.	Luck	by	definition	you	can't	do	anything	about,	so	we	can
ignore	that.	And	we	can	assume	effort,	if	you	do	in	fact	want	to
do	great	work.	So	the	problem	boils	down	to	ability	and	interest.
Can	you	find	a	kind	of	work	where	your	ability	and	interest	will
combine	to	yield	an	explosion	of	new	ideas?

Here	there	are	grounds	for	optimism.	There	are	so	many
different	ways	to	do	great	work,	and	even	more	that	are	still
undiscovered.	Out	of	all	those	different	types	of	work,	the	one
you're	most	suited	for	is	probably	a	pretty	close	match.	Probably
a	comically	close	match.	It's	just	a	question	of	finding	it,	and	how
far	into	it	your	ability	and	interest	can	take	you.	And	you	can	only
answer	that	by	trying.

Many	more	people	could	try	to	do	great	work	than	do.	What
holds	them	back	is	a	combination	of	modesty	and	fear.	It	seems
presumptuous	to	try	to	be	Newton	or	Shakespeare.	It	also	seems
hard;	surely	if	you	tried	something	like	that,	you'd	fail.
Presumably	the	calculation	is	rarely	explicit.	Few	people
consciously	decide	not	to	try	to	do	great	work.	But	that's	what's
going	on	subconsciously;	they	shy	away	from	the	question.

So	I'm	going	to	pull	a	sneaky	trick	on	you.	Do	you	want	to	do
great	work,	or	not?	Now	you	have	to	decide	consciously.	Sorry
about	that.	I	wouldn't	have	done	it	to	a	general	audience.	But	we
already	know	you're	interested.

Don't	worry	about	being	presumptuous.	You	don't	have	to	tell
anyone.	And	if	it's	too	hard	and	you	fail,	so	what?	Lots	of	people
have	worse	problems	than	that.	In	fact	you'll	be	lucky	if	it's	the
worst	problem	you	have.

Yes,	you'll	have	to	work	hard.	But	again,	lots	of	people	have	to
work	hard.	And	if	you're	working	on	something	you	find	very
interesting,	which	you	necessarily	will	if	you're	on	the	right	path,
the	work	will	probably	feel	less	burdensome	than	a	lot	of	your
peers'.

The	discoveries	are	out	there,	waiting	to	be	made.	Why	not	by
you?

Notes

[1]	I	don't	think	you	could	give	a	precise	definition	of	what	counts
as	great	work.	Doing	great	work	means	doing	something
important	so	well	that	you	expand	people's	ideas	of	what's
possible.	But	there's	no	threshold	for	importance.	It's	a	matter	of

degree,	and	often	hard	to	judge	at	the	time	anyway.	So	I'd	rather
people	focused	on	developing	their	interests	rather	than
worrying	about	whether	they're	important	or	not.	Just	try	to	do
something	amazing,	and	leave	it	to	future	generations	to	say	if
you	succeeded.

[2]	A	lot	of	standup	comedy	is	based	on	noticing	anomalies	in
everyday	life.	"Did	you	ever	notice...?"	New	ideas	come	from
doing	this	about	nontrivial	things.	Which	may	help	explain	why
people's	reaction	to	a	new	idea	is	often	the	first	half	of	laughing:
Ha!

[3]	That	second	qualifier	is	critical.	If	you're	excited	about
something	most	authorities	discount,	but	you	can't	give	a	more
precise	explanation	than	"they	don't	get	it,"	then	you're	starting
to	drift	into	the	territory	of	cranks.

[4]	Finding	something	to	work	on	is	not	simply	a	matter	of
finding	a	match	between	the	current	version	of	you	and	a	list	of
known	problems.	You'll	often	have	to	coevolve	with	the	problem.
That's	why	it	can	sometimes	be	so	hard	to	figure	out	what	to
work	on.	The	search	space	is	huge.	It's	the	cartesian	product	of
all	possible	types	of	work,	both	known	and	yet	to	be	discovered,
and	all	possible	future	versions	of	you.

There's	no	way	you	could	search	this	whole	space,	so	you	have	to
rely	on	heuristics	to	generate	promising	paths	through	it	and
hope	the	best	matches	will	be	clustered.	Which	they	will	not
always	be;	different	types	of	work	have	been	collected	together
as	much	by	accidents	of	history	as	by	the	intrinsic	similarities
between	them.

[5]	There	are	many	reasons	curious	people	are	more	likely	to	do
great	work,	but	one	of	the	more	subtle	is	that,	by	casting	a	wide
net,	they're	more	likely	to	find	the	right	thing	to	work	on	in	the
first	place.

[6]	It	can	also	be	dangerous	to	make	things	for	an	audience	you
feel	is	less	sophisticated	than	you,	if	that	causes	you	to	talk	down
to	them.	You	can	make	a	lot	of	money	doing	that,	if	you	do	it	in	a
sufficiently	cynical	way,	but	it's	not	the	route	to	great	work.	Not

that	anyone	using	this	m.o.	would	care.

[7]	This	idea	I	learned	from	Hardy's	A	Mathematician's	Apology,
which	I	recommend	to	anyone	ambitious	to	do	great	work,	in	any
field.

[8]	Just	as	we	overestimate	what	we	can	do	in	a	day	and
underestimate	what	we	can	do	over	several	years,	we
overestimate	the	damage	done	by	procrastinating	for	a	day	and
underestimate	the	damage	done	by	procrastinating	for	several
years.

[9]	You	can't	usually	get	paid	for	doing	exactly	what	you	want,
especially	early	on.	There	are	two	options:	get	paid	for	doing
work	close	to	what	you	want	and	hope	to	push	it	closer,	or	get
paid	for	doing	something	else	entirely	and	do	your	own	projects
on	the	side.	Both	can	work,	but	both	have	drawbacks:	in	the	first
approach	your	work	is	compromised	by	default,	and	in	the
second	you	have	to	fight	to	get	time	to	do	it.

[10]	If	you	set	your	life	up	right,	it	will	deliver	the	focus-relax
cycle	automatically.	The	perfect	setup	is	an	office	you	work	in
and	that	you	walk	to	and	from.

[11]	There	may	be	some	very	unworldly	people	who	do	great
work	without	consciously	trying	to.	If	you	want	to	expand	this
rule	to	cover	that	case,	it	becomes:	Don't	try	to	be	anything
except	the	best.

[12]	This	gets	more	complicated	in	work	like	acting,	where	the
goal	is	to	adopt	a	fake	persona.	But	even	here	it's	possible	to	be
affected.	Perhaps	the	rule	in	such	fields	should	be	to	avoid
unintentional	affectation.

[13]	It's	safe	to	have	beliefs	that	you	treat	as	unquestionable	if
and	only	if	they're	also	unfalsifiable.	For	example,	it's	safe	to
have	the	principle	that	everyone	should	be	treated	equally	under
the	law,	because	a	sentence	with	a	"should"	in	it	isn't	really	a
statement	about	the	world	and	is	therefore	hard	to	disprove.	And
if	there's	no	evidence	that	could	disprove	one	of	your	principles,
there	can't	be	any	facts	you'd	need	to	ignore	in	order	to	preserve

it.

[14]	Affectation	is	easier	to	cure	than	intellectual	dishonesty.
Affectation	is	often	a	shortcoming	of	the	young	that	burns	off	in
time,	while	intellectual	dishonesty	is	more	of	a	character	flaw.

[15]	Obviously	you	don't	have	to	be	working	at	the	exact	moment
you	have	the	idea,	but	you'll	probably	have	been	working	fairly
recently.

[16]	Some	say	psychoactive	drugs	have	a	similar	effect.	I'm
skeptical,	but	also	almost	totally	ignorant	of	their	effects.

[17]	For	example	you	might	give	the	nth	most	important	topic	(m-
1)/m^n	of	your	attention,	for	some	m	>	1.	You	couldn't	allocate
your	attention	so	precisely,	of	course,	but	this	at	least	gives	an
idea	of	a	reasonable	distribution.

[18]	The	principles	defining	a	religion	have	to	be	mistaken.
Otherwise	anyone	might	adopt	them,	and	there	would	be	nothing
to	distinguish	the	adherents	of	the	religion	from	everyone	else.

[19]	It	might	be	a	good	exercise	to	try	writing	down	a	list	of
questions	you	wondered	about	in	your	youth.	You	might	find
you're	now	in	a	position	to	do	something	about	some	of	them.

[20]	The	connection	between	originality	and	uncertainty	causes	a
strange	phenomenon:	because	the	conventional-minded	are	more
certain	than	the	independent-minded,	this	tends	to	give	them	the
upper	hand	in	disputes,	even	though	they're	generally	stupider.

The	best	lack	all	conviction,	while	the	worst
Are	full	of	passionate	intensity.

[21]	Derived	from	Linus	Pauling's	"If	you	want	to	have	good
ideas,	you	must	have	many	ideas."

[22]	Attacking	a	project	as	a	"toy"	is	similar	to	attacking	a
statement	as	"inappropriate."	It	means	that	no	more	substantial
criticism	can	be	made	to	stick.

[23]	One	way	to	tell	whether	you're	wasting	time	is	to	ask	if
you're	producing	or	consuming.	Writing	computer	games	is	less
likely	to	be	a	waste	of	time	than	playing	them,	and	playing	games
where	you	create	something	is	less	likely	to	be	a	waste	of	time
than	playing	games	where	you	don't.

[24]	Another	related	advantage	is	that	if	you	haven't	said
anything	publicly	yet,	you	won't	be	biased	toward	evidence	that
supports	your	earlier	conclusions.	With	sufficient	integrity	you
could	achieve	eternal	youth	in	this	respect,	but	few	manage	to.
For	most	people,	having	previously	published	opinions	has	an
effect	similar	to	ideology,	just	in	quantity	1.

[25]	In	the	early	1630s	Daniel	Mytens	made	a	painting	of
Henrietta	Maria	handing	a	laurel	wreath	to	Charles	I.	Van	Dyck
then	painted	his	own	version	to	show	how	much	better	he	was.

[26]	I'm	being	deliberately	vague	about	what	a	place	is.	As	of	this
writing,	being	in	the	same	physical	place	has	advantages	that	are
hard	to	duplicate,	but	that	could	change.

[27]	This	is	false	when	the	work	the	other	people	have	to	do	is
very	constrained,	as	with	SETI@home	or	Bitcoin.	It	may	be
possible	to	expand	the	area	in	which	it's	false	by	defining
similarly	restricted	protocols	with	more	freedom	of	action	in	the
nodes.

[28]	Corollary:	Building	something	that	enables	people	to	go
around	intermediaries	and	engage	directly	with	their	audience	is
probably	a	good	idea.

[29]	It	may	be	helpful	always	to	walk	or	run	the	same	route,
because	that	frees	attention	for	thinking.	It	feels	that	way	to	me,
and	there	is	some	historical	evidence	for	it.

Thanks	to	Trevor	Blackwell,	Daniel	Gackle,	Pam	Graham,	Tom
Howard,	Patrick	Hsu,	Steve	Huffman,	Jessica	Livingston,	Henry
Lloyd-Baker,	Bob	Metcalfe,	Ben	Miller,	Robert	Morris,	Michael
Nielsen,	Courtenay	Pipkin,	Joris	Poort,	Mieke	Roos,	Rajat	Suri,

Harj	Taggar,	Garry	Tan,	and	my	younger	son	for	suggestions	and
for	reading	drafts.	

	

Superlinear	Returns
October	2023

One	of	the	most	important	things	I	didn't	understand	about	the
world	when	I	was	a	child	is	the	degree	to	which	the	returns	for
performance	are	superlinear.

Teachers	and	coaches	implicitly	told	us	the	returns	were	linear.
"You	get	out,"	I	heard	a	thousand	times,	"what	you	put	in."	They
meant	well,	but	this	is	rarely	true.	If	your	product	is	only	half	as
good	as	your	competitor's,	you	don't	get	half	as	many	customers.
You	get	no	customers,	and	you	go	out	of	business.

It's	obviously	true	that	the	returns	for	performance	are
superlinear	in	business.	Some	think	this	is	a	flaw	of	capitalism,
and	that	if	we	changed	the	rules	it	would	stop	being	true.	But
superlinear	returns	for	performance	are	a	feature	of	the	world,
not	an	artifact	of	rules	we've	invented.	We	see	the	same	pattern
in	fame,	power,	military	victories,	knowledge,	and	even	benefit	to
humanity.	In	all	of	these,	the	rich	get	richer.	[1]

You	can't	understand	the	world	without	understanding	the
concept	of	superlinear	returns.	And	if	you're	ambitious	you
definitely	should,	because	this	will	be	the	wave	you	surf	on.

It	may	seem	as	if	there	are	a	lot	of	different	situations	with
superlinear	returns,	but	as	far	as	I	can	tell	they	reduce	to	two
fundamental	causes:	exponential	growth	and	thresholds.

The	most	obvious	case	of	superlinear	returns	is	when	you're
working	on	something	that	grows	exponentially.	For	example,
growing	bacterial	cultures.	When	they	grow	at	all,	they	grow

#f1n

exponentially.	But	they're	tricky	to	grow.	Which	means	the
difference	in	outcome	between	someone	who's	adept	at	it	and
someone	who's	not	is	very	great.

Startups	can	also	grow	exponentially,	and	we	see	the	same
pattern	there.	Some	manage	to	achieve	high	growth	rates.	Most
don't.	And	as	a	result	you	get	qualitatively	different	outcomes:
the	companies	with	high	growth	rates	tend	to	become	immensely
valuable,	while	the	ones	with	lower	growth	rates	may	not	even
survive.

Y	Combinator	encourages	founders	to	focus	on	growth	rate
rather	than	absolute	numbers.	It	prevents	them	from	being
discouraged	early	on,	when	the	absolute	numbers	are	still	low.	It
also	helps	them	decide	what	to	focus	on:	you	can	use	growth	rate
as	a	compass	to	tell	you	how	to	evolve	the	company.	But	the	main
advantage	is	that	by	focusing	on	growth	rate	you	tend	to	get
something	that	grows	exponentially.

YC	doesn't	explicitly	tell	founders	that	with	growth	rate	"you	get
out	what	you	put	in,"	but	it's	not	far	from	the	truth.	And	if	growth
rate	were	proportional	to	performance,	then	the	reward	for
performance	p	over	time	t	would	be	proportional	to	pt.

Even	after	decades	of	thinking	about	this,	I	find	that	sentence
startling.

Whenever	how	well	you	do	depends	on	how	well	you've	done,
you'll	get	exponential	growth.	But	neither	our	DNA	nor	our
customs	prepare	us	for	it.	No	one	finds	exponential	growth
natural;	every	child	is	surprised,	the	first	time	they	hear	it,	by	the
story	of	the	man	who	asks	the	king	for	a	single	grain	of	rice	the
first	day	and	double	the	amount	each	successive	day.

What	we	don't	understand	naturally	we	develop	customs	to	deal
with,	but	we	don't	have	many	customs	about	exponential	growth
either,	because	there	have	been	so	few	instances	of	it	in	human
history.	In	principle	herding	should	have	been	one:	the	more
animals	you	had,	the	more	offspring	they'd	have.	But	in	practice
grazing	land	was	the	limiting	factor,	and	there	was	no	plan	for

growing	that	exponentially.

Or	more	precisely,	no	generally	applicable	plan.	There	was	a	way
to	grow	one's	territory	exponentially:	by	conquest.	The	more
territory	you	control,	the	more	powerful	your	army	becomes,	and
the	easier	it	is	to	conquer	new	territory.	This	is	why	history	is	full
of	empires.	But	so	few	people	created	or	ran	empires	that	their
experiences	didn't	affect	customs	very	much.	The	emperor	was	a
remote	and	terrifying	figure,	not	a	source	of	lessons	one	could
use	in	one's	own	life.

The	most	common	case	of	exponential	growth	in	preindustrial
times	was	probably	scholarship.	The	more	you	know,	the	easier	it
is	to	learn	new	things.	The	result,	then	as	now,	was	that	some
people	were	startlingly	more	knowledgeable	than	the	rest	about
certain	topics.	But	this	didn't	affect	customs	much	either.
Although	empires	of	ideas	can	overlap	and	there	can	thus	be	far
more	emperors,	in	preindustrial	times	this	type	of	empire	had
little	practical	effect.	[2]

That	has	changed	in	the	last	few	centuries.	Now	the	emperors	of
ideas	can	design	bombs	that	defeat	the	emperors	of	territory.	But
this	phenomenon	is	still	so	new	that	we	haven't	fully	assimilated
it.	Few	even	of	the	participants	realize	they're	benefitting	from
exponential	growth	or	ask	what	they	can	learn	from	other
instances	of	it.

The	other	source	of	superlinear	returns	is	embodied	in	the
expression	"winner	take	all."	In	a	sports	match	the	relationship
between	performance	and	return	is	a	step	function:	the	winning
team	gets	one	win	whether	they	do	much	better	or	just	slightly
better.	[3]

The	source	of	the	step	function	is	not	competition	per	se,
however.	It's	that	there	are	thresholds	in	the	outcome.	You	don't
need	competition	to	get	those.	There	can	be	thresholds	in
situations	where	you're	the	only	participant,	like	proving	a
theorem	or	hitting	a	target.

It's	remarkable	how	often	a	situation	with	one	source	of
superlinear	returns	also	has	the	other.	Crossing	thresholds	leads

#f2n
#f3n

to	exponential	growth:	the	winning	side	in	a	battle	usually	suffers
less	damage,	which	makes	them	more	likely	to	win	in	the	future.
And	exponential	growth	helps	you	cross	thresholds:	in	a	market
with	network	effects,	a	company	that	grows	fast	enough	can	shut
out	potential	competitors.

Fame	is	an	interesting	example	of	a	phenomenon	that	combines
both	sources	of	superlinear	returns.	Fame	grows	exponentially
because	existing	fans	bring	you	new	ones.	But	the	fundamental
reason	it's	so	concentrated	is	thresholds:	there's	only	so	much
room	on	the	A-list	in	the	average	person's	head.

The	most	important	case	combining	both	sources	of	superlinear
returns	may	be	learning.	Knowledge	grows	exponentially,	but
there	are	also	thresholds	in	it.	Learning	to	ride	a	bicycle,	for
example.	Some	of	these	thresholds	are	akin	to	machine	tools:
once	you	learn	to	read,	you're	able	to	learn	anything	else	much
faster.	But	the	most	important	thresholds	of	all	are	those
representing	new	discoveries.	Knowledge	seems	to	be	fractal	in
the	sense	that	if	you	push	hard	at	the	boundary	of	one	area	of
knowledge,	you	sometimes	discover	a	whole	new	field.	And	if	you
do,	you	get	first	crack	at	all	the	new	discoveries	to	be	made	in	it.
Newton	did	this,	and	so	did	Durer	and	Darwin.

Are	there	general	rules	for	finding	situations	with	superlinear
returns?	The	most	obvious	one	is	to	seek	work	that	compounds.

There	are	two	ways	work	can	compound.	It	can	compound
directly,	in	the	sense	that	doing	well	in	one	cycle	causes	you	to	do
better	in	the	next.	That	happens	for	example	when	you're
building	infrastructure,	or	growing	an	audience	or	brand.	Or
work	can	compound	by	teaching	you,	since	learning	compounds.
This	second	case	is	an	interesting	one	because	you	may	feel
you're	doing	badly	as	it's	happening.	You	may	be	failing	to
achieve	your	immediate	goal.	But	if	you're	learning	a	lot,	then
you're	getting	exponential	growth	nonetheless.

This	is	one	reason	Silicon	Valley	is	so	tolerant	of	failure.	People	in
Silicon	Valley	aren't	blindly	tolerant	of	failure.	They'll	only
continue	to	bet	on	you	if	you're	learning	from	your	failures.	But	if
you	are,	you	are	in	fact	a	good	bet:	maybe	your	company	didn't
grow	the	way	you	wanted,	but	you	yourself	have,	and	that	should
yield	results	eventually.

Indeed,	the	forms	of	exponential	growth	that	don't	consist	of
learning	are	so	often	intermixed	with	it	that	we	should	probably
treat	this	as	the	rule	rather	than	the	exception.	Which	yields
another	heuristic:	always	be	learning.	If	you're	not	learning,
you're	probably	not	on	a	path	that	leads	to	superlinear	returns.

But	don't	overoptimize	what	you're	learning.	Don't	limit	yourself
to	learning	things	that	are	already	known	to	be	valuable.	You're
learning;	you	don't	know	for	sure	yet	what's	going	to	be	valuable,
and	if	you're	too	strict	you'll	lop	off	the	outliers.

What	about	step	functions?	Are	there	also	useful	heuristics	of	the
form	"seek	thresholds"	or	"seek	competition?"	Here	the	situation
is	trickier.	The	existence	of	a	threshold	doesn't	guarantee	the
game	will	be	worth	playing.	If	you	play	a	round	of	Russian
roulette,	you'll	be	in	a	situation	with	a	threshold,	certainly,	but	in
the	best	case	you're	no	better	off.	"Seek	competition"	is	similarly
useless;	what	if	the	prize	isn't	worth	competing	for?	Sufficiently
fast	exponential	growth	guarantees	both	the	shape	and
magnitude	of	the	return	curve	—	because	something	that	grows
fast	enough	will	grow	big	even	if	it's	trivially	small	at	first	—	but
thresholds	only	guarantee	the	shape.	[4]

A	principle	for	taking	advantage	of	thresholds	has	to	include	a
test	to	ensure	the	game	is	worth	playing.	Here's	one	that	does:	if
you	come	across	something	that's	mediocre	yet	still	popular,	it
could	be	a	good	idea	to	replace	it.	For	example,	if	a	company
makes	a	product	that	people	dislike	yet	still	buy,	then	presumably
they'd	buy	a	better	alternative	if	you	made	one.	[5]

It	would	be	great	if	there	were	a	way	to	find	promising
intellectual	thresholds.	Is	there	a	way	to	tell	which	questions
have	whole	new	fields	beyond	them?	I	doubt	we	could	ever
predict	this	with	certainty,	but	the	prize	is	so	valuable	that	it

#f4n
#f5n

would	be	useful	to	have	predictors	that	were	even	a	little	better
than	random,	and	there's	hope	of	finding	those.	We	can	to	some
degree	predict	when	a	research	problem	isn't	likely	to	lead	to
new	discoveries:	when	it	seems	legit	but	boring.	Whereas	the
kind	that	do	lead	to	new	discoveries	tend	to	seem	very
mystifying,	but	perhaps	unimportant.	(If	they	were	mystifying
and	obviously	important,	they'd	be	famous	open	questions	with
lots	of	people	already	working	on	them.)	So	one	heuristic	here	is
to	be	driven	by	curiosity	rather	than	careerism	—	to	give	free
rein	to	your	curiosity	instead	of	working	on	what	you're	supposed
to.

The	prospect	of	superlinear	returns	for	performance	is	an
exciting	one	for	the	ambitious.	And	there's	good	news	in	this
department:	this	territory	is	expanding	in	both	directions.	There
are	more	types	of	work	in	which	you	can	get	superlinear	returns,
and	the	returns	themselves	are	growing.

There	are	two	reasons	for	this,	though	they're	so	closely
intertwined	that	they're	more	like	one	and	a	half:	progress	in
technology,	and	the	decreasing	importance	of	organizations.

Fifty	years	ago	it	used	to	be	much	more	necessary	to	be	part	of
an	organization	to	work	on	ambitious	projects.	It	was	the	only
way	to	get	the	resources	you	needed,	the	only	way	to	have
colleagues,	and	the	only	way	to	get	distribution.	So	in	1970	your
prestige	was	in	most	cases	the	prestige	of	the	organization	you
belonged	to.	And	prestige	was	an	accurate	predictor,	because	if
you	weren't	part	of	an	organization,	you	weren't	likely	to	achieve
much.	There	were	a	handful	of	exceptions,	most	notably	artists
and	writers,	who	worked	alone	using	inexpensive	tools	and	had
their	own	brands.	But	even	they	were	at	the	mercy	of
organizations	for	reaching	audiences.	[6]

A	world	dominated	by	organizations	damped	variation	in	the
returns	for	performance.	But	this	world	has	eroded	significantly
just	in	my	lifetime.	Now	a	lot	more	people	can	have	the	freedom

#f6n

that	artists	and	writers	had	in	the	20th	century.	There	are	lots	of
ambitious	projects	that	don't	require	much	initial	funding,	and
lots	of	new	ways	to	learn,	make	money,	find	colleagues,	and
reach	audiences.

There's	still	plenty	of	the	old	world	left,	but	the	rate	of	change
has	been	dramatic	by	historical	standards.	Especially	considering
what's	at	stake.	It's	hard	to	imagine	a	more	fundamental	change
than	one	in	the	returns	for	performance.

Without	the	damping	effect	of	institutions,	there	will	be	more
variation	in	outcomes.	Which	doesn't	imply	everyone	will	be
better	off:	people	who	do	well	will	do	even	better,	but	those	who
do	badly	will	do	worse.	That's	an	important	point	to	bear	in	mind.
Exposing	oneself	to	superlinear	returns	is	not	for	everyone.	Most
people	will	be	better	off	as	part	of	the	pool.	So	who	should	shoot
for	superlinear	returns?	Ambitious	people	of	two	types:	those
who	know	they're	so	good	that	they'll	be	net	ahead	in	a	world
with	higher	variation,	and	those,	particularly	the	young,	who	can
afford	to	risk	trying	it	to	find	out.	[7]

The	switch	away	from	institutions	won't	simply	be	an	exodus	of
their	current	inhabitants.	Many	of	the	new	winners	will	be	people
they'd	never	have	let	in.	So	the	resulting	democratization	of
opportunity	will	be	both	greater	and	more	authentic	than	any
tame	intramural	version	the	institutions	themselves	might	have
cooked	up.

Not	everyone	is	happy	about	this	great	unlocking	of	ambition.	It
threatens	some	vested	interests	and	contradicts	some
ideologies.	[8]	But	if	you're	an	ambitious	individual	it's	good
news	for	you.	How	should	you	take	advantage	of	it?

The	most	obvious	way	to	take	advantage	of	superlinear	returns
for	performance	is	by	doing	exceptionally	good	work.	At	the	far
end	of	the	curve,	incremental	effort	is	a	bargain.	All	the	more	so
because	there's	less	competition	at	the	far	end	—	and	not	just	for

#f7n
#f8n

the	obvious	reason	that	it's	hard	to	do	something	exceptionally
well,	but	also	because	people	find	the	prospect	so	intimidating
that	few	even	try.	Which	means	it's	not	just	a	bargain	to	do
exceptional	work,	but	a	bargain	even	to	try	to.

There	are	many	variables	that	affect	how	good	your	work	is,	and
if	you	want	to	be	an	outlier	you	need	to	get	nearly	all	of	them
right.	For	example,	to	do	something	exceptionally	well,	you	have
to	be	interested	in	it.	Mere	diligence	is	not	enough.	So	in	a	world
with	superlinear	returns,	it's	even	more	valuable	to	know	what
you're	interested	in,	and	to	find	ways	to	work	on	it.	[9]	It	will	also
be	important	to	choose	work	that	suits	your	circumstances.	For
example,	if	there's	a	kind	of	work	that	inherently	requires	a	huge
expenditure	of	time	and	energy,	it	will	be	increasingly	valuable	to
do	it	when	you're	young	and	don't	yet	have	children.

There's	a	surprising	amount	of	technique	to	doing	great	work.
It's	not	just	a	matter	of	trying	hard.	I'm	going	to	take	a	shot
giving	a	recipe	in	one	paragraph.

Choose	work	you	have	a	natural	aptitude	for	and	a	deep	interest
in.	Develop	a	habit	of	working	on	your	own	projects;	it	doesn't
matter	what	they	are	so	long	as	you	find	them	excitingly
ambitious.	Work	as	hard	as	you	can	without	burning	out,	and	this
will	eventually	bring	you	to	one	of	the	frontiers	of	knowledge.
These	look	smooth	from	a	distance,	but	up	close	they're	full	of
gaps.	Notice	and	explore	such	gaps,	and	if	you're	lucky	one	will
expand	into	a	whole	new	field.	Take	as	much	risk	as	you	can
afford;	if	you're	not	failing	occasionally	you're	probably	being	too
conservative.	Seek	out	the	best	colleagues.	Develop	good	taste
and	learn	from	the	best	examples.	Be	honest,	especially	with
yourself.	Exercise	and	eat	and	sleep	well	and	avoid	the	more
dangerous	drugs.	When	in	doubt,	follow	your	curiosity.	It	never
lies,	and	it	knows	more	than	you	do	about	what's	worth	paying
attention	to.	[10]

And	there	is	of	course	one	other	thing	you	need:	to	be	lucky.	Luck
is	always	a	factor,	but	it's	even	more	of	a	factor	when	you're
working	on	your	own	rather	than	as	part	of	an	organization.	And
though	there	are	some	valid	aphorisms	about	luck	being	where
preparedness	meets	opportunity	and	so	on,	there's	also	a

#f9n
#f10n

component	of	true	chance	that	you	can't	do	anything	about.	The
solution	is	to	take	multiple	shots.	Which	is	another	reason	to
start	taking	risks	early.

The	best	example	of	a	field	with	superlinear	returns	is	probably
science.	It	has	exponential	growth,	in	the	form	of	learning,
combined	with	thresholds	at	the	extreme	edge	of	performance	—
literally	at	the	limits	of	knowledge.

The	result	has	been	a	level	of	inequality	in	scientific	discovery
that	makes	the	wealth	inequality	of	even	the	most	stratified
societies	seem	mild	by	comparison.	Newton's	discoveries	were
arguably	greater	than	all	his	contemporaries'	combined.	[11]

This	point	may	seem	obvious,	but	it	might	be	just	as	well	to	spell
it	out.	Superlinear	returns	imply	inequality.	The	steeper	the
return	curve,	the	greater	the	variation	in	outcomes.

In	fact,	the	correlation	between	superlinear	returns	and
inequality	is	so	strong	that	it	yields	another	heuristic	for	finding
work	of	this	type:	look	for	fields	where	a	few	big	winners
outperform	everyone	else.	A	kind	of	work	where	everyone	does
about	the	same	is	unlikely	to	be	one	with	superlinear	returns.

What	are	fields	where	a	few	big	winners	outperform	everyone
else?	Here	are	some	obvious	ones:	sports,	politics,	art,	music,
acting,	directing,	writing,	math,	science,	starting	companies,	and
investing.	In	sports	the	phenomenon	is	due	to	externally	imposed
thresholds;	you	only	need	to	be	a	few	percent	faster	to	win	every
race.	In	politics,	power	grows	much	as	it	did	in	the	days	of
emperors.	And	in	some	of	the	other	fields	(including	politics)
success	is	driven	largely	by	fame,	which	has	its	own	source	of
superlinear	growth.	But	when	we	exclude	sports	and	politics	and
the	effects	of	fame,	a	remarkable	pattern	emerges:	the	remaining
list	is	exactly	the	same	as	the	list	of	fields	where	you	have	to	be
independent-minded	to	succeed	—	where	your	ideas	have	to	be
not	just	correct,	but	novel	as	well.	[12]

#f11n
think.html
#f12n

This	is	obviously	the	case	in	science.	You	can't	publish	papers
saying	things	that	other	people	have	already	said.	But	it's	just	as
true	in	investing,	for	example.	It's	only	useful	to	believe	that	a
company	will	do	well	if	most	other	investors	don't;	if	everyone
else	thinks	the	company	will	do	well,	then	its	stock	price	will
already	reflect	that,	and	there's	no	room	to	make	money.

What	else	can	we	learn	from	these	fields?	In	all	of	them	you	have
to	put	in	the	initial	effort.	Superlinear	returns	seem	small	at	first.
At	this	rate,	you	find	yourself	thinking,	I'll	never	get	anywhere.
But	because	the	reward	curve	rises	so	steeply	at	the	far	end,	it's
worth	taking	extraordinary	measures	to	get	there.

In	the	startup	world,	the	name	for	this	principle	is	"do	things	that
don't	scale."	If	you	pay	a	ridiculous	amount	of	attention	to	your
tiny	initial	set	of	customers,	ideally	you'll	kick	off	exponential
growth	by	word	of	mouth.	But	this	same	principle	applies	to
anything	that	grows	exponentially.	Learning,	for	example.	When
you	first	start	learning	something,	you	feel	lost.	But	it's	worth
making	the	initial	effort	to	get	a	toehold,	because	the	more	you
learn,	the	easier	it	will	get.

There's	another	more	subtle	lesson	in	the	list	of	fields	with
superlinear	returns:	not	to	equate	work	with	a	job.	For	most	of
the	20th	century	the	two	were	identical	for	nearly	everyone,	and
as	a	result	we've	inherited	a	custom	that	equates	productivity
with	having	a	job.	Even	now	to	most	people	the	phrase	"your
work"	means	their	job.	But	to	a	writer	or	artist	or	scientist	it
means	whatever	they're	currently	studying	or	creating.	For
someone	like	that,	their	work	is	something	they	carry	with	them
from	job	to	job,	if	they	have	jobs	at	all.	It	may	be	done	for	an
employer,	but	it's	part	of	their	portfolio.

It's	an	intimidating	prospect	to	enter	a	field	where	a	few	big
winners	outperform	everyone	else.	Some	people	do	this
deliberately,	but	you	don't	need	to.	If	you	have	sufficient	natural

ability	and	you	follow	your	curiosity	sufficiently	far,	you'll	end	up
in	one.	Your	curiosity	won't	let	you	be	interested	in	boring
questions,	and	interesting	questions	tend	to	create	fields	with
superlinear	returns	if	they're	not	already	part	of	one.

The	territory	of	superlinear	returns	is	by	no	means	static.	Indeed,
the	most	extreme	returns	come	from	expanding	it.	So	while	both
ambition	and	curiosity	can	get	you	into	this	territory,	curiosity
may	be	the	more	powerful	of	the	two.	Ambition	tends	to	make
you	climb	existing	peaks,	but	if	you	stick	close	enough	to	an
interesting	enough	question,	it	may	grow	into	a	mountain
beneath	you.

Notes

There's	a	limit	to	how	sharply	you	can	distinguish	between	effort,
performance,	and	return,	because	they're	not	sharply
distinguished	in	fact.	What	counts	as	return	to	one	person	might
be	performance	to	another.	But	though	the	borders	of	these
concepts	are	blurry,	they're	not	meaningless.	I've	tried	to	write
about	them	as	precisely	as	I	could	without	crossing	into	error.

[1]	Evolution	itself	is	probably	the	most	pervasive	example	of
superlinear	returns	for	performance.	But	this	is	hard	for	us	to
empathize	with	because	we're	not	the	recipients;	we're	the
returns.

[2]	Knowledge	did	of	course	have	a	practical	effect	before	the
Industrial	Revolution.	The	development	of	agriculture	changed
human	life	completely.	But	this	kind	of	change	was	the	result	of
broad,	gradual	improvements	in	technique,	not	the	discoveries	of
a	few	exceptionally	learned	people.

[3]	It's	not	mathematically	correct	to	describe	a	step	function	as
superlinear,	but	a	step	function	starting	from	zero	works	like	a
superlinear	function	when	it	describes	the	reward	curve	for
effort	by	a	rational	actor.	If	it	starts	at	zero	then	the	part	before
the	step	is	below	any	linearly	increasing	return,	and	the	part
after	the	step	must	be	above	the	necessary	return	at	that	point	or
no	one	would	bother.

[4]	Seeking	competition	could	be	a	good	heuristic	in	the	sense
that	some	people	find	it	motivating.	It's	also	somewhat	of	a	guide
to	promising	problems,	because	it's	a	sign	that	other	people	find
them	promising.	But	it's	a	very	imperfect	sign:	often	there's	a
clamoring	crowd	chasing	some	problem,	and	they	all	end	up
being	trumped	by	someone	quietly	working	on	another	one.

[5]	Not	always,	though.	You	have	to	be	careful	with	this	rule.
When	something	is	popular	despite	being	mediocre,	there's	often
a	hidden	reason	why.	Perhaps	monopoly	or	regulation	make	it
hard	to	compete.	Perhaps	customers	have	bad	taste	or	have
broken	procedures	for	deciding	what	to	buy.	There	are	huge
swathes	of	mediocre	things	that	exist	for	such	reasons.

[6]	In	my	twenties	I	wanted	to	be	an	artist	and	even	went	to	art
school	to	study	painting.	Mostly	because	I	liked	art,	but	a
nontrivial	part	of	my	motivation	came	from	the	fact	that	artists
seemed	least	at	the	mercy	of	organizations.

[7]	In	principle	everyone	is	getting	superlinear	returns.	Learning
compounds,	and	everyone	learns	in	the	course	of	their	life.	But	in
practice	few	push	this	kind	of	everyday	learning	to	the	point
where	the	return	curve	gets	really	steep.

[8]	It's	unclear	exactly	what	advocates	of	"equity"	mean	by	it.
They	seem	to	disagree	among	themselves.	But	whatever	they
mean	is	probably	at	odds	with	a	world	in	which	institutions	have
less	power	to	control	outcomes,	and	a	handful	of	outliers	do
much	better	than	everyone	else.

It	may	seem	like	bad	luck	for	this	concept	that	it	arose	at	just	the
moment	when	the	world	was	shifting	in	the	opposite	direction,
but	I	don't	think	this	was	a	coincidence.	I	think	one	reason	it

worked.html

arose	now	is	because	its	adherents	feel	threatened	by	rapidly
increasing	variation	in	performance.

[9]	Corollary:	Parents	who	pressure	their	kids	to	work	on
something	prestigious,	like	medicine,	even	though	they	have	no
interest	in	it,	will	be	hosing	them	even	more	than	they	have	in
the	past.

[10]	The	original	version	of	this	paragraph	was	the	first	draft	of
"How	to	Do	Great	Work."	As	soon	as	I	wrote	it	I	realized	it	was	a
more	important	topic	than	superlinear	returns,	so	I	paused	the
present	essay	to	expand	this	paragraph	into	its	own.	Practically
nothing	remains	of	the	original	version,	because	after	I	finished
"How	to	Do	Great	Work"	I	rewrote	it	based	on	that.

[11]	Before	the	Industrial	Revolution,	people	who	got	rich	usually
did	it	like	emperors:	capturing	some	resource	made	them	more
powerful	and	enabled	them	to	capture	more.	Now	it	can	be	done
like	a	scientist,	by	discovering	or	building	something	uniquely
valuable.	Most	people	who	get	rich	use	a	mix	of	the	old	and	the
new	ways,	but	in	the	most	advanced	economies	the	ratio	has
shifted	dramatically	toward	discovery	just	in	the	last	half	century.

[12]	It's	not	surprising	that	conventional-minded	people	would
dislike	inequality	if	independent-mindedness	is	one	of	the	biggest
drivers	of	it.	But	it's	not	simply	that	they	don't	want	anyone	to
have	what	they	can't.	The	conventional-minded	literally	can't
imagine	what	it's	like	to	have	novel	ideas.	So	the	whole
phenomenon	of	great	variation	in	performance	seems	unnatural
to	them,	and	when	they	encounter	it	they	assume	it	must	be	due
to	cheating	or	to	some	malign	external	influence.

Thanks	to	Trevor	Blackwell,	Patrick	Collison,	Tyler	Cowen,
Jessica	Livingston,	Harj	Taggar,	and	Garry	Tan	for	reading	drafts
of	this.

greatwork.html
richnow.html

	

The	Best	Essay
March	2024

Despite	its	title	this	isn't	meant	to	be	the	best	essay.	My	goal
here	is	to	figure	out	what	the	best	essay	would	be	like.

It	would	be	well-written,	but	you	can	write	well	about	any	topic.
What	made	it	special	would	be	what	it	was	about.

Obviously	some	topics	would	be	better	than	others.	It	probably
wouldn't	be	about	this	year's	lipstick	colors.	But	it	wouldn't	be
vaporous	talk	about	elevated	themes	either.	A	good	essay	has	to
be	surprising.	It	has	to	tell	people	something	they	don't	already
know.

The	best	essay	would	be	on	the	most	important	topic	you	could
tell	people	something	surprising	about.

That	may	sound	obvious,	but	it	has	some	unexpected
consequences.	One	is	that	science	enters	the	picture	like	an
elephant	stepping	into	a	rowboat.	For	example,	Darwin	first
described	the	idea	of	natural	selection	in	an	essay	written	in
1844.	Talk	about	an	important	topic	you	could	tell	people
something	surprising	about.	If	that's	the	test	of	a	great	essay,	this
was	surely	the	best	one	written	in	1844.	And	indeed,	the	best
possible	essay	at	any	given	time	would	usually	be	one	describing
the	most	important	scientific	or	technological	discovery	it	was
possible	to	make.	[1]

Another	unexpected	consequence:	I	imagined	when	I	started
writing	this	that	the	best	essay	would	be	fairly	timeless	—	that
the	best	essay	you	could	write	in	1844	would	be	much	the	same
as	the	best	one	you	could	write	now.	But	in	fact	the	opposite
seems	to	be	true.	It	might	be	true	that	the	best	painting	would	be
timeless	in	this	sense.	But	it	wouldn't	be	impressive	to	write	an
essay	introducing	natural	selection	now.	The	best	essay	now

#f1n

would	be	one	describing	a	great	discovery	we	didn't	yet	know
about.

If	the	question	of	how	to	write	the	best	possible	essay	reduces	to
the	question	of	how	to	make	great	discoveries,	then	I	started
with	the	wrong	question.	Perhaps	what	this	exercise	shows	is
that	we	shouldn't	waste	our	time	writing	essays	but	instead	focus
on	making	discoveries	in	some	specific	domain.	But	I'm
interested	in	essays	and	what	can	be	done	with	them,	so	I	want
to	see	if	there's	some	other	question	I	could	have	asked.

There	is,	and	on	the	face	of	it,	it	seems	almost	identical	to	the
one	I	started	with.	Instead	of	asking	what	would	the	best	essay
be?	I	should	have	asked	how	do	you	write	essays	well?	Though
these	seem	only	phrasing	apart,	their	answers	diverge.	The
answer	to	the	first	question,	as	we've	seen,	isn't	really	about
essay	writing.	The	second	question	forces	it	to	be.

Writing	essays,	at	its	best,	is	a	way	of	discovering	ideas.	How	do
you	do	that	well?	How	do	you	discover	by	writing?

An	essay	should	ordinarily	start	with	what	I'm	going	to	call	a
question,	though	I	mean	this	in	a	very	general	sense:	it	doesn't
have	to	be	a	question	grammatically,	just	something	that	acts	like
one	in	the	sense	that	it	spurs	some	response.

How	do	you	get	this	initial	question?	It	probably	won't	work	to
choose	some	important-sounding	topic	at	random	and	go	at	it.
Professional	traders	won't	even	trade	unless	they	have	what	they
call	an	edge	—	a	convincing	story	about	why	in	some	class	of
trades	they'll	win	more	than	they	lose.	Similarly,	you	shouldn't
attack	a	topic	unless	you	have	a	way	in	—	some	new	insight
about	it	or	way	of	approaching	it.

You	don't	need	to	have	a	complete	thesis;	you	just	need	some
kind	of	gap	you	can	explore.	In	fact,	merely	having	questions
about	something	other	people	take	for	granted	can	be	edge
enough.

If	you	come	across	a	question	that's	sufficiently	puzzling,	it	could
be	worth	exploring	even	if	it	doesn't	seem	very	momentous.

Many	an	important	discovery	has	been	made	by	pulling	on	a
thread	that	seemed	insignificant	at	first.	How	can	they	all	be
finches?	[2]

Once	you've	got	a	question,	then	what?	You	start	thinking	out
loud	about	it.	Not	literally	out	loud,	but	you	commit	to	a	specific
string	of	words	in	response,	as	you	would	if	you	were	talking.
This	initial	response	is	usually	mistaken	or	incomplete.	Writing
converts	your	ideas	from	vague	to	bad.	But	that's	a	step	forward,
because	once	you	can	see	the	brokenness,	you	can	fix	it.

Perhaps	beginning	writers	are	alarmed	at	the	thought	of	starting
with	something	mistaken	or	incomplete,	but	you	shouldn't	be,
because	this	is	why	essay	writing	works.	Forcing	yourself	to
commit	to	some	specific	string	of	words	gives	you	a	starting
point,	and	if	it's	wrong,	you'll	see	that	when	you	reread	it.	At
least	half	of	essay	writing	is	rereading	what	you've	written	and
asking	is	this	correct	and	complete?	You	have	to	be	very	strict
when	rereading,	not	just	because	you	want	to	keep	yourself
honest,	but	because	a	gap	between	your	response	and	the	truth
is	often	a	sign	of	new	ideas	to	be	discovered.

The	prize	for	being	strict	with	what	you've	written	is	not	just
refinement.	When	you	take	a	roughly	correct	answer	and	try	to
make	it	exactly	right,	sometimes	you	find	that	you	can't,	and	that
the	reason	is	that	you	were	depending	on	a	false	assumption.	And
when	you	discard	it,	the	answer	turns	out	to	be	completely
different.	[3]

Ideally	the	response	to	a	question	is	two	things:	the	first	step	in	a
process	that	converges	on	the	truth,	and	a	source	of	additional
questions	(in	my	very	general	sense	of	the	word).	So	the	process
continues	recursively,	as	response	spurs	response.	[4]

Usually	there	are	several	possible	responses	to	a	question,	which
means	you're	traversing	a	tree.	But	essays	are	linear,	not	tree-
shaped,	which	means	you	have	to	choose	one	branch	to	follow	at
each	point.	How	do	you	choose?	Usually	you	should	follow
whichever	offers	the	greatest	combination	of	generality	and
novelty.	I	don't	consciously	rank	branches	this	way;	I	just	follow
whichever	seems	most	exciting;	but	generality	and	novelty	are

#f2n
#f3n
#f4n

what	make	a	branch	exciting.	[5]

If	you're	willing	to	do	a	lot	of	rewriting,	you	don't	have	to	guess
right.	You	can	follow	a	branch	and	see	how	it	turns	out,	and	if	it
isn't	good	enough,	cut	it	and	backtrack.	I	do	this	all	the	time.	In
this	essay	I've	already	cut	a	17-paragraph	subtree,	in	addition	to
countless	shorter	ones.	Maybe	I'll	reattach	it	at	the	end,	or	boil	it
down	to	a	footnote,	or	spin	it	off	as	its	own	essay;	we'll	see.	[6]

In	general	you	want	to	be	quick	to	cut.	One	of	the	most
dangerous	temptations	in	writing	(and	in	software	and	painting)
is	to	keep	something	that	isn't	right,	just	because	it	contains	a
few	good	bits	or	cost	you	a	lot	of	effort.

The	most	surprising	new	question	being	thrown	off	at	this	point
is	does	it	really	matter	what	the	initial	question	is?	If	the	space	of
ideas	is	highly	connected,	it	shouldn't,	because	you	should	be
able	to	get	from	any	question	to	the	most	valuable	ones	in	a	few
hops.	And	we	see	evidence	that	it's	highly	connected	in	the	way,
for	example,	that	people	who	are	obsessed	with	some	topic	can
turn	any	conversation	toward	it.	But	that	only	works	if	you	know
where	you	want	to	go,	and	you	don't	in	an	essay.	That's	the	whole
point.	You	don't	want	to	be	the	obsessive	conversationalist,	or	all
your	essays	will	be	about	the	same	thing.	[7]

The	other	reason	the	initial	question	matters	is	that	you	usually
feel	somewhat	obliged	to	stick	to	it.	I	don't	think	about	this	when
I	decide	which	branch	to	follow.	I	just	follow	novelty	and
generality.	Sticking	to	the	question	is	enforced	later,	when	I
notice	I've	wandered	too	far	and	have	to	backtrack.	But	I	think
this	is	the	optimal	solution.	You	don't	want	the	hunt	for	novelty
and	generality	to	be	constrained	in	the	moment.	Go	with	it	and
see	what	you	get.	[8]

Since	the	initial	question	does	constrain	you,	in	the	best	case	it
sets	an	upper	bound	on	the	quality	of	essay	you'll	write.	If	you	do
as	well	as	you	possibly	can	on	the	chain	of	thoughts	that	follow
from	the	initial	question,	the	initial	question	itself	is	the	only
place	where	there's	room	for	variation.

It	would	be	a	mistake	to	let	this	make	you	too	conservative

#f5n
#f6n
#f7n
#f8n

though,	because	you	can't	predict	where	a	question	will	lead.	Not
if	you're	doing	things	right,	because	doing	things	right	means
making	discoveries,	and	by	definition	you	can't	predict	those.	So
the	way	to	respond	to	this	situation	is	not	to	be	cautious	about
which	initial	question	you	choose,	but	to	write	a	lot	of	essays.
Essays	are	for	taking	risks.

Almost	any	question	can	get	you	a	good	essay.	Indeed,	it	took
some	effort	to	think	of	a	sufficiently	unpromising	topic	in	the
third	paragraph,	because	any	essayist's	first	impulse	on	hearing
that	the	best	essay	couldn't	be	about	x	would	be	to	try	to	write	it.
But	if	most	questions	yield	good	essays,	only	some	yield	great
ones.

Can	we	predict	which	questions	will	yield	great	essays?
Considering	how	long	I've	been	writing	essays,	it's	alarming	how
novel	that	question	feels.

One	thing	I	like	in	an	initial	question	is	outrageousness.	I	love
questions	that	seem	naughty	in	some	way	—	for	example,	by
seeming	counterintuitive	or	overambitious	or	heterodox.	Ideally
all	three.	This	essay	is	an	example.	Writing	about	the	best	essay
implies	there	is	such	a	thing,	which	pseudo-intellectuals	will
dismiss	as	reductive,	though	it	follows	necessarily	from	the
possibility	of	one	essay	being	better	than	another.	And	thinking
about	how	to	do	something	so	ambitious	is	close	enough	to	doing
it	that	it	holds	your	attention.

I	like	to	start	an	essay	with	a	gleam	in	my	eye.	This	could	be	just
a	taste	of	mine,	but	there's	one	aspect	of	it	that	probably	isn't:	to
write	a	really	good	essay	on	some	topic,	you	have	to	be
interested	in	it.	A	good	writer	can	write	well	about	anything,	but
to	stretch	for	the	novel	insights	that	are	the	raison	d'etre	of	the
essay,	you	have	to	care.

If	caring	about	it	is	one	of	the	criteria	for	a	good	initial	question,
then	the	optimal	question	varies	from	person	to	person.	It	also
means	you're	more	likely	to	write	great	essays	if	you	care	about	a
lot	of	different	things.	The	more	curious	you	are,	the	greater	the
probable	overlap	between	the	set	of	things	you're	curious	about
and	the	set	of	topics	that	yield	great	essays.

What	other	qualities	would	a	great	initial	question	have?	It's
probably	good	if	it	has	implications	in	a	lot	of	different	areas.	And
I	find	it's	a	good	sign	if	it's	one	that	people	think	has	already
been	thoroughly	explored.	But	the	truth	is	that	I've	barely
thought	about	how	to	choose	initial	questions,	because	I	rarely
do	it.	I	rarely	choose	what	to	write	about;	I	just	start	thinking
about	something,	and	sometimes	it	turns	into	an	essay.

Am	I	going	to	stop	writing	essays	about	whatever	I	happen	to	be
thinking	about	and	instead	start	working	my	way	through	some
systematically	generated	list	of	topics?	That	doesn't	sound	like
much	fun.	And	yet	I	want	to	write	good	essays,	and	if	the	initial
question	matters,	I	should	care	about	it.

Perhaps	the	answer	is	to	go	one	step	earlier:	to	write	about
whatever	pops	into	your	head,	but	try	to	ensure	that	what	pops
into	your	head	is	good.	Indeed,	now	that	I	think	about	it,	this	has
to	be	the	answer,	because	a	mere	list	of	topics	wouldn't	be	any
use	if	you	didn't	have	edge	with	any	of	them.	To	start	writing	an
essay,	you	need	a	topic	plus	some	initial	insight	about	it,	and	you
can't	generate	those	systematically.	If	only.	[9]

You	can	probably	cause	yourself	to	have	more	of	them,	though.
The	quality	of	the	ideas	that	come	out	of	your	head	depends	on
what	goes	in,	and	you	can	improve	that	in	two	dimensions,
breadth	and	depth.

You	can't	learn	everything,	so	getting	breadth	implies	learning
about	topics	that	are	very	different	from	one	another.	When	I	tell
people	about	my	book-buying	trips	to	Hay	and	they	ask	what	I
buy	books	about,	I	usually	feel	a	bit	sheepish	answering,	because
the	topics	seem	like	a	laundry	list	of	unrelated	subjects.	But
perhaps	that's	actually	optimal	in	this	business.

You	can	also	get	ideas	by	talking	to	people,	by	doing	and	building
things,	and	by	going	places	and	seeing	things.	I	don't	think	it's
important	to	talk	to	new	people	so	much	as	the	sort	of	people
who	make	you	have	new	ideas.	I	get	more	new	ideas	after	talking
for	an	afternoon	with	Robert	Morris	than	from	talking	to	20	new
smart	people.	I	know	because	that's	what	a	block	of	office	hours

#f9n

at	Y	Combinator	consists	of.

While	breadth	comes	from	reading	and	talking	and	seeing,	depth
comes	from	doing.	The	way	to	really	learn	about	some	domain	is
to	have	to	solve	problems	in	it.	Though	this	could	take	the	form
of	writing,	I	suspect	that	to	be	a	good	essayist	you	also	have	to
do,	or	have	done,	some	other	kind	of	work.	That	may	not	be	true
for	most	other	fields,	but	essay	writing	is	different.	You	could
spend	half	your	time	working	on	something	else	and	be	net
ahead,	so	long	as	it	was	hard.

I'm	not	proposing	that	as	a	recipe	so	much	as	an	encouragement
to	those	already	doing	it.	If	you've	spent	all	your	life	so	far
working	on	other	things,	you're	already	halfway	there.	Though	of
course	to	be	good	at	writing	you	have	to	like	it,	and	if	you	like
writing	you'd	probably	have	spent	at	least	some	time	doing	it.

Everything	I've	said	about	initial	questions	applies	also	to	the
questions	you	encounter	in	writing	the	essay.	They're	the	same
thing;	every	subtree	of	an	essay	is	usually	a	shorter	essay,	just	as
every	subtree	of	a	Calder	mobile	is	a	smaller	mobile.	So	any
technique	that	gets	you	good	initial	questions	also	gets	you	good
whole	essays.

At	some	point	the	cycle	of	question	and	response	reaches	what
feels	like	a	natural	end.	Which	is	a	little	suspicious;	shouldn't
every	answer	suggest	more	questions?	I	think	what	happens	is
that	you	start	to	feel	sated.	Once	you've	covered	enough
interesting	ground,	you	start	to	lose	your	appetite	for	new
questions.	Which	is	just	as	well,	because	the	reader	is	probably
feeling	sated	too.	And	it's	not	lazy	to	stop	asking	questions,
because	you	could	instead	be	asking	the	initial	question	of	a	new
essay.

That's	the	ultimate	source	of	drag	on	the	connectedness	of	ideas:
the	discoveries	you	make	along	the	way.	If	you	discover	enough
starting	from	question	A,	you'll	never	make	it	to	question	B.
Though	if	you	keep	writing	essays	you'll	gradually	fix	this
problem	by	burning	off	such	discoveries.	So	bizarrely	enough,
writing	lots	of	essays	makes	it	as	if	the	space	of	ideas	were	more
highly	connected.

When	a	subtree	comes	to	an	end,	you	can	do	one	of	two	things.
You	can	either	stop,	or	pull	the	Cubist	trick	of	laying	separate
subtrees	end	to	end	by	returning	to	a	question	you	skipped
earlier.	Usually	it	requires	some	sleight	of	hand	to	make	the
essay	flow	continuously	at	this	point,	but	not	this	time.	This	time
I	actually	need	an	example	of	the	phenomenon.	For	example,	we
discovered	earlier	that	the	best	possible	essay	wouldn't	usually
be	timeless	in	the	way	the	best	painting	would.	This	seems
surprising	enough	to	be	worth	investigating	further.

There	are	two	senses	in	which	an	essay	can	be	timeless:	to	be
about	a	matter	of	permanent	importance,	and	always	to	have	the
same	effect	on	readers.	With	art	these	two	senses	blend	together.
Art	that	looked	beautiful	to	the	ancient	Greeks	still	looks
beautiful	to	us.	But	with	essays	the	two	senses	diverge,	because
essays	teach,	and	you	can't	teach	people	something	they	already
know.	Natural	selection	is	certainly	a	matter	of	permanent
importance,	but	an	essay	explaining	it	couldn't	have	the	same
effect	on	us	that	it	would	have	had	on	Darwin's	contemporaries,
precisely	because	his	ideas	were	so	successful	that	everyone
already	knows	about	them.	[10]

I	imagined	when	I	started	writing	this	that	the	best	possible
essay	would	be	timeless	in	the	stricter,	evergreen	sense:	that	it
would	contain	some	deep,	timeless	wisdom	that	would	appeal
equally	to	Aristotle	and	Feynman.	That	doesn't	seem	to	be	true.
But	if	the	best	possible	essay	wouldn't	usually	be	timeless	in	this
stricter	sense,	what	would	it	take	to	write	essays	that	were?

The	answer	to	that	turns	out	to	be	very	strange:	to	be	the
evergreen	kind	of	timeless,	an	essay	has	to	be	ineffective,	in	the
sense	that	its	discoveries	aren't	assimilated	into	our	shared
culture.	Otherwise	there	will	be	nothing	new	in	it	for	the	second
generation	of	readers.	If	you	want	to	surprise	readers	not	just
now	but	in	the	future	as	well,	you	have	to	write	essays	that	won't
stick	—	essays	that,	no	matter	how	good	they	are,	won't	become
part	of	what	people	in	the	future	learn	before	they	read	them.
[11]

I	can	imagine	several	ways	to	do	that.	One	would	be	to	write

#f10n
#f11n

about	things	people	never	learn.	For	example,	it's	a	long-
established	pattern	for	ambitious	people	to	chase	after	various
types	of	prizes,	and	only	later,	perhaps	too	late,	to	realize	that
some	of	them	weren't	worth	as	much	as	they	thought.	If	you
write	about	that,	you	can	be	confident	of	a	conveyor	belt	of
future	readers	to	be	surprised	by	it.

Ditto	if	you	write	about	the	tendency	of	the	inexperienced	to
overdo	things	—	of	young	engineers	to	produce	overcomplicated
solutions,	for	example.	There	are	some	kinds	of	mistakes	people
never	learn	to	avoid	except	by	making	them.	Any	of	those	should
be	a	timeless	topic.

Sometimes	when	we're	slow	to	grasp	things	it's	not	just	because
we're	obtuse	or	in	denial	but	because	we've	been	deliberately
lied	to.	There	are	a	lot	of	things	adults	lie	to	kids	about,	and
when	you	reach	adulthood,	they	don't	take	you	aside	and	hand
you	a	list	of	them.	They	don't	remember	which	lies	they	told	you,
and	most	were	implicit	anyway.	So	contradicting	such	lies	will	be
a	source	of	surprises	for	as	long	as	adults	keep	telling	them.

Sometimes	it's	systems	that	lie	to	you.	For	example,	the
educational	systems	in	most	countries	train	you	to	win	by
hacking	the	test.	But	that's	not	how	you	win	at	the	most
important	real-world	tests,	and	after	decades	of	training,	this	is
hard	for	new	arrivals	in	the	real	world	to	grasp.	Helping	them
overcome	such	institutional	lies	will	work	as	long	as	the
institutions	remain	broken.	[12]

Another	recipe	for	timelessness	is	to	write	about	things	readers
already	know,	but	in	much	more	detail	than	can	be	transmitted
culturally.	"Everyone	knows,"	for	example,	that	it	can	be
rewarding	to	have	kids.	But	till	you	have	them	you	don't	know
precisely	what	forms	that	takes,	and	even	then	much	of	what	you
know	you	may	never	have	put	into	words.

I've	written	about	all	these	kinds	of	topics.	But	I	didn't	do	it	in	a
deliberate	attempt	to	write	essays	that	were	timeless	in	the
stricter	sense.	And	indeed,	the	fact	that	this	depends	on	one's
ideas	not	sticking	suggests	that	it's	not	worth	making	a
deliberate	attempt	to.	You	should	write	about	topics	of	timeless

lies.html
lesson.html
#f12n
kids.html

importance,	yes,	but	if	you	do	such	a	good	job	that	your
conclusions	stick	and	future	generations	find	your	essay	obvious
instead	of	novel,	so	much	the	better.	You've	crossed	into	Darwin
territory.

Writing	about	topics	of	timeless	importance	is	an	instance	of
something	even	more	general,	though:	breadth	of	applicability.
And	there	are	more	kinds	of	breadth	than	chronological	—
applying	to	lots	of	different	fields,	for	example.	So	breadth	is	the
ultimate	aim.

I	already	aim	for	it.	Breadth	and	novelty	are	the	two	things	I'm
always	chasing.	But	I'm	glad	I	understand	where	timelessness
fits.

I	understand	better	where	a	lot	of	things	fit	now.	This	essay	has
been	a	kind	of	tour	of	essay	writing.	I	started	out	hoping	to	get
advice	about	topics;	if	you	assume	good	writing,	the	only	thing
left	to	differentiate	the	best	essay	is	its	topic.	And	I	did	get
advice	about	topics:	discover	natural	selection.	Yeah,	that	would
be	nice.	But	when	you	step	back	and	ask	what's	the	best	you	can
do	short	of	making	some	great	discovery	like	that,	the	answer
turns	out	to	be	about	procedure.	Ultimately	the	quality	of	an
essay	is	a	function	of	the	ideas	discovered	in	it,	and	the	way	you
get	them	is	by	casting	a	wide	net	for	questions	and	then	being
very	exacting	with	the	answers.

The	most	striking	feature	of	this	map	of	essay	writing	are	the
alternating	stripes	of	inspiration	and	effort	required.	The
questions	depend	on	inspiration,	but	the	answers	can	be	got	by
sheer	persistence.	You	don't	have	to	get	an	answer	right	the	first
time,	but	there's	no	excuse	for	not	getting	it	right	eventually,
because	you	can	keep	rewriting	till	you	do.	And	this	is	not	just	a
theoretical	possibility.	It's	a	pretty	accurate	description	of	the
way	I	work.	I'm	rewriting	as	we	speak.

But	although	I	wish	I	could	say	that	writing	great	essays	depends
mostly	on	effort,	in	the	limit	case	it's	inspiration	that	makes	the
difference.	In	the	limit	case,	the	questions	are	the	harder	thing	to
get.	That	pool	has	no	bottom.

How	to	get	more	questions?	That	is	the	most	important	question
of	all.

Notes

[1]	There	might	be	some	resistance	to	this	conclusion	on	the
grounds	that	some	of	these	discoveries	could	only	be	understood
by	a	small	number	of	readers.	But	you	get	into	all	sorts	of
difficulties	if	you	want	to	disqualify	essays	on	this	account.	How
do	you	decide	where	the	cutoff	should	be?	If	a	virus	kills	off
everyone	except	a	handful	of	people	sequestered	at	Los	Alamos,
could	an	essay	that	had	been	disqualified	now	be	eligible?	Etc.

Darwin's	1844	essay	was	derived	from	an	earlier	version	written
in	1839.	Extracts	from	it	were	published	in	1858.

[2]	When	you	find	yourself	very	curious	about	an	apparently
minor	question,	that's	an	exciting	sign.	Evolution	has	designed
you	to	pay	attention	to	things	that	matter.	So	when	you're	very
curious	about	something	random,	that	could	mean	you've
unconsciously	noticed	it's	less	random	than	it	seems.

[3]	Corollary:	If	you're	not	intellectually	honest,	your	writing
won't	just	be	biased,	but	also	boring,	because	you'll	miss	all	the
ideas	you'd	have	discovered	if	you	pushed	for	the	truth.

[4]	Sometimes	this	process	begins	before	you	start	writing.
Sometimes	you've	already	figured	out	the	first	few	things	you
want	to	say.	Schoolchildren	are	often	taught	they	should	decide
everything	they	want	to	say,	and	write	this	down	as	an	outline
before	they	start	writing	the	essay	itself.	Maybe	that's	a	good

way	to	get	them	started	—	or	not,	I	don't	know	—	but	it's
antithetical	to	the	spirit	of	essay	writing.	The	more	detailed	your
outline,	the	less	your	ideas	can	benefit	from	the	sort	of	discovery
that	essays	are	for.

[5]	The	problem	with	this	type	of	"greedy"	algorithm	is	that	you
can	end	up	on	a	local	maximum.	If	the	most	valuable	question	is
preceded	by	a	boring	one,	you'll	overlook	it.	But	I	can't	imagine	a
better	strategy.	There's	no	lookahead	except	by	writing.	So	use	a
greedy	algorithm	and	a	lot	of	time.

[6]	I	ended	up	reattaching	the	first	5	of	the	17	paragraphs,	and
discarding	the	rest.

[7]	Stephen	Fry	confessed	to	making	use	of	this	phenomenon
when	taking	exams	at	Oxford.	He	had	in	his	head	a	standard
essay	about	some	general	literary	topic,	and	he	would	find	a	way
to	turn	the	exam	question	toward	it	and	then	just	reproduce	it
again.

Strictly	speaking	it's	the	graph	of	ideas	that	would	be	highly
connected,	not	the	space,	but	that	usage	would	confuse	people
who	don't	know	graph	theory,	whereas	people	who	do	know	it
will	get	what	I	mean	if	I	say	"space".

[8]	Too	far	doesn't	depend	just	on	the	distance	from	the	original
topic.	It's	more	like	that	distance	divided	by	the	value	of
whatever	I've	discovered	in	the	subtree.

[9]	Or	can	you?	I	should	try	writing	about	this.	Even	if	the	chance
of	succeeding	is	small,	the	expected	value	is	huge.

[10]	There	was	a	vogue	in	the	20th	century	for	saying	that	the
purpose	of	art	was	also	to	teach.	Some	artists	tried	to	justify
their	work	by	explaining	that	their	goal	was	not	to	produce
something	good,	but	to	challenge	our	preconceptions	about	art.
And	to	be	fair,	art	can	teach	somewhat.	The	ancient	Greeks'
naturalistic	sculptures	represented	a	new	idea,	and	must	have
been	extra	exciting	to	contemporaries	on	that	account.	But	they
still	look	good	to	us.

[11]	Bertrand	Russell	caused	huge	controversy	in	the	early	20th
century	with	his	ideas	about	"trial	marriage."	But	they	make
boring	reading	now,	because	they	prevailed.	"Trial	marriage"	is
what	we	call	"dating."

[12]	If	you'd	asked	me	10	years	ago,	I'd	have	predicted	that
schools	would	continue	to	teach	hacking	the	test	for	centuries.
But	now	it	seems	plausible	that	students	will	soon	be	taught
individually	by	AIs,	and	that	exams	will	be	replaced	by	ongoing,
invisible	micro-assessments.

Thanks	to	Sam	Altman,	Trevor	Blackwell,	Jessica	Livingston,
Robert	Morris,	Courtenay	Pipkin,	and	Harj	Taggar	for	reading
drafts	of	this.

	

How	to	Start	Google
March	2024

(This	is	a	talk	I	gave	to	14	and	15	year	olds	about	what	to	do	now
if	they	might	want	to	start	a	startup	later.	Lots	of	schools	think
they	should	tell	students	something	about	startups.	This	is	what	I
think	they	should	tell	them.)

Most	of	you	probably	think	that	when	you're	released	into	the	so-
called	real	world	you'll	eventually	have	to	get	some	kind	of	job.
That's	not	true,	and	today	I'm	going	to	talk	about	a	trick	you	can
use	to	avoid	ever	having	to	get	a	job.

The	trick	is	to	start	your	own	company.	So	it's	not	a	trick	for
avoiding	work,	because	if	you	start	your	own	company	you'll
work	harder	than	you	would	if	you	had	an	ordinary	job.	But	you
will	avoid	many	of	the	annoying	things	that	come	with	a	job,
including	a	boss	telling	you	what	to	do.

It's	more	exciting	to	work	on	your	own	project	than	someone
else's.	And	you	can	also	get	a	lot	richer.	In	fact,	this	is	the
standard	way	to	get	really	rich.	If	you	look	at	the	lists	of	the
richest	people	that	occasionally	get	published	in	the	press,	nearly
all	of	them	did	it	by	starting	their	own	companies.

Starting	your	own	company	can	mean	anything	from	starting	a
barber	shop	to	starting	Google.	I'm	here	to	talk	about	one
extreme	end	of	that	continuum.	I'm	going	to	tell	you	how	to	start
Google.

The	companies	at	the	Google	end	of	the	continuum	are	called
startups	when	they're	young.	The	reason	I	know	about	them	is
that	my	wife	Jessica	and	I	started	something	called	Y	Combinator
that	is	basically	a	startup	factory.	Since	2005,	Y	Combinator	has
funded	over	4000	startups.	So	we	know	exactly	what	you	need	to
start	a	startup,	because	we've	helped	people	do	it	for	the	last	19

richnow.html

years.

You	might	have	thought	I	was	joking	when	I	said	I	was	going	to
tell	you	how	to	start	Google.	You	might	be	thinking	"How	could
we	start	Google?"	But	that's	effectively	what	the	people	who	did
start	Google	were	thinking	before	they	started	it.	If	you'd	told
Larry	Page	and	Sergey	Brin,	the	founders	of	Google,	that	the
company	they	were	about	to	start	would	one	day	be	worth	over	a
trillion	dollars,	their	heads	would	have	exploded.

All	you	can	know	when	you	start	working	on	a	startup	is	that	it
seems	worth	pursuing.	You	can't	know	whether	it	will	turn	into	a
company	worth	billions	or	one	that	goes	out	of	business.	So	when
I	say	I'm	going	to	tell	you	how	to	start	Google,	I	mean	I'm	going
to	tell	you	how	to	get	to	the	point	where	you	can	start	a	company
that	has	as	much	chance	of	being	Google	as	Google	had	of	being
Google.	[1]

How	do	you	get	from	where	you	are	now	to	the	point	where	you
can	start	a	successful	startup?	You	need	three	things.	You	need	to
be	good	at	some	kind	of	technology,	you	need	an	idea	for	what
you're	going	to	build,	and	you	need	cofounders	to	start	the
company	with.

How	do	you	get	good	at	technology?	And	how	do	you	choose
which	technology	to	get	good	at?	Both	of	those	questions	turn
out	to	have	the	same	answer:	work	on	your	own	projects.	Don't
try	to	guess	whether	gene	editing	or	LLMs	or	rockets	will	turn
out	to	be	the	most	valuable	technology	to	know	about.	No	one
can	predict	that.	Just	work	on	whatever	interests	you	the	most.
You'll	work	much	harder	on	something	you're	interested	in	than
something	you're	doing	because	you	think	you're	supposed	to.

If	you're	not	sure	what	technology	to	get	good	at,	get	good	at
programming.	That	has	been	the	source	of	the	median	startup	for
the	last	30	years,	and	this	is	probably	not	going	to	change	in	the
next	10.

Those	of	you	who	are	taking	computer	science	classes	in	school
may	at	this	point	be	thinking,	ok,	we've	got	this	sorted.	We're
already	being	taught	all	about	programming.	But	sorry,	this	is	not

#f1n

enough.	You	have	to	be	working	on	your	own	projects,	not	just
learning	stuff	in	classes.	You	can	do	well	in	computer	science
classes	without	ever	really	learning	to	program.	In	fact	you	can
graduate	with	a	degree	in	computer	science	from	a	top	university
and	still	not	be	any	good	at	programming.	That's	why	tech
companies	all	make	you	take	a	coding	test	before	they'll	hire	you,
regardless	of	where	you	went	to	university	or	how	well	you	did
there.	They	know	grades	and	exam	results	prove	nothing.

If	you	really	want	to	learn	to	program,	you	have	to	work	on	your
own	projects.	You	learn	so	much	faster	that	way.	Imagine	you're
writing	a	game	and	there's	something	you	want	to	do	in	it,	and
you	don't	know	how.	You're	going	to	figure	out	how	a	lot	faster
than	you'd	learn	anything	in	a	class.

You	don't	have	to	learn	programming,	though.	If	you're
wondering	what	counts	as	technology,	it	includes	practically
everything	you	could	describe	using	the	words	"make"	or	"build."
So	welding	would	count,	or	making	clothes,	or	making	videos.
Whatever	you're	most	interested	in.	The	critical	distinction	is
whether	you're	producing	or	just	consuming.	Are	you	writing
computer	games,	or	just	playing	them?	That's	the	cutoff.

Steve	Jobs,	the	founder	of	Apple,	spent	time	when	he	was	a
teenager	studying	calligraphy	—	the	sort	of	beautiful	writing	that
you	see	in	medieval	manuscripts.	No	one,	including	him,	thought
that	this	would	help	him	in	his	career.	He	was	just	doing	it
because	he	was	interested	in	it.	But	it	turned	out	to	help	him	a
lot.	The	computer	that	made	Apple	really	big,	the	Macintosh,
came	out	at	just	the	moment	when	computers	got	powerful
enough	to	make	letters	like	the	ones	in	printed	books	instead	of
the	computery-looking	letters	you	see	in	8	bit	games.	Apple
destroyed	everyone	else	at	this,	and	one	reason	was	that	Steve
was	one	of	the	few	people	in	the	computer	business	who	really
got	graphic	design.

Don't	feel	like	your	projects	have	to	be	serious.	They	can	be	as
frivolous	as	you	like,	so	long	as	you're	building	things	you're
excited	about.	Probably	90%	of	programmers	start	out	building
games.	They	and	their	friends	like	to	play	games.	So	they	build
the	kind	of	things	they	and	their	friends	want.	And	that's	exactly

what	you	should	be	doing	at	15	if	you	want	to	start	a	startup	one
day.

You	don't	have	to	do	just	one	project.	In	fact	it's	good	to	learn
about	multiple	things.	Steve	Jobs	didn't	just	learn	calligraphy.	He
also	learned	about	electronics,	which	was	even	more	valuable.
Whatever	you're	interested	in.	(Do	you	notice	a	theme	here?)

So	that's	the	first	of	the	three	things	you	need,	to	get	good	at
some	kind	or	kinds	of	technology.	You	do	it	the	same	way	you	get
good	at	the	violin	or	football:	practice.	If	you	start	a	startup	at
22,	and	you	start	writing	your	own	programs	now,	then	by	the
time	you	start	the	company	you'll	have	spent	at	least	7	years
practicing	writing	code,	and	you	can	get	pretty	good	at	anything
after	practicing	it	for	7	years.

Let's	suppose	you're	22	and	you've	succeeded:	You're	now	really
good	at	some	technology.	How	do	you	get	startup	ideas?	It	might
seem	like	that's	the	hard	part.	Even	if	you	are	a	good
programmer,	how	do	you	get	the	idea	to	start	Google?

Actually	it's	easy	to	get	startup	ideas	once	you're	good	at
technology.	Once	you're	good	at	some	technology,	when	you	look
at	the	world	you	see	dotted	outlines	around	the	things	that	are
missing.	You	start	to	be	able	to	see	both	the	things	that	are
missing	from	the	technology	itself,	and	all	the	broken	things	that
could	be	fixed	using	it,	and	each	one	of	these	is	a	potential
startup.

In	the	town	near	our	house	there's	a	shop	with	a	sign	warning
that	the	door	is	hard	to	close.	The	sign	has	been	there	for	several
years.	To	the	people	in	the	shop	it	must	seem	like	this	mysterious
natural	phenomenon	that	the	door	sticks,	and	all	they	can	do	is
put	up	a	sign	warning	customers	about	it.	But	any	carpenter
looking	at	this	situation	would	think	"why	don't	you	just	plane	off
the	part	that	sticks?"

Once	you're	good	at	programming,	all	the	missing	software	in	the
world	starts	to	become	as	obvious	as	a	sticking	door	to	a
carpenter.	I'll	give	you	a	real	world	example.	Back	in	the	20th
century,	American	universities	used	to	publish	printed	directories

startupideas.html

with	all	the	students'	names	and	contact	info.	When	I	tell	you
what	these	directories	were	called,	you'll	know	which	startup	I'm
talking	about.	They	were	called	facebooks,	because	they	usually
had	a	picture	of	each	student	next	to	their	name.

So	Mark	Zuckerberg	shows	up	at	Harvard	in	2002,	and	the
university	still	hasn't	gotten	the	facebook	online.	Each	individual
house	has	an	online	facebook,	but	there	isn't	one	for	the	whole
university.	The	university	administration	has	been	diligently
having	meetings	about	this,	and	will	probably	have	solved	the
problem	in	another	decade	or	so.	Most	of	the	students	don't
consciously	notice	that	anything	is	wrong.	But	Mark	is	a
programmer.	He	looks	at	this	situation	and	thinks	"Well,	this	is
stupid.	I	could	write	a	program	to	fix	this	in	one	night.	Just	let
people	upload	their	own	photos	and	then	combine	the	data	into	a
new	site	for	the	whole	university."	So	he	does.	And	almost
literally	overnight	he	has	thousands	of	users.

Of	course	Facebook	was	not	a	startup	yet.	It	was	just	a...	project.
There's	that	word	again.	Projects	aren't	just	the	best	way	to	learn
about	technology.	They're	also	the	best	source	of	startup	ideas.

Facebook	was	not	unusual	in	this	respect.	Apple	and	Google	also
began	as	projects.	Apple	wasn't	meant	to	be	a	company.	Steve
Wozniak	just	wanted	to	build	his	own	computer.	It	only	turned
into	a	company	when	Steve	Jobs	said	"Hey,	I	wonder	if	we	could
sell	plans	for	this	computer	to	other	people."	That's	how	Apple
started.	They	weren't	even	selling	computers,	just	plans	for
computers.	Can	you	imagine	how	lame	this	company	seemed?

Ditto	for	Google.	Larry	and	Sergey	weren't	trying	to	start	a
company	at	first.	They	were	just	trying	to	make	search	better.
Before	Google,	most	search	engines	didn't	try	to	sort	the	results
they	gave	you	in	order	of	importance.	If	you	searched	for	"rugby"
they	just	gave	you	every	web	page	that	contained	the	word
"rugby."	And	the	web	was	so	small	in	1997	that	this	actually
worked!	Kind	of.	There	might	only	be	20	or	30	pages	with	the
word	"rugby,"	but	the	web	was	growing	exponentially,	which
meant	this	way	of	doing	search	was	becoming	exponentially	more
broken.	Most	users	just	thought,	"Wow,	I	sure	have	to	look
through	a	lot	of	search	results	to	find	what	I	want."	Door	sticks.

But	like	Mark,	Larry	and	Sergey	were	programmers.	Like	Mark,
they	looked	at	this	situation	and	thought	"Well,	this	is	stupid.
Some	pages	about	rugby	matter	more	than	others.	Let's	figure
out	which	those	are	and	show	them	first."

It's	obvious	in	retrospect	that	this	was	a	great	idea	for	a	startup.
It	wasn't	obvious	at	the	time.	It's	never	obvious.	If	it	was
obviously	a	good	idea	to	start	Apple	or	Google	or	Facebook,
someone	else	would	have	already	done	it.	That's	why	the	best
startups	grow	out	of	projects	that	aren't	meant	to	be	startups.
You're	not	trying	to	start	a	company.	You're	just	following	your
instincts	about	what's	interesting.	And	if	you're	young	and	good
at	technology,	then	your	unconscious	instincts	about	what's
interesting	are	better	than	your	conscious	ideas	about	what
would	be	a	good	company.

So	it's	critical,	if	you're	a	young	founder,	to	build	things	for
yourself	and	your	friends	to	use.	The	biggest	mistake	young
founders	make	is	to	build	something	for	some	mysterious	group
of	other	people.	But	if	you	can	make	something	that	you	and	your
friends	truly	want	to	use	—	something	your	friends	aren't	just
using	out	of	loyalty	to	you,	but	would	be	really	sad	to	lose	if	you
shut	it	down	—	then	you	almost	certainly	have	the	germ	of	a	good
startup	idea.	It	may	not	seem	like	a	startup	to	you.	It	may	not	be
obvious	how	to	make	money	from	it.	But	trust	me,	there's	a	way.

What	you	need	in	a	startup	idea,	and	all	you	need,	is	something
your	friends	actually	want.	And	those	ideas	aren't	hard	to	see
once	you're	good	at	technology.	There	are	sticking	doors
everywhere.	[2]

Now	for	the	third	and	final	thing	you	need:	a	cofounder,	or
cofounders.	The	optimal	startup	has	two	or	three	founders,	so
you	need	one	or	two	cofounders.	How	do	you	find	them?	Can	you
predict	what	I'm	going	to	say	next?	It's	the	same	thing:	projects.
You	find	cofounders	by	working	on	projects	with	them.	What	you
need	in	a	cofounder	is	someone	who's	good	at	what	they	do	and
that	you	work	well	with,	and	the	only	way	to	judge	this	is	to	work
with	them	on	things.

At	this	point	I'm	going	to	tell	you	something	you	might	not	want

#f2n

to	hear.	It	really	matters	to	do	well	in	your	classes,	even	the	ones
that	are	just	memorization	or	blathering	about	literature,
because	you	need	to	do	well	in	your	classes	to	get	into	a	good
university.	And	if	you	want	to	start	a	startup	you	should	try	to	get
into	the	best	university	you	can,	because	that's	where	the	best
cofounders	are.	It's	also	where	the	best	employees	are.	When
Larry	and	Sergey	started	Google,	they	began	by	just	hiring	all
the	smartest	people	they	knew	out	of	Stanford,	and	this	was	a
real	advantage	for	them.

The	empirical	evidence	is	clear	on	this.	If	you	look	at	where	the
largest	numbers	of	successful	startups	come	from,	it's	pretty
much	the	same	as	the	list	of	the	most	selective	universities.

I	don't	think	it's	the	prestigious	names	of	these	universities	that
cause	more	good	startups	to	come	out	of	them.	Nor	do	I	think	it's
because	the	quality	of	the	teaching	is	better.	What's	driving	this
is	simply	the	difficulty	of	getting	in.	You	have	to	be	pretty	smart
and	determined	to	get	into	MIT	or	Cambridge,	so	if	you	do
manage	to	get	in,	you'll	find	the	other	students	include	a	lot	of
smart	and	determined	people.	[3]

You	don't	have	to	start	a	startup	with	someone	you	meet	at
university.	The	founders	of	Twitch	met	when	they	were	seven.
The	founders	of	Stripe,	Patrick	and	John	Collison,	met	when	John
was	born.	But	universities	are	the	main	source	of	cofounders.
And	because	they're	where	the	cofounders	are,	they're	also
where	the	ideas	are,	because	the	best	ideas	grow	out	of	projects
you	do	with	the	people	who	become	your	cofounders.

So	the	list	of	what	you	need	to	do	to	get	from	here	to	starting	a
startup	is	quite	short.	You	need	to	get	good	at	technology,	and
the	way	to	do	that	is	to	work	on	your	own	projects.	And	you	need
to	do	as	well	in	school	as	you	can,	so	you	can	get	into	a	good
university,	because	that's	where	the	cofounders	and	the	ideas
are.

That's	it,	just	two	things,	build	stuff	and	do	well	in	school.

#f3n

Notes

[1]	The	rhetorical	trick	in	this	sentence	is	that	the	"Google"s
refer	to	different	things.	What	I	mean	is:	a	company	that	has	as
much	chance	of	growing	as	big	as	Google	ultimately	did	as	Larry
and	Sergey	could	have	reasonably	expected	Google	itself	would
at	the	time	they	started	it.	But	I	think	the	original	version	is
zippier.

[2]	Making	something	for	your	friends	isn't	the	only	source	of
startup	ideas.	It's	just	the	best	source	for	young	founders,	who
have	the	least	knowledge	of	what	other	people	want,	and	whose
own	wants	are	most	predictive	of	future	demand.

[3]	Strangely	enough	this	is	particularly	true	in	countries	like	the
US	where	undergraduate	admissions	are	done	badly.	US
admissions	departments	make	applicants	jump	through	a	lot	of
arbitrary	hoops	that	have	little	to	do	with	their	intellectual	ability.
But	the	more	arbitrary	a	test,	the	more	it	becomes	a	test	of	mere
determination	and	resourcefulness.	And	those	are	the	two	most
important	qualities	in	startup	founders.	So	US	admissions
departments	are	better	at	selecting	founders	than	they	would	be
if	they	were	better	at	selecting	students.

Thanks	to	Jared	Friedman,	Carolynn	Levy,	Jessica	Livingston,
Harj	Taggar,	and	Garry	Tan	for	reading	drafts	of	this.

	

The	Reddits
March	2024

I	met	the	Reddits	before	we	even	started	Y	Combinator.	In	fact
they	were	one	of	the	reasons	we	started	it.

YC	grew	out	of	a	talk	I	gave	to	the	Harvard	Computer	Society
(the	undergrad	computer	club)	about	how	to	start	a	startup.
Everyone	else	in	the	audience	was	probably	local,	but	Steve	and
Alexis	came	up	on	the	train	from	the	University	of	Virginia,
where	they	were	seniors.	Since	they'd	come	so	far	I	agreed	to
meet	them	for	coffee.	They	told	me	about	the	startup	idea	we'd
later	fund	them	to	drop:	a	way	to	order	fast	food	on	your
cellphone.

This	was	before	smartphones.	They'd	have	had	to	make	deals
with	cell	carriers	and	fast	food	chains	just	to	get	it	launched.	So
it	was	not	going	to	happen.	It	still	doesn't	exist,	19	years	later.
But	I	was	impressed	with	their	brains	and	their	energy.	In	fact	I
was	so	impressed	with	them	and	some	of	the	other	people	I	met
at	that	talk	that	I	decided	to	start	something	to	fund	them.	A	few
days	later	I	told	Steve	and	Alexis	that	we	were	starting
Y	Combinator,	and	encouraged	them	to	apply.

That	first	batch	we	didn't	have	any	way	to	identify	applicants,	so
we	made	up	nicknames	for	them.	The	Reddits	were	the	"Cell	food
muffins."	"Muffin"	is	a	term	of	endearment	Jessica	uses	for	things
like	small	dogs	and	two	year	olds.	So	that	gives	you	some	idea
what	kind	of	impression	Steve	and	Alexis	made	in	those	days.
They	had	the	look	of	slightly	ruffled	surprise	that	baby	birds
have.

Their	idea	was	bad	though.	And	since	we	thought	then	that	we
were	funding	ideas	rather	than	founders,	we	rejected	them.	But
we	felt	bad	about	it.	Jessica	was	sad	that	we'd	rejected	the
muffins.	And	it	seemed	wrong	to	me	to	turn	down	the	people

we'd	been	inspired	to	start	YC	to	fund.

I	don't	think	the	startup	sense	of	the	word	"pivot"	had	been
invented	yet,	but	we	wanted	to	fund	Steve	and	Alexis,	so	if	their
idea	was	bad,	they'd	have	to	work	on	something	else.	And	I	knew
what	else.	In	those	days	there	was	a	site	called	Delicious	where
you	could	save	links.	It	had	a	page	called	del.icio.us/popular	that
listed	the	most-saved	links,	and	people	were	using	this	page	as	a
de	facto	Reddit.	I	knew	because	a	lot	of	the	traffic	to	my	site	was
coming	from	it.	There	needed	to	be	something	like
del.icio.us/popular,	but	designed	for	sharing	links	instead	of
being	a	byproduct	of	saving	them.

So	I	called	Steve	and	Alexis	and	said	that	we	liked	them,	just	not
their	idea,	so	we'd	fund	them	if	they'd	work	on	something	else.
They	were	on	the	train	home	to	Virginia	at	that	point.	They	got
off	at	the	next	station	and	got	on	the	next	train	north,	and	by	the
end	of	the	day	were	committed	to	working	on	what's	now	called
Reddit.

They	would	have	liked	to	call	it	Snoo,	as	in	"What	snoo?"	But
snoo.com	was	too	expensive,	so	they	settled	for	calling	the
mascot	Snoo	and	picked	a	name	for	the	site	that	wasn't
registered.	Early	on	Reddit	was	just	a	provisional	name,	or	so
they	told	me	at	least,	but	it's	probably	too	late	to	change	it	now.

As	with	all	the	really	great	startups,	there's	an	uncannily	close
match	between	the	company	and	the	founders.	Steve	in
particular.	Reddit	has	a	certain	personality	—	curious,	skeptical,
ready	to	be	amused	—	and	that	personality	is	Steve's.

Steve	will	roll	his	eyes	at	this,	but	he's	an	intellectual;	he's
interested	in	ideas	for	their	own	sake.	That	was	how	he	came	to
be	in	that	audience	in	Cambridge	in	the	first	place.	He	knew	me
because	he	was	interested	in	a	programming	language	I've
written	about	called	Lisp,	and	Lisp	is	one	of	those	languages	few
people	learn	except	out	of	intellectual	curiosity.	Steve's	kind	of
vacuum-cleaner	curiosity	is	exactly	what	you	want	when	you're
starting	a	site	that's	a	list	of	links	to	literally	anything
interesting.

Steve	was	not	a	big	fan	of	authority,	so	he	also	liked	the	idea	of	a
site	without	editors.	In	those	days	the	top	forum	for
programmers	was	a	site	called	Slashdot.	It	was	a	lot	like	Reddit,
except	the	stories	on	the	frontpage	were	chosen	by	human
moderators.	And	though	they	did	a	good	job,	that	one	small
difference	turned	out	to	be	a	big	difference.	Being	driven	by	user
submissions	meant	Reddit	was	fresher	than	Slashdot.	News	there
was	newer,	and	users	will	always	go	where	the	newest	news	is.

I	pushed	the	Reddits	to	launch	fast.	A	version	one	didn't	need	to
be	more	than	a	couple	hundred	lines	of	code.	How	could	that
take	more	than	a	week	or	two	to	build?	And	they	did	launch
comparatively	fast,	about	three	weeks	into	the	first	YC	batch.	The
first	users	were	Steve,	Alexis,	me,	and	some	of	their	YC
batchmates	and	college	friends.	It	turns	out	you	don't	need	that
many	users	to	collect	a	decent	list	of	interesting	links,	especially
if	you	have	multiple	accounts	per	user.

Reddit	got	two	more	people	from	their	YC	batch:	Chris	Slowe	and
Aaron	Swartz,	and	they	too	were	unusually	smart.	Chris	was	just
finishing	his	PhD	in	physics	at	Harvard.	Aaron	was	younger,	a
college	freshman,	and	even	more	anti-authority	than	Steve.	It's
not	exaggerating	to	describe	him	as	a	martyr	for	what	authority
later	did	to	him.

Slowly	but	inexorably	Reddit's	traffic	grew.	At	first	the	numbers
were	so	small	they	were	hard	to	distinguish	from	background
noise.	But	within	a	few	weeks	it	was	clear	that	there	was	a	core
of	real	users	returning	regularly	to	the	site.	And	although	all
kinds	of	things	have	happened	to	Reddit	the	company	in	the
years	since,	Reddit	the	site	never	looked	back.

Reddit	the	site	(and	now	app)	is	such	a	fundamentally	useful
thing	that	it's	almost	unkillable.	Which	is	why,	despite	a	long
stretch	after	Steve	left	when	the	management	strategy	ranged
from	benign	neglect	to	spectacular	blunders,	traffic	just	kept
growing.	You	can't	do	that	with	most	companies.	Most	companies
you	take	your	eye	off	the	ball	for	six	months	and	you're	in	deep
trouble.	But	Reddit	was	special,	and	when	Steve	came	back	in
2015,	I	knew	the	world	was	in	for	a	surprise.

People	thought	they	had	Reddit's	number:	one	of	the	players	in
Silicon	Valley,	but	not	one	of	the	big	ones.	But	those	who	knew
what	had	been	going	on	behind	the	scenes	knew	there	was	more
to	the	story	than	this.	If	Reddit	could	grow	to	the	size	it	had	with
management	that	was	harmless	at	best,	what	could	it	do	if	Steve
came	back?	We	now	know	the	answer	to	that	question.	Or	at
least	a	lower	bound	on	the	answer.	Steve	is	not	out	of	ideas	yet.

	

